code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowerCamelCase__ ) lowerCamelCase = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowerCamelCase__ ) EnvironmentCommand.register_subcommand(lowerCamelCase__ ) TestCommand.register_subcommand(lowerCamelCase__ ) RunBeamCommand.register_subcommand(lowerCamelCase__ ) DummyDataCommand.register_subcommand(lowerCamelCase__ ) # Parse args lowerCamelCase , lowerCamelCase = parser.parse_known_args() if not hasattr(lowerCamelCase__ , """func""" ): parser.print_help() exit(1 ) lowerCamelCase = parse_unknown_args(lowerCamelCase__ ) # Run lowerCamelCase = args.func(lowerCamelCase__ , **lowerCamelCase__ ) service.run() if __name__ == "__main__": main()
252
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = 1 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def __A ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(A ) @property def __A ( self ) -> List[Any]: '''simple docstring''' def extract(*A , **A ): class __lowercase : """simple docstring""" def __init__( self ) -> List[str]: '''simple docstring''' lowerCamelCase = torch.ones([0] ) def __A ( self , A ) -> Tuple: '''simple docstring''' self.pixel_values.to(A ) return self return Out() return extract def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet lowerCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=A ) assert isinstance(A , A ) assert isinstance(pipe.scheduler , A ) assert pipe.safety_checker is None lowerCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) lowerCamelCase = StableDiffusionPipeline.from_pretrained(A ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.dummy_cond_unet lowerCamelCase = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowerCamelCase = unet.half() lowerCamelCase = vae.half() lowerCamelCase = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """A painting of a squirrel eating a burger""" lowerCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A ) lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowerCamelCase = 40_03_66_03_46 lowerCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A ) lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowerCamelCase = 27_34_97_17_55 lowerCamelCase = 7 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowerCamelCase = 10_44_35_52_34 lowerCamelCase = 12 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
252
1
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _snake_case ( _snake_case : int ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _snake_case ( ): with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase : Optional[Any] = [1, 2, 3] with pytest.raises(snake_case_ ): with parallel_backend('''unsupported backend''' ): map_nested(snake_case_ , snake_case_ , num_proc=2 ) with pytest.raises(snake_case_ ): with parallel_backend('''unsupported backend''' ): map_nested(snake_case_ , snake_case_ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = [1, 2] lowerCAmelCase : List[Any] = {"""a""": 1, """b""": 2} lowerCAmelCase : List[str] = {"""a""": [1, 2], """b""": [3, 4]} lowerCAmelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2} lowerCAmelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} lowerCAmelCase : Optional[int] = [2, 3] lowerCAmelCase : List[str] = {"""a""": 2, """b""": 3} lowerCAmelCase : Any = {"""a""": [2, 3], """b""": [4, 5]} lowerCAmelCase : Tuple = {"""a""": {"""1""": 2}, """b""": 3} lowerCAmelCase : List[str] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend('''spark''' ): assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class UpperCamelCase ( __snake_case ): UpperCamelCase : int = '''data2vec-vision''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[Any]=3072 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : str=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : int=False , UpperCAmelCase__ : str=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : int=[3, 5, 7, 11] , UpperCAmelCase__ : Tuple=[1, 2, 3, 6] , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Any=0.4 , UpperCAmelCase__ : List[str]=256 , UpperCAmelCase__ : Optional[int]=1 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Union[str, Any]=255 , **UpperCAmelCase__ : Union[str, Any] , ) -> Optional[int]: super().__init__(**UpperCAmelCase__ ) _a : Tuple = hidden_size _a : Optional[int] = num_hidden_layers _a : Union[str, Any] = num_attention_heads _a : Dict = intermediate_size _a : Any = hidden_act _a : Optional[int] = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : List[Any] = initializer_range _a : Any = layer_norm_eps _a : Any = image_size _a : Union[str, Any] = patch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = use_mask_token _a : int = use_absolute_position_embeddings _a : List[str] = use_relative_position_bias _a : List[Any] = use_shared_relative_position_bias _a : str = layer_scale_init_value _a : int = drop_path_rate _a : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) _a : Tuple = out_indices _a : Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) _a : int = use_auxiliary_head _a : List[Any] = auxiliary_loss_weight _a : str = auxiliary_channels _a : Union[str, Any] = auxiliary_num_convs _a : List[Any] = auxiliary_concat_input _a : Dict = semantic_loss_ignore_index class UpperCamelCase ( __snake_case ): UpperCamelCase : int = version.parse('''1.11''' ) @property def _lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase ( self : str ) -> float: return 1E-4
294
'''simple docstring''' import os import sys import unittest lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : List[Any] = {'''BertModelTest''': '''BertModelTester'''} A : int = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : List[str] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A : Union[str, Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Dict = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A : str = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
3
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE : snake_case__ : str snake_case__ : str = None @staticmethod def _A ( ): raise NotImplementedError def _A ( self : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): raise NotImplementedError def _A ( self : str , __lowerCamelCase : List[Any] ): raise NotImplementedError def _A ( self : Dict ): if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def _A ( cls : Optional[Any] ): return F"""`pip install {cls.pip_package or cls.name}`""" class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Union[str, Any] = """optuna""" @staticmethod def _A ( ): return is_optuna_available() def _A ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : Dict ): return run_hp_search_optuna(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def _A ( self : int , __lowerCamelCase : Tuple ): return default_hp_space_optuna(__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = """ray""" snake_case__ : Optional[int] = """'ray[tune]'""" @staticmethod def _A ( ): return is_ray_available() def _A ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : str ): return run_hp_search_ray(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : Any ): return default_hp_space_ray(__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = """sigopt""" @staticmethod def _A ( ): return is_sigopt_available() def _A ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : Any ): return run_hp_search_sigopt(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : Tuple ): return default_hp_space_sigopt(__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Dict = """wandb""" @staticmethod def _A ( ): return is_wandb_available() def _A ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : Any ): return run_hp_search_wandb(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def _A ( self : Union[str, Any] , __lowerCamelCase : Tuple ): return default_hp_space_wandb(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE_ ( ) -> str: """simple docstring""" UpperCamelCase :int = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__magic_name__ ) > 0: UpperCamelCase :Optional[Any] = available_backends[0].name if len(__magic_name__ ) > 1: logger.info( f"""{len(__magic_name__ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
62
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase_ : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } UpperCAmelCase_ : List[Any] = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } UpperCAmelCase_ : List[str] = '''▁''' class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : str="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase :int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token UpperCamelCase :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = vocab_file UpperCamelCase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) UpperCamelCase :Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCamelCase :Tuple = len(self.sp_model ) - 1 UpperCamelCase :List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _A ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase :Any = [self.cls_token_id] UpperCamelCase :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _A ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Any = [self.sep_token_id] UpperCamelCase :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _A ( self : List[Any] ): return len(self.sp_model ) def _A ( self : Any ): UpperCamelCase :Optional[int] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self : int , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase :List[Any] = self.sp_model.PieceToId(__lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _A ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :List[Any] = [] UpperCamelCase :str = """""" UpperCamelCase :Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token UpperCamelCase :List[str] = True UpperCamelCase :Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) UpperCamelCase :Optional[Any] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self : str ): UpperCamelCase :Tuple = self.__dict__.copy() UpperCamelCase :str = None return state def __setstate__( self : Tuple , __lowerCamelCase : Optional[int] ): UpperCamelCase :Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase :Any = {} UpperCamelCase :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase :Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , """wb""" ) as fi: UpperCamelCase :List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
62
1
class _UpperCamelCase : def __init__( self :int ) -> int: UpperCAmelCase__ = {} def UpperCAmelCase_ ( self :str ) -> Optional[Any]: print(self.vertex ) for i in self.vertex: print(__lowerCamelCase , " -> " , " -> ".join([str(__lowerCamelCase ) for j in self.vertex[i]] ) ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Any , lowerCamelCase :Any ) -> Tuple: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCamelCase ) else: # else make a new vertex UpperCAmelCase__ = [to_vertex] def UpperCAmelCase_ ( self :Any ) -> Optional[Any]: # visited array for storing already visited nodes UpperCAmelCase__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Dict , lowerCamelCase :List[Any] ) -> int: # mark start vertex as visited UpperCAmelCase__ = True print(__lowerCamelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
169
from __future__ import annotations import math def UpperCamelCase__( UpperCamelCase__ : int )->bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__( UpperCamelCase__ : int )->list[int]: A__ = str(UpperCamelCase__ ) A__ = [n] for i in range(1 , len(UpperCamelCase__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCamelCase__( UpperCamelCase__ : int )->bool: if len(str(UpperCamelCase__ ) ) > 3: if not is_prime(int(str(UpperCamelCase__ )[-3:] ) ) or not is_prime(int(str(UpperCamelCase__ )[:3] ) ): return False return True def UpperCamelCase__( UpperCamelCase__ : int = 11 )->list[int]: A__ = [] A__ = 13 while len(UpperCamelCase__ ) != count: if validate(UpperCamelCase__ ): A__ = list_truncated_nums(UpperCamelCase__ ) if all(is_prime(UpperCamelCase__ ) for i in list_nums ): list_truncated_primes.append(UpperCamelCase__ ) num += 2 return list_truncated_primes def UpperCamelCase__( )->int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"{sum(compute_truncated_primes(11)) = }")
193
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowerCAmelCase_ = 2_9_9_7_9_2_4_5_8 # Symbols lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = symbols('''ct x y z''') def lowerCamelCase_ ( _UpperCamelCase ) -> float: """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCamelCase_ ( _UpperCamelCase ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_UpperCamelCase ) ** 2 ) def lowerCamelCase_ ( _UpperCamelCase ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_UpperCamelCase ), -gamma(_UpperCamelCase ) * beta(_UpperCamelCase ), 0, 0], [-gamma(_UpperCamelCase ) * beta(_UpperCamelCase ), gamma(_UpperCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = None ) -> np.ndarray: """simple docstring""" if event is None: snake_case_ : Any = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_UpperCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowerCAmelCase_ = transform(2_9_9_7_9_2_4_5) print('''Example of four vector: ''') print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values lowerCAmelCase_ = {ct: c, x: 1, y: 1, z: 1} lowerCAmelCase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
279
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('''KEY''') lowerCAmelCase_ = TypeVar('''VAL''') @dataclass(frozen=_a, slots=_a ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowerCamelCase_ : KEY lowerCamelCase_ : VAL class __lowerCAmelCase ( _Item ): def __init__(self ) -> None: '''simple docstring''' super().__init__(__magic_name__ , __magic_name__ ) def __bool__(self ) -> bool: '''simple docstring''' return False lowerCAmelCase_ = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__(self , __magic_name__ = 8 , __magic_name__ = 0.75 ) -> None: '''simple docstring''' snake_case_ : List[Any] = initial_block_size snake_case_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case_ : List[str] = capacity_factor snake_case_ : int = 0 def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return hash(__magic_name__ ) % len(self._buckets ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' snake_case_ : Optional[int] = self._buckets[ind] if not stored: snake_case_ : Optional[Any] = _Item(__magic_name__ , __magic_name__ ) self._len += 1 return True elif stored.key == key: snake_case_ : List[Any] = _Item(__magic_name__ , __magic_name__ ) return True else: return False def lowerCamelCase (self ) -> bool: '''simple docstring''' snake_case_ : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__magic_name__ ) def lowerCamelCase (self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False snake_case_ : int = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase (self , __magic_name__ ) -> None: '''simple docstring''' snake_case_ : List[str] = self._buckets snake_case_ : int = [None] * new_size snake_case_ : Optional[int] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase (self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowerCamelCase (self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowerCamelCase (self , __magic_name__ ) -> Iterator[int]: '''simple docstring''' snake_case_ : Dict = self._get_bucket_index(__magic_name__ ) for _ in range(len(self._buckets ) ): yield ind snake_case_ : Tuple = self._get_next_ind(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): if self._try_set(__magic_name__ , __magic_name__ , __magic_name__ ): break def __setitem__(self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__magic_name__ , __magic_name__ ) def __delitem__(self , __magic_name__ ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): snake_case_ : Optional[Any] = self._buckets[ind] if item is None: raise KeyError(__magic_name__ ) if item is _deleted: continue if item.key == key: snake_case_ : Union[str, Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self , __magic_name__ ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): snake_case_ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__magic_name__ ) def __len__(self ) -> int: '''simple docstring''' return self._len def __iter__(self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ) -> str: '''simple docstring''' snake_case_ : List[str] = ''' ,'''.join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
279
1
from math import ceil def __UpperCAmelCase ( __a : int ,__a : Any ) -> Union[str, Any]: """simple docstring""" _a : List[Any] = list(range(0 ,__a ) ) _a : int = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _a : Tuple = [] for i in device_map_blocks: if device_map_blocks.count(__a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__a ) # Missing blocks _a : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] _a : Dict = [i for i in device_map_blocks if i not in blocks] if len(__a ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(__a ) ) def __UpperCAmelCase ( __a : Optional[int] ,__a : int ) -> List[str]: """simple docstring""" _a : Any = list(range(__a ) ) _a : str = int(ceil(n_layers / len(__a ) ) ) _a : Optional[int] = [layers[i : i + n_blocks] for i in range(0 ,__a ,__a )] return dict(zip(__a ,__a ) )
235
import logging from transformers import PretrainedConfig a__ = logging.getLogger(__name__) a__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = "bertabs" def __init__( self , _a=3_0_5_2_2 , _a=5_1_2 , _a=6 , _a=5_1_2 , _a=8 , _a=5_1_2 , _a=0.2 , _a=6 , _a=7_6_8 , _a=8 , _a=2_0_4_8 , _a=0.2 , **_a , ) -> Any: super().__init__(**_a ) _a : int = vocab_size _a : List[str] = max_pos _a : Tuple = enc_layers _a : Optional[Any] = enc_hidden_size _a : int = enc_heads _a : Optional[Any] = enc_ff_size _a : List[str] = enc_dropout _a : Tuple = dec_layers _a : Optional[Any] = dec_hidden_size _a : Optional[Any] = dec_heads _a : Optional[Any] = dec_ff_size _a : List[Any] = dec_dropout
235
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') _UpperCAmelCase = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> Tuple: with open(SCREAMING_SNAKE_CASE , """rb""" ) as f: __lowerCAmelCase : List[str] = Image.open(SCREAMING_SNAKE_CASE ) return im.convert("""RGB""" ) @dataclass class snake_case_ : A_ = field( default=__lowercase ,metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } ,) A_ = field( default=__lowercase ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A_ = field(default=__lowercase ,metadata={'help': 'A folder containing the training data.'} ) A_ = field(default=__lowercase ,metadata={'help': 'A folder containing the validation data.'} ) A_ = field( default=0.15 ,metadata={'help': 'Percent to split off of train for validation.'} ) A_ = field( default=__lowercase ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) A_ = field( default=__lowercase ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) def UpperCAmelCase__ ( self : Dict )->Optional[int]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class snake_case_ : A_ = field( default='google/vit-base-patch16-224-in21k' ,metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ,) A_ = field( default=__lowercase ,metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__lowercase )} ,) A_ = field( default=__lowercase ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ = field( default=__lowercase ,metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) A_ = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) A_ = field(default=__lowercase ,metadata={'help': 'Name or path of preprocessor config.'} ) A_ = field( default=__lowercase ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) A_ = field( default=__lowercase ,metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} ,) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any ) -> Optional[Any]: __lowerCAmelCase : str = torch.stack([example["""pixel_values"""] for example in examples] ) __lowerCAmelCase : Dict = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _SCREAMING_SNAKE_CASE ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __lowerCAmelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowerCAmelCase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowerCAmelCase : Optional[Any] = {} if data_args.train_dir is not None: __lowerCAmelCase : int = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: __lowerCAmelCase : Tuple = os.path.join(data_args.validation_dir , """**""" ) __lowerCAmelCase : Union[str, Any] = load_dataset( """imagefolder""" , data_files=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. __lowerCAmelCase : Optional[Any] = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: __lowerCAmelCase : Any = dataset["""train"""].train_test_split(data_args.train_val_split ) __lowerCAmelCase : Union[str, Any] = split["""train"""] __lowerCAmelCase : Optional[int] = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowerCAmelCase : str = dataset["""train"""].features["""labels"""].names __lowerCAmelCase : Any = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = str(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = label # Load the accuracy metric from the datasets package __lowerCAmelCase : Optional[Any] = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE :Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE ) , labelaid=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : List[Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowerCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowerCAmelCase : Tuple = image_processor.size["""shortest_edge"""] else: __lowerCAmelCase : List[Any] = (image_processor.size["""height"""], image_processor.size["""width"""]) __lowerCAmelCase : Optional[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowerCAmelCase : Dict = Compose( [ RandomResizedCrop(SCREAMING_SNAKE_CASE ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowerCAmelCase : Optional[Any] = Compose( [ Resize(SCREAMING_SNAKE_CASE ), CenterCrop(SCREAMING_SNAKE_CASE ), ToTensor(), normalize, ] ) def train_transforms(SCREAMING_SNAKE_CASE :Dict ): __lowerCAmelCase : Optional[int] = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(SCREAMING_SNAKE_CASE :List[Any] ): __lowerCAmelCase : Optional[Any] = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __lowerCAmelCase : Dict = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __lowerCAmelCase : Optional[Any] = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(SCREAMING_SNAKE_CASE ) # Initalize our trainer __lowerCAmelCase : Tuple = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __lowerCAmelCase : List[str] = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase : Optional[int] = last_checkpoint __lowerCAmelCase : List[str] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCAmelCase : Union[str, Any] = trainer.evaluate() trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE ) trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub __lowerCAmelCase : int = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
350
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class snake_case_ ( __lowercase ): A_ = 'unispeech-sat' def __init__( self : str , _snake_case : List[Any]=32 , _snake_case : Union[str, Any]=768 , _snake_case : Tuple=12 , _snake_case : Optional[int]=12 , _snake_case : Optional[Any]=3072 , _snake_case : Tuple="gelu" , _snake_case : int=0.1 , _snake_case : List[Any]=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : str=0.0 , _snake_case : List[str]=0.0 , _snake_case : int=0.1 , _snake_case : Optional[Any]=0.1 , _snake_case : Optional[Any]=0.02 , _snake_case : int=1E-5 , _snake_case : Dict="group" , _snake_case : Optional[Any]="gelu" , _snake_case : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , _snake_case : int=(5, 2, 2, 2, 2, 2, 2) , _snake_case : int=(10, 3, 3, 3, 3, 2, 2) , _snake_case : Any=False , _snake_case : Optional[Any]=128 , _snake_case : Tuple=16 , _snake_case : str=False , _snake_case : Dict=True , _snake_case : Tuple=0.05 , _snake_case : str=10 , _snake_case : Tuple=2 , _snake_case : List[Any]=0.0 , _snake_case : str=10 , _snake_case : Any=0 , _snake_case : List[Any]=320 , _snake_case : Union[str, Any]=2 , _snake_case : Dict=0.1 , _snake_case : Dict=100 , _snake_case : Union[str, Any]=256 , _snake_case : int=256 , _snake_case : Union[str, Any]=0.1 , _snake_case : Optional[Any]="mean" , _snake_case : int=False , _snake_case : str=False , _snake_case : str=256 , _snake_case : List[Any]=(512, 512, 512, 512, 1500) , _snake_case : Optional[int]=(5, 3, 3, 1, 1) , _snake_case : Tuple=(1, 2, 3, 1, 1) , _snake_case : Dict=512 , _snake_case : Union[str, Any]=0 , _snake_case : List[str]=1 , _snake_case : Optional[Any]=2 , _snake_case : Optional[int]=504 , **_snake_case : Optional[int] , )->Union[str, Any]: '''simple docstring''' super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case ) __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : List[Any] = feat_extract_norm __lowerCAmelCase : int = feat_extract_activation __lowerCAmelCase : Union[str, Any] = list(_snake_case ) __lowerCAmelCase : str = list(_snake_case ) __lowerCAmelCase : Optional[Any] = list(_snake_case ) __lowerCAmelCase : Optional[int] = conv_bias __lowerCAmelCase : Dict = num_conv_pos_embeddings __lowerCAmelCase : List[Any] = num_conv_pos_embedding_groups __lowerCAmelCase : Tuple = len(self.conv_dim ) __lowerCAmelCase : int = num_hidden_layers __lowerCAmelCase : str = intermediate_size __lowerCAmelCase : str = hidden_act __lowerCAmelCase : Any = num_attention_heads __lowerCAmelCase : Optional[int] = hidden_dropout __lowerCAmelCase : str = attention_dropout __lowerCAmelCase : int = activation_dropout __lowerCAmelCase : Union[str, Any] = feat_proj_dropout __lowerCAmelCase : List[str] = final_dropout __lowerCAmelCase : Dict = layerdrop __lowerCAmelCase : Tuple = layer_norm_eps __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Optional[int] = num_clusters __lowerCAmelCase : List[Any] = do_stable_layer_norm __lowerCAmelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase : Dict = apply_spec_augment __lowerCAmelCase : List[Any] = mask_time_prob __lowerCAmelCase : List[str] = mask_time_length __lowerCAmelCase : Dict = mask_time_min_masks __lowerCAmelCase : Tuple = mask_feature_prob __lowerCAmelCase : List[str] = mask_feature_length __lowerCAmelCase : str = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCAmelCase : Optional[int] = num_codevectors_per_group __lowerCAmelCase : List[Any] = num_codevector_groups __lowerCAmelCase : int = contrastive_logits_temperature __lowerCAmelCase : str = feat_quantizer_dropout __lowerCAmelCase : int = num_negatives __lowerCAmelCase : str = codevector_dim __lowerCAmelCase : Any = proj_codevector_dim __lowerCAmelCase : Any = diversity_loss_weight # ctc loss __lowerCAmelCase : Tuple = ctc_loss_reduction __lowerCAmelCase : Any = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase : List[str] = list(_snake_case ) __lowerCAmelCase : List[str] = list(_snake_case ) __lowerCAmelCase : Optional[int] = list(_snake_case ) __lowerCAmelCase : Optional[int] = xvector_output_dim @property def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
232
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __A =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase ) -> Optional[Any]: lowerCamelCase_ = question_encoder lowerCamelCase_ = generator lowerCamelCase_ = self.question_encoder def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: if os.path.isfile(lowercase ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(lowercase , exist_ok=lowercase ) lowerCamelCase_ = os.path.join(lowercase , "question_encoder_tokenizer" ) lowerCamelCase_ = os.path.join(lowercase , "generator_tokenizer" ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , **lowercase ) -> Union[str, Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer lowerCamelCase_ = kwargs.pop("config" , lowercase ) if config is None: lowerCamelCase_ = RagConfig.from_pretrained(lowercase ) lowerCamelCase_ = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) lowerCamelCase_ = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ) -> Dict: return self.current_tokenizer(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> List[Any]: return self.generator.batch_decode(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> List[str]: return self.generator.decode(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.question_encoder def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.generator def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ) -> BatchEncoding: warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , lowercase , ) if max_length is None: lowerCamelCase_ = self.current_tokenizer.model_max_length lowerCamelCase_ = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCamelCase_ = self.current_tokenizer.model_max_length lowerCamelCase_ = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) lowerCamelCase_ = labels["input_ids"] return model_inputs
19
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
0
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __lowercase : int = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __lowercase : Any = [0, 25, 50] __lowercase : int = [25, 50, 75] __lowercase : List[str] = fuzz.membership.trimf(X, abca) __lowercase : Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __lowercase : List[Any] = np.ones(75) __lowercase : Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __lowercase : int = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __lowercase : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __lowercase : str = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __lowercase : List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __lowercase : Optional[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __lowercase : str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __lowercase : Optional[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __lowercase : Union[str, Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
294
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A = 'pt' elif is_tf_available(): _A = 'tf' else: _A = 'jax' class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = PerceiverTokenizer UpperCAmelCase__ : Optional[Any] = False def _a ( self ) -> Dict: super().setUp() __UpperCamelCase =PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ) -> int: return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def _a ( self , **A_ ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , A_ , A_=False , A_=20 , A_=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __UpperCamelCase =[] for i in range(len(A_ ) ): try: __UpperCamelCase =tokenizer.decode([i] , clean_up_tokenization_spaces=A_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCamelCase =list(filter(lambda A_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , A_ ) ) __UpperCamelCase =list(filter(lambda A_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A_ ) , A_ ) ) if max_length is not None and len(A_ ) > max_length: __UpperCamelCase =toks[:max_length] if min_length is not None and len(A_ ) < min_length and len(A_ ) > 0: while len(A_ ) < min_length: __UpperCamelCase =toks + toks # toks_str = [t[1] for t in toks] __UpperCamelCase =[t[0] for t in toks] # Ensure consistency __UpperCamelCase =tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) if " " not in output_txt and len(A_ ) > 1: __UpperCamelCase =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A_ ) ) if with_prefix_space: __UpperCamelCase =' ' + output_txt __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) return output_txt, output_ids def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.perceiver_tokenizer __UpperCamelCase ='Unicode €.' __UpperCamelCase =tokenizer(A_ ) __UpperCamelCase =[4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , A_ ) # decoding __UpperCamelCase =tokenizer.decode(A_ ) self.assertEqual(A_ , '[CLS]Unicode €.[SEP]' ) __UpperCamelCase =tokenizer('e è é ê ë' ) __UpperCamelCase =[4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , A_ ) # decoding __UpperCamelCase =tokenizer.decode(A_ ) self.assertEqual(A_ , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.perceiver_tokenizer __UpperCamelCase =['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __UpperCamelCase =[4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __UpperCamelCase =tokenizer(A_ , padding=A_ , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) if FRAMEWORK != "jax": __UpperCamelCase =list(batch.input_ids.numpy()[0] ) else: __UpperCamelCase =list(batch.input_ids.tolist()[0] ) self.assertListEqual(A_ , A_ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.perceiver_tokenizer __UpperCamelCase =['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase =tokenizer(A_ , padding=A_ , return_tensors=A_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , A_ ) self.assertIn('attention_mask' , A_ ) self.assertNotIn('decoder_input_ids' , A_ ) self.assertNotIn('decoder_attention_mask' , A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.perceiver_tokenizer __UpperCamelCase =[ 'Summary of the text.', 'Another summary.', ] __UpperCamelCase =tokenizer( text_target=A_ , max_length=32 , padding='max_length' , truncation=A_ , return_tensors=A_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _a ( self ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCamelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCamelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =' He is very happy, UNwant\u00E9d,running' __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) tokenizer.save_pretrained(A_ ) __UpperCamelCase =tokenizer.__class__.from_pretrained(A_ ) __UpperCamelCase =after_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) shutil.rmtree(A_ ) __UpperCamelCase =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __UpperCamelCase =tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) tokenizer.save_pretrained(A_ ) __UpperCamelCase =tokenizer.__class__.from_pretrained(A_ ) __UpperCamelCase =after_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCamelCase =tokenizer.__class__.from_pretrained(A_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A_ ) def _a ( self ) -> Any: __UpperCamelCase =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A_ ) with open(os.path.join(A_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase =json.load(A_ ) with open(os.path.join(A_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase =json.load(A_ ) __UpperCamelCase =[f'<extra_id_{i}>' for i in range(125 )] __UpperCamelCase =added_tokens_extra_ids + [ 'an_additional_special_token' ] __UpperCamelCase =added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(A_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(A_ , A_ ) with open(os.path.join(A_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(A_ , A_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCamelCase =tokenizer_class.from_pretrained( A_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCamelCase =added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=A_ )] __UpperCamelCase =tokenizer_class.from_pretrained( A_ , additional_special_tokens=A_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _a ( self ) -> Dict: __UpperCamelCase =self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def _a ( self ) -> Union[str, Any]: pass def _a ( self ) -> Optional[Any]: pass def _a ( self ) -> int: pass def _a ( self ) -> List[Any]: pass def _a ( self ) -> Optional[Any]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __UpperCamelCase =self.get_tokenizers(fast=A_ , do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase =['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __UpperCamelCase =tokenizer.convert_tokens_to_string(A_ ) self.assertIsInstance(A_ , A_ )
62
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" ): __UpperCamelCase =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __UpperCamelCase =BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ ).text , 'html.parser' ) __UpperCamelCase =soup.find_all('td' , attrs='titleColumn' ) __UpperCamelCase =soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "IMDb_Top_250_Movies.csv" ): __UpperCamelCase =get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE__ , 'w' , newline='' ) as out_file: __UpperCamelCase =csv.writer(SCREAMING_SNAKE_CASE__ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
62
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _UpperCamelCase ( unittest.TestCase ): def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any]=7 , _SCREAMING_SNAKE_CASE: Optional[int]=3 , _SCREAMING_SNAKE_CASE: Union[str, Any]=18 , _SCREAMING_SNAKE_CASE: Tuple=30 , _SCREAMING_SNAKE_CASE: Optional[Any]=400 , _SCREAMING_SNAKE_CASE: List[Any]=True , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: List[Any]=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , _SCREAMING_SNAKE_CASE: Dict=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , _SCREAMING_SNAKE_CASE: Optional[int]=True , ) -> List[str]: """simple docstring""" UpperCamelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCamelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_convert_rgb def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=False , _SCREAMING_SNAKE_CASE: List[Any]=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCamelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: UpperCamelCase_ = [] for i in range(self.batch_size ): UpperCamelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCamelCase_ = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] if torchify: UpperCamelCase_ = [torch.from_numpy(snake_case__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class _UpperCamelCase ( A_ , unittest.TestCase ): _UpperCamelCase : List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=snake_case__ ) @property def lowercase ( self: Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self: Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def lowercase ( self: str ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" pass def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase ( self: int ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase ( self: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class _UpperCamelCase ( A_ , unittest.TestCase ): _UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase ( self: Any ) -> Dict: """simple docstring""" UpperCamelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=snake_case__ ) UpperCamelCase_ = 3 @property def lowercase ( self: str ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self: Dict ) -> Dict: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def lowercase ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase ( self: int ) -> int: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
360
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=_UpperCamelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=_UpperCamelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=_UpperCamelCase ) return parser.parse_args() def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = parse_args() # Import training_script as a module. snake_case_ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : Tuple = script_fpath.stem snake_case_ : List[str] = importlib.import_module(_UpperCamelCase ) # Patch sys.argv snake_case_ : Dict = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
279
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, list[float]]: """simple docstring""" snake_case_ : Dict = list(range(len(_UpperCamelCase ) ) ) snake_case_ : Dict = [v / w for v, w in zip(_UpperCamelCase , _UpperCamelCase )] index.sort(key=lambda _UpperCamelCase : ratio[i] , reverse=_UpperCamelCase ) snake_case_ : float = 0 snake_case_ : list[float] = [0] * len(_UpperCamelCase ) for i in index: if weight[i] <= capacity: snake_case_ : Dict = 1 max_value += value[i] capacity -= weight[i] else: snake_case_ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
279
1
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = PhobertTokenizer lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Tuple = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] _snake_case : Union[str, Any] = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : int = ["""#version: 0.2""", """l à</w>"""] _snake_case : Optional[Any] = {"""unk_token""": """<unk>"""} _snake_case : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def UpperCamelCase_ ( self: Optional[int], **a_: int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: str, a_: Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """Tôi là VinAI Research""" _snake_case : List[str] = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) _snake_case : Union[str, Any] = """Tôi là VinAI Research""" _snake_case : Tuple = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() _snake_case : Dict = tokenizer.tokenize(a_ ) print(a_ ) self.assertListEqual(a_, a_ ) _snake_case : int = tokens + [tokenizer.unk_token] _snake_case : Dict = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ )
132
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : Union[str, Any] = [] _snake_case : Dict = set({"""(""", """[""", """{"""} ) _snake_case : Union[str, Any] = set({""")""", """]""", """}"""} ) _snake_case : Tuple = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(snake_case__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(snake_case__ ) == 0 or (len(snake_case__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(snake_case__ ) == 0 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = input("""Enter sequence of brackets: """ ) if is_balanced(snake_case__ ): print(snake_case__ , """is balanced""" ) else: print(snake_case__ , """is not balanced""" ) if __name__ == "__main__": main()
132
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case : Tuple = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : int = b.T __snake_case : Tuple = np.sum(np.square(_lowerCamelCase ) , axis=1 ) __snake_case : str = np.sum(np.square(_lowerCamelCase ) , axis=0 ) __snake_case : int = np.matmul(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = x.reshape(-1 , 3 ) __snake_case : str = squared_euclidean_distance(_lowerCamelCase , _lowerCamelCase ) return np.argmin(_lowerCamelCase , axis=1 ) class a (__lowercase ): """simple docstring""" __UpperCAmelCase : List[str] = ["pixel_values"] def __init__( self : List[str] , lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : bool = True , lowerCamelCase : bool = True , **lowerCamelCase : Any , ) -> None: super().__init__(**lowerCamelCase ) __snake_case : Optional[Any] = size if size is not None else {"height": 256, "width": 256} __snake_case : str = get_size_dict(lowerCamelCase ) __snake_case : Union[str, Any] = np.array(lowerCamelCase ) if clusters is not None else None __snake_case : Optional[Any] = do_resize __snake_case : Tuple = size __snake_case : Dict = resample __snake_case : Any = do_normalize __snake_case : Any = do_color_quantize def __snake_case ( self : Optional[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : int , ) -> np.ndarray: __snake_case : List[str] = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( lowerCamelCase , size=(size["height"], size["width"]) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: __snake_case : Tuple = rescale(image=lowerCamelCase , scale=1 / 1_27.5 , data_format=lowerCamelCase ) __snake_case : Any = image - 1 return image def __snake_case ( self : str , lowerCamelCase : ImageInput , lowerCamelCase : bool = None , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCamelCase : int , ) -> PIL.Image.Image: __snake_case : Tuple = do_resize if do_resize is not None else self.do_resize __snake_case : int = size if size is not None else self.size __snake_case : List[Any] = get_size_dict(lowerCamelCase ) __snake_case : Optional[Any] = resample if resample is not None else self.resample __snake_case : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Optional[int] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __snake_case : List[str] = clusters if clusters is not None else self.clusters __snake_case : List[Any] = np.array(lowerCamelCase ) __snake_case : str = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. __snake_case : str = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __snake_case : Optional[Any] = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_normalize: __snake_case : Optional[Any] = [self.normalize(image=lowerCamelCase ) for image in images] if do_color_quantize: __snake_case : Dict = [to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __snake_case : List[str] = np.array(lowerCamelCase ) __snake_case : int = color_quantize(lowerCamelCase , lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __snake_case : Union[str, Any] = images.shape[0] __snake_case : List[Any] = images.reshape(lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __snake_case : Tuple = list(lowerCamelCase ) else: __snake_case : Dict = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __snake_case : int = {"input_ids": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
123
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : List[str] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
232
0
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
218
import argparse import copy def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} with open(_A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[1], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[0], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' with open(_A ) as f: SCREAMING_SNAKE_CASE__ = f.read(1 ) SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = 0 while visiting not in first_solution: SCREAMING_SNAKE_CASE__ = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_A ) and k[0] not in first_solution: SCREAMING_SNAKE_CASE__ = k[1] SCREAMING_SNAKE_CASE__ = k[0] first_solution.append(_A ) SCREAMING_SNAKE_CASE__ = distance_of_first_solution + int(_A ) SCREAMING_SNAKE_CASE__ = best_node first_solution.append(_A ) SCREAMING_SNAKE_CASE__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 SCREAMING_SNAKE_CASE__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for n in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(_A ) for kn in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(_A ) if n == kn: continue SCREAMING_SNAKE_CASE__ = copy.deepcopy(_A ) SCREAMING_SNAKE_CASE__ = kn SCREAMING_SNAKE_CASE__ = n SCREAMING_SNAKE_CASE__ = 0 for k in _tmp[:-1]: SCREAMING_SNAKE_CASE__ = _tmp[_tmp.index(_A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: SCREAMING_SNAKE_CASE__ = distance + int(i[1] ) _tmp.append(_A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) SCREAMING_SNAKE_CASE__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = first_solution SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = distance_of_first_solution SCREAMING_SNAKE_CASE__ = solution while count <= iters: SCREAMING_SNAKE_CASE__ = find_neighborhood(_A , _A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] SCREAMING_SNAKE_CASE__ = len(_A ) - 1 SCREAMING_SNAKE_CASE__ = False while not found: SCREAMING_SNAKE_CASE__ = 0 while i < len(_A ): if best_solution[i] != solution[i]: SCREAMING_SNAKE_CASE__ = best_solution[i] SCREAMING_SNAKE_CASE__ = solution[i] break SCREAMING_SNAKE_CASE__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = best_solution[:-1] SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: SCREAMING_SNAKE_CASE__ = cost SCREAMING_SNAKE_CASE__ = solution else: SCREAMING_SNAKE_CASE__ = index_of_best_solution + 1 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] if len(_A ) >= size: tabu_list.pop(0 ) SCREAMING_SNAKE_CASE__ = count + 1 return best_solution_ever, best_cost def UpperCAmelCase_ ( _A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = generate_neighbours(args.File ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = generate_first_solution( args.File , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = tabu_search( _A , _A , _A , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
218
1
"""simple docstring""" import unittest from knapsack import knapsack as k class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : str ) -> Optional[int]: _a : List[Any] = 0 _a : Any = [0] _a : str = [0] _a : List[Any] = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , 0 ) _a : Any = [60] _a : Union[str, Any] = [10] _a : List[str] = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , 0 ) def _lowercase ( self : Optional[int] ) -> str: _a : Optional[int] = 3 _a : Any = [1, 2, 3] _a : Union[str, Any] = [3, 2, 1] _a : Dict = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , 5 ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : str = 50 _a : Optional[int] = [60, 100, 120] _a : Tuple = [10, 20, 30] _a : Optional[int] = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
294
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCamelCase ( nn.Module ): def __init__( self : Union[str, Any] ) -> int: super().__init__() _a : Optional[Any] = nn.Linear(3 , 4 ) _a : Tuple = nn.BatchNormad(4 ) _a : Dict = nn.Linear(4 , 5 ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> int: return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase__ ) ) ) class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Any , UpperCAmelCase__ : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Optional[int] ) -> Optional[int]: return (args[0] + 1,) + args[1:], kwargs class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[str]: return output + 1 class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict ) -> str: _a : List[Any] = ModelForTest() _a : str = ModelHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(test_model._hf_hook , UpperCAmelCase__ ) self.assertTrue(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ , """_hf_hook""" ) ) self.assertFalse(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) def _lowercase ( self : Optional[int] ) -> Optional[int]: _a : Dict = ModelForTest() _a : Dict = ModelHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ , append=UpperCAmelCase__ ) self.assertEqual(isinstance(test_model._hf_hook , UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ , """_hf_hook""" ) ) self.assertFalse(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) def _lowercase ( self : Dict ) -> int: _a : str = ModelForTest() _a : List[Any] = torch.randn(2 , 3 ) _a : Optional[Any] = test_model(x + 1 ) _a : str = test_model(x + 2 ) _a : Union[str, Any] = PreForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a : int = PreForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a : int = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) def _lowercase ( self : Tuple ) -> int: _a : Tuple = ModelForTest() _a : Union[str, Any] = torch.randn(2 , 3 ) _a : Optional[int] = test_model(UpperCAmelCase__ ) _a : int = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a : List[Any] = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a : Any = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , output + 2 , atol=1E-5 ) def _lowercase ( self : Dict ) -> Optional[Any]: _a : Any = ModelForTest() _a : List[Any] = torch.randn(2 , 3 ) _a : Dict = test_model(UpperCAmelCase__ ) _a : Any = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a : Any = True _a : Union[str, Any] = test_model(UpperCAmelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _lowercase ( self : Optional[Any] ) -> str: _a : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a : Optional[int] = torch.randn(2 , 3 ) _a : Any = model(UpperCAmelCase__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(UpperCAmelCase__ , AlignDevicesHook(io_same_device=UpperCAmelCase__ ) ) _a : str = torch.randn(2 , 3 ).to(0 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , torch.device(0 ) ) def _lowercase ( self : str ) -> Union[str, Any]: _a : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : List[Any] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Dict = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : int = torch.randn(2 , 3 ) _a : str = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload _a : List[str] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : Tuple = torch.randn(2 , 3 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _lowercase ( self : Tuple ) -> List[str]: _a : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Dict = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : Union[str, Any] = torch.randn(2 , 3 ) _a : List[Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , offload_buffers=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : List[str] = torch.randn(2 , 3 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _lowercase ( self : Dict ) -> str: _a : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Union[str, Any] = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : Union[str, Any] = torch.randn(2 , 3 ) _a : int = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , weights_map=model.state_dict() , offload_buffers=UpperCAmelCase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : Any = torch.randn(2 , 3 ) _a : int = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
294
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCAmelCase : int = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) _lowerCAmelCase : Optional[Any] = dataset.iloc[:, 1:2].values _lowerCAmelCase : Optional[Any] = dataset.iloc[:, 2].values _lowerCAmelCase : int = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCAmelCase : str = PolynomialFeatures(degree=4) _lowerCAmelCase : int = poly_reg.fit_transform(X) _lowerCAmelCase : Any = LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' plt.scatter(snake_case , snake_case , color="red" ) plt.plot(snake_case , pol_reg.predict(poly_reg.fit_transform(snake_case ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
370
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __a (tf.keras.optimizers.schedules.LearningRateSchedule): '''simple docstring''' def __init__( self , _a , _a , _a , _a = 1.0 , _a = None , ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : List[Any] = initial_learning_rate SCREAMING_SNAKE_CASE__ : Tuple = warmup_steps SCREAMING_SNAKE_CASE__ : Optional[Any] = power SCREAMING_SNAKE_CASE__ : Optional[Any] = decay_schedule_fn SCREAMING_SNAKE_CASE__ : Any = name def __call__( self , _a ) -> List[Any]: """simple docstring""" with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(_a , tf.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) SCREAMING_SNAKE_CASE__ : str = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE__ : Optional[int] = self.initial_learning_rate * tf.math.pow(_a , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_a , ) def _a ( self ) -> List[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0.9 , __lowerCAmelCase = 0.999 , __lowerCAmelCase = 1E-8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = None , ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__lowerCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE__ : Dict = WarmUp( initial_learning_rate=__lowerCAmelCase , decay_schedule_fn=__lowerCAmelCase , warmup_steps=__lowerCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE__ : int = AdamWeightDecay( learning_rate=__lowerCAmelCase , weight_decay_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=__lowerCAmelCase , ) else: SCREAMING_SNAKE_CASE__ : int = tf.keras.optimizers.Adam( learning_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a = 0.001 , _a = 0.9 , _a = 0.999 , _a = 1E-7 , _a = False , _a = 0.0 , _a = None , _a = None , _a = "AdamWeightDecay" , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(_a , _a , _a , _a , _a , _a , **_a ) SCREAMING_SNAKE_CASE__ : Tuple = weight_decay_rate SCREAMING_SNAKE_CASE__ : Tuple = include_in_weight_decay SCREAMING_SNAKE_CASE__ : Dict = exclude_from_weight_decay @classmethod def _a ( cls , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = {"""WarmUp""": WarmUp} return super(_a , cls ).from_config(_a , custom_objects=_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" super(_a , self )._prepare_local(_a , _a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _a ( self , _a , _a=None , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = list(zip(*_a ) ) return super(_a , self ).apply_gradients(zip(_a , _a ) , name=_a , **_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE__ : Dict = apply_state or {} SCREAMING_SNAKE_CASE__ : List[str] = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._fallback_apply_state(_a , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _a ( self , _a , _a , _a=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Any = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_dense(_a , _a , **_a ) def _a ( self , _a , _a , _a , _a=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Dict = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_sparse(_a , _a , _a , **_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _a ( self , _a ) -> Tuple: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_a , _a ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_a , _a ) is not None: return False return True class __a (UpperCamelCase_): '''simple docstring''' def __init__( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : List[str] = None @property def _a ( self ) -> str: """simple docstring""" if self._accum_steps is None: SCREAMING_SNAKE_CASE__ : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _a ( self ) -> List[str]: """simple docstring""" if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , _a ) -> str: """simple docstring""" if not self._gradients: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_a ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_a ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(_a )}''' ) for accum_gradient, gradient in zip(self._gradients , _a ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_a ) self._accum_steps.assign_add(1 ) def _a ( self ) -> Any: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_a ) )
56
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
56
1
"""simple docstring""" from __future__ import annotations def _lowercase ( __lowerCAmelCase ) -> list: if len(__lowerCAmelCase ) == 0: return [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = min(__lowerCAmelCase ), max(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = int(max_value - min_value ) + 1 SCREAMING_SNAKE_CASE__ : list[list] = [[] for _ in range(__lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(__lowerCAmelCase ) return [v for bucket in buckets for v in sorted(__lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
132
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 SCREAMING_SNAKE_CASE__ : Optional[int] = test_metrics @require_cpu def _a ( self ) -> List[Any]: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ) -> List[str]: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ) -> int: """simple docstring""" self.test_metrics.main() @require_multi_gpu def _a ( self ) -> Optional[Any]: """simple docstring""" print(f'''Found {torch.cuda.device_count()} devices.''' ) SCREAMING_SNAKE_CASE__ : List[Any] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() )
132
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_tensor(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = gather(SCREAMING_SNAKE_CASE__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _a ( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [state.process_index] SCREAMING_SNAKE_CASE__ : int = gather_object(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == state.num_processes, f'''{gathered_obj}, {len(SCREAMING_SNAKE_CASE__ )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def _a ( SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = create_tensor(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = broadcast(SCREAMING_SNAKE_CASE__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: '''simple docstring''' if state.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.arange(state.num_processes + 1 ).to(state.device ) else: SCREAMING_SNAKE_CASE__ : str = torch.arange(state.num_processes ).to(state.device ) SCREAMING_SNAKE_CASE__ : str = pad_across_processes(SCREAMING_SNAKE_CASE__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: '''simple docstring''' if state.num_processes != 2: return SCREAMING_SNAKE_CASE__ : Tuple = create_tensor(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = reduce(SCREAMING_SNAKE_CASE__ , "sum" ) SCREAMING_SNAKE_CASE__ : int = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), f'''{reduced_tensor} != {truth_tensor}''' def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: '''simple docstring''' if state.num_processes != 2: return SCREAMING_SNAKE_CASE__ : str = create_tensor(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = reduce(SCREAMING_SNAKE_CASE__ , "mean" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), f'''{reduced_tensor} != {truth_tensor}''' def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: '''simple docstring''' main() def _a ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = PartialState() state.print(f'''State: {state}''' ) state.print("testing gather" ) test_gather(SCREAMING_SNAKE_CASE__ ) state.print("testing gather_object" ) test_gather_object(SCREAMING_SNAKE_CASE__ ) state.print("testing broadcast" ) test_broadcast(SCREAMING_SNAKE_CASE__ ) state.print("testing pad_across_processes" ) test_pad_across_processes(SCREAMING_SNAKE_CASE__ ) state.print("testing reduce_sum" ) test_reduce_sum(SCREAMING_SNAKE_CASE__ ) state.print("testing reduce_mean" ) test_reduce_mean(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
191
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : complex , SCREAMING_SNAKE_CASE__ : str = "x" , SCREAMING_SNAKE_CASE__ : float = 10**-10 , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> complex: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = symbols(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = lambdify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = lambdify(SCREAMING_SNAKE_CASE__ , diff(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Any = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Any = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE__ ) / diff_function( SCREAMING_SNAKE_CASE__ ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE__ : Optional[int] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(f"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"{newton_raphson('exp(x) - 1', 1_0, precision=0.005)}", ) # Find root of cos(x) print(f"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
191
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowerCAmelCase : Optional[Any] = Lock() def UpperCamelCase_( _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Any , _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[str] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __a =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __a =min(_snake_case , _snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __a =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __a =max(_snake_case , _snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(_snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" __a =[] __a =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __a =Pipe() __a =Pipe() process_array_.append( Process( target=_snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __a =temp_rs __a =temp_rr for i in range(1 , len(_snake_case ) - 1 ): __a =Pipe() __a =Pipe() process_array_.append( Process( target=_snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __a =temp_rs __a =temp_rr process_array_.append( Process( target=_snake_case , args=( len(_snake_case ) - 1, arr[len(_snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_snake_case ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_snake_case ) ): __a =result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ): """simple docstring""" __a =list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_snake_case ) __a =odd_even_transposition(_snake_case ) print('Sorted List\n' ) print(*_snake_case ) if __name__ == "__main__": main()
218
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[-1] * len(_snake_case ) def dfs(_snake_case : Dict , _snake_case : Any ): __a =True __a =c for u in graph[v]: if not visited[u]: dfs(_snake_case , 1 - c ) for i in range(len(_snake_case ) ): if not visited[i]: dfs(_snake_case , 0 ) for i in range(len(_snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
218
1
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowercase ( A_ , A_ )-> Dict: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer a : List[str] = flax_key_tuple[:-1] + ("weight",) a : str = torch.permute(A_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(A_ ): # linear layer a : str = flax_key_tuple[:-1] + ("weight",) a : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def lowercase ( A_ , A_ , A_ )-> List[Any]: '''simple docstring''' if "metadata" in layer: a : Union[str, Any] = layer.split("metadata" ) a : Optional[Any] = "".join(split_layer[0] )[:-1] a : int = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: a : Dict = layer.split("kvstore" ) a : Tuple = "".join(split_layer[0] )[:-1] a : List[str] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: a : str = layer.split("/" ) a : Optional[int] = "/".join(split_layer[:-1] ) a : List[Any] = (split_layer[-1],) if "kvstore/path" in layer: a : Optional[Any] = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: a : int = "file" else: a : Union[str, Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowercase ( A_ , A_ )-> Optional[int]: '''simple docstring''' a : Dict = rename_keys(A_ ) a : str = {} for k, v in current_block.items(): a : int = v a : Any = new_current_block torch.save(A_ , A_ ) def lowercase ( A_ , A_ , A_ , A_ , A_ = WEIGHTS_NAME )-> Optional[Any]: '''simple docstring''' a : Tuple = convert_file_size_to_int(A_ ) a : Union[str, Any] = [] a : Optional[int] = {} a : List[str] = 0 a : Dict = 0 os.makedirs(A_ , exist_ok=A_ ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: a : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] a : List[Any] = flatten_dict(A_ , sep="/" ) a : Dict = {} for layer in checkpoint_info.keys(): a , a , a : List[str] = get_key_and_tensorstore_dict( A_ , A_ , A_ ) if curr_real_layer_name in all_layers: a : int = content else: a : List[str] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file a : Optional[int] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() a : Any = torch.tensor(A_ ) a : Union[str, Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts a , a : Any = rename_base_flax_keys(tuple(key.split("/" ) ) , A_ ) a : Optional[int] = "/".join(A_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: a : Union[str, Any] = os.path.join( A_ , weights_name.replace(".bin" , F'''-{len(A_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(A_ , A_ ) sharded_state_dicts.append(current_block.keys() ) del current_block a : Union[str, Any] = {} a : Any = 0 a : Tuple = raw_weights.to(getattr(A_ , A_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block a : str = os.path.join(A_ , weights_name.replace(".bin" , F'''-{len(A_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(A_ , A_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(A_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index a : int = {} a : int = {} for idx, shard in enumerate(A_ ): a : str = weights_name.replace( ".bin" , F'''-{idx+1:05d}-of-{len(A_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} a : List[str] = os.path.join(A_ , weights_name.replace(".bin" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(A_ , os.path.join(A_ , A_ ) ) a : Any = shard for key in shard: a : Tuple = shard_file # Add the metadata a : List[Any] = {"total_size": total_size} a : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A_ , A_ ) , "w" , encoding="utf-8" ) as f: a : Dict = json.dumps(A_ , indent=2 , sort_keys=A_ ) + "\n" f.write(A_ ) return metadata, index if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) __lowercase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowercase ( )-> Optional[Any]: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer a : Dict = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) a : Dict = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) a : List[Any] = TaTokenizer.from_pretrained("t5-small" ) a : List[str] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." a : int = tokenizer(A_ , return_tensors="pt" ).input_ids a : Optional[Any] = model.generate(A_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
226
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _A ( _a ): """simple docstring""" UpperCAmelCase : Union[str, Any] = """gpt_neox""" def __init__( self : List[str] , __UpperCAmelCase : Tuple=50432 , __UpperCAmelCase : str=6144 , __UpperCAmelCase : Any=44 , __UpperCAmelCase : Union[str, Any]=64 , __UpperCAmelCase : Dict=24576 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : List[Any]=0.25 , __UpperCAmelCase : Optional[Any]=10000 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : List[Any]=2048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Optional[Any]=1e-5 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : int=None , **__UpperCAmelCase : Tuple , ): super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : List[Any] = vocab_size a : Optional[int] = max_position_embeddings a : List[Any] = hidden_size a : Union[str, Any] = num_hidden_layers a : int = num_attention_heads a : Union[str, Any] = intermediate_size a : Optional[Any] = hidden_act a : Dict = rotary_pct a : Any = rotary_emb_base a : Dict = attention_dropout a : List[str] = hidden_dropout a : List[str] = classifier_dropout a : Any = initializer_range a : Union[str, Any] = layer_norm_eps a : int = use_cache a : int = tie_word_embeddings a : str = use_parallel_residual a : Union[str, Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!") def __snake_case ( self : Any): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''') a : str = self.rope_scaling.get("type" , __UpperCAmelCase) a : List[str] = self.rope_scaling.get("factor" , __UpperCAmelCase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''') if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''')
226
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Tuple =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any: lowerCamelCase__ : Tuple = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__ : str = 192 lowerCamelCase__ : Optional[int] = 768 lowerCamelCase__ : Dict = 12 lowerCamelCase__ : List[str] = 3 lowerCamelCase__ : Optional[Any] = [800, 1333] lowerCamelCase__ : List[Any] = False elif yolos_name == "yolos_s_dWr": lowerCamelCase__ : Any = 330 lowerCamelCase__ : List[Any] = 14 lowerCamelCase__ : Union[str, Any] = 6 lowerCamelCase__ : Optional[int] = 1320 elif "yolos_s" in yolos_name: lowerCamelCase__ : Union[str, Any] = 384 lowerCamelCase__ : Union[str, Any] = 1536 lowerCamelCase__ : Union[str, Any] = 12 lowerCamelCase__ : Optional[Any] = 6 elif "yolos_b" in yolos_name: lowerCamelCase__ : Tuple = [800, 1344] lowerCamelCase__ : List[Any] = 91 lowerCamelCase__ : int = "huggingface/label-files" lowerCamelCase__ : List[Any] = "coco-detection-id2label.json" lowerCamelCase__ : Dict = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCamelCase__ : Any = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase = False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : int = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : int = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : Dict = in_proj_bias[: config.hidden_size] lowerCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Tuple = in_proj_weight[-config.hidden_size :, :] lowerCamelCase__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any: if "backbone" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: lowerCamelCase__ : Dict = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: lowerCamelCase__ : Optional[Any] = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: lowerCamelCase__ : Tuple = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: lowerCamelCase__ : Optional[Any] = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCamelCase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: lowerCamelCase__ : Optional[Any] = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: lowerCamelCase__ : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase__ : Any = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase__ : Tuple = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase__ : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: lowerCamelCase__ : List[str] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: lowerCamelCase__ : Dict = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: lowerCamelCase__ : Dict = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Any = orig_state_dict.pop(snake_case__ ) if "qkv" in key: lowerCamelCase__ : Optional[Any] = key.split(""".""" ) lowerCamelCase__ : List[Any] = int(key_split[2] ) lowerCamelCase__ : Tuple = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__ : Optional[int] = val[:dim, :] lowerCamelCase__ : Dict = val[ dim : dim * 2, : ] lowerCamelCase__ : Optional[int] = val[-dim:, :] else: lowerCamelCase__ : Optional[int] = val[:dim] lowerCamelCase__ : Any = val[dim : dim * 2] lowerCamelCase__ : Union[str, Any] = val[-dim:] else: lowerCamelCase__ : Any = val return orig_state_dict def SCREAMING_SNAKE_CASE_ () -> Tuple: lowerCamelCase__ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = False ) -> Optional[Any]: lowerCamelCase__ : int = get_yolos_config(snake_case__ ) # load original state_dict lowerCamelCase__ : int = torch.load(snake_case__ , map_location="""cpu""" )["model"] # load 🤗 model lowerCamelCase__ : Tuple = YolosForObjectDetection(snake_case__ ) model.eval() lowerCamelCase__ : Optional[int] = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__ : Tuple = 800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__ : str = YolosImageProcessor(format="""coco_detection""" , size=snake_case__ ) lowerCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCamelCase__ : List[Any] = model(**snake_case__ ) lowerCamelCase__ : List[Any] = outputs.logits, outputs.pred_boxes lowerCamelCase__ : Optional[int] = None, None if yolos_name == "yolos_ti": lowerCamelCase__ : List[str] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) lowerCamelCase__ : Optional[int] = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__ : int = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__ : Union[str, Any] = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) lowerCamelCase__ : Any = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__ : Optional[Any] = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) lowerCamelCase__ : Dict = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": lowerCamelCase__ : Dict = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) lowerCamelCase__ : Tuple = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , snake_case__ , atol=1E-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: lowerCamelCase__ : Union[str, Any] = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("""Pushing to the hub...""" ) lowerCamelCase__ : Dict = model_mapping[yolos_name] image_processor.push_to_hub(snake_case__ , organization="""hustvl""" ) model.push_to_hub(snake_case__ , organization="""hustvl""" ) if __name__ == "__main__": _A : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _A : Dict =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
41
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Optional[Any] = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ , snake_case__="eval" ): __UpperCamelCase : List[str] = os.path.join(snake_case__ , F"{split}_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: return json.load(snake_case__ ) raise ValueError(F"can't find {path}" ) _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_glue.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Any = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_clm_flax.main() __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_summarization_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def a_ (self ) -> int: __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_mlm_flax.main() __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_ta_mlm_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def a_ (self ) -> Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_ner.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_qa.main() __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
298
0
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if number != int(__lowercase ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 A: int = [-1] * (number + 1) A: List[str] = 0 for i in range(1 , number + 1 ): A: Tuple = sys.maxsize A: Optional[int] = int(math.sqrt(__lowercase ) ) for j in range(1 , root + 1 ): A: str = 1 + answers[i - (j**2)] A: Dict = min(__lowercase , __lowercase ) A: str = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a ( unittest.TestCase ): def A_ ( self : Tuple ): snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) snake_case_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } snake_case_ = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase_ , lowercase_ ) def A_ ( self : Tuple , **lowercase_ : Tuple ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase_ ) def A_ ( self : int , **lowercase_ : int ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase_ ) def A_ ( self : Dict , **lowercase_ : Optional[Any] ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def A_ ( self : Tuple ): snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : Dict ): snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def A_ ( self : Optional[Any] ): snake_case_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case_ = self.get_image_processor(do_normalize=lowercase_ ) snake_case_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def A_ ( self : str ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowercase_ , return_tensors='''np''' ) snake_case_ = processor(images=lowercase_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Union[str, Any] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = '''lower newer''' snake_case_ = processor(text=lowercase_ , return_tensors='''np''' ) snake_case_ = tokenizer(lowercase_ , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A_ ( self : Any ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = '''lower newer''' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : int ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = ['''cat''', '''nasa badge'''] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : str ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = [['''cat''', '''nasa badge'''], ['''person''']] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 snake_case_ = len(lowercase_ ) snake_case_ = max([len(lowercase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : Union[str, Any] ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = ['''cat''', '''nasa badge'''] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 snake_case_ = inputs['''input_ids'''] snake_case_ = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A_ ( self : List[str] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = self.prepare_image_inputs() snake_case_ = self.prepare_image_inputs() snake_case_ = processor(images=lowercase_ , query_images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : Any ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowercase_ ) snake_case_ = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
56
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a : int = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase, id=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if exitstatus == 5: snake_case_ = 0 # Doctest custom flag to ignore output. a : Union[str, Any] = doctest.register_optionflag('IGNORE_RESULT') a : Optional[int] = doctest.OutputChecker class a ( _lowerCamelCase ): def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) a : List[Any] = CustomOutputChecker a : Optional[int] = HfDoctestModule a : Tuple = HfDocTestParser
56
1
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(__SCREAMING_SNAKE_CASE ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
264
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__SCREAMING_SNAKE_CASE ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
264
1
"""simple docstring""" from math import isqrt, loga def __lowerCamelCase ( a_ : int ) -> list[int]: __SCREAMING_SNAKE_CASE :str = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a_ , a_ ): __SCREAMING_SNAKE_CASE :List[str] = False return [i for i in range(2 , a_ ) if is_prime[i]] def __lowerCamelCase ( a_ : int = 80_08_00 , a_ : int = 80_08_00 ) -> int: __SCREAMING_SNAKE_CASE :Tuple = degree * loga(a_ ) __SCREAMING_SNAKE_CASE :Dict = int(a_ ) __SCREAMING_SNAKE_CASE :str = calculate_prime_numbers(a_ ) __SCREAMING_SNAKE_CASE :Optional[int] = 0 __SCREAMING_SNAKE_CASE :str = 0 __SCREAMING_SNAKE_CASE :Union[str, Any] = len(a_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'{solution() = }')
191
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Tuple , a_ : str=None ) -> Union[str, Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' __SCREAMING_SNAKE_CASE :Dict = nn.Parameter(a_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' __SCREAMING_SNAKE_CASE :Optional[int] = nn.Parameter(a_ ) def __lowerCamelCase ( a_ : Dict , a_ : str , a_ : Optional[int] ) -> Any: # set torch weights for 1-to-1 comparison __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.output.dense , torch.tensor(a_ ).view(-1 , a_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( a_ : List[Any] , a_ : Dict , a_ : List[str] ) -> Union[str, Any]: # set torch weights for 1-to-1 comparison __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE :Any = np.asarray(weights[2] ) __SCREAMING_SNAKE_CASE :Dict = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_ ).transpose(1 , 2 ).contiguous().view(-1 , a_ ) , ) set_param( torch_layer.output.dense , torch.tensor(a_ ).view(-1 , a_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( a_ : Any , a_ : List[str] , a_ : Optional[int] ) -> Union[str, Any]: # layernorm 1 __SCREAMING_SNAKE_CASE :Any = weights[0][0][0] __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(layer_norm_a[0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # lsh weights + output __SCREAMING_SNAKE_CASE :List[Any] = weights[0][1] if len(a_ ) < 4: set_layer_weights_in_torch_lsh(a_ , torch_block.attention , a_ ) else: set_layer_weights_in_torch_local(a_ , torch_block.attention , a_ ) # intermediate weighs __SCREAMING_SNAKE_CASE :List[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(a_ ) == 4: __SCREAMING_SNAKE_CASE :List[str] = intermediate_weights[2] # layernorm 2 __SCREAMING_SNAKE_CASE :Tuple = np.asarray(intermediate_weights[0][0] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # intermediate dense __SCREAMING_SNAKE_CASE :int = np.asarray(intermediate_weights[1][0] ) __SCREAMING_SNAKE_CASE :int = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) # intermediate out __SCREAMING_SNAKE_CASE :str = np.asarray(intermediate_weights[4][0] ) __SCREAMING_SNAKE_CASE :str = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) def __lowerCamelCase ( a_ : List[str] , a_ : str , a_ : List[Any] ) -> Optional[Any]: # reformer model __SCREAMING_SNAKE_CASE :Dict = torch_model.reformer # word embeds __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(a_ ) , ) if isinstance(weights[3] , a_ ): __SCREAMING_SNAKE_CASE :List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __SCREAMING_SNAKE_CASE :List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' __SCREAMING_SNAKE_CASE :str = nn.Parameter(torch.tensor(a_ ) ) __SCREAMING_SNAKE_CASE :Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( a_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __SCREAMING_SNAKE_CASE :Dict = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(a_ , a_ , a_ ) # output layer norm __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[7][0] ) __SCREAMING_SNAKE_CASE :List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(a_ ) , torch.tensor(a_ ) , ) # output embeddings __SCREAMING_SNAKE_CASE :Optional[int] = np.asarray(weights[9][0] ) __SCREAMING_SNAKE_CASE :str = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(a_ ).transpose(0 , 1 ).contiguous() , torch.tensor(a_ ) , ) def __lowerCamelCase ( a_ : Any , a_ : Dict , a_ : Dict ) -> Tuple: # Initialise PyTorch model __SCREAMING_SNAKE_CASE :List[str] = ReformerConfig.from_json_file(a_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE :List[Any] = ReformerModelWithLMHead(a_ ) with open(a_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :Any = pickle.load(a_ )['''weights'''] set_model_weights_in_torch(a_ , a_ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
191
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } __lowerCamelCase = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } __lowerCamelCase = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class A__ ( _snake_case ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BertTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__="[UNK]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="[PAD]" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase__ ) != tokenize_chinese_chars ): A_ = getattr(UpperCamelCase__ , normalizer_state.pop("""type""" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCamelCase__ ) A_ = do_lower_case def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> str: '''simple docstring''' A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' A_ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
367
'''simple docstring''' from __future__ import annotations from typing import Any def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if not postfix_notation: return 0 A_ = {"""+""", """-""", """*""", """/"""} A_ = [] for token in postfix_notation: if token in operations: A_ , A_ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
101
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def a ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=None ): '''simple docstring''' require_version(deps[pkg] , _UpperCAmelCase )
226
from __future__ import annotations class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , a_ : Optional[int]=None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = data __UpperCAmelCase : Any = None def __repr__( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = [] __UpperCAmelCase : Any = self while temp: string_rep.append(F'{temp.data}' ) __UpperCAmelCase : Dict = temp.next return "->".join(a_ ) def a ( _UpperCAmelCase : list ): '''simple docstring''' if not elements_list: raise Exception('''The Elements List is empty''' ) __UpperCAmelCase : int = Node(elements_list[0] ) for i in range(1 , len(_UpperCAmelCase ) ): __UpperCAmelCase : Any = Node(elements_list[i] ) __UpperCAmelCase : Optional[int] = current.next return head def a ( _UpperCAmelCase : Node ): '''simple docstring''' if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def a ( ): '''simple docstring''' from doctest import testmod testmod() __UpperCAmelCase : Tuple = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(_UpperCAmelCase ) print('''Elements in Reverse:''' ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
226
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def SCREAMING_SNAKE_CASE ( lowercase_ = "isbn/0140328726" ) -> dict: """simple docstring""" A__ = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: A__ = f"""{olid} is not a valid Open Library olid""" raise ValueError(lowercase__ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def SCREAMING_SNAKE_CASE ( lowercase_ ) -> dict: """simple docstring""" A__ = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } A__ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A__ = [ get_openlibrary_data(author['''key'''] )["""name"""] for author in data["""Authors"""] ] A__ = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(lowercase__ , lowercase__ ): A__ = """, """.join(lowercase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowerCamelCase : int = input("""\nEnter the ISBN code to search (or \'quit\' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: _lowerCamelCase : Tuple = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("""\n""".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
351
from __future__ import annotations from typing import Any class UpperCamelCase_ : '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0) ->None: '''simple docstring''' A__ , A__ = row, column A__ = [[default_value for c in range(UpperCAmelCase__)] for r in range(UpperCAmelCase__)] def __str__( self : List[str]) ->str: '''simple docstring''' A__ = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier A__ = 0 for row_vector in self.array: for obj in row_vector: A__ = max(UpperCAmelCase__ , len(str(UpperCAmelCase__))) A__ = f"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase__ : list[float]) -> str: nonlocal string_format_identifier A__ = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__) for row_vector in self.array) return s def __repr__( self : Tuple) ->str: '''simple docstring''' return str(self) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : tuple[int, int]) ->bool: '''simple docstring''' if not (isinstance(UpperCAmelCase__ , (list, tuple)) and len(UpperCAmelCase__) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : List[Any] , UpperCAmelCase__ : tuple[int, int]) ->Any: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase__) return self.array[loc[0]][loc[1]] def __setitem__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float) ->None: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase__) A__ = value def __add__( self : Optional[int] , UpperCAmelCase__ : Matrix) ->Matrix: '''simple docstring''' assert isinstance(UpperCAmelCase__ , UpperCAmelCase__) assert self.row == another.row and self.column == another.column # Add A__ = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): A__ = self[r, c] + another[r, c] return result def __neg__( self : str) ->Matrix: '''simple docstring''' A__ = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): A__ = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix) ->Matrix: '''simple docstring''' return self + (-another) def __mul__( self : Union[str, Any] , UpperCAmelCase__ : int | float | Matrix) ->Matrix: '''simple docstring''' if isinstance(UpperCAmelCase__ , (int, float)): # Scalar multiplication A__ = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): A__ = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): # Matrix multiplication assert self.column == another.row A__ = Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: A__ = f"""Unsupported type given for another ({type(UpperCAmelCase__)})""" raise TypeError(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Matrix: '''simple docstring''' A__ = Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): A__ = self[r, c] return result def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix) ->Any: '''simple docstring''' assert isinstance(UpperCAmelCase__ , UpperCAmelCase__) and isinstance(UpperCAmelCase__ , UpperCAmelCase__) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate A__ = v.transpose() A__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" A__ = Matrix(3 , 3 , 0 ) for i in range(3 ): A__ = 1 print(f"""a^(-1) is {ainv}""" ) # u, v A__ = Matrix(3 , 1 , 0 ) A__ , A__ , A__ = 1, 2, -3 A__ = Matrix(3 , 1 , 0 ) A__ , A__ , A__ = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase_ , lowercase_ )}""" ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
231
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __a: str = logging.get_logger(__name__) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase__ : Tuple = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) lowercase__ : str = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase__ : Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase__ : Dict = in_proj_weight[ -encoder_config.hidden_size :, : ] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[int] = dct.pop(lowerCAmelCase_ ) lowercase__ : Any = val def __UpperCamelCase ( UpperCAmelCase ): if "handwritten" in checkpoint_url: lowercase__ : Optional[int] = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : List[Any] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' lowercase__ : Optional[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=lowerCAmelCase_ ) lowercase__ : Optional[int] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase__ : Dict = 768 elif "large" in checkpoint_url: # use ViT-large encoder lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : Optional[int] = 24 lowercase__ : Optional[Any] = 16 lowercase__ : Optional[int] = 1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : Tuple = False lowercase__ : str = '''relu''' lowercase__ : Any = 1024 lowercase__ : Dict = True lowercase__ : Optional[Any] = False lowercase__ : Union[str, Any] = False # load HuggingFace model lowercase__ : str = ViTModel(lowerCAmelCase_ , add_pooling_layer=lowerCAmelCase_ ) lowercase__ : int = TrOCRForCausalLM(lowerCAmelCase_ ) lowercase__ : Optional[int] = VisionEncoderDecoderModel(encoder=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) model.eval() # load state_dict of original model, rename some keys lowercase__ : int = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location='''cpu''' , check_hash=lowerCAmelCase_ )['''model'''] lowercase__ : Tuple = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase__ : Dict = state_dict.pop(lowerCAmelCase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: lowercase__ : str = val else: lowercase__ : Union[str, Any] = val # load state dict model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image lowercase__ : Tuple = ViTImageProcessor(size=encoder_config.image_size ) lowercase__ : int = RobertaTokenizer.from_pretrained('''roberta-large''' ) lowercase__ : Tuple = TrOCRProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase__ : List[Any] = processor(images=prepare_img(lowerCAmelCase_ ) , return_tensors='''pt''' ).pixel_values # verify logits lowercase__ : int = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase__ : Any = model(pixel_values=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ) lowercase__ : List[str] = outputs.logits lowercase__ : List[Any] = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: lowercase__ : Tuple = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase__ : List[Any] = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: lowercase__ : Dict = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: lowercase__ : int = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowerCAmelCase_ , atol=1E-3 ), "First elements of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __a: List[str] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __a: Dict = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
198
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE__ : Optional[int] = TensorFlowBenchmark(args=__lowerCAmelCase ) try: SCREAMING_SNAKE_CASE__ : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: SCREAMING_SNAKE_CASE__ : List[str] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" SCREAMING_SNAKE_CASE__ : Any = """ """.join(str(__lowerCAmelCase ).split(""" """ )[:-1] ) SCREAMING_SNAKE_CASE__ : int = """""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = eval(str(__lowerCAmelCase ).split(""" """ )[-1] ) SCREAMING_SNAKE_CASE__ : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ : Dict = full_error_msg + begin_error_msg + str(__lowerCAmelCase ) raise ValueError(__lowerCAmelCase ) benchmark.run() if __name__ == "__main__": main()
56
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a (metaclass=UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self , *_a , **_a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _a ( cls , *_a , **_a ) -> int: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
56
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Any = ["""image_processor""", """tokenizer"""] _lowerCAmelCase : Optional[Any] = """ViTImageProcessor""" _lowerCAmelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[int] , lowercase_ : Any=None , lowercase_ : str=None , **lowercase_ : Tuple ): snake_case_ : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) snake_case_ : Tuple = kwargs.pop('''feature_extractor''' ) snake_case_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : Tuple , lowercase_ : Dict=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , lowercase_ : str=None , **lowercase_ : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: snake_case_ : Tuple = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if visual_prompt is not None: snake_case_ : Tuple = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if visual_prompt is not None and images is not None: snake_case_ : str = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: snake_case_ : Any = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: snake_case_ : Optional[int] = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def _snake_case ( self : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : Optional[Any] ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _snake_case ( self : Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def _snake_case ( self : Optional[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
264
"""simple docstring""" import sys lowercase__ : Dict = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowercase ( _a ): snake_case_ : List[Any] = 1 for digit in s: product *= int(_a ) return product def __lowercase ( _a = N ): snake_case_ : Optional[int] = -sys.maxsize - 1 snake_case_ : str = n[:13] snake_case_ : List[Any] = 13 while cur_index < len(_a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case_ : int = substr[1:] + n[cur_index] cur_index += 1 else: snake_case_ : Optional[Any] = max(_a , str_eval(_a ) ) snake_case_ : Any = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
264
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Tuple = """levit""" def __init__( self : List[str] , lowercase_ : Optional[Any]=224 , lowercase_ : int=3 , lowercase_ : str=3 , lowercase_ : Optional[int]=2 , lowercase_ : Any=1 , lowercase_ : Optional[Any]=16 , lowercase_ : Tuple=[128, 256, 384] , lowercase_ : Any=[4, 8, 12] , lowercase_ : Any=[4, 4, 4] , lowercase_ : List[Any]=[16, 16, 16] , lowercase_ : Any=0 , lowercase_ : int=[2, 2, 2] , lowercase_ : Tuple=[2, 2, 2] , lowercase_ : Dict=0.02 , **lowercase_ : Any , ) -> Dict: super().__init__(**lowercase_ ) UpperCAmelCase : Dict = image_size UpperCAmelCase : int = num_channels UpperCAmelCase : List[str] = kernel_size UpperCAmelCase : Any = stride UpperCAmelCase : str = padding UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : List[str] = depths UpperCAmelCase : str = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : Union[str, Any] = attention_ratio UpperCAmelCase : Any = mlp_ratio UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : List[Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = version.parse("""1.11""" ) @property def UpperCAmelCase_ ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> float: return 1E-4
368
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , lowercase_ : str , lowercase_ : Union[str, Any]=7 , lowercase_ : Union[str, Any]=3 , lowercase_ : int=30 , lowercase_ : Tuple=400 , lowercase_ : Tuple=True , lowercase_ : Optional[int]=None , lowercase_ : List[str]=0.9 , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=True , lowercase_ : int=[0.5, 0.5, 0.5] , lowercase_ : List[str]=[0.5, 0.5, 0.5] , ) -> Tuple: UpperCAmelCase : Optional[int] = size if size is not None else {'shortest_edge': 30} UpperCAmelCase : int = crop_size if crop_size is not None else {'height': 30, 'width': 30} UpperCAmelCase : Tuple = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : int = num_channels UpperCAmelCase : int = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : str = do_resize_and_center_crop UpperCAmelCase : int = size UpperCAmelCase : Dict = crop_pct UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : Optional[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std def UpperCAmelCase_ ( self : str ) -> int: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Any = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) self.assertTrue(hasattr(lowercase_ , 'crop_pct' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : str = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : str ) -> Dict: # Initialize image_processing UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
280
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase__ : str = "#" class lowerCAmelCase_ : """simple docstring""" def __init__(self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE__ : int = {} SCREAMING_SNAKE_CASE__ : Dict = trie[char] SCREAMING_SNAKE_CASE__ : Tuple = True def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE__ : str = trie[char] else: return [] return self._elements(A__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for c, v in d.items(): SCREAMING_SNAKE_CASE__ : Dict = [""" """] if c == END else [(c + s) for s in self._elements(A__ )] result.extend(A__ ) return tuple(A__ ) UpperCAmelCase__ : Union[str, Any] = Trie() UpperCAmelCase__ : int = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : int = trie.find_word(lowerCAmelCase__ ) return tuple(string + word for word in suffixes ) def lowercase_ ( ): print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
25
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) lowercase = model.state_dict() def to_tf_var_name(lowerCAmelCase__ ): for patt, repl in iter(lowerCAmelCase__ ): lowercase = name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) return f'bert/{name}' def create_tf_var(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = tf.dtypes.as_dtype(tensor.dtype ) lowercase = tf.get_variable(dtype=lowerCAmelCase__ , shape=tensor.shape , name=lowerCAmelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase = to_tf_var_name(lowerCAmelCase__ ) lowercase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase = torch_tensor.T lowercase = create_tf_var(tensor=lowerCAmelCase__ , name=lowerCAmelCase__ , session=lowerCAmelCase__ ) tf.keras.backend.set_value(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = session.run(lowerCAmelCase__ ) print(f'Successfully created {tf_name}: {np.allclose(lowerCAmelCase__ , lowerCAmelCase__ )}' ) lowercase = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def UpperCamelCase ( lowerCAmelCase__=None ): '''simple docstring''' lowercase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory in which to save tensorflow model''' ) lowercase = parser.parse_args(lowerCAmelCase__ ) lowercase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
101
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LEDTokenizer __UpperCamelCase = LEDTokenizerFast __UpperCamelCase = True def UpperCAmelCase__ ( self :Union[str, Any] ) -> Any: super().setUp() UpperCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCAmelCase = {'unk_token': '<unk>'} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase_ ) ) def UpperCAmelCase__ ( self :List[Any] , **lowercase_ :List[Any] ) -> str: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] , **lowercase_ :str ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :str ) -> List[Any]: return "lower newer", "lower newer" @cached_property def UpperCAmelCase__ ( self :Tuple ) -> List[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def UpperCAmelCase__ ( self :int ) -> Optional[int]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def UpperCAmelCase__ ( self :Tuple ) -> Optional[int]: UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] UpperCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , return_tensors='pt' ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def UpperCAmelCase__ ( self :str ) -> List[str]: UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowercase_ , padding=lowercase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowercase_ ) self.assertIn('attention_mask' , lowercase_ ) self.assertNotIn('labels' , lowercase_ ) self.assertNotIn('decoder_attention_mask' , lowercase_ ) @require_torch def UpperCAmelCase__ ( self :Tuple ) -> List[str]: UpperCAmelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(text_target=lowercase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=lowercase_ , truncation=lowercase_ , return_tensors='pt' ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def UpperCAmelCase__ ( self :List[Any] ) -> Tuple: UpperCAmelCase = ['A long paragraph for summarization.'] UpperCAmelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowercase_ , return_tensors='pt' ) UpperCAmelCase = tokenizer(text_target=lowercase_ , return_tensors='pt' ) UpperCAmelCase = inputs['input_ids'] UpperCAmelCase = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCAmelCase__ ( self :Optional[int] ) -> Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = ['Summary of the text.', 'Another summary.'] UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase = tokenizer(lowercase_ , padding=lowercase_ ) UpperCAmelCase = [[0] * len(lowercase_ ) for x in encoded_output['input_ids']] UpperCAmelCase = tokenizer.pad(lowercase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> Any: pass def UpperCAmelCase__ ( self :Optional[int] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase = 'A, <mask> AllenNLP sentence.' UpperCAmelCase = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) UpperCAmelCase = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
351
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_ ) if number < 1: UpperCAmelCase = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowercase_ ) UpperCAmelCase = 1 for i in range(1 , lowercase_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
181
0
from __future__ import annotations import math def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" if num <= 0: lowerCAmelCase_ = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(__lowerCAmelCase ) lowerCAmelCase_ = [True] * (num + 1) lowerCAmelCase_ = [] lowerCAmelCase_ = 2 lowerCAmelCase_ = int(math.sqrt(__lowerCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__lowerCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , __lowerCAmelCase ): if sieve[i] is True: lowerCAmelCase_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__lowerCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
231
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _A = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
1
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: __lowerCAmelCase: List[Any] = [] __lowerCAmelCase: int = set({"(", "[", "{"} ) __lowerCAmelCase: Optional[Any] = set({")", "]", "}"} ) __lowerCAmelCase: Optional[int] = {"{": "}", "[": "]", "(": ")"} for i in range(len(__SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__SCREAMING_SNAKE_CASE ) == 0 or (len(__SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__SCREAMING_SNAKE_CASE ) == 0 def a__ ( ) -> List[str]: __lowerCAmelCase: str = input("Enter sequence of brackets: " ) if is_balanced(__SCREAMING_SNAKE_CASE ): print(__SCREAMING_SNAKE_CASE , "is balanced" ) else: print(__SCREAMING_SNAKE_CASE , "is not balanced" ) if __name__ == "__main__": main()
108
"""simple docstring""" from math import ceil def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: Tuple = list(range(0 , __SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase: List[Any] = [] for i in device_map_blocks: if device_map_blocks.count(__SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__SCREAMING_SNAKE_CASE ) # Missing blocks __lowerCAmelCase: Optional[Any] = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase: List[Any] = [i for i in device_map_blocks if i not in blocks] if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__SCREAMING_SNAKE_CASE ) ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: List[Any] = list(range(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Dict = int(ceil(n_layers / len(__SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase: Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
108
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Optional[Any] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ['PoolFormerFeatureExtractor'] a : List[Any] = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Tuple = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
56
1
import math def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 0 while num > 0: lowerCamelCase_ = num % 8 lowerCamelCase_ = octal + (remainder * math.floor(math.pow(10 , lowercase ) )) counter += 1 lowerCamelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(lowercase )}""" def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(2_16 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
208
from ..utils import DummyObject, requires_backends class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : Any , *A_ : Any , **A_ : Tuple ) -> List[Any]: """simple docstring""" requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def a__ ( cls : Tuple , *A_ : Dict , **A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def a__ ( cls : int , *A_ : Dict , **A_ : List[str] ) -> Tuple: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
208
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowercase__ = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) lowercase__ = dataset.iloc[:, 1:2].values lowercase__ = dataset.iloc[:, 2].values lowercase__ = train_test_split(X, y, test_size=0.2, random_state=0) lowercase__ = PolynomialFeatures(degree=4) lowercase__ = poly_reg.fit_transform(X) lowercase__ = LinearRegression() pol_reg.fit(X_poly, y) def __a ( ) ->Tuple: plt.scatter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color='red' ) plt.plot(_SCREAMING_SNAKE_CASE , pol_reg.predict(poly_reg.fit_transform(_SCREAMING_SNAKE_CASE ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
290
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : List[Any] = tempfile.mkdtemp() # fmt: off __A : List[str] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) __A : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : int = {'unk_token': '<unk>'} __A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) __A : List[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __A : Optional[int] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : Optional[int] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): __A : List[Any] = self.get_tokenizer() __A : str = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __A : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __A : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __A : Optional[int] = self.get_image_processor(do_normalize=_A ) __A : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Union[str, Any] = self.prepare_image_inputs() __A : int = image_processor(_A , return_tensors='np' ) __A : str = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): __A : str = self.get_image_processor() __A : str = self.get_tokenizer() __A : Tuple = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : str = 'lower newer' __A : str = processor(text=_A , return_tensors='np' ) __A : List[str] = tokenizer(_A , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase_ ( self ): __A : int = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : List[str] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Any = 'lower newer' __A : Optional[Any] = self.prepare_image_inputs() __A : List[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Any = 'google/owlvit-base-patch32' __A : int = OwlViTProcessor.from_pretrained(_A ) __A : Dict = ['cat', 'nasa badge'] __A : Optional[Any] = processor(text=_A ) __A : Optional[int] = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Tuple = 'google/owlvit-base-patch32' __A : Any = OwlViTProcessor.from_pretrained(_A ) __A : Dict = [['cat', 'nasa badge'], ['person']] __A : Dict = processor(text=_A ) __A : Optional[int] = 16 __A : Any = len(_A ) __A : Union[str, Any] = max([len(_A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : List[Any] = 'google/owlvit-base-patch32' __A : str = OwlViTProcessor.from_pretrained(_A ) __A : Union[str, Any] = ['cat', 'nasa badge'] __A : Tuple = processor(text=_A ) __A : str = 16 __A : int = inputs['input_ids'] __A : List[Any] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = processor(images=_A , query_images=_A ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : str = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Any = processor.batch_decode(_A ) __A : Tuple = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
280
0
from __future__ import annotations def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Any = str(__lowerCamelCase ) return len(__lowerCamelCase ) == 9 and set(__lowerCamelCase ) == set('123456789' ) def lowercase__ ( ): '''simple docstring''' for base_num in range(9_999 , 4_999 , -1 ): UpperCAmelCase_ : Tuple = 100_002 * base_num if is_9_pandigital(__lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): UpperCAmelCase_ : int = 1_002_003 * base_num if is_9_pandigital(__lowerCamelCase ): return candidate return None if __name__ == "__main__": print(F'{solution() = }')
351
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[str] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : str = VideoClassificationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase , top_k=2 ) UpperCAmelCase_ : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: for example in examples: UpperCAmelCase_ : str = video_classifier(_UpperCamelCase ) self.assertEqual( _UpperCamelCase , [ {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, ] , ) @require_torch def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : str = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCAmelCase_ : Optional[Any] = VideoMAEFeatureExtractor( size={'shortest_edge': 1_0} , crop_size={'height': 1_0, 'width': 1_0} ) UpperCAmelCase_ : str = pipeline( 'video-classification' , model=_UpperCamelCase , feature_extractor=_UpperCamelCase , frame_sampling_rate=4 ) UpperCAmelCase_ : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : List[str] = video_classifier(_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) UpperCAmelCase_ : Tuple = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def __UpperCAmelCase ( self ) -> Dict: pass
145
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = (DDPMParallelScheduler,) def __UpperCAmelCase ( self : str , **__lowerCamelCase : Dict ) -> List[str]: a = { "num_train_timesteps": 10_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def __UpperCAmelCase ( self : Tuple ) -> Any: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> int: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> List[str]: self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def __UpperCAmelCase ( self : Any ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ) -> int: for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def __UpperCAmelCase ( self : List[Any] ) -> Dict: a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = len(__lowerCamelCase ) a = self.dummy_model() a = self.dummy_sample_deter a = self.dummy_sample_deter + 0.1 a = self.dummy_sample_deter - 0.1 a = samplea.shape[0] a = torch.stack([samplea, samplea, samplea] , dim=0 ) a = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) a = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) a = torch.sum(torch.abs(__lowerCamelCase ) ) a = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def __UpperCAmelCase ( self : Dict ) -> List[str]: a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = len(__lowerCamelCase ) a = self.dummy_model() a = self.dummy_sample_deter a = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual a = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 a = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample a = pred_prev_sample a = torch.sum(torch.abs(__lowerCamelCase ) ) a = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def __UpperCAmelCase ( self : List[Any] ) -> List[str]: a = self.scheduler_classes[0] a = self.get_scheduler_config(prediction_type="v_prediction" ) a = scheduler_class(**__lowerCamelCase ) a = len(__lowerCamelCase ) a = self.dummy_model() a = self.dummy_sample_deter a = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual a = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 a = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample a = pred_prev_sample a = torch.sum(torch.abs(__lowerCamelCase ) ) a = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def __UpperCAmelCase ( self : Tuple ) -> List[str]: a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__lowerCamelCase ) a = scheduler.timesteps for i, timestep in enumerate(__lowerCamelCase ): if i == len(__lowerCamelCase ) - 1: a = -1 else: a = timesteps[i + 1] a = scheduler.previous_timestep(__lowerCamelCase ) a = prev_t.item() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = [1_00, 87, 50, 51, 0] with self.assertRaises(__lowerCamelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = [1_00, 87, 50, 1, 0] a = len(__lowerCamelCase ) with self.assertRaises(__lowerCamelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ) -> int: a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCamelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__lowerCamelCase )
107
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : str = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : int = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : List[Any] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : str = tempfile.mkdtemp() UpperCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : List[Any] = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Tuple = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : Union[str, Any] , **_A : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Dict , **_A : str ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Tuple , **_A : int ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = floats_list((3, 1_000) ) UpperCAmelCase__ : str = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : Optional[Any] = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : str = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Union[str, Any] = processor(text=_A ) UpperCAmelCase__ : Dict = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : str , _A : int=(2, 10, 16) , _A : Optional[int]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Dict = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Tuple = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : Union[str, Any] = processor.decode(_A ) UpperCAmelCase__ : Union[str, Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[str] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : List[Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : List[Any] = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : Optional[int] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = self._get_dummy_logits() UpperCAmelCase__ : Optional[Any] = 15 UpperCAmelCase__ : Union[str, Any] = -2_0.0 UpperCAmelCase__ : List[str] = -4.0 UpperCAmelCase__ : str = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[Any] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Any = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Tuple = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : List[str] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase__ : List[Any] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : Any = -2_0.0 UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Any = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[Any] = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Any = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Any = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : List[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : str = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Union[str, Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Optional[Any] = os.listdir(_A ) UpperCAmelCase__ : int = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : Tuple = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : Union[str, Any] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : List[Any] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : List[Any] = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : List[str] = self.get_decoder() UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Tuple , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = self._get_dummy_logits()[0] UpperCAmelCase__ : int = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : List[str] = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : str ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Optional[Any] = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : Any = iter(_A ) UpperCAmelCase__ : Dict = next(_A ) UpperCAmelCase__ : Optional[int] = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : List[Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : Union[str, Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : List[str] = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Tuple = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : List[str] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : Tuple = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : Dict = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : Any = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : Any = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
181
0
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = AutoencoderKL snake_case__ = "sample" snake_case__ = 1E-2 @property def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Tuple = 4 __lowerCamelCase : Any = 3 __lowerCamelCase : Tuple = (32, 32) __lowerCamelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) return {"sample": image} @property def lowerCamelCase__ ( self : Dict ): return (3, 32, 32) @property def lowerCamelCase__ ( self : List[str] ): return (3, 32, 32) def lowerCamelCase__ ( self : str ): __lowerCamelCase : List[Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } __lowerCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def lowerCamelCase__ ( self : Dict ): # enable deterministic behavior for gradient checkpointing __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.prepare_init_args_and_inputs_for_common() __lowerCamelCase : Optional[int] = self.model_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) assert not model.is_gradient_checkpointing and model.training __lowerCamelCase : Any = model(**UpperCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __lowerCamelCase : List[Any] = torch.randn_like(UpperCAmelCase ) __lowerCamelCase : Any = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __lowerCamelCase : Tuple = self.model_class(**UpperCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(UpperCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __lowerCamelCase : Optional[int] = model_a(**UpperCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __lowerCamelCase : int = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __lowerCamelCase : List[str] = dict(model.named_parameters() ) __lowerCamelCase : str = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase , __lowerCamelCase : int = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase ) __lowerCamelCase : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Tuple = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) __lowerCamelCase : List[Any] = model.to(UpperCAmelCase ) model.eval() if torch_device == "mps": __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) else: __lowerCamelCase : Union[str, Any] = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) __lowerCamelCase : Dict = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCamelCase : List[Any] = image.to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Optional[int] = model(UpperCAmelCase , sample_posterior=UpperCAmelCase , generator=UpperCAmelCase ).sample __lowerCamelCase : Optional[Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __lowerCamelCase : List[Any] = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": __lowerCamelCase : str = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __lowerCamelCase : Optional[int] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-2 ) ) @slow class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): return F"""gaussian_noise_s={seed}_shape={"_".join([str(UpperCAmelCase ) for s in shape] )}.npy""" def lowerCamelCase__ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : str=0 , UpperCAmelCase : List[Any]=(4, 3, 512, 512) , UpperCAmelCase : str=False ): __lowerCamelCase : Any = torch.floataa if fpaa else torch.floataa __lowerCamelCase : Optional[int] = torch.from_numpy(load_hf_numpy(self.get_file_format(UpperCAmelCase , UpperCAmelCase ) ) ).to(UpperCAmelCase ).to(UpperCAmelCase ) return image def lowerCamelCase__ ( self : int , UpperCAmelCase : int="CompVis/stable-diffusion-v1-4" , UpperCAmelCase : Union[str, Any]=False ): __lowerCamelCase : Dict = "fp16" if fpaa else None __lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa __lowerCamelCase : Dict = AutoencoderKL.from_pretrained( UpperCAmelCase , subfolder="vae" , torch_dtype=UpperCAmelCase , revision=UpperCAmelCase , ) model.to(UpperCAmelCase ).eval() return model def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Union[str, Any]=0 ): if torch_device == "mps": return torch.manual_seed(UpperCAmelCase ) return torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] ): __lowerCamelCase : str = self.get_sd_vae_model() __lowerCamelCase : int = self.get_sd_image(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = self.get_generator(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Optional[int] = model(UpperCAmelCase , generator=UpperCAmelCase , sample_posterior=UpperCAmelCase ).sample assert sample.shape == image.shape __lowerCamelCase : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCamelCase : Tuple = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : List[str] = self.get_sd_vae_model(fpaa=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = self.get_sd_image(UpperCAmelCase , fpaa=UpperCAmelCase ) __lowerCamelCase : int = self.get_generator(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Any = model(UpperCAmelCase , generator=UpperCAmelCase , sample_posterior=UpperCAmelCase ).sample assert sample.shape == image.shape __lowerCamelCase : List[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCamelCase : int = torch.tensor(UpperCAmelCase ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ): __lowerCamelCase : Optional[Any] = self.get_sd_vae_model() __lowerCamelCase : Tuple = self.get_sd_image(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Dict = model(UpperCAmelCase ).sample assert sample.shape == image.shape __lowerCamelCase : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCamelCase : Tuple = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[str] ): __lowerCamelCase : int = self.get_sd_vae_model() __lowerCamelCase : Any = self.get_sd_image(UpperCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCamelCase : Dict = model.decode(UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] __lowerCamelCase : Dict = sample[-1, -2:, :2, -2:].flatten().cpu() __lowerCamelCase : List[str] = torch.tensor(UpperCAmelCase ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def lowerCamelCase__ ( self : Any , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : Tuple = self.get_sd_vae_model(fpaa=UpperCAmelCase ) __lowerCamelCase : Any = self.get_sd_image(UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Optional[int] = model.decode(UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] __lowerCamelCase : List[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCamelCase : Any = torch.tensor(UpperCAmelCase ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Any ): __lowerCamelCase : Union[str, Any] = self.get_sd_vae_model(fpaa=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = self.get_sd_image(UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : str = model.decode(UpperCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCamelCase : Optional[int] = model.decode(UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : str ): __lowerCamelCase : int = self.get_sd_vae_model() __lowerCamelCase : List[str] = self.get_sd_image(UpperCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCamelCase : Optional[int] = model.decode(UpperCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCamelCase : Optional[Any] = model.decode(UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : List[str] = self.get_sd_vae_model() __lowerCamelCase : Optional[int] = self.get_sd_image(UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.get_generator(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : int = model.encode(UpperCAmelCase ).latent_dist __lowerCamelCase : Tuple = dist.sample(generator=UpperCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __lowerCamelCase : str = sample[0, -1, -3:, -3:].flatten().cpu() __lowerCamelCase : Optional[int] = torch.tensor(UpperCAmelCase ) __lowerCamelCase : str = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase )
64
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A = logging.get_logger(__name__) __A = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowercase_ ( _lowerCamelCase: str ) -> int: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __lowerCamelCase : int = model_type_to_module_name(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = importlib.import_module(F""".{module_name}""" , "transformers.models" ) try: return getattr(_lowerCamelCase , _lowerCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_lowerCamelCase , "__name__" , _lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowerCamelCase : int = importlib.import_module("transformers" ) if hasattr(_lowerCamelCase , _lowerCamelCase ): return getattr(_lowerCamelCase , _lowerCamelCase ) return None def lowercase_ ( _lowerCamelCase: Union[str, os.PathLike] , _lowerCamelCase: Optional[Union[str, os.PathLike]] = None , _lowerCamelCase: bool = False , _lowerCamelCase: bool = False , _lowerCamelCase: Optional[Dict[str, str]] = None , _lowerCamelCase: Optional[Union[bool, str]] = None , _lowerCamelCase: Optional[str] = None , _lowerCamelCase: bool = False , **_lowerCamelCase: Tuple , ) -> List[str]: '''simple docstring''' __lowerCamelCase : List[str] = get_file_from_repo( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(_lowerCamelCase , encoding="utf-8" ) as reader: return json.load(_lowerCamelCase ) class _snake_case : def __init__( self : Tuple ): raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase ) def lowerCamelCase__ ( cls : Dict , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): __lowerCamelCase : int = kwargs.pop("config" , UpperCAmelCase ) __lowerCamelCase : Dict = kwargs.pop("trust_remote_code" , UpperCAmelCase ) __lowerCamelCase : Any = True __lowerCamelCase , __lowerCamelCase : str = ImageProcessingMixin.get_image_processor_dict(UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Optional[int] = config_dict.get("image_processor_type" , UpperCAmelCase ) __lowerCamelCase : List[Any] = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): __lowerCamelCase : List[str] = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __lowerCamelCase : Dict = config_dict.pop("feature_extractor_type" , UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) __lowerCamelCase : Tuple = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): __lowerCamelCase : Any = config_dict["auto_map"]["AutoFeatureExtractor"] __lowerCamelCase : Optional[int] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : int = AutoConfig.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # It could be in `config.image_processor_type`` __lowerCamelCase : int = getattr(UpperCAmelCase , "image_processor_type" , UpperCAmelCase ) if hasattr(UpperCAmelCase , "auto_map" ) and "AutoImageProcessor" in config.auto_map: __lowerCamelCase : Optional[int] = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: __lowerCamelCase : Any = image_processor_class_from_name(UpperCAmelCase ) __lowerCamelCase : str = image_processor_auto_map is not None __lowerCamelCase : Optional[Any] = image_processor_class is not None or type(UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING __lowerCamelCase : Dict = resolve_trust_remote_code( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if has_remote_code and trust_remote_code: __lowerCamelCase : Optional[Any] = get_class_from_dynamic_module( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : List[Any] = kwargs.pop("code_revision" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: __lowerCamelCase : Tuple = IMAGE_PROCESSOR_MAPPING[type(UpperCAmelCase )] return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowerCamelCase__ ( UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): IMAGE_PROCESSOR_MAPPING.register(UpperCAmelCase , UpperCAmelCase )
64
1
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path / "cache" lowerCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : List[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[int] = features.copy() if features else default_expected_features lowerCAmelCase : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : int = tmp_path / "cache" lowerCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : List[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = parquet_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = [parquet_path] lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[int] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: lowerCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path / "cache" lowerCAmelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[int] = features.copy() if features else default_expected_features lowerCAmelCase : int = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Tuple = ParquetDatasetReader({"train": parquet_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if split: lowerCAmelCase : Any = {split: parquet_path} else: lowerCAmelCase : Optional[int] = "train" lowerCAmelCase : Union[str, Any] = {"train": parquet_path, "test": parquet_path} lowerCAmelCase : Tuple = tmp_path / "cache" lowerCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Union[str, Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : List[Any] = pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCAmelCase : Optional[int] = pf.read() assert dataset.data.table == output_table def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Optional[int] = str(shared_datadir / "test_image_rgb.jpg" ) lowerCAmelCase : Optional[Any] = {"image": [image_path]} lowerCAmelCase : List[str] = Features({"image": Image()} ) lowerCAmelCase : List[Any] = Dataset.from_dict(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : Optional[int] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCAmelCase : Tuple = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' assert get_writer_batch_size(SCREAMING_SNAKE_CASE ) == expected
108
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : int =MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowerCAmelCase : Dict = VideoClassificationPipeline(model=snake_case__ , image_processor=snake_case__ , top_k=2 ) lowerCAmelCase : Any = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" for example in examples: lowerCAmelCase : str = video_classifier(snake_case__ ) self.assertEqual( snake_case__ , [ {"score": ANY(snake_case__ ), "label": ANY(snake_case__ )}, {"score": ANY(snake_case__ ), "label": ANY(snake_case__ )}, ] , ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowerCAmelCase : str = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) lowerCAmelCase : int = pipeline( "video-classification" , model=snake_case__ , feature_extractor=snake_case__ , frame_sampling_rate=4 ) lowerCAmelCase : Optional[int] = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowerCAmelCase : Union[str, Any] = video_classifier(snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) lowerCAmelCase : Tuple = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def lowercase__ ( self ): """simple docstring""" pass
108
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a__ = datasets.load_iris() a__ = np.array(data['''data''']) a__ = np.array(data['''target''']) a__ = data['''target_names'''] a__ , a__ , a__ , a__ = train_test_split(X, y) def __UpperCAmelCase ( __a : Optional[Any] ,__a : Dict ) -> str: """simple docstring""" return np.linalg.norm(np.array(__a ) - np.array(__a ) ) def __UpperCAmelCase ( __a : str ,__a : Dict ,__a : List[str] ,__a : Dict ,__a : Union[str, Any]=5 ) -> Tuple: """simple docstring""" _a : Tuple = zip(__a ,__a ) # List of distances of all points from the point to be classified _a : Optional[Any] = [] for data_point in data: _a : int = euclidean_distance(data_point[0] ,__a ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _a : List[str] = [i[1] for i in sorted(__a )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _a : List[str] = Counter(__a ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCamelCase_ ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , _a : str ) -> Optional[int]: super().__init__() __lowerCamelCase : str = model __lowerCamelCase : Dict = 2 __lowerCamelCase : Union[str, Any] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowercase ( self : List[str] ) -> Optional[Any]: pass def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[str]: # load longformer model from model identifier __lowerCamelCase : List[str] = LongformerModel.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Tuple = LightningModel(_lowerCAmelCase ) __lowerCamelCase : List[str] = torch.load(_lowerCAmelCase ,map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __lowerCamelCase : Dict = LongformerForQuestionAnswering.from_pretrained(_lowerCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_lowerCAmelCase ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
208
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _UpperCamelCase = logging.get_logger(__name__) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=False ) -> Tuple: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: __lowerCamelCase : str = os.path.abspath(_lowerCAmelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) __lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase ,map_location='cpu' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __lowerCamelCase : Tuple = convert_pytorch_state_dict_to_flax(_lowerCAmelCase ,_lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __lowerCamelCase : Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(_lowerCAmelCase ,_lowerCAmelCase ) return flax_state_dict def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(_lowerCAmelCase ) -> bool: return len(set(_lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __lowerCamelCase : List[str] = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __lowerCamelCase : int = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __lowerCamelCase : List[str] = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __lowerCamelCase : Tuple = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __lowerCamelCase : List[str] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): __lowerCamelCase : List[Any] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __lowerCamelCase : Optional[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): __lowerCamelCase : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __lowerCamelCase : Tuple = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __lowerCamelCase : int = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __lowerCamelCase : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __lowerCamelCase : Union[str, Any] = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __lowerCamelCase : Tuple = pt_tuple_key[-2] + '_v' if name is not None: __lowerCamelCase : Any = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: # convert pytorch tensor to numpy __lowerCamelCase : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCamelCase : str = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __lowerCamelCase : List[Any] = flax_model.params['params'] else: __lowerCamelCase : List[str] = flax_model.params __lowerCamelCase : Tuple = flatten_dict(_lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCamelCase : Optional[int] = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_lowerCAmelCase ) __lowerCamelCase : str = {} __lowerCamelCase : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __lowerCamelCase : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCamelCase : Any = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __lowerCamelCase : Any = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCamelCase : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCamelCase ,__lowerCamelCase : Dict = rename_key_and_reshape_tensor( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # add model prefix if necessary __lowerCamelCase : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCamelCase : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __lowerCamelCase : List[Any] = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __lowerCamelCase : List[Any] = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __lowerCamelCase : str = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Any: import torch # Load the index __lowerCamelCase : Optional[int] = {} for shard_file in shard_filenames: # load using msgpack utils __lowerCamelCase : Dict = torch.load(_lowerCAmelCase ) __lowerCamelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCamelCase : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCamelCase : str = flax_model.params['params'] __lowerCamelCase : Tuple = flatten_dict(_lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: __lowerCamelCase : Dict = flax_model.params __lowerCamelCase : Optional[int] = flatten_dict(_lowerCAmelCase ) __lowerCamelCase : List[Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __lowerCamelCase : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCamelCase : Optional[Any] = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __lowerCamelCase : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCamelCase : Optional[int] = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCamelCase ,__lowerCamelCase : Any = rename_key_and_reshape_tensor( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # add model prefix if necessary __lowerCamelCase : Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCamelCase : Optional[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __lowerCamelCase : int = jnp.asarray(_lowerCAmelCase ) continue if "var" in flax_key[-1]: __lowerCamelCase : Tuple = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __lowerCamelCase : Optional[int] = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __lowerCamelCase : Tuple = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = os.path.abspath(_lowerCAmelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __lowerCamelCase : str = getattr(_lowerCAmelCase ,'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_lowerCAmelCase ,'rb' ) as state_f: try: __lowerCamelCase : Tuple = from_bytes(_lowerCAmelCase ,state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_lowerCAmelCase ,_lowerCAmelCase ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __lowerCamelCase : Any = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa ,_lowerCAmelCase ) ).values() if any(_lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __lowerCamelCase : Dict = jax.tree_util.tree_map( lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,_lowerCAmelCase ) __lowerCamelCase : Any = flatten_dict(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = pt_model.state_dict() __lowerCamelCase : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) __lowerCamelCase : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __lowerCamelCase : Any = [] __lowerCamelCase : Union[str, Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowerCamelCase : List[str] = flax_key_tuple[0] == pt_model.base_model_prefix __lowerCamelCase : Dict = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCamelCase : List[Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __lowerCamelCase : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCAmelCase ) not in pt_model_dict: # conv layer __lowerCamelCase : Tuple = flax_key_tuple[:-1] + ('weight',) __lowerCamelCase : Tuple = jnp.transpose(_lowerCAmelCase ,(3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ) not in pt_model_dict: # linear layer __lowerCamelCase : Dict = flax_key_tuple[:-1] + ('weight',) __lowerCamelCase : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCamelCase : Optional[Any] = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __lowerCamelCase : str = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: __lowerCamelCase : int = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: __lowerCamelCase : Tuple = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __lowerCamelCase : Optional[int] = '.'.join(_lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __lowerCamelCase : Tuple = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __lowerCamelCase : str = key.split('.' ) __lowerCamelCase : Tuple = None if key_components[-3::2] == ["parametrizations", "original0"]: __lowerCamelCase : Any = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: __lowerCamelCase : Tuple = key_components[-2] + '_v' if name is not None: __lowerCamelCase : Optional[int] = key_components[:-3] + [name] __lowerCamelCase : Union[str, Any] = '.'.join(_lowerCAmelCase ) __lowerCamelCase : Optional[int] = key if flax_key in special_pt_names: __lowerCamelCase : int = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __lowerCamelCase : Tuple = np.asarray(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase ,np.ndarray ) else flax_tensor __lowerCamelCase : List[str] = torch.from_numpy(_lowerCAmelCase ) # remove from missing keys missing_keys.remove(_lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCAmelCase ) pt_model.load_state_dict(_lowerCAmelCase ) # re-transform missing_keys to list __lowerCamelCase : int = list(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_lowerCAmelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
208
1
import math from datetime import datetime, timedelta def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = year % 19 UpperCamelCase = year % 4 UpperCamelCase = year % 7 UpperCamelCase = math.floor(year / 100 ) UpperCamelCase = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCamelCase = leap_day_inhibits / 4 UpperCamelCase = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 18 ) else: return datetime(__UpperCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): _SCREAMING_SNAKE_CASE = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
369
def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = len(matrix[0] ) UpperCamelCase = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase = matrix[i], matrix[row] UpperCamelCase = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
165
0
import os import sys import unittest lowercase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Optional[int] = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") lowercase : List[str] = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = get_test_to_tester_mapping(snake_case ) lowercase : Dict = get_test_to_tester_mapping(snake_case ) lowercase : str = {"""BertModelTest""": """BertModelTester"""} lowercase : Dict = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = get_model_to_test_mapping(snake_case ) lowercase : str = get_model_to_test_mapping(snake_case ) lowercase : List[Any] = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } lowercase : List[str] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = get_model_to_tester_mapping(snake_case ) lowercase : Any = get_model_to_tester_mapping(snake_case ) lowercase : List[str] = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } lowercase : List[Any] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case )
20
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __a = logging.get_logger(__name__) __a = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''instructblip_vision_model''' def __init__( self : str , lowerCAmelCase__ : Dict=1_4_0_8 , lowerCAmelCase__ : int=6_1_4_4 , lowerCAmelCase__ : List[str]=3_9 , lowerCAmelCase__ : int=1_6 , lowerCAmelCase__ : Tuple=2_2_4 , lowerCAmelCase__ : Tuple=1_4 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Union[str, Any]=1e-6 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Optional[int]=1e-10 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : str , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : str = patch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Tuple = qkv_bias @classmethod def _lowerCAmelCase ( cls : Optional[int] , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = '''instructblip_qformer''' def __init__( self : List[str] , lowerCAmelCase__ : Union[str, Any]=3_0_5_2_2 , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Optional[int]=1e-12 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Union[str, Any]="absolute" , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=1_4_0_8 , **lowerCAmelCase__ : List[str] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Tuple = position_embedding_type _UpperCAmelCase : Tuple = cross_attention_frequency _UpperCAmelCase : Any = encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : Dict , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : Tuple = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''instructblip''' UpperCamelCase_ : Dict = True def __init__( self : Tuple , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=3_2 , **lowerCAmelCase__ : Dict ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if vision_config is None: _UpperCAmelCase : List[str] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: _UpperCAmelCase : Tuple = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: _UpperCAmelCase : int = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _UpperCAmelCase : List[str] = InstructBlipVisionConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = InstructBlipQFormerConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = text_config["model_type"] if "model_type" in text_config else "opt" _UpperCAmelCase : Optional[int] = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.text_config.tie_word_embeddings _UpperCAmelCase : List[Any] = self.text_config.is_encoder_decoder _UpperCAmelCase : List[str] = num_query_tokens _UpperCAmelCase : int = self.vision_config.hidden_size _UpperCAmelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : int = 1.0 _UpperCAmelCase : Dict = 0.02 @classmethod def _lowerCAmelCase ( cls : Dict , lowerCAmelCase__ : InstructBlipVisionConfig , lowerCAmelCase__ : InstructBlipQFormerConfig , lowerCAmelCase__ : PretrainedConfig , **lowerCAmelCase__ : Union[str, Any] , ) -> Tuple: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.qformer_config.to_dict() _UpperCAmelCase : List[Any] = self.text_config.to_dict() _UpperCAmelCase : Dict = self.__class__.model_type return output
145
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case : List[str] = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case : Union[str, Any] = ["small", "medium", "large"] _snake_case : List[Any] = "lm_head.decoder.weight" _snake_case : Optional[Any] = "lm_head.weight" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Tuple = torch.load(__lowerCamelCase ) __snake_case : Dict = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) _snake_case : Any = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') _snake_case : List[str] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
134
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union A_ = TypeVar('''T''') A_ = Union[List[T], Tuple[T, ...]] A_ = Union[T, List[T], Dict[str, T]] A_ = Union[str, bytes, os.PathLike]
64
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } A_ = { '''yjernite/retribert-base-uncased''': 5_12, } A_ = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = RetriBertTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self: int, a_: int=None, a_: Dict=None, a_: Any=True, a_: int="[UNK]", a_: Any="[SEP]", a_: List[Any]="[PAD]", a_: List[Any]="[CLS]", a_: str="[MASK]", a_: Dict=True, a_: Optional[int]=None, **a_: Tuple, ): '''simple docstring''' super().__init__( a_, tokenizer_file=a_, do_lower_case=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, tokenize_chinese_chars=a_, strip_accents=a_, **a_, ) _snake_case : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", a_ ) != do_lower_case or normalizer_state.get("""strip_accents""", a_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", a_ ) != tokenize_chinese_chars ): _snake_case : Dict = getattr(a_, normalizer_state.pop("""type""" ) ) _snake_case : List[Any] = do_lower_case _snake_case : List[str] = strip_accents _snake_case : Tuple = tokenize_chinese_chars _snake_case : Tuple = normalizer_class(**a_ ) _snake_case : List[str] = do_lower_case def UpperCamelCase_ ( self: Any, a_: str, a_: Optional[int]=None ): '''simple docstring''' _snake_case : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self: List[str], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' _snake_case : Union[str, Any] = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self: Dict, a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : Union[str, Any] = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ )
64
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowerCamelCase = TypeVar("T") def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return (2 * position) + 2 class UpperCamelCase__( Generic[T] ): def __init__( self ) -> None: A__ = [] A__ = {} A__ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def snake_case__ ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) A__ = self.elements self.elements += 1 self._bubble_up(__UpperCAmelCase ) def snake_case__ ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 ,self.elements - 1 ) A__ , A__ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: A__ , A__ = self.heap[0] self._bubble_down(__UpperCAmelCase ) return elem def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # Update the weight of the given key A__ = self.position_map[elem] A__ = (elem, weight) if position > 0: A__ = get_parent_position(__UpperCAmelCase ) A__ , A__ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__UpperCAmelCase ) else: self._bubble_down(__UpperCAmelCase ) else: self._bubble_down(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] A__ = self.position_map[elem] if curr_pos == 0: return None A__ = get_parent_position(__UpperCAmelCase ) A__ , A__ = self.heap[curr_pos] A__ , A__ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase ) return self._bubble_up(__UpperCAmelCase ) return None def snake_case__ ( self ,__UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] A__ = self.position_map[elem] A__ , A__ = self.heap[curr_pos] A__ = get_child_left_position(__UpperCAmelCase ) A__ = get_child_right_position(__UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: A__ , A__ = self.heap[child_left_position] A__ , A__ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase ) return self._bubble_down(__UpperCAmelCase ) if child_left_position < self.elements: A__ , A__ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase ) return self._bubble_down(__UpperCAmelCase ) else: return None if child_right_position < self.elements: A__ , A__ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase ) return self._bubble_down(__UpperCAmelCase ) return None def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # Swap the nodes at the given positions A__ = self.heap[nodea_pos][0] A__ = self.heap[nodea_pos][0] A__ , A__ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) A__ = nodea_pos A__ = nodea_pos class UpperCamelCase__( Generic[T] ): def __init__( self ) -> None: A__ = {} A__ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def snake_case__ ( self ,__UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: A__ = {} self.nodes += 1 def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) A__ = weight A__ = weight def UpperCAmelCase ( UpperCamelCase__ , ): """simple docstring""" A__ = {node: maxsize for node in graph.connections} A__ = {node: None for node in graph.connections} A__ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(UpperCamelCase__ , UpperCamelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization A__ = priority_queue.extract_min() A__ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase__ , dist[neighbour] ) A__ = node # running prim's algorithm while not priority_queue.is_empty(): A__ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase__ , dist[neighbour] ) A__ = node return dist, parent
154
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Optional[int]: A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def snake_case__ ( self ) -> int: A__ = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() A__ = [sys.executable] + distributed_args execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() )
154
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split SCREAMING_SNAKE_CASE :str = datasets.load_iris() SCREAMING_SNAKE_CASE :Dict = np.array(data['data']) SCREAMING_SNAKE_CASE :Union[str, Any] = np.array(data['target']) SCREAMING_SNAKE_CASE :Dict = data['target_names'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[str] = train_test_split(X, y) def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" return np.linalg.norm(np.array(a_ ) - np.array(a_ ) ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_=5 ) -> List[Any]: """simple docstring""" __A = zip(a_ , a_ ) # List of distances of all points from the point to be classified __A = [] for data_point in data: __A = euclidean_distance(data_point[0] , a_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __A = [i[1] for i in sorted(a_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __A = Counter(a_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
15
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :str = 'tf_model.h5' SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :str = 'model.ckpt' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :str = 'config.json' SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json' SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[int] = '▁' SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
15
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A: List[str] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : str = XLMRobertaTokenizer __lowerCAmelCase : List[Any] = XLMRobertaTokenizerFast __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Tuple = True def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[str] = """<pad>""" UpperCAmelCase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1002 ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = XLMRobertaTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : List[Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[int] = tokenizer_r.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = tokenizer_p.save_pretrained(_SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way UpperCAmelCase : Dict = tokenizer_r.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(_SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase : List[str] = tokenizer_r.save_pretrained(_SCREAMING_SNAKE_CASE , legacy_format=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = tokenizer_p.save_pretrained(_SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = tokenizer_p.from_pretrained(_SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : Any = tokenizer_r.save_pretrained(_SCREAMING_SNAKE_CASE , legacy_format=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = tokenizer_p.save_pretrained(_SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : Dict = tokenizer_r.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = tokenizer_p.from_pretrained(_SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_SCREAMING_SNAKE_CASE , f.name ) UpperCAmelCase : List[Any] = XLMRobertaTokenizer(f.name , keep_accents=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = pickle.dumps(_SCREAMING_SNAKE_CASE ) pickle.loads(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase : Dict = """I was born in 92000, and this is falsé.""" UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase : Dict = tokenizer.encode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """Hello World!""" UpperCAmelCase : Any = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCAmelCase : List[Any] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple = {"""input_ids""": [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
76
"""simple docstring""" import os from collections.abc import Iterator def _snake_case ( UpperCamelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(UpperCamelCase ): UpperCAmelCase : List[Any] = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase , UpperCamelCase ).lstrip("""./""" ) def _snake_case ( UpperCamelCase : Union[str, Any] ): return F"{i * ' '}*" if i else "\n##" def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : List[str] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCamelCase ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(UpperCamelCase )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def _snake_case ( UpperCamelCase : str = "." ): UpperCAmelCase : Union[str, Any] = """""" for filepath in sorted(good_file_paths(UpperCamelCase ) ): UpperCAmelCase , UpperCAmelCase : Any = os.path.split(UpperCamelCase ) if filepath != old_path: UpperCAmelCase : Optional[int] = print_path(UpperCamelCase , UpperCamelCase ) UpperCAmelCase : str = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCAmelCase : Optional[int] = F"{filepath}/{filename}".replace(""" """ , """%20""" ) UpperCAmelCase : Optional[int] = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F"{md_prefix(UpperCamelCase )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(".")
76
1
from PIL import Image def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(snake_case ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(snake_case ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 A__ = change_contrast(img, 1_70) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
82
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : List[str] = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["YolosFeatureExtractor"] A_ : Optional[int] = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys A_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
0
'''simple docstring''' def __magic_name__ ( A ) -> Optional[Any]: snake_case = len(A ) while cur > 1: # Find the maximum number in arr snake_case = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi snake_case = arr[mi::-1] + arr[mi + 1 : len(A )] # Reverse whole list snake_case = arr[cur - 1 :: -1] + arr[cur : len(A )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
332
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __A ( lowercase_ ): """simple docstring""" __lowerCAmelCase = 42 class __A ( lowercase_, lowercase_ ): """simple docstring""" @register_to_config def __init__( self , __A = 6_5536 , __A = None , __A = 2 , __A = 2 , __A = 0 , __A = "fourier" , __A = True , __A = False , __A = 0.0 , __A = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __A = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __A = "UNetMidBlock1D" , __A = None , __A = (32, 32, 64) , __A = None , __A = 8 , __A = 1 , __A = False , ) -> List[Any]: super().__init__() a =sample_size # time if time_embedding_type == "fourier": a =GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase_ , log=lowerCAmelCase_ , flip_sin_to_cos=lowerCAmelCase_ ) a =2 * block_out_channels[0] elif time_embedding_type == "positional": a =Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase_ , downscale_freq_shift=lowerCAmelCase_ ) a =block_out_channels[0] if use_timestep_embedding: a =block_out_channels[0] * 4 a =TimestepEmbedding( in_channels=lowerCAmelCase_ , time_embed_dim=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , out_dim=block_out_channels[0] , ) a =nn.ModuleList([] ) a =None a =nn.ModuleList([] ) a =None # down a =in_channels for i, down_block_type in enumerate(lowerCAmelCase_ ): a =output_channel a =block_out_channels[i] if i == 0: input_channel += extra_in_channels a =i == len(lowerCAmelCase_ ) - 1 a =get_down_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase_ ) # mid a =get_mid_block( lowerCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase_ , add_downsample=lowerCAmelCase_ , ) # up a =list(reversed(lowerCAmelCase_ ) ) a =reversed_block_out_channels[0] if out_block_type is None: a =out_channels else: a =block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): a =output_channel a =( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase_ ) - 1 else final_upsample_channels ) a =i == len(lowerCAmelCase_ ) - 1 a =get_up_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase_ ) a =output_channel # out a =norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) a =get_out_block( out_block_type=lowerCAmelCase_ , num_groups_out=lowerCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = True , ) -> Union[UNetaDOutput, Tuple]: a =timestep if not torch.is_tensor(lowerCAmelCase_ ): a =torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: a =timesteps[None].to(sample.device ) a =self.time_proj(lowerCAmelCase_ ) if self.config.use_timestep_embedding: a =self.time_mlp(lowerCAmelCase_ ) else: a =timestep_embed[..., None] a =timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) a =timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down a =() for downsample_block in self.down_blocks: a =downsample_block(hidden_states=lowerCAmelCase_ , temb=lowerCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: a =self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): a =down_block_res_samples[-1:] a =down_block_res_samples[:-1] a =upsample_block(lowerCAmelCase_ , res_hidden_states_tuple=lowerCAmelCase_ , temb=lowerCAmelCase_ ) # 5. post-process if self.out_block: a =self.out_block(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase_ )
81
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[Any] = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
134
0
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } SCREAMING_SNAKE_CASE__ : List[Any] = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } SCREAMING_SNAKE_CASE__ : Optional[int] = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } SCREAMING_SNAKE_CASE__ : Dict = { "num_train_timesteps": 40, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } SCREAMING_SNAKE_CASE__ : str = { "num_train_timesteps": 201, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "num_train_timesteps": 151, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple: if isinstance(lowercase__ , lowercase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : List[str]=False ) -> str: __lowerCamelCase = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: __lowerCamelCase = checkpoint[f'''{old_prefix}.skip_connection.weight'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict=None ) -> List[Any]: __lowerCamelCase = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) __lowerCamelCase = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) __lowerCamelCase = checkpoint[f'''{old_prefix}.norm.weight'''] __lowerCamelCase = checkpoint[f'''{old_prefix}.norm.bias'''] __lowerCamelCase = weight_q.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = bias_q.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = weight_k.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = bias_k.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = weight_v.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = bias_v.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) __lowerCamelCase = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ) -> int: __lowerCamelCase = torch.load(lowercase__ , map_location='''cpu''' ) __lowerCamelCase = {} __lowerCamelCase = checkpoint["""time_embed.0.weight"""] __lowerCamelCase = checkpoint["""time_embed.0.bias"""] __lowerCamelCase = checkpoint["""time_embed.2.weight"""] __lowerCamelCase = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: __lowerCamelCase = checkpoint["""label_emb.weight"""] __lowerCamelCase = checkpoint["""input_blocks.0.0.weight"""] __lowerCamelCase = checkpoint["""input_blocks.0.0.bias"""] __lowerCamelCase = unet_config["""down_block_types"""] __lowerCamelCase = unet_config["""layers_per_block"""] __lowerCamelCase = unet_config["""attention_head_dim"""] __lowerCamelCase = unet_config["""block_out_channels"""] __lowerCamelCase = 1 __lowerCamelCase = channels_list[0] for i, layer_type in enumerate(lowercase__ ): __lowerCamelCase = channels_list[i] __lowerCamelCase = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowercase__ ): __lowerCamelCase = f'''down_blocks.{i}.resnets.{j}''' __lowerCamelCase = f'''input_blocks.{current_layer}.0''' __lowerCamelCase = True if j == 0 and downsample_block_has_skip else False __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_skip=lowercase__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowercase__ ): __lowerCamelCase = f'''down_blocks.{i}.resnets.{j}''' __lowerCamelCase = f'''input_blocks.{current_layer}.0''' __lowerCamelCase = True if j == 0 and downsample_block_has_skip else False __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_skip=lowercase__ ) __lowerCamelCase = f'''down_blocks.{i}.attentions.{j}''' __lowerCamelCase = f'''input_blocks.{current_layer}.1''' __lowerCamelCase = convert_attention( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) current_layer += 1 if i != len(lowercase__ ) - 1: __lowerCamelCase = f'''down_blocks.{i}.downsamplers.0''' __lowerCamelCase = f'''input_blocks.{current_layer}.0''' __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) current_layer += 1 __lowerCamelCase = current_channels # hardcoded the mid-block for now __lowerCamelCase = """mid_block.resnets.0""" __lowerCamelCase = """middle_block.0""" __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCamelCase = """mid_block.attentions.0""" __lowerCamelCase = """middle_block.1""" __lowerCamelCase = convert_attention(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCamelCase = """mid_block.resnets.1""" __lowerCamelCase = """middle_block.2""" __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCamelCase = 0 __lowerCamelCase = unet_config["""up_block_types"""] for i, layer_type in enumerate(lowercase__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __lowerCamelCase = f'''up_blocks.{i}.resnets.{j}''' __lowerCamelCase = f'''output_blocks.{current_layer}.0''' __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_skip=lowercase__ ) current_layer += 1 if i != len(lowercase__ ) - 1: __lowerCamelCase = f'''up_blocks.{i}.upsamplers.0''' __lowerCamelCase = f'''output_blocks.{current_layer-1}.1''' __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __lowerCamelCase = f'''up_blocks.{i}.resnets.{j}''' __lowerCamelCase = f'''output_blocks.{current_layer}.0''' __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_skip=lowercase__ ) __lowerCamelCase = f'''up_blocks.{i}.attentions.{j}''' __lowerCamelCase = f'''output_blocks.{current_layer}.1''' __lowerCamelCase = convert_attention( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) current_layer += 1 if i != len(lowercase__ ) - 1: __lowerCamelCase = f'''up_blocks.{i}.upsamplers.0''' __lowerCamelCase = f'''output_blocks.{current_layer-1}.2''' __lowerCamelCase = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCamelCase = checkpoint["""out.0.weight"""] __lowerCamelCase = checkpoint["""out.0.bias"""] __lowerCamelCase = checkpoint["""out.2.weight"""] __lowerCamelCase = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") SCREAMING_SNAKE_CASE__ : str = parser.parse_args() SCREAMING_SNAKE_CASE__ : Union[str, Any] = strabool(args.class_cond) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: SCREAMING_SNAKE_CASE__ : Any = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): SCREAMING_SNAKE_CASE__ : Union[str, Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: SCREAMING_SNAKE_CASE__ : str = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : str = con_pt_to_diffuser(args.unet_path, unet_config) SCREAMING_SNAKE_CASE__ : int = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: SCREAMING_SNAKE_CASE__ : Dict = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: SCREAMING_SNAKE_CASE__ : Tuple = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): SCREAMING_SNAKE_CASE__ : List[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') SCREAMING_SNAKE_CASE__ : Tuple = CMStochasticIterativeScheduler(**scheduler_config) SCREAMING_SNAKE_CASE__ : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
351
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
0
# Function to print upper half of diamond (pyramid) def __UpperCamelCase ( _A : Union[str, Any] ) ->List[Any]: """simple docstring""" for i in range(0 , _A ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __UpperCamelCase ( _A : str ) ->List[Any]: """simple docstring""" for i in range(_A , 0 , -1 ): for _ in range(_A , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __UpperCamelCase ( _A : Tuple ) ->Optional[int]: """simple docstring""" if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_A ) # upper half reverse_floyd(_A ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') __A : Tuple = 1 while K: __A : str = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __A : Any = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
154
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : int = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') UpperCamelCase = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) UpperCamelCase = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) UpperCamelCase = BeautifulSoup(res.text, 'html.parser') UpperCamelCase = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
369
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase__ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ = "sgugger/tiny-distilbert-classification" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , only_pretrain_model=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> int: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , torchscript=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def a ( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ) -> Tuple: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # set architectures equal to `None` lowerCAmelCase__ = None lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Any ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def a ( self : int ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : List[Any] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , save_to_csv=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) ).exists() ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE__ : List[Any] ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "sequential" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "cumulative" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "current" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) , log_print=SCREAMING_SNAKE_CASE__ , trace_memory_line_by_line=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) ).exists() )
221
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : int , *a : List[Any] , **a : Any ) -> None: """simple docstring""" warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , a , ) super().__init__(*a , **a )
76
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): if isinstance(_a , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(_a , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(_a): return [[videos]] raise ValueError(f"Could not make batched video from {videos}") class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__( self : Optional[Any] , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Tuple , ) -> None: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {"shortest_edge": 256} SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE : str = get_size_dict(a , param_name="crop_size" ) SCREAMING_SNAKE_CASE : Dict = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop SCREAMING_SNAKE_CASE : int = crop_size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Any = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : Tuple = offset SCREAMING_SNAKE_CASE : str = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : Optional[Any] , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BILINEAR , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a , default_to_square=a ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(a , size["shortest_edge"] , default_to_square=a ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE : Dict = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a , size=a , resample=a , data_format=a , **a ) def __UpperCamelCase ( self : List[str] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : str , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : str = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def __UpperCamelCase ( self : List[Any] , a : np.ndarray , a : Union[int, float] , a : bool = True , a : Optional[Union[str, ChannelDimension]] = None , **a : Tuple , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = image.astype(np.floataa ) if offset: SCREAMING_SNAKE_CASE : Union[str, Any] = image - (scale / 2) return rescale(a , scale=a , data_format=a , **a ) def __UpperCamelCase ( self : int , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def __UpperCamelCase ( self : Tuple , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[str] = to_numpy_array(a ) if do_resize: SCREAMING_SNAKE_CASE : Optional[Any] = self.resize(image=a , size=a , resample=a ) if do_center_crop: SCREAMING_SNAKE_CASE : Union[str, Any] = self.center_crop(a , size=a ) if do_rescale: SCREAMING_SNAKE_CASE : Any = self.rescale(image=a , scale=a , offset=a ) if do_normalize: SCREAMING_SNAKE_CASE : Tuple = self.normalize(image=a , mean=a , std=a ) SCREAMING_SNAKE_CASE : Optional[int] = to_channel_dimension_format(a , a ) return image def __UpperCamelCase ( self : Dict , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : int = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : int = size if size is not None else self.size SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(a , param_name="crop_size" ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) SCREAMING_SNAKE_CASE : Optional[int] = make_batched(a ) SCREAMING_SNAKE_CASE : List[Any] = [ [ self._preprocess_image( image=a , do_resize=a , size=a , resample=a , do_center_crop=a , crop_size=a , do_rescale=a , rescale_factor=a , offset=a , do_normalize=a , image_mean=a , image_std=a , data_format=a , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE : Optional[int] = {"pixel_values": videos} return BatchFeature(data=a , tensor_type=a )
76
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a : Tuple = logging.get_logger(__name__) a : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a : List[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a : Dict = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a : List[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } a : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } a : Optional[int] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } a : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a : Union[str, Any] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a : List[Any] = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a : str = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a : Optional[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_lowerCAmelCase ) class _a : def __call__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) elif titles is None or texts is None: UpperCAmelCase_: str = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: int = titles if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else [titles] UpperCAmelCase_: List[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else [texts] UpperCAmelCase_: str = len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = questions if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.' ) UpperCAmelCase_: Dict = super().__call__(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""] UpperCAmelCase_: str = super().__call__(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""] UpperCAmelCase_: Optional[Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: UpperCAmelCase_: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_: int = attention_mask return self.pad(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 16, SCREAMING_SNAKE_CASE_ = 64, SCREAMING_SNAKE_CASE_ = 4, ) -> List[DPRSpanPrediction]: UpperCAmelCase_: Tuple = reader_input["""input_ids"""] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = reader_output[:3] UpperCAmelCase_: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = sorted(range(SCREAMING_SNAKE_CASE_ ), reverse=SCREAMING_SNAKE_CASE_, key=relevance_logits.__getitem__ ) UpperCAmelCase_: List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_: Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_: Union[str, Any] = sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_: List[Any] = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_: Optional[int] = len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=SCREAMING_SNAKE_CASE_, top_spans=SCREAMING_SNAKE_CASE_, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=SCREAMING_SNAKE_CASE_, start_index=SCREAMING_SNAKE_CASE_, end_index=SCREAMING_SNAKE_CASE_, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> List[DPRSpanPrediction]: UpperCAmelCase_: Optional[Any] = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_: Tuple = sorted(SCREAMING_SNAKE_CASE_, key=lambda SCREAMING_SNAKE_CASE_ : x[1], reverse=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'Wrong span indices: [{start_index}:{end_index}]' ) UpperCAmelCase_: int = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCAmelCase ) class _a ( _lowerCAmelCase , _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = READER_PRETRAINED_VOCAB_FILES_MAP A = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = READER_PRETRAINED_INIT_CONFIGURATION A = ['''input_ids''', '''attention_mask''']
82
def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: float , lowerCAmelCase__: float ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def lowerCAmelCase_ (lowerCAmelCase__: float , lowerCAmelCase__: float , lowerCAmelCase__: float ): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (volume) ) ) def lowerCAmelCase_ (lowerCAmelCase__: float , lowerCAmelCase__: float , lowerCAmelCase__: float ): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def lowerCAmelCase_ (lowerCAmelCase__: float , lowerCAmelCase__: float , lowerCAmelCase__: float ): """simple docstring""" return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
82
1
"""simple docstring""" def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) while cur > 1: # Find the maximum number in arr __UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(snake_case_ )] # Reverse whole list __UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(snake_case_ )] cur -= 1 return arr if __name__ == "__main__": _lowercase : Optional[int] = input('Enter numbers separated by a comma:\n').strip() _lowercase : Dict = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
332
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
1
import argparse from collections import defaultdict import yaml __lowerCAmelCase = '''docs/source/en/_toctree.yml''' def snake_case_ ( snake_case ) -> Optional[int]: lowercase__: List[Any] = defaultdict(a_ ) lowercase__: Union[str, Any] = [] lowercase__: Tuple = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(a_ ) lowercase__: Union[str, Any] = new_doc_list lowercase__: str = [key for key, value in counts.items() if value > 1] lowercase__: Optional[Any] = [] for duplicate_key in duplicates: lowercase__: Union[str, Any] = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(a_ ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) lowercase__: Tuple = sorted(a_ , key=lambda snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(a_ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(a_ ) # Sort return overview_doc def snake_case_ ( snake_case=False ) -> str: with open(a_ , encoding='utf-8' ) as f: lowercase__: Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc lowercase__: str = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__: Union[str, Any] = content[api_idx]['sections'] # Then to the model doc lowercase__: str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase__: List[str] = api_doc[scheduler_idx]['sections'] lowercase__: Tuple = clean_doc_toc(a_ ) lowercase__: Union[str, Any] = False if new_scheduler_doc != scheduler_doc: lowercase__: Optional[Any] = True if overwrite: lowercase__: List[str] = new_scheduler_doc if diff: if overwrite: lowercase__: Tuple = api_doc with open(a_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(a_ , allow_unicode=a_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def snake_case_ ( snake_case=False ) -> Dict: with open(a_ , encoding='utf-8' ) as f: lowercase__: int = yaml.safe_load(f.read() ) # Get to the API doc lowercase__: int = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__: Dict = content[api_idx]['sections'] # Then to the model doc lowercase__: Optional[int] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase__: Optional[int] = False lowercase__: List[Any] = api_doc[pipeline_idx]['sections'] lowercase__: Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase__: str = pipeline_doc['section'] lowercase__: List[Any] = clean_doc_toc(a_ ) if overwrite: lowercase__: Any = new_sub_pipeline_doc new_pipeline_docs.append(a_ ) # sort overall pipeline doc lowercase__: List[str] = clean_doc_toc(a_ ) if new_pipeline_docs != pipeline_docs: lowercase__: int = True if overwrite: lowercase__: Optional[int] = new_pipeline_docs if diff: if overwrite: lowercase__: Tuple = api_doc with open(a_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(a_ , allow_unicode=a_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __lowerCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
364
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __lowercase : Tuple = ['input_values', 'attention_mask'] def __init__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 16_000 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = "hann_window" , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 7_600 , lowerCAmelCase__ = 1E-10 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Dict = do_normalize lowercase__: Optional[Any] = return_attention_mask lowercase__: str = num_mel_bins lowercase__: Dict = hop_length lowercase__: Dict = win_length lowercase__: Optional[int] = win_function lowercase__: Any = frame_signal_scale lowercase__: Tuple = fmin lowercase__: Tuple = fmax lowercase__: Dict = mel_floor lowercase__: int = reduction_factor lowercase__: List[Any] = win_length * sampling_rate // 1_000 lowercase__: Optional[Any] = hop_length * sampling_rate // 1_000 lowercase__: Optional[int] = optimal_fft_length(self.sample_size ) lowercase__: Optional[Any] = (self.n_fft // 2) + 1 lowercase__: str = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) lowercase__: Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowercase__: List[str] = np.array(lowerCAmelCase__ , np.intaa ) lowercase__: Tuple = [] for vector, length in zip(lowerCAmelCase__ , attention_mask.sum(-1 ) ): lowercase__: int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase__: Tuple = padding_value normed_input_values.append(lowerCAmelCase__ ) else: lowercase__: Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , ) -> np.ndarray: '''simple docstring''' lowercase__: List[str] = spectrogram( lowerCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: lowercase__: Dict = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) else: lowercase__: str = None if audio_target is not None: lowercase__: List[str] = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) if inputs is None: return inputs_target else: lowercase__: int = inputs_target['input_values'] lowercase__: List[str] = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: lowercase__: Optional[int] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' lowercase__: int = isinstance(lowerCAmelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowercase__: Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__: Dict = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): lowercase__: Optional[Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase__: Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__: Optional[int] = [speech] # needed to make pad() work on spectrogram inputs lowercase__: str = self.feature_size # convert into correct format for padding if is_target: lowercase__: int = [self._extract_mel_features(lowerCAmelCase__ ) for waveform in speech] lowercase__: Dict = BatchFeature({'input_values': features} ) lowercase__: Union[str, Any] = self.num_mel_bins else: lowercase__: Union[str, Any] = BatchFeature({'input_values': speech} ) lowercase__: Dict = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: List[str] = feature_size_hack # convert input values to correct format lowercase__: Union[str, Any] = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): lowercase__: List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase__: Dict = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase__: Tuple = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase__: Tuple = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowercase__: str = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase__: Tuple = ( attention_mask if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__: str = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=lowerCAmelCase__ , padding_value=self.padding_value ) if return_tensors is not None: lowercase__: Union[str, Any] = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, Any]: '''simple docstring''' lowercase__: int = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase__: str = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
288
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} SCREAMING_SNAKE_CASE_: Tuple ={ 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } SCREAMING_SNAKE_CASE_: Tuple ={ 'allenai/longformer-base-4096': 40_96, 'allenai/longformer-large-4096': 40_96, 'allenai/longformer-large-4096-finetuned-triviaqa': 40_96, 'allenai/longformer-base-4096-extra.pos.embd.only': 40_96, 'allenai/longformer-large-4096-extra.pos.embd.only': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCAmelCase_ = bs[:] UpperCAmelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = set() UpperCAmelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ = char return pairs class __A ( UpperCamelCase__ ): a__ : Dict = VOCAB_FILES_NAMES a__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__(self : Any , __a : Optional[Any] , __a : Union[str, Any] , __a : List[str]="replace" , __a : List[str]="<s>" , __a : str="</s>" , __a : Dict="</s>" , __a : Tuple="<s>" , __a : Optional[Any]="<unk>" , __a : List[Any]="<pad>" , __a : Dict="<mask>" , __a : Any=False , **__a : int , ): UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( errors=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , **__a , ) with open(__a , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ = json.load(__a ) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = errors # how to handle errors in decoding UpperCAmelCase_ = bytes_to_unicode() UpperCAmelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(__a , encoding="utf-8" ) as merges_handle: UpperCAmelCase_ = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase_ = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase_ = {} UpperCAmelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _lowercase (self : str ): return len(self.encoder ) def _lowercase (self : Dict ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase (self : Any , __a : Any ): if token in self.cache: return self.cache[token] UpperCAmelCase_ = tuple(__a ) UpperCAmelCase_ = get_pairs(__a ) if not pairs: return token while True: UpperCAmelCase_ = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ = bigram UpperCAmelCase_ = [] UpperCAmelCase_ = 0 while i < len(__a ): try: UpperCAmelCase_ = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ = tuple(__a ) UpperCAmelCase_ = new_word if len(__a ) == 1: break else: UpperCAmelCase_ = get_pairs(__a ) UpperCAmelCase_ = " ".join(__a ) UpperCAmelCase_ = word return word def _lowercase (self : Tuple , __a : Tuple ): UpperCAmelCase_ = [] for token in re.findall(self.pat , __a ): UpperCAmelCase_ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a ).split(" " ) ) return bpe_tokens def _lowercase (self : Optional[Any] , __a : int ): return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def _lowercase (self : str , __a : Optional[Any] ): return self.decoder.get(__a ) def _lowercase (self : Dict , __a : Dict ): UpperCAmelCase_ = "".join(__a ) UpperCAmelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase (self : Union[str, Any] , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) UpperCAmelCase_ = 0 with open(__a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(" ".join(__a ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase (self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] UpperCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase (self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def _lowercase (self : int , __a : List[int] , __a : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase (self : List[Any] , __a : Tuple , __a : Optional[Any]=False , **__a : Dict ): UpperCAmelCase_ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__a ) > 0 and not text[0].isspace()): UpperCAmelCase_ = " " + text return (text, kwargs)
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCAmelCase__ = TaTokenizerFast UpperCAmelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCAmelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
339
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration a : Dict = HfArgumentParser(InitializationArguments) a : Union[str, Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization a : int = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks a : Union[str, Any] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) a : Dict = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config a : Tuple = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
368
"""simple docstring""" from __future__ import annotations class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__=None ): '''simple docstring''' lowercase__ : Union[str, Any]= data lowercase__ : Optional[Any]= None def __repr__( self ): '''simple docstring''' lowercase__ : str= [] lowercase__ : Tuple= self while temp: string_rep.append(F'''{temp.data}''' ) lowercase__ : Optional[int]= temp.next return "->".join(snake_case__ ) def lowercase__(A ) ->Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ : Optional[int]= Node(elements_list[0] ) for i in range(1 , len(A ) ): lowercase__ : Optional[Any]= Node(elements_list[i] ) lowercase__ : str= current.next return head def lowercase__(A ) ->None: """simple docstring""" if head_node is not None and isinstance(A , A ): print_reverse(head_node.next ) print(head_node.data ) def lowercase__() ->str: """simple docstring""" from doctest import testmod testmod() lowercase__ : Optional[int]= make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A ) print("Elements in Reverse:" ) print_reverse(A ) if __name__ == "__main__": main()
150
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : List[Any] = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ['MaskFormerFeatureExtractor'] a__ : Optional[Any] = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] a__ : int = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
80
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["ChineseCLIPFeatureExtractor"] __lowerCamelCase = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
221
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
187
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Dict: """simple docstring""" return max(metric_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [] if args.gold_data_mode == "qa": lowerCAmelCase = pd.read_csv(_SCREAMING_SNAKE_CASE , sep="""\t""" , header=_SCREAMING_SNAKE_CASE ) for answer_list in data[1]: lowerCAmelCase = ast.literal_eval(_SCREAMING_SNAKE_CASE ) answers.append(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [[reference] for reference in references] lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = 0 for prediction, ground_truths in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = 100.0 * em / total lowerCAmelCase = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = args.k lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = lowerCAmelCase = 0 for hypo, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = set(hypo.split("""\t""" )[:k] ) lowerCAmelCase = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCAmelCase = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" def strip_title(_SCREAMING_SNAKE_CASE : Union[str, Any] ): if title.startswith("""\"""" ): lowerCAmelCase = title[1:] if title.endswith("""\"""" ): lowerCAmelCase = title[:-1] return title lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , )["""input_ids"""].to(args.device ) lowerCAmelCase = rag_model.rag.question_encoder(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = question_enc_outputs[0] lowerCAmelCase = rag_model.retriever( _SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCAmelCase = [] for docs in all_docs: lowerCAmelCase = [strip_title(_SCREAMING_SNAKE_CASE ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(_SCREAMING_SNAKE_CASE ) ) return provenance_strings def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" with torch.no_grad(): lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inputs_dict.input_ids.to(args.device ) lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) lowerCAmelCase = rag_model.generate( # rag_model overwrites generate _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info("""Q: {} - A: {}""".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return answers def _snake_case ( ) -> Dict: """simple docstring""" lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=_SCREAMING_SNAKE_CASE , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=_SCREAMING_SNAKE_CASE , choices=["""exact""", """compressed""", """legacy"""] , type=_SCREAMING_SNAKE_CASE , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=_SCREAMING_SNAKE_CASE , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=_SCREAMING_SNAKE_CASE , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=_SCREAMING_SNAKE_CASE , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=_SCREAMING_SNAKE_CASE , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=_SCREAMING_SNAKE_CASE , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=_SCREAMING_SNAKE_CASE , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=_SCREAMING_SNAKE_CASE , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = {} if args.model_type is None: lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): lowerCAmelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration lowerCAmelCase = args.n_docs if args.index_name is not None: lowerCAmelCase = args.index_name if args.index_path is not None: lowerCAmelCase = args.index_path else: lowerCAmelCase = BartForConditionalGeneration lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k lowerCAmelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(_SCREAMING_SNAKE_CASE ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): lowerCAmelCase = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , retriever=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: lowerCAmelCase = [] for line in tqdm(_SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(_SCREAMING_SNAKE_CASE ) == args.eval_batch_size: lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) + """\n""" ) preds_file.flush() lowerCAmelCase = [] if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase = get_args() main(args)
187
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup A__ = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def _UpperCAmelCase ( snake_case = "mumbai" ): """simple docstring""" _lowerCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): _lowerCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _lowerCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(f"Job {i:>2} is {job[0]} at {job[1]}")
82
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _lowerCAmelCase = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_snake_case ) , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_snake_case ) , x.transpose() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , transpose(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , transpose(_snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case ) , np.asarray(transpose(_snake_case ) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(transpose(_snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(_snake_case , axes=(1, 2, 0) ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.reshape(_snake_case , (4, 3) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.reshape(_snake_case , (12, 5) ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , reshape(_snake_case , (4, 3) ).numpy() ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , reshape(_snake_case , (12, 5) ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (4, 3) ) , np.asarray(reshape(_snake_case , (4, 3) ) ) ) ) _lowerCAmelCase = np.random.randn(3 , 4 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(reshape(_snake_case , (12, 5) ) , np.asarray(reshape(_snake_case , (12, 5) ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.squeeze(_snake_case ) ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.squeeze(_snake_case , axis=2 ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , squeeze(_snake_case ).numpy() ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , squeeze(_snake_case , axis=2 ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(1 , 3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case ) , np.asarray(squeeze(_snake_case ) ) ) ) _lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(squeeze(_snake_case , axis=2 ) , np.asarray(squeeze(_snake_case , axis=2 ) ) ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.expand_dims(_snake_case , axis=1 ) ) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = torch.tensor(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = tf.constant(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , expand_dims(_snake_case , axis=1 ).numpy() ) ) @require_flax def snake_case ( self ): """simple docstring""" _lowerCAmelCase = np.random.randn(3 , 4 ) _lowerCAmelCase = jnp.array(_snake_case ) self.assertTrue(np.allclose(expand_dims(_snake_case , axis=1 ) , np.asarray(expand_dims(_snake_case , axis=1 ) ) ) )
82
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = """▁""" _lowercase : List[str] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Optional[int] = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } _lowercase : Any = { """facebook/xglm-564M""": 2048, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : int = VOCAB_FILES_NAMES __magic_name__ : List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : str = ["input_ids", "attention_mask"] def __init__( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : str="<s>" , lowerCAmelCase : Optional[Any]="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : List[Any]="<s>" , lowerCAmelCase : Tuple="<unk>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase = 7 UpperCAmelCase = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowerCAmelCase ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def a__( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def a__( self : int )-> Optional[int]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : Optional[int] )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : int , lowerCAmelCase : int )-> Tuple: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : Optional[int] , lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase = ''''''.join(lowerCAmelCase ).replace(lowerCAmelCase , ''' ''' ).strip() return out_string def a__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
91
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase__ ( A : int , A : int , A : int , A : int , A : int , A : int ): '''simple docstring''' if (ksize % 2) == 0: UpperCAmelCase = ksize + 1 UpperCAmelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A ): for x in range(A ): # distance from center UpperCAmelCase = x - ksize // 2 UpperCAmelCase = y - ksize // 2 # degree to radiant UpperCAmelCase = theta / 1_80 * np.pi UpperCAmelCase = np.cos(_theta ) UpperCAmelCase = np.sin(_theta ) # get kernel x UpperCAmelCase = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _lowercase : Tuple = imread("""../image_data/lena.jpg""") # turn image in gray scale value _lowercase : int = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _lowercase : List[str] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _lowercase : List[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _lowercase : Optional[int] = out / out.max() * 255 _lowercase : Optional[int] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
91
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: A__ = ( 'Wrong input data\'s dimensions... ' f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) try: if dataset.shape[1] != value_array.shape[1]: A__ = ( 'Wrong input data\'s shape... ' f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: A__ = ( 'Input data have different datatype... ' f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) A__ = [] for value in value_array: A__ = euclidean(SCREAMING_SNAKE_CASE__ , dataset[0] ) A__ = dataset[0].tolist() for dataset_value in dataset[1:]: A__ = euclidean(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if dist > temp_dist: A__ = temp_dist A__ = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> float: '''simple docstring''' return np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / (norm(SCREAMING_SNAKE_CASE__ ) * norm(SCREAMING_SNAKE_CASE__ )) if __name__ == "__main__": import doctest doctest.testmod()
7
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'sentencepiece.model'} UpperCAmelCase__ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCAmelCase__ = { 'google/rembert': 256, } class lowerCAmelCase__ ( A_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Any=True , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : int="[CLS]" , _lowerCamelCase : Optional[int]="[SEP]" , _lowerCamelCase : Optional[int]="[UNK]" , _lowerCamelCase : Optional[Any]="[SEP]" , _lowerCamelCase : str="[PAD]" , _lowerCamelCase : List[Any]="[CLS]" , _lowerCamelCase : Any="[MASK]" , **_lowerCamelCase : Optional[int] , ): super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor() self.sp_model.Load(_lowerCamelCase ) @property def lowercase ( self : int ): return len(self.sp_model ) def lowercase ( self : Any ): _snake_case = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : List[str] , _lowerCamelCase : Tuple ): _snake_case = d _snake_case = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowercase ( self : str , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=False ): _snake_case = self.sp_model.EncodeAsPieces(_lowerCamelCase ) return pieces def lowercase ( self : str , _lowerCamelCase : str ): return self.sp_model.PieceToId(_lowerCamelCase ) def lowercase ( self : List[str] , _lowerCamelCase : int ): return self.sp_model.IdToPiece(_lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Any ): _snake_case = self.sp_model.decode_pieces(_lowerCamelCase ) return out_string def lowercase ( self : Optional[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Tuple , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def lowercase ( self : Optional[int] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
288
0
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" UpperCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for row in range(SCREAMING_SNAKE_CASE_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , SCREAMING_SNAKE_CASE_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
352
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE :int = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __magic_name__ : UpperCamelCase_ :str = PegasusConfig UpperCamelCase_ :List[str] = {} UpperCamelCase_ :str = """gelu""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , )-> Tuple: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCamelCase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_pegasus_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) UpperCamelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) UpperCamelCase_ = model.decode(_lowercase , _lowercase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Tuple: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase_ , UpperCamelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase_ = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) UpperCamelCase_ = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Tuple: """simple docstring""" if attention_mask is None: UpperCamelCase_ = np.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCamelCase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Dict = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase_ :Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase_ :List[str] = True UpperCamelCase_ :Any = False UpperCamelCase_ :Union[str, Any] = False UpperCamelCase_ :Tuple = False def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = FlaxPegasusModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase ) UpperCamelCase_ = model_class(_lowercase ) @jax.jit def encode_jitted(_lowercase , _lowercase=None , **_lowercase ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest("JIT Enabled" ): UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCamelCase_ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_lowercase , _lowercase , _lowercase ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("JIT Enabled" ): UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self )-> int: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=_lowercase ) UpperCamelCase_ = np.ones((1, 1) ) UpperCamelCase_ = model(_lowercase ) self.assertIsNotNone(_lowercase ) @slow def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) UpperCamelCase_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) UpperCamelCase_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCamelCase_ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] UpperCamelCase_ = tokenizer(_lowercase , return_tensors="np" , truncation=_lowercase , max_length=512 , padding=_lowercase ) UpperCamelCase_ = model.generate(**_lowercase , num_beams=2 ).sequences UpperCamelCase_ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) assert tgt_text == decoded
60
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCAmelCase__ : Dict = logging.getLogger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = """token-classification""" def __init__( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" if type(lowerCAmelCase_ ) == dict: _A: List[str] = Namespace(**lowerCAmelCase_ ) _A: Any = import_module('''tasks''' ) try: _A: List[Any] = getattr(lowerCAmelCase_ , hparams.task_type ) _A: List[Any] = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) _A: Union[str, Any] = self.token_classification_task.get_labels(hparams.labels ) _A: List[Any] = CrossEntropyLoss().ignore_index super().__init__(lowerCAmelCase_ , len(self.labels ) , self.mode ) def __magic_name__ ( self : Tuple , **lowerCAmelCase_ : List[Any] ): """simple docstring""" return self.model(**lowerCAmelCase_ ) def __magic_name__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": _A: Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids _A: Tuple = self(**lowerCAmelCase_ ) _A: List[str] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.hparams for mode in ["train", "dev", "test"]: _A: int = self._feature_file(lowerCAmelCase_ ) if os.path.exists(lowerCAmelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , lowerCAmelCase_ ) _A: List[Any] = torch.load(lowerCAmelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) _A: Any = self.token_classification_task.read_examples_from_file(args.data_dir , lowerCAmelCase_ ) _A: Optional[Any] = self.token_classification_task.convert_examples_to_features( lowerCAmelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCAmelCase_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] = False ): """simple docstring""" _A: Dict = self._feature_file(lowerCAmelCase_ ) logger.info('''Loading features from cached file %s''' , lowerCAmelCase_ ) _A: List[Any] = torch.load(lowerCAmelCase_ ) _A: Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _A: int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: _A: Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: _A: str = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) _A: Union[str, Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , batch_size=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" """Compute validation""" "" _A: int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": _A: Dict = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids _A: Any = self(**lowerCAmelCase_ ) _A , _A: int = outputs[:2] _A: Any = logits.detach().cpu().numpy() _A: str = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __magic_name__ ( self : str , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Any = torch.stack([x['''val_loss'''] for x in outputs] ).mean() _A: List[str] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) _A: Optional[int] = np.argmax(lowerCAmelCase_ , axis=2 ) _A: str = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) _A: int = dict(enumerate(self.labels ) ) _A: Dict = [[] for _ in range(out_label_ids.shape[0] )] _A: int = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) _A: int = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(lowerCAmelCase_ , lowerCAmelCase_ ), '''precision''': precision_score(lowerCAmelCase_ , lowerCAmelCase_ ), '''recall''': recall_score(lowerCAmelCase_ , lowerCAmelCase_ ), '''f1''': fa_score(lowerCAmelCase_ , lowerCAmelCase_ ), } _A: int = dict(results.items() ) _A: Optional[int] = results return ret, preds_list, out_label_list def __magic_name__ ( self : str , lowerCAmelCase_ : List[str] ): """simple docstring""" _A , _A , _A: str = self._eval_end(lowerCAmelCase_ ) _A: List[str] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A , _A , _A: int = self._eval_end(lowerCAmelCase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 _A: Tuple = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __magic_name__ ( lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase_ , lowerCAmelCase_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=lowerCAmelCase_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=lowerCAmelCase_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=lowerCAmelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": UpperCAmelCase__ : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCAmelCase__ : Optional[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase__ : int = parser.parse_args() UpperCAmelCase__ : Tuple = NERTransformer(args) UpperCAmelCase__ : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCAmelCase__ : List[Any] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) UpperCAmelCase__ : Any = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
121
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Any ) -> Dict: """simple docstring""" snake_case = XCLIPTextConfig() # derive patch size from model name snake_case = model_name.find('patch' ) snake_case = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) snake_case = XCLIPVisionConfig(patch_size=_UpperCamelCase , num_frames=_UpperCamelCase ) if "large" in model_name: snake_case = 7_6_8 snake_case = 3_0_7_2 snake_case = 1_2 snake_case = 1_0_2_4 snake_case = 4_0_9_6 snake_case = 1_6 snake_case = 2_4 snake_case = 7_6_8 snake_case = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": snake_case = 3_3_6 snake_case = XCLIPConfig.from_text_vision_configs(_UpperCamelCase , _UpperCamelCase ) if "large" in model_name: snake_case = 7_6_8 return config def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" if name == "token_embedding.weight": snake_case = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": snake_case = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: snake_case = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): snake_case = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: snake_case = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: snake_case = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": snake_case = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": snake_case = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): snake_case = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: snake_case = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: snake_case = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: snake_case = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: snake_case = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: snake_case = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: snake_case = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: snake_case = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": snake_case = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): snake_case = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): snake_case = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case = orig_state_dict.pop(_UpperCamelCase ) if "attn.in_proj" in key: snake_case = key.split('.' ) if key.startswith('visual' ): snake_case = key_split[3] snake_case = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case = val[ :dim, : ] snake_case = val[ dim : dim * 2, : ] snake_case = val[ -dim:, : ] else: snake_case = val[ :dim ] snake_case = val[ dim : dim * 2 ] snake_case = val[ -dim: ] else: if "weight" in key: snake_case = val[ :dim, : ] snake_case = val[ dim : dim * 2, : ] snake_case = val[ -dim:, : ] else: snake_case = val[:dim] snake_case = val[ dim : dim * 2 ] snake_case = val[-dim:] elif key.startswith('mit' ): snake_case = key_split[2] snake_case = config.vision_config.mit_hidden_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[dim : dim * 2, :] snake_case = val[-dim:, :] else: snake_case = val[:dim] snake_case = val[dim : dim * 2] snake_case = val[-dim:] else: snake_case = key_split[2] snake_case = config.text_config.hidden_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[ dim : dim * 2, : ] snake_case = val[-dim:, :] else: snake_case = val[:dim] snake_case = val[ dim : dim * 2 ] snake_case = val[-dim:] else: snake_case = rename_key(_UpperCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case = val.T snake_case = val return orig_state_dict def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" if num_frames == 8: snake_case = 'eating_spaghetti_8_frames.npy' elif num_frames == 1_6: snake_case = 'eating_spaghetti.npy' elif num_frames == 3_2: snake_case = 'eating_spaghetti_32_frames.npy' snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=_UpperCamelCase , repo_type='dataset' , ) snake_case = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Tuple=None , _UpperCamelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" snake_case = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } snake_case = model_to_url[model_name] snake_case = 8 if "16-frames" in model_name: snake_case = 1_6 elif "shot" in model_name: snake_case = 3_2 snake_case = get_xclip_config(_UpperCamelCase , _UpperCamelCase ) snake_case = XCLIPModel(_UpperCamelCase ) model.eval() if "drive" in checkpoint_url: snake_case = 'pytorch_model.bin' gdown.cached_download(_UpperCamelCase , _UpperCamelCase , quiet=_UpperCamelCase ) snake_case = torch.load(_UpperCamelCase , map_location='cpu' )['model'] else: snake_case = torch.hub.load_state_dict_from_url(_UpperCamelCase )['model'] snake_case = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) snake_case = XCLIPModel(_UpperCamelCase ) snake_case ,snake_case = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case = 3_3_6 if model_name == 'xclip-large-patch14-16-frames' else 2_2_4 snake_case = VideoMAEImageProcessor(size=_UpperCamelCase ) snake_case = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) snake_case = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) snake_case = XCLIPProcessor(image_processor=_UpperCamelCase , tokenizer=_UpperCamelCase ) snake_case = prepare_video(_UpperCamelCase ) snake_case = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=_UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): snake_case = model(**_UpperCamelCase ) # Verify outputs snake_case = outputs.logits_per_video snake_case = logits_per_video.softmax(dim=1 ) print('Probs:' , _UpperCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": snake_case = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": snake_case = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(_UpperCamelCase , organization='nielsr' ) processor.push_to_hub(_UpperCamelCase , organization='nielsr' ) slow_tokenizer.push_to_hub(_UpperCamelCase , organization='nielsr' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
150
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __lowerCAmelCase (__lowerCAmelCase ): if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
362
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
0
lowercase__ : Optional[Any] = 0 # The first color of the flag. lowercase__ : List[Any] = 1 # The second color of the flag. lowercase__ : Dict = 2 # The third color of the flag. lowercase__ : Optional[Any] = (red, white, blue) def lowerCamelCase__ ( _A ): '''simple docstring''' if not sequence: return [] if len(_A ) == 1: return list(_A ) snake_case_ = 0 snake_case_ = len(_A ) - 1 snake_case_ = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case_ , snake_case_ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case_ , snake_case_ = sequence[high], sequence[mid] high -= 1 else: snake_case_ = f"The elements inside the sequence must contains only {colors} values" raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Optional[Any] = input("Enter numbers separated by commas:\n").strip() lowercase__ : List[str] = [int(item.strip()) for item in user_input.split(",")] print(f'''{dutch_national_flag_sort(unsorted)}''')
187
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowercase__ : Dict = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" super().__init__(**__lowercase ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__lowercase ) def snake_case__ ( self : Optional[int] , **__lowercase : Optional[Any] ): """simple docstring""" snake_case_ = {} snake_case_ = {} snake_case_ = {} # preprocess args if "points_per_batch" in kwargs: snake_case_ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: snake_case_ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: snake_case_ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: snake_case_ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: snake_case_ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: snake_case_ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: snake_case_ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: snake_case_ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: snake_case_ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: snake_case_ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: snake_case_ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: snake_case_ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , __lowercase : List[str] , *__lowercase : Optional[Any] , __lowercase : Dict=None , __lowercase : List[str]=None , **__lowercase : Optional[Any] ): """simple docstring""" return super().__call__(__lowercase , *__lowercase , num_workers=__lowercase , batch_size=__lowercase , **__lowercase ) def snake_case__ ( self : str , __lowercase : int , __lowercase : List[str]=64 , __lowercase : int = 0 , __lowercase : float = 5_12 / 15_00 , __lowercase : Optional[int] = 32 , __lowercase : Optional[int] = 1 , ): """simple docstring""" snake_case_ = load_image(__lowercase ) snake_case_ = self.image_processor.size["longest_edge"] snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.image_processor.generate_crop_boxes( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) snake_case_ = self.image_processor(images=__lowercase , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": snake_case_ = self.get_inference_context() with inference_context(): snake_case_ = self._ensure_tensor_on_device(__lowercase , device=self.device ) snake_case_ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) snake_case_ = image_embeddings snake_case_ = grid_points.shape[1] snake_case_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , __lowercase , __lowercase ): snake_case_ = grid_points[:, i : i + points_per_batch, :, :] snake_case_ = input_labels[:, i : i + points_per_batch] snake_case_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case__ ( self : Tuple , __lowercase : Union[str, Any] , __lowercase : Union[str, Any]=0.88 , __lowercase : Union[str, Any]=0.95 , __lowercase : int=0 , __lowercase : int=1 , ): """simple docstring""" snake_case_ = model_inputs.pop("input_boxes" ) snake_case_ = model_inputs.pop("is_last" ) snake_case_ = model_inputs.pop("original_sizes" ).tolist() snake_case_ = model_inputs.pop("reshaped_input_sizes" ).tolist() snake_case_ = self.model(**__lowercase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks snake_case_ = model_outputs["pred_masks"] snake_case_ = self.image_processor.post_process_masks( __lowercase , __lowercase , __lowercase , __lowercase , binarize=__lowercase ) snake_case_ = model_outputs["iou_scores"] snake_case_ , snake_case_ , snake_case_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __lowercase , __lowercase , __lowercase , __lowercase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case__ ( self : str , __lowercase : Any , __lowercase : Optional[int]=False , __lowercase : int=False , __lowercase : List[str]=0.7 , ): """simple docstring""" snake_case_ = [] snake_case_ = [] snake_case_ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) snake_case_ = torch.cat(__lowercase ) snake_case_ = torch.cat(__lowercase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.image_processor.post_process_for_mask_generation( __lowercase , __lowercase , __lowercase , __lowercase ) snake_case_ = defaultdict(__lowercase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__lowercase ) snake_case_ = {} if output_rle_mask: snake_case_ = rle_mask if output_bboxes_mask: snake_case_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
187
1
import string def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = '' for i in sequence: lowercase__ = ord(_SCREAMING_SNAKE_CASE ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = string.ascii_letters lowercase__ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_SCREAMING_SNAKE_CASE )] if c in letters else c for c in sequence ) def __UpperCamelCase () -> None: from timeit import timeit print('Running performance benchmarks...' ) lowercase__ = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=_SCREAMING_SNAKE_CASE )} seconds""" ) print(F"""> atbash(): {timeit("atbash(printable)" , setup=_SCREAMING_SNAKE_CASE )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
269
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __UpperCamelCase () -> str: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase__ = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __UpperCamelCase () -> Any: assert _test_patching.open is open lowercase__ = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _SCREAMING_SNAKE_CASE ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __UpperCamelCase () -> List[str]: # pandas.read_csv is not present in _test_patching lowercase__ = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _SCREAMING_SNAKE_CASE ): pass def __UpperCamelCase () -> List[str]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowercase__ = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _SCREAMING_SNAKE_CASE ) is None with patch_submodule(_test_patching , 'len' , _SCREAMING_SNAKE_CASE ): assert _test_patching.len is mock assert _test_patching.len is len def __UpperCamelCase () -> List[str]: lowercase__ = '__test_patch_submodule_start_and_stop_mock__' lowercase__ = patch_submodule(_test_patching , 'open' , _SCREAMING_SNAKE_CASE ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __UpperCamelCase () -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase__ = '__test_patch_submodule_successive_join__' lowercase__ = '__test_patch_submodule_successive_dirname__' lowercase__ = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.rename' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.dirname' , _SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.dirname' , _SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __UpperCamelCase () -> Optional[Any]: lowercase__ = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _SCREAMING_SNAKE_CASE ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _SCREAMING_SNAKE_CASE ): pass
269
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
91
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Any = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "openai-gpt" __UpperCamelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , lowercase_ : List[str]=40478 , lowercase_ : List[str]=512 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=1e-5 , lowercase_ : int=0.02 , lowercase_ : Optional[int]="cls_index" , lowercase_ : Any=True , lowercase_ : List[Any]=None , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=0.1 , **lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = n_positions SCREAMING_SNAKE_CASE_ : Optional[int] = n_embd SCREAMING_SNAKE_CASE_ : Dict = n_layer SCREAMING_SNAKE_CASE_ : Any = n_head SCREAMING_SNAKE_CASE_ : Union[str, Any] = afn SCREAMING_SNAKE_CASE_ : int = resid_pdrop SCREAMING_SNAKE_CASE_ : List[str] = embd_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = attn_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = summary_type SCREAMING_SNAKE_CASE_ : Tuple = summary_use_proj SCREAMING_SNAKE_CASE_ : Union[str, Any] = summary_activation SCREAMING_SNAKE_CASE_ : Any = summary_first_dropout SCREAMING_SNAKE_CASE_ : List[str] = summary_proj_to_labels super().__init__(**lowercase_)
91
1
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return [ord(SCREAMING_SNAKE_CASE_ ) - 9_6 for elem in plain] def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" return "".join(chr(elem + 9_6 ) for elem in encoded ) def a ( ): """simple docstring""" UpperCamelCase : Dict = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE_ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main()
315
import glob import os import random from string import ascii_lowercase, digits import cva __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def a ( ): """simple docstring""" UpperCamelCase , UpperCamelCase : List[Any] = get_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print('''Processing...''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = update_image_and_anno(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for index, image in enumerate(SCREAMING_SNAKE_CASE_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase : Optional[int] = random_chars(3_2 ) UpperCamelCase : List[Any] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] UpperCamelCase : int = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , SCREAMING_SNAKE_CASE_ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F"""Success {index+1}/{len(SCREAMING_SNAKE_CASE_ )} with {file_name}""" ) UpperCamelCase : Any = [] for anno in new_annos[index]: UpperCamelCase : Tuple = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(SCREAMING_SNAKE_CASE_ ) with open(F"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '''*.txt''' ) ): UpperCamelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE_ ) as in_file: UpperCamelCase : List[str] = in_file.readlines() UpperCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{label_name}.jpg""" ) UpperCamelCase : Union[str, Any] = [] for obj_list in obj_lists: UpperCamelCase : str = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) return img_paths, labels def a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 1 ): """simple docstring""" UpperCamelCase : List[Any] = [] UpperCamelCase : str = [] UpperCamelCase : int = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Tuple = [] UpperCamelCase : Optional[int] = img_list[idx] path_list.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = anno_list[idx] UpperCamelCase : Optional[Any] = cva.imread(SCREAMING_SNAKE_CASE_ ) if flip_type == 1: UpperCamelCase : Optional[Any] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCamelCase : List[str] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(SCREAMING_SNAKE_CASE_ ) new_imgs_list.append(SCREAMING_SNAKE_CASE_ ) return new_imgs_list, new_annos_lists, path_list def a ( SCREAMING_SNAKE_CASE_ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" UpperCamelCase : Any = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main() print("DONE ✅")
315
1
'''simple docstring''' def __magic_name__( lowerCamelCase): if not isinstance(_snake_case, _snake_case): raise TypeError('''only integers accepted as input''') else: __lowerCAmelCase = str(abs(_snake_case)) __lowerCAmelCase = [list(_snake_case) for char in range(len(_snake_case))] for index in range(len(_snake_case)): num_transpositions[index].pop(_snake_case) return max( int(''''''.join(list(_snake_case))) for transposition in num_transpositions) if __name__ == "__main__": __import__("""doctest""").testmod()
174
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case__ : Optional[Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. snake_case__ : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case__ : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` snake_case__ : Optional[int] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') snake_case__ : int = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Dict = None # source code of `config_class` lowerCAmelCase : Union[str, Any] = inspect.getsource(_snake_case ) lowerCAmelCase : List[Any] = _re_checkpoint.findall(_snake_case ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowerCAmelCase : List[str] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase : Optional[int] = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCAmelCase : List[str] = ckpt_name break return checkpoint def _snake_case ( ): lowerCAmelCase : List[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCAmelCase : int = get_checkpoint_from_config_class(_snake_case ) lowerCAmelCase : int = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(sorted(_snake_case ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
60
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Dict = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
from scipy.stats import pearsonr import datasets snake_case : Tuple = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" snake_case : Dict = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" snake_case : int = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=False ): if return_pvalue: __magic_name__ : Union[str, Any] = pearsonr(_a , _a ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_a , _a )[0] )}
41
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> str: lowerCamelCase : int = size if size is not None else {"height": 18, "width": 18} lowerCamelCase : int = parent lowerCamelCase : str = batch_size lowerCamelCase : List[Any] = num_channels lowerCamelCase : Any = image_size lowerCamelCase : Optional[int] = min_resolution lowerCamelCase : Dict = max_resolution lowerCamelCase : Tuple = do_resize lowerCamelCase : Tuple = size lowerCamelCase : Tuple = do_normalize lowerCamelCase : Any = image_mean lowerCamelCase : int = image_std def _lowercase ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Dict = ViTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = EfficientFormerImageProcessorTester(self ) @property def _lowercase ( self ) -> Tuple: return self.image_proc_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "size" ) ) def _lowercase ( self ) -> List[Any]: pass def _lowercase ( self ) -> List[str]: # Initialize image_processor lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input lowerCamelCase : Dict = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Union[str, Any] = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _lowercase ( self ) -> str: # Initialize image_processor lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input lowerCamelCase : List[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Tuple = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _lowercase ( self ) -> int: # Initialize image_processor lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input lowerCamelCase : Union[str, Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Tuple = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
48
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowerCAmelCase :Tuple = logging.get_logger(__name__) _lowerCAmelCase :List[str] = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class _UpperCAmelCase ( lowerCAmelCase_ ): '''simple docstring''' a__ ="""bloom""" a__ =["""past_key_values"""] a__ ={ """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self , A=2_5_0_8_8_0 , A=6_4 , A=2 , A=8 , A=1E-5 , A=0.02 , A=True , A=1 , A=2 , A=False , A=0.0 , A=0.0 , A=1 , A=False , **A , ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = hidden_size if n_embed is None else n_embed _UpperCAmelCase : Dict = n_layer _UpperCAmelCase : int = n_head _UpperCAmelCase : str = layer_norm_epsilon _UpperCAmelCase : str = initializer_range _UpperCAmelCase : List[str] = use_cache _UpperCAmelCase : List[Any] = pretraining_tp _UpperCAmelCase : Union[str, Any] = apply_residual_connection_post_layernorm _UpperCAmelCase : List[Any] = hidden_dropout _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : int = bos_token_id _UpperCAmelCase : Dict = eos_token_id _UpperCAmelCase : str = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): '''simple docstring''' a__ =version.parse('''1.12''' ) def __init__( self , A , A = "default" , A = None , A = False , ) -> str: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? _UpperCAmelCase : int = 0 @property def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowerCAmelCase ( self ) -> int: return self._config.n_layer @property def __lowerCAmelCase ( self ) -> Optional[int]: return self._config.n_head @property def __lowerCAmelCase ( self ) -> int: return 1E-3 def __lowerCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Dict: _UpperCAmelCase : List[str] = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase : Tuple = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _UpperCAmelCase , _UpperCAmelCase : Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _UpperCAmelCase : Tuple = seqlen + 2 _UpperCAmelCase : Optional[Any] = self._config.hidden_size // self.num_attention_heads _UpperCAmelCase : Tuple = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCAmelCase : int = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCAmelCase : List[Any] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] _UpperCAmelCase : Dict = common_inputs['''attention_mask'''] if self.use_past: _UpperCAmelCase : List[str] = ordered_inputs['''attention_mask'''].dtype _UpperCAmelCase : List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def __lowerCAmelCase ( self ) -> int: return 1_3
352
"""simple docstring""" from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''WhisperFeatureExtractor''' a__ ='''WhisperTokenizer''' def __init__( self , A , A ) -> Any: super().__init__(A , A ) _UpperCAmelCase : int = self.feature_extractor _UpperCAmelCase : List[str] = False def __lowerCAmelCase ( self , A=None , A=None , A=True ) -> Optional[int]: return self.tokenizer.get_decoder_prompt_ids(task=A , language=A , no_timestamps=A ) def __call__( self , *A , **A ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A , **A ) _UpperCAmelCase : str = kwargs.pop('''audio''' , A ) _UpperCAmelCase : Dict = kwargs.pop('''sampling_rate''' , A ) _UpperCAmelCase : Dict = kwargs.pop('''text''' , A ) if len(A ) > 0: _UpperCAmelCase : List[Any] = args[0] _UpperCAmelCase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _UpperCAmelCase : Optional[Any] = self.feature_extractor(A , *A , sampling_rate=A , **A ) if text is not None: _UpperCAmelCase : Any = self.tokenizer(A , **A ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : int = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self , *A , **A ) -> Optional[Any]: return self.tokenizer.batch_decode(*A , **A ) def __lowerCAmelCase ( self , *A , **A ) -> Any: return self.tokenizer.decode(*A , **A ) def __lowerCAmelCase ( self , A , A="np" ) -> Any: return self.tokenizer.get_prompt_ids(A , return_tensors=A )
68
0
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __snake_case : Tuple = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def _lowercase ( __snake_case ,__snake_case ) -> Tuple: return torch.atana(__snake_case ,__snake_case ) / math.pi * 2 def _lowercase ( __snake_case ) -> Any: __lowerCAmelCase : Any = torch.sin(t * math.pi / 2 ) ** 2 __lowerCAmelCase : Optional[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__snake_case ,__snake_case ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any]) -> List[Any]: """simple docstring""" super().__init__() __lowerCAmelCase : int = DiffusionAttnUnetaD(_SCREAMING_SNAKE_CASE , n_attn_layers=4) __lowerCAmelCase : Union[str, Any] = deepcopy(self.diffusion) __lowerCAmelCase : Any = torch.quasirandom.SobolEngine(1 , scramble=_SCREAMING_SNAKE_CASE) def _lowercase ( __snake_case ) -> Union[str, Any]: __lowerCAmelCase : Union[str, Any] = MODELS_MAP[model_name]["url"] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" __snake_case : Tuple = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } __snake_case : int = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } __snake_case : Dict = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } __snake_case : List[Any] = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } __snake_case : Any = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } __snake_case : Union[str, Any] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def _lowercase ( __snake_case ) -> Tuple: if name.startswith("skip" ): return name.replace("skip" ,RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] ,RES_CONV_MAP[name[:6]] ) def _lowercase ( __snake_case ) -> int: for key, value in ATTN_MAP.items(): if name.startswith(__snake_case ) and not isinstance(__snake_case ,__snake_case ): return name.replace(__snake_case ,__snake_case ) elif name.startswith(__snake_case ): return [name.replace(__snake_case ,__snake_case ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def _lowercase ( __snake_case ,__snake_case=13 ) -> str: __lowerCAmelCase : Optional[int] = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" ,"time_proj" ) __lowerCAmelCase : List[Any] = 0 if string.startswith("net.3." ): depth += 1 __lowerCAmelCase : List[Any] = string[6:] elif string.startswith("net." ): __lowerCAmelCase : Optional[Any] = string[4:] while string.startswith("main.7." ): depth += 1 __lowerCAmelCase : Dict = string[7:] if string.startswith("main." ): __lowerCAmelCase : str = string[5:] # mid block if string[:2].isdigit(): __lowerCAmelCase : int = string[:2] __lowerCAmelCase : Dict = string[2:] else: __lowerCAmelCase : Tuple = string[0] __lowerCAmelCase : Any = string[1:] if depth == max_depth: __lowerCAmelCase : Dict = MID_NUM_TO_LAYER[layer_num] __lowerCAmelCase : Any = "mid_block" elif depth > 0 and int(__snake_case ) < 7: __lowerCAmelCase : int = DOWN_NUM_TO_LAYER[layer_num] __lowerCAmelCase : Tuple = F"""down_blocks.{depth}""" elif depth > 0 and int(__snake_case ) > 7: __lowerCAmelCase : str = UP_NUM_TO_LAYER[layer_num] __lowerCAmelCase : Union[str, Any] = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: __lowerCAmelCase : Tuple = DEPTH_0_TO_LAYER[layer_num] __lowerCAmelCase : Any = F"""up_blocks.{max_depth - 1}""" if int(__snake_case ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) __lowerCAmelCase : Tuple = string_left[1:] if "resnets" in new_layer: __lowerCAmelCase : int = convert_resconv_naming(__snake_case ) elif "attentions" in new_layer: __lowerCAmelCase : Any = convert_attn_naming(__snake_case ) __lowerCAmelCase : List[str] = new_string_left if not isinstance(__snake_case ,__snake_case ): __lowerCAmelCase : List[str] = prefix + "." + new_layer + "." + string_left else: __lowerCAmelCase : Union[str, Any] = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def _lowercase ( __snake_case ) -> List[str]: __lowerCAmelCase : Optional[Any] = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue __lowerCAmelCase : str = rename(__snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(__snake_case ,__snake_case ): __lowerCAmelCase : List[str] = transform_conv_attns(__snake_case ,__snake_case ,__snake_case ) else: __lowerCAmelCase : List[Any] = v return new_state_dict def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: if len(__snake_case ) == 1: if len(v.shape ) == 3: # weight __lowerCAmelCase : List[str] = v[:, :, 0] else: # bias __lowerCAmelCase : str = v else: # qkv matrices __lowerCAmelCase : Optional[int] = v.shape[0] __lowerCAmelCase : Any = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __lowerCAmelCase : Tuple = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __lowerCAmelCase : int = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _lowercase ( __snake_case ) -> Tuple: __lowerCAmelCase : int = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __lowerCAmelCase : Dict = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" __lowerCAmelCase : int = download(__snake_case ) __lowerCAmelCase : Dict = MODELS_MAP[model_name]["sample_rate"] __lowerCAmelCase : Optional[Any] = MODELS_MAP[model_name]["sample_size"] __lowerCAmelCase : int = Object() __lowerCAmelCase : str = sample_size __lowerCAmelCase : str = sample_rate __lowerCAmelCase : str = 0 __lowerCAmelCase : Dict = UNetaDModel(sample_size=__snake_case ,sample_rate=__snake_case ) __lowerCAmelCase : List[Any] = diffusers_model.state_dict() __lowerCAmelCase : Union[str, Any] = DiffusionUncond(__snake_case ) orig_model.load_state_dict(torch.load(args.model_path ,map_location=__snake_case )["state_dict"] ) __lowerCAmelCase : Any = orig_model.diffusion_ema.eval() __lowerCAmelCase : Any = orig_model.state_dict() __lowerCAmelCase : int = rename_orig_weights(__snake_case ) __lowerCAmelCase : List[Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __lowerCAmelCase : Union[str, Any] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__snake_case ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith("kernel" ) for k in list(__snake_case ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": __lowerCAmelCase : int = value.squeeze() __lowerCAmelCase : Dict = value diffusers_model.load_state_dict(__snake_case ) __lowerCAmelCase : List[str] = 100 __lowerCAmelCase : Dict = 33 __lowerCAmelCase : Tuple = IPNDMScheduler(num_train_timesteps=__snake_case ) __lowerCAmelCase : Union[str, Any] = torch.manual_seed(__snake_case ) __lowerCAmelCase : int = torch.randn([1, 2, config.sample_size] ,generator=__snake_case ).to(__snake_case ) __lowerCAmelCase : List[str] = torch.linspace(1 ,0 ,steps + 1 ,device=__snake_case )[:-1] __lowerCAmelCase : Optional[int] = get_crash_schedule(__snake_case ) __lowerCAmelCase : List[str] = DanceDiffusionPipeline(unet=__snake_case ,scheduler=__snake_case ) __lowerCAmelCase : Any = torch.manual_seed(33 ) __lowerCAmelCase : Any = pipe(num_inference_steps=__snake_case ,generator=__snake_case ).audios __lowerCAmelCase : str = sampling.iplms_sample(__snake_case ,__snake_case ,__snake_case ,{} ) __lowerCAmelCase : int = generated.clamp(-1 ,1 ) __lowerCAmelCase : Any = (generated - audio).abs().sum() __lowerCAmelCase : List[str] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" ,__snake_case ) print("Diff max" ,__snake_case ) assert diff_max < 1e-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') __snake_case : List[str] = parser.parse_args() main(args)
269
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small") __lowerCAmelCase : Tuple = tokenizer("Hello there" , return_tensors="np").input_ids __lowerCAmelCase : Dict = tokenizer("Hi I am" , return_tensors="np").input_ids __lowerCAmelCase : str = shift_tokens_right(_SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id) __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE).logits __lowerCAmelCase : int = optax.softmax_cross_entropy(_SCREAMING_SNAKE_CASE , onehot(_SCREAMING_SNAKE_CASE , logits.shape[-1])).mean() __lowerCAmelCase : List[str] = -(labels.shape[-1] * loss.item()) __lowerCAmelCase : str = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
269
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
319
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowercase_ : '''simple docstring''' UpperCAmelCase : int = MBartConfig UpperCAmelCase : Any = {} UpperCAmelCase : Tuple = '''gelu''' def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : int=99 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Union[str, Any]=37 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : List[str]=20 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Any=0 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id def lowerCAmelCase_ ( self : Tuple ): _A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A = tf.concat([input_ids, eos_tensor] , axis=1 ) _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ): _A = TFMBartModel(config=_UpperCAmelCase ).get_decoder() _A = inputs_dict['input_ids'] _A = input_ids[:1, :] _A = inputs_dict['attention_mask'][:1, :] _A = inputs_dict['head_mask'] _A = 1 # first forward pass _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) _A , _A = outputs.to_tuple() _A = past_key_values[1] def _snake_case ( _snake_case : str , _snake_case : List[str] , _snake_case : str , _snake_case : Dict=None , _snake_case : Optional[int]=None , _snake_case : List[str]=None , _snake_case : str=None , _snake_case : Optional[int]=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: _A = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCAmelCase : Union[str, Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Union[str, Any] = False def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCAmelCase_ ( self : str ): _A = TFMBartModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] UpperCAmelCase : str = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] UpperCAmelCase : Dict = '''facebook/mbart-large-en-ro''' @cached_property def lowerCAmelCase_ ( self : List[str] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase_ ( self : List[str] ): _A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : Any ): _A = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : List[Any] ): _A = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) _A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def lowerCAmelCase_ ( self : Any ): self._assert_generated_batch_equal_expected()
315
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=5, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=4, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_attention_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : int = num_choices def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : Any = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : str = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = True A : List[Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = FlaxRoFormerModelTester(self ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name.from_pretrained('junnyu/roformer_chinese_small', from_pt=A ) SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class _a ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) SCREAMING_SNAKE_CASE : str = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(A )[0] SCREAMING_SNAKE_CASE : Dict = 50_000 SCREAMING_SNAKE_CASE : Any = (1, 6, vocab_size) self.assertEqual(output.shape, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3], A, atol=1E-4 ) )
246
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a : '''simple docstring''' def __init__( self, A, A=2, A=3, A=4, A=2, A=7, A=True, A=True, A=True, A=True, A=99, A=36, A=3, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=6, A=6, A=3, A=4, A=None, A=1_000, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : List[Any] = text_seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : str = coordinate_size SCREAMING_SNAKE_CASE : Tuple = shape_size SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : int = num_choices SCREAMING_SNAKE_CASE : str = scope SCREAMING_SNAKE_CASE : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE : Union[str, Any] = text_seq_length SCREAMING_SNAKE_CASE : List[str] = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE : int = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE : str = bbox[i, j, 3] SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 1] SCREAMING_SNAKE_CASE : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 2] SCREAMING_SNAKE_CASE : Any = bbox[i, j, 0] SCREAMING_SNAKE_CASE : Tuple = t SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) SCREAMING_SNAKE_CASE : int = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image SCREAMING_SNAKE_CASE : Optional[int] = model(A, pixel_values=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A ) SCREAMING_SNAKE_CASE : List[str] = model(A, bbox=A, pixel_values=A, token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[int] = model(A, bbox=A, pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE : List[Any] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[str] = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Dict = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, labels=A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : str = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, labels=A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( A, bbox=A, pixel_values=A, attention_mask=A, token_type_ids=A, start_positions=A, end_positions=A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs SCREAMING_SNAKE_CASE : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Optional[int] = False A : List[str] = False A : Union[str, Any] = False A : Optional[Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A : List[Any] = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self, A, A, A, A, A ): '''simple docstring''' return True def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self, config_class=A, hidden_size=37 ) def UpperCamelCase_ ( self, A, A, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(A ) if model_class in get_values(A ): SCREAMING_SNAKE_CASE : Optional[int] = { k: v.unsqueeze(1 ).expand(-1, self.model_tester.num_choices, -1 ).contiguous() if isinstance(A, torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=A ) elif model_class in get_values(A ): SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A ) SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A ) elif model_class in [ *get_values(A ), ]: SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A ) elif model_class in [ *get_values(A ), ]: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=A, ) return inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : List[str] = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).pixel_values.to(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE : Union[str, Any] = model( input_ids=input_ids.to(A ), bbox=bbox.to(A ), pixel_values=pixel_values.to(A ), ) # verify the logits SCREAMING_SNAKE_CASE : str = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], A, atol=1E-4 ) )
246
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowercase_ = False class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self , A=32 ) -> Optional[Any]: """simple docstring""" set_seed(0 ) _a = UNetaDModel(sample_size=UpperCamelCase__ , in_channels=3 , out_channels=3 ) _a = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def a__ (self ) -> Dict: """simple docstring""" _a = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _a = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase__ , ) _a = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _a = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCamelCase__ ) for _ in range(4 )] _a = [torch.randn((4, 3, 32, 32) ).to(UpperCamelCase__ ) for _ in range(4 )] _a = [torch.randint(0 , 1_000 , (4,) ).long().to(UpperCamelCase__ ) for _ in range(4 )] # train with a DDPM scheduler _a = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() _a = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _a = model(UpperCamelCase__ , timesteps[i] ).sample _a = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _a = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() _a = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _a = model(UpperCamelCase__ , timesteps[i] ).sample _a = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) )
211
'''simple docstring''' class _lowercase : def __init__( self: Optional[Any] ): lowerCamelCase__ : dict[str, TrieNode] = {} # Mapping from char to TrieNode lowerCamelCase__ : List[str] = False def lowerCamelCase_ ( self: str , UpperCamelCase__: list[str] ): for word in words: self.insert(UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str ): lowerCamelCase__ : List[Any] = self for char in word: if char not in curr.nodes: lowerCamelCase__ : Tuple = TrieNode() lowerCamelCase__ : List[Any] = curr.nodes[char] lowerCamelCase__ : Any = True def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str ): lowerCamelCase__ : Union[str, Any] = self for char in word: if char not in curr.nodes: return False lowerCamelCase__ : Any = curr.nodes[char] return curr.is_leaf def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): def _delete(UpperCamelCase__: TrieNode , UpperCamelCase__: str , UpperCamelCase__: int ) -> bool: if index == len(UpperCamelCase__ ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase__ : str = False return len(curr.nodes ) == 0 lowerCamelCase__ : List[str] = word[index] lowerCamelCase__ : Dict = curr.nodes.get(UpperCamelCase__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase__ : List[Any] = _delete(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase__ , 0 ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> None: if node.is_leaf: print(UpperCamelCase , end=""" """ ) for key, value in node.nodes.items(): print_words(UpperCamelCase , word + key ) def SCREAMING_SNAKE_CASE_ () -> bool: lowerCamelCase__ : str = """banana bananas bandana band apple all beast""".split() lowerCamelCase__ : Union[str, Any] = TrieNode() root.insert_many(UpperCamelCase ) # print_words(root, "") assert all(root.find(UpperCamelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> None: print(str(UpperCamelCase ) , """works!""" if passes else """doesn't work :(""" ) def SCREAMING_SNAKE_CASE_ () -> None: assert test_trie() def SCREAMING_SNAKE_CASE_ () -> None: print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
41
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : str = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def A_( A : Optional[Any] , A : Union[str, Any] , A : List[str] , A : List[Any]): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys())}.''') if tokenizer_name is None: UpperCamelCase = TOKENIZER_CLASSES else: UpperCamelCase = {tokenizer_name: getattr(A , tokenizer_name + 'Fast')} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''') for tokenizer_name in tokenizer_names: UpperCamelCase = TOKENIZER_CLASSES[tokenizer_name] UpperCamelCase = True if checkpoint_name is None: UpperCamelCase = list(tokenizer_class.max_model_input_sizes.keys()) else: UpperCamelCase = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''') for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''') # Load tokenizer UpperCamelCase = tokenizer_class.from_pretrained(A , force_download=A) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''') # For organization names we create sub-directories if "/" in checkpoint: UpperCamelCase , UpperCamelCase = checkpoint.split('/') UpperCamelCase = os.path.join(A , A) elif add_prefix: UpperCamelCase = checkpoint UpperCamelCase = dump_path else: UpperCamelCase = None UpperCamelCase = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''') if checkpoint in list(tokenizer.pretrained_vocab_files_map.values())[0]: UpperCamelCase = list(tokenizer.pretrained_vocab_files_map.values())[0][checkpoint] UpperCamelCase = file_path.split(A)[-1][0] if next_char == "/": UpperCamelCase = os.path.join(A , A) UpperCamelCase = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''') UpperCamelCase = tokenizer.save_pretrained( A , legacy_format=A , filename_prefix=A) logger.info(f'''=> File names {file_names}''') for file_name in file_names: if not file_name.endswith('tokenizer.json'): os.remove(A) logger.info(f'''=> removing {file_name}''') if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) lowerCAmelCase : Any = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
353
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : str = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase : Union[str, Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCAmelCase : List[str] = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } lowerCAmelCase : Dict = '▁' class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_ = None , **A_ , )-> None: '''simple docstring''' UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase = len(self.sp_model ) - 1 UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]: '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self , A_ )-> List[str]: '''simple docstring''' return self.sp_model.encode(A_ , out_type=A_ ) def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(A_ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A_ ) def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = '' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(A_ ) UpperCamelCase = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __getstate__( self )-> int: '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
251
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _a : List[Any] = logging.get_logger(__name__) # General docstring _a : Optional[int] = 'RegNetConfig' # Base docstring _a : Union[str, Any] = 'facebook/regnet-y-040' _a : Tuple = [1, 1_088, 7, 7] # Image classification docstring _a : Tuple = 'facebook/regnet-y-040' _a : Union[str, Any] = 'tabby, tabby cat' _a : Union[str, Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ = 3 , a__ = 1 , a__ = 1 , a__ = "relu" , ): super().__init__() _lowerCAmelCase : str = nn.Convad( a__ , a__ , kernel_size=a__ , stride=a__ , padding=kernel_size // 2 , groups=a__ , bias=a__ , ) _lowerCAmelCase : str = nn.BatchNormad(a__ ) _lowerCAmelCase : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def __A ( self , a__ ): _lowerCAmelCase : List[str] = self.convolution(a__ ) _lowerCAmelCase : Union[str, Any] = self.normalization(a__ ) _lowerCAmelCase : List[Any] = self.activation(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : Optional[int] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _lowerCAmelCase : List[Any] = config.num_channels def __A ( self , a__ ): _lowerCAmelCase : Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) _lowerCAmelCase : List[Any] = self.embedder(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ = 2 ): super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Convad(a__ , a__ , kernel_size=1 , stride=a__ , bias=a__ ) _lowerCAmelCase : Optional[int] = nn.BatchNormad(a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = self.convolution(a__ ) _lowerCAmelCase : Tuple = self.normalization(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ ): super().__init__() _lowerCAmelCase : Dict = nn.AdaptiveAvgPoolad((1, 1) ) _lowerCAmelCase : Tuple = nn.Sequential( nn.Convad(a__ , a__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(a__ , a__ , kernel_size=1 ) , nn.Sigmoid() , ) def __A ( self , a__ ): # b c h w -> b c 1 1 _lowerCAmelCase : Tuple = self.pooler(a__ ) _lowerCAmelCase : int = self.attention(a__ ) _lowerCAmelCase : Optional[Any] = hidden_state * attention return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ = 1 ): super().__init__() _lowerCAmelCase : Optional[Any] = in_channels != out_channels or stride != 1 _lowerCAmelCase : Optional[Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : Tuple = ( RegNetShortCut(a__ , a__ , stride=a__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase : str = nn.Sequential( RegNetConvLayer(a__ , a__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(a__ , a__ , stride=a__ , groups=a__ , activation=config.hidden_act ) , RegNetConvLayer(a__ , a__ , kernel_size=1 , activation=a__ ) , ) _lowerCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def __A ( self , a__ ): _lowerCAmelCase : Any = hidden_state _lowerCAmelCase : Any = self.layer(a__ ) _lowerCAmelCase : str = self.shortcut(a__ ) hidden_state += residual _lowerCAmelCase : int = self.activation(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ = 1 ): super().__init__() _lowerCAmelCase : Dict = in_channels != out_channels or stride != 1 _lowerCAmelCase : List[Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : List[Any] = ( RegNetShortCut(a__ , a__ , stride=a__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase : Tuple = nn.Sequential( RegNetConvLayer(a__ , a__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(a__ , a__ , stride=a__ , groups=a__ , activation=config.hidden_act ) , RegNetSELayer(a__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(a__ , a__ , kernel_size=1 , activation=a__ ) , ) _lowerCAmelCase : Dict = ACTaFN[config.hidden_act] def __A ( self , a__ ): _lowerCAmelCase : List[str] = hidden_state _lowerCAmelCase : Optional[int] = self.layer(a__ ) _lowerCAmelCase : List[Any] = self.shortcut(a__ ) hidden_state += residual _lowerCAmelCase : List[str] = self.activation(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ = 2 , a__ = 2 , ): super().__init__() _lowerCAmelCase : List[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _lowerCAmelCase : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( a__ , a__ , a__ , stride=a__ , ) , *[layer(a__ , a__ , a__ ) for _ in range(depth - 1 )] , ) def __A ( self , a__ ): _lowerCAmelCase : List[Any] = self.layers(a__ ) return hidden_state class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : Optional[int] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( a__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _lowerCAmelCase : List[str] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(a__ , config.depths[1:] ): self.stages.append(RegNetStage(a__ , a__ , a__ , depth=a__ ) ) def __A ( self , a__ , a__ = False , a__ = True ): _lowerCAmelCase : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase : Union[str, Any] = hidden_states + (hidden_state,) _lowerCAmelCase : Union[str, Any] = stage_module(a__ ) if output_hidden_states: _lowerCAmelCase : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=a__ , hidden_states=a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = RegNetConfig _UpperCamelCase : int = "regnet" _UpperCamelCase : List[str] = "pixel_values" _UpperCamelCase : Union[str, Any] = True def __A ( self , a__ ): if isinstance(a__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(a__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __A ( self , a__ , a__=False ): if isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = value _a : List[Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _a : List[Any] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , SCREAMING_SNAKE_CASE_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : List[Any] = config _lowerCAmelCase : Any = RegNetEmbeddings(a__ ) _lowerCAmelCase : List[str] = RegNetEncoder(a__ ) _lowerCAmelCase : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self , a__ , a__ = None , a__ = None ): _lowerCAmelCase : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : List[Any] = self.embedder(a__ ) _lowerCAmelCase : Optional[Any] = self.encoder( a__ , output_hidden_states=a__ , return_dict=a__ ) _lowerCAmelCase : str = encoder_outputs[0] _lowerCAmelCase : Optional[Any] = self.pooler(a__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a__ , pooler_output=a__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : Any = config.num_labels _lowerCAmelCase : Optional[int] = RegNetModel(a__ ) # classification head _lowerCAmelCase : Optional[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self , a__ = None , a__ = None , a__ = None , a__ = None , ): _lowerCAmelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Union[str, Any] = self.regnet(a__ , output_hidden_states=a__ , return_dict=a__ ) _lowerCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : str = self.classifier(a__ ) _lowerCAmelCase : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase : str = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase : Optional[int] = """single_label_classification""" else: _lowerCAmelCase : Optional[int] = """multi_label_classification""" if self.config.problem_type == "regression": _lowerCAmelCase : Optional[Any] = MSELoss() if self.num_labels == 1: _lowerCAmelCase : int = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase : Dict = loss_fct(a__ , a__ ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase : Any = CrossEntropyLoss() _lowerCAmelCase : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase : Dict = BCEWithLogitsLoss() _lowerCAmelCase : Tuple = loss_fct(a__ , a__ ) if not return_dict: _lowerCAmelCase : Optional[int] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a__ , logits=a__ , hidden_states=outputs.hidden_states )
44
def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> Any: '''simple docstring''' A__ = 1 A__ = 2 while i * i <= n: A__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
68
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : bool = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis A__ = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] A__ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase_ , 1 ): if n < _p: # then we have our last prime to check A__ = primes[:idx] break A__ , A__ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: A__ = False for r in range(UpperCAmelCase_ ): A__ = pow(UpperCAmelCase_ , d * 2**r , UpperCAmelCase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): A__ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _snake_case ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
69
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets SCREAMING_SNAKE_CASE_ : List[str] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' SCREAMING_SNAKE_CASE_ : List[str] = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' SCREAMING_SNAKE_CASE_ : List[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: Tuple ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def UpperCamelCase ( self: int , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , ): """simple docstring""" A__ = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) A__ = [[refs[i] for refs in references] for i in range(UpperCamelCase )] A__ = TER( normalized=UpperCamelCase , no_punct=UpperCamelCase , asian_support=UpperCamelCase , case_sensitive=UpperCamelCase , ) A__ = sb_ter.corpus_score(UpperCamelCase , UpperCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
69
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = sigma_max # setable values A: int = None A: np.IntTensor = None A: torch.FloatTensor = None # sigma(t_i) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' A: List[Any] = num_inference_steps A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) A: str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A: List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) A: Optional[Any] = sigma + gamma * sigma A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: Union[str, Any] = sample_hat + sigma_hat * model_output A: str = (sample_hat - pred_original_sample) / sigma_hat A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: int = sample_prev + sigma_prev * model_output A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError()
319
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } UpperCamelCase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } UpperCamelCase = { '''ctrl''': 256, } UpperCamelCase = { '''Pregnancy''': 168629, '''Christianity''': 7675, '''Explain''': 106423, '''Fitness''': 63440, '''Saving''': 63163, '''Ask''': 27171, '''Ass''': 95985, '''Joke''': 163509, '''Questions''': 45622, '''Thoughts''': 49605, '''Retail''': 52342, '''Feminism''': 164338, '''Writing''': 11992, '''Atheism''': 192263, '''Netflix''': 48616, '''Computing''': 39639, '''Opinion''': 43213, '''Alone''': 44967, '''Funny''': 58917, '''Gaming''': 40358, '''Human''': 4088, '''India''': 1331, '''Joker''': 77138, '''Diet''': 36206, '''Legal''': 11859, '''Norman''': 4939, '''Tip''': 72689, '''Weight''': 52343, '''Movies''': 46273, '''Running''': 23425, '''Science''': 2090, '''Horror''': 37793, '''Confession''': 60572, '''Finance''': 12250, '''Politics''': 16360, '''Scary''': 191985, '''Support''': 12654, '''Technologies''': 32516, '''Teenage''': 66160, '''Event''': 32769, '''Learned''': 67460, '''Notion''': 182770, '''Wikipedia''': 37583, '''Books''': 6665, '''Extract''': 76050, '''Confessions''': 102701, '''Conspiracy''': 75932, '''Links''': 63674, '''Narcissus''': 150425, '''Relationship''': 54766, '''Relationships''': 134796, '''Reviews''': 41671, '''News''': 4256, '''Translation''': 26820, '''multilingual''': 128406, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Union[str, Any]: A: Dict = set() A: Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: Optional[int] = char A: Union[str, Any] = set(__lowercase ) return pairs class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTROL_CODES def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any="<unk>" , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict: '''simple docstring''' super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: A: int = json.load(SCREAMING_SNAKE_CASE_ ) A: str = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: A: List[Any] = merges_handle.read().split('''\n''' )[1:-1] A: Any = [tuple(merge.split() ) for merge in merges] A: Optional[int] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Any = {} @property def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' return len(self.encoder ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any ) -> Tuple: '''simple docstring''' if token in self.cache: return self.cache[token] A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) A: int = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: A: Union[str, Any] = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A: Any = bigram A: Optional[int] = [] A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: A: Optional[Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: List[Any] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: Optional[int] = tuple(SCREAMING_SNAKE_CASE_ ) A: List[Any] = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: A: Tuple = get_pairs(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = '''@@ '''.join(SCREAMING_SNAKE_CASE_ ) A: Any = word[:-4] A: Tuple = word return word def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: int = [] A: Any = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: '''simple docstring''' A: Tuple = ''' '''.join(SCREAMING_SNAKE_CASE_ ).replace('''@@ ''' , '''''' ).strip() return out_string def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A: Any = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) A: Optional[int] = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) A: Optional[Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
350
'''simple docstring''' import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def SCREAMING_SNAKE_CASE( __lowercase ) -> None: # fetching a list of articles in json format A: Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
334
0
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCAmelCase ( __a , unittest.TestCase): __a : Any = BertTokenizer __a : Any = BertTokenizerFast __a : Optional[Any] = True __a : Tuple = True __a : Union[str, Any] = filter_non_english def __snake_case ( self ) -> List[str]: '''simple docstring''' super().setUp() _UpperCAmelCase : Optional[int] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __snake_case ( self , _A ) -> str: '''simple docstring''' _UpperCAmelCase : List[str] = """UNwant\u00E9d,running""" _UpperCAmelCase : Tuple = """unwanted, running""" return input_text, output_text def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def __snake_case ( self ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = """UNwant\u00E9d,running""" _UpperCAmelCase : List[Any] = tokenizer.tokenize(_A ) _UpperCAmelCase : str = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : Tuple = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCAmelCase : List[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = tokenizer.encode(_A ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing _UpperCAmelCase : Optional[int] = self.get_tokenizer(do_lower_case=_A ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer(do_lower_case=_A ) _UpperCAmelCase : str = """UNwant\u00E9d,running""" _UpperCAmelCase : Tuple = tokenizer.tokenize(_A ) _UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : List[Any] = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCAmelCase : List[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : Tuple = self.get_rust_tokenizer() _UpperCAmelCase : Optional[int] = tokenizer.encode(_A ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=_A , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = BasicTokenizer() _UpperCAmelCase : str = """a\n'll !!to?'d of, can't.""" _UpperCAmelCase : str = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(_A ) , _A ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _UpperCAmelCase : Optional[Any] = {} for i, token in enumerate(_A ): _UpperCAmelCase : Optional[Any] = i _UpperCAmelCase : int = WordpieceTokenizer(vocab=_A , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __snake_case ( self ) -> int: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __snake_case ( self ) -> int: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : Dict = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=_A ) _UpperCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_A ) _UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def __snake_case ( self ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : str = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCAmelCase : Union[str, Any] = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) _UpperCAmelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(_A , """do_lower_case""" ) else False _UpperCAmelCase : Union[str, Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : List[Any] = ["""的""", """人""", """有"""] _UpperCAmelCase : Optional[int] = """""".join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : str = True _UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : Any = tokenizer_p.encode(_A , add_special_tokens=_A ) _UpperCAmelCase : Dict = tokenizer_r.encode(_A , add_special_tokens=_A ) _UpperCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(_A ) _UpperCAmelCase : Optional[Any] = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : int = False _UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(_A , **_A ) _UpperCAmelCase : Any = tokenizer_r.encode(_A , add_special_tokens=_A ) _UpperCAmelCase : List[str] = tokenizer_p.encode(_A , add_special_tokens=_A ) _UpperCAmelCase : Tuple = tokenizer_r.convert_ids_to_tokens(_A ) _UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCAmelCase : Union[str, Any] = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
246
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : List[str] = 1 while repunit: _UpperCAmelCase : Tuple = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase ( _lowerCAmelCase : int = 1000000 ) -> int: _UpperCAmelCase : Any = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
246
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False): try: SCREAMING_SNAKE_CASE = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE = strtobool(_UpperCAmelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''') return _value a_ : str = parse_flag_from_env('RUN_SLOW', default=False) a_ : Optional[int] = parse_flag_from_env('RUN_REMOTE', default=False) a_ : Optional[int] = parse_flag_from_env('RUN_LOCAL', default=True) a_ : Union[str, Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a_ : Union[str, Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a_ : Dict = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a_ : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a_ : int = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a_ : Dict = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a_ : Optional[Any] = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a_ : List[str] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def lowerCamelCase__ (_UpperCAmelCase): try: import faiss # noqa except ImportError: SCREAMING_SNAKE_CASE = unittest.skip('test requires faiss')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): try: import regex # noqa except ImportError: SCREAMING_SNAKE_CASE = unittest.skip('test requires regex')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): try: import elasticsearch # noqa except ImportError: SCREAMING_SNAKE_CASE = unittest.skip('test requires elasticsearch')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): try: import sqlalchemy # noqa except ImportError: SCREAMING_SNAKE_CASE = unittest.skip('test requires sqlalchemy')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): if not config.TORCH_AVAILABLE: SCREAMING_SNAKE_CASE = unittest.skip('test requires PyTorch')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): if not config.TF_AVAILABLE: SCREAMING_SNAKE_CASE = unittest.skip('test requires TensorFlow')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): if not config.JAX_AVAILABLE: SCREAMING_SNAKE_CASE = unittest.skip('test requires JAX')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): if not config.PIL_AVAILABLE: SCREAMING_SNAKE_CASE = unittest.skip('test requires Pillow')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers')(_UpperCAmelCase) else: return test_case def lowerCamelCase__ (_UpperCAmelCase): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken')(_UpperCAmelCase) else: return test_case def lowerCamelCase__ (_UpperCAmelCase): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy')(_UpperCAmelCase) else: return test_case def lowerCamelCase__ (_UpperCAmelCase): def _require_spacy_model(_UpperCAmelCase): try: import spacy # noqa F401 spacy.load(_UpperCAmelCase) except ImportError: return unittest.skip('test requires spacy')(_UpperCAmelCase) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(_UpperCAmelCase))(_UpperCAmelCase) else: return test_case return _require_spacy_model def lowerCamelCase__ (_UpperCAmelCase): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark')(_UpperCAmelCase) else: return test_case def lowerCamelCase__ (_UpperCAmelCase): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark')(_UpperCAmelCase) else: return test_case def lowerCamelCase__ (_UpperCAmelCase): if not _run_slow_tests or _run_slow_tests == 0: SCREAMING_SNAKE_CASE = unittest.skip('test is slow')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): if not _run_local_tests or _run_local_tests == 0: SCREAMING_SNAKE_CASE = unittest.skip('test is local')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): if not _run_packaged_tests or _run_packaged_tests == 0: SCREAMING_SNAKE_CASE = unittest.skip('test is packaged')(_UpperCAmelCase) return test_case def lowerCamelCase__ (_UpperCAmelCase): if not _run_remote_tests or _run_remote_tests == 0: SCREAMING_SNAKE_CASE = unittest.skip('test requires remote')(_UpperCAmelCase) return test_case def lowerCamelCase__ (*_UpperCAmelCase): def decorate(cls): for name, fn in cls.__dict__.items(): if callable(_UpperCAmelCase) and name.startswith('test'): for decorator in decorators: SCREAMING_SNAKE_CASE = decorator(_UpperCAmelCase) setattr(cls , _UpperCAmelCase , _UpperCAmelCase) return cls return decorate class _snake_case ( A__ ): pass class _snake_case ( A__ ): _lowercase : Union[str, Any] = 0 _lowercase : List[Any] = 1 _lowercase : Optional[Any] = 2 @contextmanager def lowerCamelCase__ (_UpperCAmelCase=OfflineSimulationMode.CONNECTION_FAILS , _UpperCAmelCase=1e-16): SCREAMING_SNAKE_CASE = requests.Session().request def timeout_request(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): # Change the url to an invalid url so that the connection hangs SCREAMING_SNAKE_CASE = 'https://10.255.255.1' if kwargs.get('timeout') is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''') SCREAMING_SNAKE_CASE = timeout try: return online_request(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier SCREAMING_SNAKE_CASE = url SCREAMING_SNAKE_CASE = e.args[0] SCREAMING_SNAKE_CASE = (max_retry_error.args[0].replace('10.255.255.1' , F'''OfflineMock[{url}]'''),) SCREAMING_SNAKE_CASE = (max_retry_error,) raise def raise_connection_error(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): raise requests.ConnectionError('Offline mode is enabled.' , request=_UpperCAmelCase) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , _UpperCAmelCase): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , _UpperCAmelCase): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCAmelCase): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.') @contextmanager def lowerCamelCase__ (*_UpperCAmelCase , **_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(Path().resolve()) with tempfile.TemporaryDirectory(*_UpperCAmelCase , **_UpperCAmelCase) as tmp_dir: try: os.chdir(_UpperCAmelCase) yield finally: os.chdir(_UpperCAmelCase) @contextmanager def lowerCamelCase__ (): import gc gc.collect() SCREAMING_SNAKE_CASE = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCamelCase__ (): import gc gc.collect() SCREAMING_SNAKE_CASE = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return deepcopy(_UpperCAmelCase).integers(0 , 100 , 10).tolist() == deepcopy(_UpperCAmelCase).integers(0 , 100 , 10).tolist() def lowerCamelCase__ (_UpperCAmelCase): import decorator from requests.exceptions import HTTPError def _wrapper(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase): try: return func(*_UpperCAmelCase , **_UpperCAmelCase) except HTTPError as err: if str(_UpperCAmelCase).startswith('500') or str(_UpperCAmelCase).startswith('502'): pytest.xfail(str(_UpperCAmelCase)) raise err return decorator.decorator(_wrapper , _UpperCAmelCase) class _snake_case : def __init__( self , a , a , a) -> str: SCREAMING_SNAKE_CASE = returncode SCREAMING_SNAKE_CASE = stdout SCREAMING_SNAKE_CASE = stderr async def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): while True: SCREAMING_SNAKE_CASE = await stream.readline() if line: callback(_UpperCAmelCase) else: break async def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False): if echo: print('\nRunning: ' , ' '.join(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] def tee(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=""): SCREAMING_SNAKE_CASE = line.decode('utf-8').rstrip() sink.append(_UpperCAmelCase) if not quiet: print(_UpperCAmelCase , _UpperCAmelCase , file=_UpperCAmelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _UpperCAmelCase: tee(_UpperCAmelCase , _UpperCAmelCase , sys.stdout , label='stdout:')), _read_stream(p.stderr , lambda _UpperCAmelCase: tee(_UpperCAmelCase , _UpperCAmelCase , sys.stderr , label='stderr:')), ] , timeout=_UpperCAmelCase , ) return _RunOutput(await p.wait() , _UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=180 , _UpperCAmelCase=False , _UpperCAmelCase=True): SCREAMING_SNAKE_CASE = asyncio.get_event_loop() SCREAMING_SNAKE_CASE = loop.run_until_complete( _stream_subprocess(_UpperCAmelCase , env=_UpperCAmelCase , stdin=_UpperCAmelCase , timeout=_UpperCAmelCase , quiet=_UpperCAmelCase , echo=_UpperCAmelCase)) SCREAMING_SNAKE_CASE = ' '.join(_UpperCAmelCase) if result.returncode > 0: SCREAMING_SNAKE_CASE = '\n'.join(result.stderr) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''') # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''') return result def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0') SCREAMING_SNAKE_CASE = re.sub(R'^gw' , '' , _UpperCAmelCase , 0 , re.M) return int(_UpperCAmelCase) def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = 2_9500 SCREAMING_SNAKE_CASE = pytest_xdist_worker_id() return port + uniq_delta
327
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a) SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))] SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3 assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1 SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(a) == num_samples def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , ) SCREAMING_SNAKE_CASE = scheduler.create_state() SCREAMING_SNAKE_CASE = scheduler_state SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # With memory efficient attention SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
327
1
def _A ( SCREAMING_SNAKE_CASE__ : List[Any] ): UpperCamelCase :Union[str, Any] = 1 UpperCamelCase :Any = 2 while i * i <= n: UpperCamelCase :str = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _A ( ): UpperCamelCase :List[str] = 1 UpperCamelCase :List[Any] = 1 while True: i += 1 t_num += i if count_divisors(__UpperCamelCase ) > 500: break return t_num if __name__ == "__main__": print(solution())
259
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["MaskFormerFeatureExtractor"] UpperCamelCase_ = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] UpperCamelCase_ = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
251
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : Dict = 16 _SCREAMING_SNAKE_CASE : Optional[int] = 32 def UpperCamelCase_( snake_case : Accelerator , snake_case : int = 1_6 ): '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case_ = load_dataset("glue" , "mrpc" ) def tokenize_function(snake_case : List[str] ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ = datasets.map( snake_case , batched=snake_case , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(snake_case : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ = 1_6 elif accelerator.mixed_precision != "no": snake_case_ = 8 else: snake_case_ = None return tokenizer.pad( snake_case , padding="longest" , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors="pt" , ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets["train"] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) snake_case_ = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : List[str] = mocked_dataloaders # noqa: F811 def UpperCamelCase_( snake_case : str , snake_case : Optional[int] ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , snake_case ) == "1": snake_case_ = 2 # New Code # snake_case_ = int(args.gradient_accumulation_steps ) # Initialize accelerator snake_case_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config["lr"] snake_case_ = int(config["num_epochs"] ) snake_case_ = int(config["seed"] ) snake_case_ = int(config["batch_size"] ) snake_case_ = evaluate.load("glue" , "mrpc" ) set_seed(snake_case ) snake_case_ , snake_case_ = get_dataloaders(snake_case , snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ = model.to(accelerator.device ) # Instantiate optimizer snake_case_ = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler snake_case_ = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=1_0_0 , num_training_steps=(len(snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case ): snake_case_ = model(**snake_case ) snake_case_ = output.loss accelerator.backward(snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**snake_case ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=snake_case , references=snake_case , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , snake_case ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=snake_case , default=snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=snake_case , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) snake_case_ = parser.parse_args() snake_case_ = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
369
'''simple docstring''' def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' while b: snake_case_ , snake_case_ = b, a % b return a def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(snake_case , a % b ) def UpperCamelCase_( ): '''simple docstring''' print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
92
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__) -> str: snake_case_ = data def __iter__( self) -> List[Any]: for element in self.data: yield element def UpperCAmelCase ( UpperCAmelCase=True ) -> int: snake_case_ = Accelerator(even_batches=UpperCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> List[str]: if iterable: snake_case_ = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase ) ) ) else: snake_case_ = TensorDataset(torch.as_tensor(range(UpperCAmelCase ) ) ) snake_case_ = DataLoader(UpperCAmelCase , batch_size=UpperCAmelCase ) snake_case_ = accelerator.prepare(UpperCAmelCase ) return dl def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: snake_case_ = create_dataloader(accelerator=UpperCAmelCase , dataset_size=UpperCAmelCase , batch_size=UpperCAmelCase ) snake_case_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase ( ) -> Tuple: snake_case_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase ( ) -> str: snake_case_ = create_accelerator(even_batches=UpperCAmelCase ) verify_dataloader_batch_sizes( UpperCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase ( ) -> int: snake_case_ = create_accelerator(even_batches=UpperCAmelCase ) snake_case_ = torch.nn.Linear(1 , 1 ) snake_case_ = accelerator.prepare(UpperCAmelCase ) snake_case_ = create_dataloader(UpperCAmelCase , dataset_size=3 , batch_size=1 ) snake_case_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase ): snake_case_ = ddp_model(batch[0].float() ) snake_case_ = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase ( UpperCAmelCase ) -> Any: with warnings.catch_warnings(record=UpperCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase ( ) -> Optional[int]: snake_case_ = True snake_case_ = False snake_case_ = create_accelerator(even_batches=UpperCAmelCase ) snake_case_ = torch.nn.Linear(1 , 1 ) snake_case_ = accelerator.prepare(UpperCAmelCase ) snake_case_ = create_dataloader(UpperCAmelCase , dataset_size=3 , batch_size=1 ) snake_case_ = create_dataloader(UpperCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase ): snake_case_ = train_dl.batch_sampler.even_batches snake_case_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase ( ) -> int: snake_case_ = True snake_case_ = False snake_case_ = create_accelerator(even_batches=UpperCAmelCase ) snake_case_ = torch.nn.Linear(1 , 1 ) snake_case_ = accelerator.prepare(UpperCAmelCase ) create_dataloader(UpperCAmelCase , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase ) snake_case_ = create_dataloader(UpperCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase ): snake_case_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase ( ) -> Any: snake_case_ = create_accelerator() snake_case_ = torch.nn.Linear(1 , 1 ) snake_case_ = accelerator.prepare(UpperCAmelCase ) create_dataloader(UpperCAmelCase , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase ) with warnings.catch_warnings(record=UpperCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase ): pass assert issubclass(w[-1].category , UpperCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase ( ) -> Optional[int]: snake_case_ = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) snake_case_ = accelerator.state.distributed_type snake_case_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase ) snake_case_ = original_state if __name__ == "__main__": main()
69
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''▁''' __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } __UpperCamelCase = { '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__ = None, lowerCAmelCase__=None, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, src_lang=lowerCAmelCase__, tgt_lang=lowerCAmelCase__, additional_special_tokens=lowerCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, legacy_behaviour=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCAmelCase__)) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) snake_case_ = src_lang if src_lang is not None else 'eng_Latn' snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> Union[str, Any]: snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self, lowerCAmelCase__) -> Tuple: snake_case_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def a_ ( self) -> str: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a_ ( self) -> str: return self._src_lang @src_lang.setter def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__, token_ids_a=lowerCAmelCase__, already_has_special_tokens=lowerCAmelCase__) snake_case_ = [1] * len(self.prefix_tokens) snake_case_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__)) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__)) + ([0] * len(lowerCAmelCase__)) + suffix_ones def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> str: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') snake_case_ = src_lang snake_case_ = self(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) snake_case_ = tgt_lang_id return inputs def a_ ( self) -> List[Any]: snake_case_ = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def a_ ( self, lowerCAmelCase__) -> List[str]: return self.sp_model.encode(lowerCAmelCase__, out_type=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(lowerCAmelCase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a_ ( self, lowerCAmelCase__) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def a_ ( self, lowerCAmelCase__) -> List[str]: snake_case_ = ''.join(lowerCAmelCase__).replace(lowerCAmelCase__, ' ').strip() return out_string def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__, 'wb') as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "eng_Latn", lowerCAmelCase__ = None, lowerCAmelCase__ = "fra_Latn", **lowerCAmelCase__, ) -> BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id]
69
1
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A_ : Optional[int] =False A_ : int =logging.get_logger(__name__) A_ : List[str] ="""ybelkada/fonts""" def SCREAMING_SNAKE_CASE_ ( )-> Union[str, Any]: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def SCREAMING_SNAKE_CASE_ ( snake_case : Any , snake_case : Optional[int] , snake_case : List[Any] )-> Dict: requires_backends(snake_case , ['torch'] ) _check_torch_version() _lowerCamelCase = image_tensor.unsqueeze(0 ) _lowerCamelCase = torch.nn.functional.unfold(snake_case , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _lowerCamelCase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , snake_case , snake_case , -1 ) _lowerCamelCase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : int = 36 , snake_case : str = "black" , snake_case : str = "white" , snake_case : int = 5 , snake_case : int = 5 , snake_case : int = 5 , snake_case : int = 5 , snake_case : Optional[bytes] = None , snake_case : Optional[str] = None , )-> Image.Image: requires_backends(snake_case , 'vision' ) # Add new lines so that each line is no more than 80 characters. _lowerCamelCase = textwrap.TextWrapper(width=80 ) _lowerCamelCase = wrapper.wrap(text=snake_case ) _lowerCamelCase = '\n'.join(snake_case ) if font_bytes is not None and font_path is None: _lowerCamelCase = io.BytesIO(snake_case ) elif font_path is not None: _lowerCamelCase = font_path else: _lowerCamelCase = hf_hub_download(snake_case , 'Arial.TTF' ) _lowerCamelCase = ImageFont.truetype(snake_case , encoding='UTF-8' , size=snake_case ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _lowerCamelCase = ImageDraw.Draw(Image.new('RGB' , (1, 1) , snake_case ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = temp_draw.textbbox((0, 0) , snake_case , snake_case ) # Create the actual image with a bit of padding around the text. _lowerCamelCase = text_width + left_padding + right_padding _lowerCamelCase = text_height + top_padding + bottom_padding _lowerCamelCase = Image.new('RGB' , (image_width, image_height) , snake_case ) _lowerCamelCase = ImageDraw.Draw(snake_case ) draw.text(xy=(left_padding, top_padding) , text=snake_case , fill=snake_case , font=snake_case ) return image def SCREAMING_SNAKE_CASE_ ( snake_case : np.ndarray , snake_case : str , **snake_case : List[Any] )-> Union[str, Any]: requires_backends(snake_case , 'vision' ) # Convert to PIL image if necessary _lowerCamelCase = to_pil_image(snake_case ) _lowerCamelCase = render_text(snake_case , **snake_case ) _lowerCamelCase = max(header_image.width , image.width ) _lowerCamelCase = int(image.height * (new_width / image.width) ) _lowerCamelCase = int(header_image.height * (new_width / header_image.width) ) _lowerCamelCase = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _lowerCamelCase = to_numpy_array(snake_case ) if infer_channel_dimension_format(snake_case ) == ChannelDimension.LAST: _lowerCamelCase = to_channel_dimension_format(snake_case , ChannelDimension.LAST ) return new_image class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ["flattened_patches"] def __init__( self , a__ = True , a__ = True , a__ = None , a__ = 20_48 , a__ = False , **a__ , ): super().__init__(**a__ ) _lowerCamelCase = patch_size if patch_size is not None else {'height': 16, 'width': 16} _lowerCamelCase = do_normalize _lowerCamelCase = do_convert_rgb _lowerCamelCase = max_patches _lowerCamelCase = is_vqa def snake_case_ ( self , a__ , a__ , a__ , **a__ ): requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch _lowerCamelCase = to_channel_dimension_format(a__ , ChannelDimension.FIRST ) _lowerCamelCase = torch.from_numpy(a__ ) _lowerCamelCase , _lowerCamelCase = patch_size['height'], patch_size['width'] _lowerCamelCase , _lowerCamelCase = get_image_size(a__ ) # maximize scale s.t. _lowerCamelCase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _lowerCamelCase = max(min(math.floor(scale * image_height / patch_height ) , a__ ) , 1 ) _lowerCamelCase = max(min(math.floor(scale * image_width / patch_width ) , a__ ) , 1 ) _lowerCamelCase = max(num_feasible_rows * patch_height , 1 ) _lowerCamelCase = max(num_feasible_cols * patch_width , 1 ) _lowerCamelCase = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=a__ , antialias=a__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _lowerCamelCase = torch_extract_patches(a__ , a__ , a__ ) _lowerCamelCase = patches.shape _lowerCamelCase = patches_shape[1] _lowerCamelCase = patches_shape[2] _lowerCamelCase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _lowerCamelCase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _lowerCamelCase = torch.arange(a__ ).reshape([rows, 1] ).repeat(1 , a__ ).reshape([rows * columns, 1] ) _lowerCamelCase = torch.arange(a__ ).reshape([1, columns] ).repeat(a__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _lowerCamelCase = row_ids.to(torch.floataa ) _lowerCamelCase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _lowerCamelCase = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _lowerCamelCase = torch.nn.functional.pad(a__ , [0, 0, 0, max_patches - (rows * columns)] ).float() _lowerCamelCase = to_numpy_array(a__ ) return result def snake_case_ ( self , a__ , a__ = None , **a__ ): if image.dtype == np.uinta: _lowerCamelCase = image.astype(np.floataa ) # take mean across the whole `image` _lowerCamelCase = np.mean(a__ ) _lowerCamelCase = np.std(a__ ) _lowerCamelCase = max(a__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(a__ , mean=a__ , std=a__ , **a__ ) def snake_case_ ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): _lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCamelCase = patch_size if patch_size is not None else self.patch_size _lowerCamelCase = max_patches if max_patches is not None else self.max_patches _lowerCamelCase = self.is_vqa if kwargs.get('data_format' , a__ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) _lowerCamelCase = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCamelCase = [convert_to_rgb(a__ ) for image in images] # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(a__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) _lowerCamelCase = kwargs.pop('font_bytes' , a__ ) _lowerCamelCase = kwargs.pop('font_path' , a__ ) if isinstance(a__ , a__ ): _lowerCamelCase = [header_text] * len(a__ ) _lowerCamelCase = [ render_header(a__ , header_text[i] , font_bytes=a__ , font_path=a__ ) for i, image in enumerate(a__ ) ] if do_normalize: _lowerCamelCase = [self.normalize(image=a__ ) for image in images] # convert to torch tensor and permute _lowerCamelCase = [ self.extract_flattened_patches(image=a__ , max_patches=a__ , patch_size=a__ ) for image in images ] # create attention mask in numpy _lowerCamelCase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _lowerCamelCase = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=a__ ) return encoded_outputs
80
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : "DiagonalGaussianDistribution" class __a ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = True @register_to_config def __init__( self , a__ = 3 , a__ = 3 , a__ = ("DownEncoderBlock2D",) , a__ = ("UpDecoderBlock2D",) , a__ = (64,) , a__ = 1 , a__ = "silu" , a__ = 4 , a__ = 32 , a__ = 32 , a__ = 0.18215 , ): super().__init__() # pass init params to Encoder _lowerCamelCase = Encoder( in_channels=a__ , out_channels=a__ , down_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , act_fn=a__ , norm_num_groups=a__ , double_z=a__ , ) # pass init params to Decoder _lowerCamelCase = Decoder( in_channels=a__ , out_channels=a__ , up_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , norm_num_groups=a__ , act_fn=a__ , ) _lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _lowerCamelCase = nn.Convad(a__ , a__ , 1 ) _lowerCamelCase = False _lowerCamelCase = False # only relevant if vae tiling is enabled _lowerCamelCase = self.config.sample_size _lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _lowerCamelCase = 0.25 def snake_case_ ( self , a__ , a__=False ): if isinstance(a__ , (Encoder, Decoder) ): _lowerCamelCase = value def snake_case_ ( self , a__ = True ): _lowerCamelCase = use_tiling def snake_case_ ( self ): self.enable_tiling(a__ ) def snake_case_ ( self ): _lowerCamelCase = True def snake_case_ ( self ): _lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case_ ( self ): _lowerCamelCase = {} def fn_recursive_add_processors(a__ , a__ , a__ ): if hasattr(a__ , 'set_processor' ): _lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , a__ , a__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a__ , a__ , a__ ) return processors def snake_case_ ( self , a__ ): _lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(a__ , a__ ) and len(a__ ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(a__ )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(a__ , a__ , a__ ): if hasattr(a__ , 'set_processor' ): if not isinstance(a__ , a__ ): module.set_processor(a__ ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , a__ , a__ ) for name, module in self.named_children(): fn_recursive_attn_processor(a__ , a__ , a__ ) def snake_case_ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def snake_case_ ( self , a__ , a__ = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(a__ , return_dict=a__ ) if self.use_slicing and x.shape[0] > 1: _lowerCamelCase = [self.encoder(a__ ) for x_slice in x.split(1 )] _lowerCamelCase = torch.cat(a__ ) else: _lowerCamelCase = self.encoder(a__ ) _lowerCamelCase = self.quant_conv(a__ ) _lowerCamelCase = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def snake_case_ ( self , a__ , a__ = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(a__ , return_dict=a__ ) _lowerCamelCase = self.post_quant_conv(a__ ) _lowerCamelCase = self.decoder(a__ ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) @apply_forward_hook def snake_case_ ( self , a__ , a__ = True ): if self.use_slicing and z.shape[0] > 1: _lowerCamelCase = [self._decode(a__ ).sample for z_slice in z.split(1 )] _lowerCamelCase = torch.cat(a__ ) else: _lowerCamelCase = self._decode(a__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=a__ ) def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = min(a.shape[2] , b.shape[2] , a__ ) for y in range(a__ ): _lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = min(a.shape[3] , b.shape[3] , a__ ) for x in range(a__ ): _lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def snake_case_ ( self , a__ , a__ = True ): _lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) _lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _lowerCamelCase = [] for i in range(0 , x.shape[2] , a__ ): _lowerCamelCase = [] for j in range(0 , x.shape[3] , a__ ): _lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _lowerCamelCase = self.encoder(a__ ) _lowerCamelCase = self.quant_conv(a__ ) row.append(a__ ) rows.append(a__ ) _lowerCamelCase = [] for i, row in enumerate(a__ ): _lowerCamelCase = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCamelCase = self.blend_v(rows[i - 1][j] , a__ , a__ ) if j > 0: _lowerCamelCase = self.blend_h(row[j - 1] , a__ , a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ , dim=3 ) ) _lowerCamelCase = torch.cat(a__ , dim=2 ) _lowerCamelCase = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def snake_case_ ( self , a__ , a__ = True ): _lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) _lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _lowerCamelCase = [] for i in range(0 , z.shape[2] , a__ ): _lowerCamelCase = [] for j in range(0 , z.shape[3] , a__ ): _lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _lowerCamelCase = self.post_quant_conv(a__ ) _lowerCamelCase = self.decoder(a__ ) row.append(a__ ) rows.append(a__ ) _lowerCamelCase = [] for i, row in enumerate(a__ ): _lowerCamelCase = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCamelCase = self.blend_v(rows[i - 1][j] , a__ , a__ ) if j > 0: _lowerCamelCase = self.blend_h(row[j - 1] , a__ , a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ , dim=3 ) ) _lowerCamelCase = torch.cat(a__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) def snake_case_ ( self , a__ , a__ = False , a__ = True , a__ = None , ): _lowerCamelCase = sample _lowerCamelCase = self.encode(a__ ).latent_dist if sample_posterior: _lowerCamelCase = posterior.sample(generator=a__ ) else: _lowerCamelCase = posterior.mode() _lowerCamelCase = self.decode(a__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a__ )
80
1