code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=30 , lowercase__=2 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=10 , lowercase__=0.02 , lowercase__=3 , lowercase__=0.6 , lowercase__=None , ) -> List[str]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = mask_ratio __UpperCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCAmelCase = (image_size // patch_size) ** 2 __UpperCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Union[str, Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = ViTMAEModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: __UpperCAmelCase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) __UpperCAmelCase = (self.image_size // self.patch_size) ** 2 __UpperCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __UpperCAmelCase = 1 __UpperCAmelCase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) __UpperCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a__ = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = ViTMAEModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def lowerCAmelCase_ (self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> int: pass def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: # make masks reproducible np.random.seed(2 ) __UpperCAmelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __UpperCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCAmelCase = torch.from_numpy(lowercase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCAmelCase = pt_noise super().check_pt_tf_models(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs[0].cpu().numpy() __UpperCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) __UpperCAmelCase = model_class.from_pretrained(lowercase__ ) model.to(lowercase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) # Make sure we don't have nans __UpperCAmelCase = after_outputs[0].cpu().numpy() __UpperCAmelCase = 0 __UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase_ (self ) -> Any: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase_ (self ) -> Tuple: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase_ (self ) -> Optional[int]: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass @slow def lowerCAmelCase_ (self ) -> Optional[int]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = ViTMAEModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def __a ( ) -> Dict: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> List[Any]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __UpperCAmelCase = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCAmelCase = ViTMAEConfig() __UpperCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __UpperCAmelCase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ , noise=torch.from_numpy(lowercase__ ).to(device=lowercase__ ) ) # verify the logits __UpperCAmelCase = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowercase__ ) , atol=1E-4 ) )
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
from maths.prime_check import is_prime def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ : Dict =f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if is_prime(SCREAMING_SNAKE_CASE ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
148
import random from typing import Any def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" for _ in range(len(SCREAMING_SNAKE_CASE ) ): a__ : Tuple =random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) a__ : Any =random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) a__ , a__ : Tuple =data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase : Optional[Any] = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
148
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def SCREAMING_SNAKE_CASE__ ( __a , __a=False ): try: snake_case_ : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case_ : Optional[int] = default else: # KEY is set, convert it to True or False. try: snake_case_ : int = strtobool(__a ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_SLOW""", default=False) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_REMOTE""", default=False) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_LOCAL""", default=True) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio _SCREAMING_SNAKE_CASE = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam _SCREAMING_SNAKE_CASE = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility _SCREAMING_SNAKE_CASE = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows _SCREAMING_SNAKE_CASE = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def SCREAMING_SNAKE_CASE__ ( __a ): try: import faiss # noqa except ImportError: snake_case_ : List[Any] = unittest.skip('test requires faiss' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import regex # noqa except ImportError: snake_case_ : Dict = unittest.skip('test requires regex' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import elasticsearch # noqa except ImportError: snake_case_ : Optional[Any] = unittest.skip('test requires elasticsearch' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import sqlalchemy # noqa except ImportError: snake_case_ : List[Any] = unittest.skip('test requires sqlalchemy' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not config.TORCH_AVAILABLE: snake_case_ : Tuple = unittest.skip('test requires PyTorch' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not config.TF_AVAILABLE: snake_case_ : str = unittest.skip('test requires TensorFlow' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not config.JAX_AVAILABLE: snake_case_ : int = unittest.skip('test requires JAX' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not config.PIL_AVAILABLE: snake_case_ : List[str] = unittest.skip('test requires Pillow' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): def _require_spacy_model(__a ): try: import spacy # noqa F401 spacy.load(__a ) except ImportError: return unittest.skip('test requires spacy' )(__a ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__a ) )(__a ) else: return test_case return _require_spacy_model def SCREAMING_SNAKE_CASE__ ( __a ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not _run_slow_tests or _run_slow_tests == 0: snake_case_ : List[str] = unittest.skip('test is slow' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not _run_local_tests or _run_local_tests == 0: snake_case_ : Optional[int] = unittest.skip('test is local' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not _run_packaged_tests or _run_packaged_tests == 0: snake_case_ : Union[str, Any] = unittest.skip('test is packaged' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not _run_remote_tests or _run_remote_tests == 0: snake_case_ : Any = unittest.skip('test requires remote' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( *__a ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__a ) and name.startswith('test' ): for decorator in decorators: snake_case_ : Dict = decorator(__a ) setattr(cls , __a , __a ) return cls return decorate class SCREAMING_SNAKE_CASE_ ( snake_case_ ): pass class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Any = 0 __magic_name__: Union[str, Any] = 1 __magic_name__: Optional[Any] = 2 @contextmanager def SCREAMING_SNAKE_CASE__ ( __a=OfflineSimulationMode.CONNECTION_FAILS , __a=1E-16 ): snake_case_ : Optional[Any] = requests.Session().request def timeout_request(__a , __a , __a , **__a ): # Change the url to an invalid url so that the connection hangs snake_case_ : List[Any] = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) snake_case_ : str = timeout try: return online_request(__a , __a , **__a ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case_ : List[Any] = url snake_case_ : Any = e.args[0] snake_case_ : Any = (max_retry_error.args[0].replace('10.255.255.1' , f"""OfflineMock[{url}]""" ),) snake_case_ : int = (max_retry_error,) raise def raise_connection_error(__a , __a , **__a ): raise requests.ConnectionError('Offline mode is enabled.' , request=__a ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __a ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __a ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __a ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def SCREAMING_SNAKE_CASE__ ( *__a , **__a ): snake_case_ : int = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__a , **__a ) as tmp_dir: try: os.chdir(__a ) yield finally: os.chdir(__a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( ): import gc gc.collect() snake_case_ : str = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def SCREAMING_SNAKE_CASE__ ( ): import gc gc.collect() snake_case_ : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def SCREAMING_SNAKE_CASE__ ( __a , __a ): return deepcopy(__a ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__a ).integers(0 , 1_00 , 10 ).tolist() def SCREAMING_SNAKE_CASE__ ( __a ): import decorator from requests.exceptions import HTTPError def _wrapper(__a , *__a , **__a ): try: return func(*__a , **__a ) except HTTPError as err: if str(__a ).startswith('500' ) or str(__a ).startswith('502' ): pytest.xfail(str(__a ) ) raise err return decorator.decorator(_wrapper , __a ) class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , _A : Optional[int] , _A : List[Any] , _A : List[str] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = returncode snake_case_ : List[Any] = stdout snake_case_ : Tuple = stderr async def SCREAMING_SNAKE_CASE__ ( __a , __a ): while True: snake_case_ : Optional[Any] = await stream.readline() if line: callback(__a ) else: break async def SCREAMING_SNAKE_CASE__ ( __a , __a=None , __a=None , __a=None , __a=False , __a=False ): if echo: print('\nRunning: ' , ' '.join(__a ) ) snake_case_ : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__a , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__a , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case_ : Union[str, Any] = [] snake_case_ : Optional[Any] = [] def tee(__a , __a , __a , __a="" ): snake_case_ : Union[str, Any] = line.decode('utf-8' ).rstrip() sink.append(__a ) if not quiet: print(__a , __a , file=__a ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __a : tee(__a , __a , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __a : tee(__a , __a , sys.stderr , label='stderr:' ) ), ] , timeout=__a , ) return _RunOutput(await p.wait() , __a , __a ) def SCREAMING_SNAKE_CASE__ ( __a , __a=None , __a=None , __a=1_80 , __a=False , __a=True ): snake_case_ : Dict = asyncio.get_event_loop() snake_case_ : Tuple = loop.run_until_complete( _stream_subprocess(__a , env=__a , stdin=__a , timeout=__a , quiet=__a , echo=__a ) ) snake_case_ : Union[str, Any] = ' '.join(__a ) if result.returncode > 0: snake_case_ : Tuple = '\n'.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) snake_case_ : Union[str, Any] = re.sub(r'^gw' , '' , __a , 0 , re.M ) return int(__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[int] = 2_95_00 snake_case_ : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
327
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_UpperCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =None ops.enable_eager_execution_internal() __a =tf.config.list_physical_devices('CPU' ) if len(_UpperCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a =tf.config.list_logical_devices(device_type='CPU' ) __a =tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a =GradientAccumulator() __a =tf.Variable([4.0, 3.0] ) __a =create_optimizer(5e-5 , 10 , 5 ) __a =tf.Variable([0.0, 0.0] , trainable=_UpperCAmelCase ) def accumulate_on_replica(__snake_case ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__snake_case , __snake_case ): with strategy.scope(): __a =strategy.experimental_local_results(_UpperCAmelCase ) local_variables[0].assign(_UpperCAmelCase ) local_variables[1].assign(_UpperCAmelCase ) strategy.run(_UpperCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_UpperCAmelCase ) def _check_local_values(__snake_case , __snake_case ): __a =strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _UpperCAmelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _UpperCAmelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
369
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class UpperCamelCase__ : def __init__( self :str , _A :int , _A :Optional[int]=13 , _A :Optional[Any]=7 , _A :List[str]=True , _A :Dict=True , _A :Dict=True , _A :int=True , _A :List[str]=99 , _A :int=32 , _A :Union[str, Any]=2 , _A :Optional[Any]=4 , _A :List[Any]=37 , _A :Union[str, Any]="gelu" , _A :Dict=0.1 , _A :int=0.1 , _A :Union[str, Any]=512 , _A :Dict=16 , _A :Optional[Any]=2 , _A :str=0.02 , _A :Dict=3 , _A :Tuple=4 , _A :Dict=None , _A :Union[str, Any]=1_000 , ) -> List[str]: '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope __A = range_bbox def lowercase_ ( self :Tuple ) -> List[str]: '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __A = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = tf.convert_to_tensor(_A ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self :Union[str, Any] , _A :List[str] , _A :Any , _A :List[Any] , _A :Any , _A :Any , _A :Union[str, Any] , _A :Union[str, Any] , _A :Optional[Any] ) -> List[str]: '''simple docstring''' __A = TFLayoutLMModel(config=_A ) __A = model(_A , _A , attention_mask=_A , token_type_ids=_A ) __A = model(_A , _A , token_type_ids=_A ) __A = model(_A , _A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self :List[str] , _A :Optional[int] , _A :List[Any] , _A :int , _A :Dict , _A :Tuple , _A :Optional[int] , _A :Union[str, Any] , _A :List[Any] ) -> Optional[Any]: '''simple docstring''' __A = TFLayoutLMForMaskedLM(config=_A ) __A = model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self :List[str] , _A :List[Any] , _A :Tuple , _A :Dict , _A :Union[str, Any] , _A :Tuple , _A :Optional[Any] , _A :Optional[int] , _A :Any ) -> str: '''simple docstring''' __A = self.num_labels __A = TFLayoutLMForSequenceClassification(config=_A ) __A = model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self :Dict , _A :List[Any] , _A :Any , _A :List[str] , _A :List[Any] , _A :int , _A :List[Any] , _A :Optional[Any] , _A :Dict ) -> Any: '''simple docstring''' __A = self.num_labels __A = TFLayoutLMForTokenClassification(config=_A ) __A = model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self :Tuple , _A :Optional[int] , _A :Optional[int] , _A :Optional[Any] , _A :str , _A :Dict , _A :int , _A :str , _A :int ) -> Dict: '''simple docstring''' __A = TFLayoutLMForQuestionAnswering(config=_A ) __A = model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self :str ) -> Dict: '''simple docstring''' __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class UpperCamelCase__ ( snake_case__ , snake_case__ , unittest.TestCase): UpperCAmelCase__ : List[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = True UpperCAmelCase__ : List[str] = 1_0 def lowercase_ ( self :Any ) -> Tuple: '''simple docstring''' __A = TFLayoutLMModelTester(self ) __A = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowercase_ ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self :Optional[int] ) -> Tuple: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self :Dict ) -> int: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def lowercase_ ( self :List[Any] ) -> List[str]: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def lowercase_ ( self :Any ) -> Tuple: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def lowercase_ ( self :Dict ) -> List[Any]: '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def lowercase_ ( self :List[str] ) -> str: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFLayoutLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def lowercase_ ( self :Tuple ) -> List[str]: '''simple docstring''' pass def snake_case ( )-> Dict: """simple docstring""" # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off __A = tf.convert_to_tensor([[1_0_1,1_0_1_9,1_0_1_4,1_0_1_6,1_0_3_7,1_2_8_4_9,4_7_4_7,1_0_0_4,1_4_2_4_6,2_2_7_8,5_4_3_9,4_5_2_4,5_0_0_2,2_9_3_0,2_1_9_3,2_9_3_0,4_3_4_1,3_2_0_8,1_0_0_5,1_0_5_5,2_1_7_1,2_8_4_8,1_1_3_0_0,3_5_3_1,1_0_2],[1_0_1,4_0_7_0,4_0_3_4,7_0_2_0,1_0_2_4,3_0_5_8,1_0_1_5,1_0_1_3,2_8_6_1,1_0_1_3,6_0_7_0,1_9_2_7_4,2_7_7_2,6_2_0_5,2_7_8_1_4,1_6_1_4_7,1_6_1_4_7,4_3_4_3,2_0_4_7,1_0_2_8_3,1_0_9_6_9,1_4_3_8_9,1_0_1_2,2_3_3_8,1_0_2]] ) # noqa: E231 __A = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __A = tf.convert_to_tensor([[[0,0,0,0],[4_2_3,2_3_7,4_4_0,2_5_1],[4_2_7,2_7_2,4_4_1,2_8_7],[4_1_9,1_1_5,4_3_7,1_2_9],[9_6_1,8_8_5,9_9_2,9_1_2],[2_5_6,3_8,3_3_0,5_8],[2_5_6,3_8,3_3_0,5_8],[3_3_6,4_2,3_5_3,5_7],[3_6_0,3_9,4_0_1,5_6],[3_6_0,3_9,4_0_1,5_6],[4_1_1,3_9,4_7_1,5_9],[4_7_9,4_1,5_2_8,5_9],[5_3_3,3_9,6_3_0,6_0],[6_7,1_1_3,1_3_4,1_3_1],[1_4_1,1_1_5,2_0_9,1_3_2],[6_8,1_4_9,1_3_3,1_6_6],[1_4_1,1_4_9,1_8_7,1_6_4],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[2_9_5,1_4_8,3_4_9,1_6_5],[4_4_1,1_4_9,4_9_2,1_6_6],[4_9_7,1_4_9,5_4_6,1_6_4],[6_4,2_0_1,1_2_5,2_1_8],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]],[[0,0,0,0],[6_6_2,1_5_0,7_5_4,1_6_6],[6_6_5,1_9_9,7_4_2,2_1_1],[5_1_9,2_1_3,5_5_4,2_2_8],[5_1_9,2_1_3,5_5_4,2_2_8],[1_3_4,4_3_3,1_8_7,4_5_4],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[3_1_4,4_6_9,3_7_6,4_8_2],[5_0_4,6_8_4,5_8_2,7_0_6],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[6_1_0,7_4_9,6_5_2,7_6_5],[1_3_0,6_5_9,1_6_8,6_7_2],[1_7_6,6_5_7,2_3_7,6_7_2],[2_3_8,6_5_7,3_1_2,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[7_1_6,3_0_1,8_2_5,3_1_7],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]]] ) # noqa: E231 __A = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __A = tf.convert_to_tensor([[-1_0_0,1_0,1_0,1_0,9,1,-1_0_0,7,7,-1_0_0,7,7,4,2,5,2,8,8,-1_0_0,-1_0_0,5,0,3,2,-1_0_0],[-1_0_0,1_2,1_2,1_2,-1_0_0,1_2,1_0,-1_0_0,-1_0_0,-1_0_0,-1_0_0,1_0,1_2,9,-1_0_0,-1_0_0,-1_0_0,1_0,1_0,1_0,9,1_2,-1_0_0,1_0,-1_0_0]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class UpperCamelCase__ ( unittest.TestCase): @slow def lowercase_ ( self :Tuple ) -> Optional[Any]: '''simple docstring''' __A = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) __A , __A , __A , __A , __A = prepare_layoutlm_batch_inputs() # forward pass __A = model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the sequence output on [0, :3, :3] __A = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1E-3 ) ) # test the pooled output on [1, :3] __A = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _A , atol=1E-3 ) ) @slow def lowercase_ ( self :Tuple ) -> Any: '''simple docstring''' __A = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) __A , __A , __A , __A , __A = prepare_layoutlm_batch_inputs() # forward pass __A = model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __A = outputs.loss __A = (2,) self.assertEqual(loss.shape , _A ) # test the shape of the logits __A = outputs.logits __A = (2, 2) self.assertEqual(logits.shape , _A ) @slow def lowercase_ ( self :Any ) -> int: '''simple docstring''' __A = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) __A , __A , __A , __A , __A = prepare_layoutlm_batch_inputs() # forward pass __A = model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=_A ) # test the shape of the logits __A = outputs.logits __A = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _A ) @slow def lowercase_ ( self :List[Any] ) -> List[str]: '''simple docstring''' __A = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) __A , __A , __A , __A , __A = prepare_layoutlm_batch_inputs() # forward pass __A = model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the shape of the logits __A = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _A ) self.assertEqual(outputs.end_logits.shape , _A )
161
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case__ , unittest.TestCase ): _a : Optional[Any] = DebertaVaTokenizer _a : Optional[Any] = DebertaVaTokenizerFast _a : List[str] = True _a : Optional[Any] = True def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(_A , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = "this is a test" __lowerCAmelCase = "this is a test" return input_text, output_text def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "<pad>" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(_A ) , 3_0_0_0_1 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = " \tHeLLo!how \n Are yoU? " __lowerCAmelCase = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __lowerCAmelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __lowerCAmelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __lowerCAmelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __lowerCAmelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __lowerCAmelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = " \tHeLLo!how \n Are yoU? " __lowerCAmelCase = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __lowerCAmelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(_A ) __lowerCAmelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "This is a test" __lowerCAmelCase = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] __lowerCAmelCase = ["▁", "T", "his", "▁is", "▁a", "▁test"] __lowerCAmelCase = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] __lowerCAmelCase = DebertaVaTokenizer(_A , keep_accents=_A ) __lowerCAmelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] __lowerCAmelCase = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] __lowerCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DebertaVaTokenizer(_A ) __lowerCAmelCase = tokenizer.encode("sequence builders" ) __lowerCAmelCase = tokenizer.encode("multi-sequence build" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_A ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
92
0
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0 ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = row, column lowerCAmelCase__ = [[default_value for c in range(_UpperCamelCase )] for r in range(_UpperCamelCase )] def __str__( self ): """simple docstring""" lowerCAmelCase__ = F"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier lowerCAmelCase__ = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase__ = max(_UpperCamelCase , len(str(_UpperCamelCase ) ) ) lowerCAmelCase__ = F"%{max_element_length}s" # Make string and return def single_line(_UpperCamelCase ) -> str: nonlocal string_format_identifier lowerCAmelCase__ = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_UpperCamelCase ) for row_vector in self.array ) return s def __repr__( self ): """simple docstring""" return str(self ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if not (isinstance(_UpperCamelCase , (list, tuple) ) and len(_UpperCamelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , _UpperCamelCase ): """simple docstring""" assert self.validate_indicies(_UpperCamelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" assert self.validate_indicies(_UpperCamelCase ) lowerCAmelCase__ = value def __add__( self , _UpperCamelCase ): """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ = self[r, c] + another[r, c] return result def __neg__( self ): """simple docstring""" lowerCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ = -self[r, c] return result def __sub__( self , _UpperCamelCase ): """simple docstring""" return self + (-another) def __mul__( self , _UpperCamelCase ): """simple docstring""" if isinstance(_UpperCamelCase , (int, float) ): # Scalar multiplication lowerCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ = self[r, c] * another return result elif isinstance(_UpperCamelCase , _UpperCamelCase ): # Matrix multiplication assert self.column == another.row lowerCAmelCase__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase__ = F"Unsupported type given for another ({type(_UpperCamelCase )})" raise TypeError(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ = self[r, c] return result def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase__ = v.transpose() lowerCAmelCase__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase__ = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase__ = 1 print(F"a^(-1) is {ainv}" ) # u, v lowerCAmelCase__ = Matrix(3 , 1 , 0 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1, 2, -3 lowerCAmelCase__ = Matrix(3 , 1 , 0 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCamelCase_ , UpperCamelCase_ )}" ) def _UpperCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
122
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Dict = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , __A , ) if isinstance(__A , torch.Tensor ): return image elif isinstance(__A , PIL.Image.Image ): UpperCamelCase__ = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase__ , UpperCamelCase__ = image[0].size UpperCamelCase__ , UpperCamelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCamelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] UpperCamelCase__ = np.concatenate(__A , axis=0 ) UpperCamelCase__ = np.array(__A ).astype(np.floataa ) / 255.0 UpperCamelCase__ = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase__ = 2.0 * image - 1.0 UpperCamelCase__ = torch.from_numpy(__A ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase__ = torch.cat(__A , dim=0 ) return image def _UpperCamelCase ( __A ) -> Optional[int]: '''simple docstring''' if isinstance(__A , torch.Tensor ): return mask elif isinstance(__A , PIL.Image.Image ): UpperCamelCase__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCamelCase__ , UpperCamelCase__ = mask[0].size UpperCamelCase__ , UpperCamelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] UpperCamelCase__ = np.concatenate(__A , axis=0 ) UpperCamelCase__ = mask.astype(np.floataa ) / 255.0 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = torch.from_numpy(__A ) elif isinstance(mask[0] , torch.Tensor ): UpperCamelCase__ = torch.cat(__A , dim=0 ) return mask class lowercase_ ( a__ ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 def __init__( self , a , a ): super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a , a , a = 2_50 , a = 0.0 , a = 10 , a = 10 , a = None , a = "pil" , a = True , ): UpperCamelCase__ = image UpperCamelCase__ = _preprocess_image(a ) UpperCamelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase__ = _preprocess_mask(a ) UpperCamelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(a )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase__ = original_image.shape UpperCamelCase__ = randn_tensor(a , generator=a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a , a , a , self.device ) UpperCamelCase__ = eta UpperCamelCase__ = self.scheduler.timesteps[0] + 1 UpperCamelCase__ = generator[0] if isinstance(a , a ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCamelCase__ = self.unet(a , a ).sample # compute previous image: x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a , a , a , a , a , a ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCamelCase__ = self.scheduler.undo_step(a , a , a ) UpperCamelCase__ = t UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
80
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A , __A , __A ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
80
1
def lowerCAmelCase_ ( __lowerCamelCase ): if n_term == "": return [] __snake_case : list = [] for temp in range(int(__lowerCamelCase ) ): series.append(F'1/{temp + 1}' if series else "1" ) return series if __name__ == "__main__": _snake_case : Optional[int] = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
134
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _snake_case : int = "scheduler_config.json" class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Tuple = 5 @dataclass class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : jnp.ndarray class a : """simple docstring""" __UpperCAmelCase : Dict = SCHEDULER_CONFIG_NAME __UpperCAmelCase : Union[str, Any] = ["dtype"] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : int = True @classmethod def __snake_case ( cls : List[str] , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : List[str]=False , **lowerCamelCase : Union[str, Any] , ) -> List[str]: __snake_case , __snake_case : List[str] = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) __snake_case , __snake_case : Dict = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): __snake_case : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __snake_case ( self : Any , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[Any] ) -> int: self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Tuple ) -> List[Any]: return self._get_compatibles() @classmethod def __snake_case ( cls : int ) -> Dict: __snake_case : Tuple = list(set([cls.__name__] + cls._compatibles ) ) __snake_case : int = importlib.import_module(__name__.split("." )[0] ) __snake_case : Tuple = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): assert len(__lowerCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCamelCase ) - x.ndim) ) , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase=jnp.floataa ): def alpha_bar(__lowerCamelCase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __snake_case : List[Any] = [] for i in range(__lowerCamelCase ): __snake_case : Dict = i / num_diffusion_timesteps __snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCamelCase ) / alpha_bar(__lowerCamelCase ) , __lowerCamelCase ) ) return jnp.array(__lowerCamelCase , dtype=__lowerCamelCase ) @flax.struct.dataclass class a : """simple docstring""" __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray @classmethod def __snake_case ( cls : Union[str, Any] , lowerCamelCase : int ) -> List[Any]: __snake_case : Dict = scheduler.config if config.trained_betas is not None: __snake_case : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case : Optional[int] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Optional[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __snake_case : Any = 1.0 - betas __snake_case : int = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = state.alphas_cumprod __snake_case : str = alphas_cumprod[timesteps] ** 0.5 __snake_case : Dict = sqrt_alpha_prod.flatten() __snake_case : str = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) __snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : str = sqrt_one_minus_alpha_prod.flatten() __snake_case : Tuple = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Union[str, Any] = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Dict = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : Optional[int] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
134
1
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : list ): if len(lowercase__ ) <= 1: return lst snake_case : Any = 1 while i < len(lowercase__ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case , snake_case : Dict = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case : str = 1 return lst if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
148
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A = logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Union[str, Any] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case : int = deprecated_arg[3:] snake_case : Optional[Any] = not kwargs.pop(SCREAMING_SNAKE_CASE ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) snake_case : Tuple = kwargs.pop("tpu_name" , self.tpu_name ) snake_case : Union[str, Any] = kwargs.pop("device_idx" , self.device_idx ) snake_case : List[str] = kwargs.pop("eager_mode" , self.eager_mode ) snake_case : Union[str, Any] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**SCREAMING_SNAKE_CASE ) a__ : str = field( default=lowerCamelCase_ , metadata={"""help""": """Name of TPU"""} , ) a__ : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) a__ : bool = field(default=lowerCamelCase_ , metadata={"""help""": """Benchmark models in eager model."""} ) a__ : bool = field( default=lowerCamelCase_ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) snake_case : int = None if self.tpu: try: if self.tpu_name: snake_case : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: snake_case : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: snake_case : Optional[Any] = None return tpu @cached_property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) snake_case : Any = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) snake_case : str = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU snake_case : List[str] = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def lowerCamelCase_ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCamelCase_ ( self ): """simple docstring""" return self.n_gpu > 0
148
1
"""simple docstring""" lowerCamelCase_ = "Input must be a string of 8 numbers plus letter" lowerCamelCase_ = "TRWAGMYFPDXBNJZSQVHLCKE" def __lowerCamelCase ( a_ : str ) -> bool: if not isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :Optional[Any] = f'''Expected string as input, found {type(a_ ).__name__}''' raise TypeError(a_ ) __SCREAMING_SNAKE_CASE :Dict = spanish_id.replace('''-''' , '''''' ).upper() if len(a_ ) != 9: raise ValueError(a_ ) try: __SCREAMING_SNAKE_CASE :Optional[int] = int(spanish_id_clean[0:8] ) __SCREAMING_SNAKE_CASE :Any = spanish_id_clean[8] except ValueError as ex: raise ValueError(a_ ) from ex if letter.isdigit(): raise ValueError(a_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" def __lowerCamelCase ( a_ : int = 10 , a_ : int = 22 ) -> int: __SCREAMING_SNAKE_CASE :Optional[int] = range(1 , a_ ) __SCREAMING_SNAKE_CASE :List[Any] = range(1 , a_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(1_0, 2_2) = }')
239
0
def A_ ( A__ , A__ ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def A_ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
99
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Union[str, Any] = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = 'audio-spectrogram-transformer' def __init__( self : Optional[int] , lowercase_ : Tuple=768 , lowercase_ : Dict=12 , lowercase_ : Optional[Any]=12 , lowercase_ : List[Any]=3072 , lowercase_ : Tuple="gelu" , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : Optional[int]=0.02 , lowercase_ : Optional[int]=1E-12 , lowercase_ : Optional[Any]=16 , lowercase_ : List[str]=True , lowercase_ : List[Any]=10 , lowercase_ : Dict=10 , lowercase_ : List[Any]=1024 , lowercase_ : int=128 , **lowercase_ : Any , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[Any] = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Union[str, Any] = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Tuple = patch_size lowercase_ : Tuple = qkv_bias lowercase_ : Optional[Any] = frequency_stride lowercase_ : Dict = time_stride lowercase_ : Any = max_length lowercase_ : Any = num_mel_bins
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''MaskFormerFeatureExtractor'''] _A = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] _A = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
122
_A = [0, 2, 4, 6, 8] _A = [1, 3, 5, 7, 9] def lowerCamelCase__ ( a__ : int , a__ : int , a__ : list[int] , a__ : int ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCamelCase_ = 0 for digit in range(10 ): UpperCamelCase_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a__ , a__ ) return result UpperCamelCase_ = 0 for digita in range(10 ): UpperCamelCase_ = digita if (remainder + digita) % 2 == 0: UpperCamelCase_ = ODD_DIGITS else: UpperCamelCase_ = EVEN_DIGITS for digita in other_parity_digits: UpperCamelCase_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a__ , a__ , ) return result def lowerCamelCase__ ( a__ : int = 9 ) -> int: UpperCamelCase_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a__ , 0 , [0] * length , a__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
122
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Optional[Any] =get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase__ : Any =25_00_04 UpperCAmelCase__ : Any =25_00_20 @require_sentencepiece @require_tokenizers class __A ( a , unittest.TestCase ): __A = MBartaaTokenizer __A = MBartaaTokenizerFast __A = True __A = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase =MBartaaTokenizer(UpperCAmelCase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ): lowerCamelCase ="""<s>""" lowerCamelCase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase_ ) , 1054 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _snake_case ( self ): lowerCamelCase =MBartaaTokenizer(UpperCAmelCase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=UpperCAmelCase_ ) lowerCamelCase =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) lowerCamelCase =tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase =tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _snake_case ( self ): # fmt: off lowerCamelCase ={"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def _snake_case ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase =(self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =tempfile.mkdtemp() lowerCamelCase =tokenizer_r.save_pretrained(UpperCAmelCase_ ) lowerCamelCase =tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCamelCase =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCamelCase =tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase =tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase =tempfile.mkdtemp() lowerCamelCase =tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCamelCase =tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCamelCase =tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase =tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase =tempfile.mkdtemp() lowerCamelCase =tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCamelCase =tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase =tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase =tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): __A = """facebook/mbart-large-50-one-to-many-mmt""" __A = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __A = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __A = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def _snake_case ( cls ): lowerCamelCase =MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCamelCase =1 return cls def _snake_case ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 ) def _snake_case ( self ): lowerCamelCase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def _snake_case ( self ): self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) lowerCamelCase =[RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase =self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , UpperCAmelCase_ ) lowerCamelCase =10 lowerCamelCase =self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[0] , UpperCAmelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _snake_case ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] ) def _snake_case ( self ): lowerCamelCase =tempfile.mkdtemp() lowerCamelCase =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCamelCase =MBartaaTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_ ) @require_torch def _snake_case ( self ): lowerCamelCase =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors="""pt""" ) lowerCamelCase =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _snake_case ( self ): lowerCamelCase =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCamelCase =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _snake_case ( self ): lowerCamelCase =self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors="""pt""" ) lowerCamelCase =self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=10 , return_tensors="""pt""" ) lowerCamelCase =targets["""input_ids"""] lowerCamelCase =shift_tokens_right(UpperCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case ( self ): lowerCamelCase =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
355
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ : Union[str, Any] =16 UpperCAmelCase__ : Any =32 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase = 16 ) -> int: lowerCamelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase =datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase =16 elif accelerator.mixed_precision != "no": lowerCamelCase =8 else: lowerCamelCase =None return tokenizer.pad( _UpperCAmelCase , padding="""longest""" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase =DataLoader( tokenized_datasets["""train"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase =DataLoader( tokenized_datasets["""validation"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ : Dict =mocked_dataloaders # noqa: F811 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _UpperCAmelCase ) == "1": lowerCamelCase =2 # New Code # lowerCamelCase =int(args.gradient_accumulation_steps ) lowerCamelCase =int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase =config["""lr"""] lowerCamelCase =int(config["""num_epochs"""] ) lowerCamelCase =int(config["""seed"""] ) lowerCamelCase =int(config["""batch_size"""] ) lowerCamelCase =evaluate.load("""glue""" , """mrpc""" ) set_seed(_UpperCAmelCase ) lowerCamelCase , lowerCamelCase =get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase =AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler lowerCamelCase =get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() with LocalSGD( accelerator=_UpperCAmelCase , model=_UpperCAmelCase , local_sgd_steps=_UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): lowerCamelCase =model(**_UpperCAmelCase ) lowerCamelCase =output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase =model(**_UpperCAmelCase ) lowerCamelCase =outputs.logits.argmax(dim=-1 ) lowerCamelCase , lowerCamelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) lowerCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _UpperCAmelCase ) def _lowercase ( ) -> Any: lowerCamelCase =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_UpperCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=_UpperCAmelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCamelCase =parser.parse_args() lowerCamelCase ={"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
262
0
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=1_00 , lowerCAmelCase_ : Optional[int]=13 , lowerCAmelCase_ : List[Any]=30 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Optional[int]=37 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=10 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Any=[0, 1, 2, 3] , ) -> str: '''simple docstring''' A__ : Optional[Any] =parent A__ : Optional[Any] =1_00 A__ : Optional[Any] =batch_size A__ : Optional[Any] =image_size A__ : Optional[int] =patch_size A__ : List[Any] =num_channels A__ : Dict =is_training A__ : Dict =use_labels A__ : Dict =hidden_size A__ : Union[str, Any] =num_hidden_layers A__ : List[Any] =num_attention_heads A__ : Dict =intermediate_size A__ : Optional[Any] =hidden_act A__ : List[str] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[Any] =type_sequence_label_size A__ : List[str] =initializer_range A__ : Union[str, Any] =scope A__ : int =out_indices A__ : int =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A__ : Tuple =(image_size // patch_size) ** 2 A__ : Any =num_patches + 1 def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' A__ : Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Tuple =None A__ : List[str] =None if self.use_labels: A__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Any =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ : Optional[Any] =self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Any ) -> str: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' A__ : List[Any] =BeitModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : int =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' A__ : Any =BeitForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Union[str, Any] =model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =self.type_sequence_label_size A__ : List[str] =BeitForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ : str =1 A__ : List[Any] =BeitForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : int =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ : Optional[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : Optional[int] =self.num_labels A__ : Dict =BeitForSemanticSegmentation(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : Dict =config_and_inputs A__ : List[str] ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __snake_case = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' A__ : List[str] =BeitModelTester(self ) A__ : int =ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ , A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : str =model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : Tuple =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' A__ , A__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Union[str, Any] =model_class(lowerCAmelCase_ ) A__ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Dict =[*signature.parameters.keys()] A__ : List[str] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return A__ , A__ : str =self.model_tester.prepare_config_and_inputs_for_common() A__ : str =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCAmelCase_ ), BeitForMaskedImageModeling]: continue A__ : str =model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() A__ : Union[str, Any] =self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) A__ : str =model(**lowerCAmelCase_ ).loss loss.backward() def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ , A__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A__ : Any =False A__ : Optional[int] =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCAmelCase_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue A__ : int =model_class(lowerCAmelCase_ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_ ) model.train() A__ : int =self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) A__ : Tuple =model(**lowerCAmelCase_ ).loss loss.backward() def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' A__ , A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() A__ : Any =_config_zero_init(lowerCAmelCase_ ) for model_class in self.all_model_classes: A__ : Optional[Any] =model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Any =BeitModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ : int =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' A__ : int =BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(lowerCAmelCase_ ) A__ : List[Any] =self.default_image_processor A__ : Optional[int] =prepare_img() A__ : int =image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values.to(lowerCAmelCase_ ) # prepare bool_masked_pos A__ : Any =torch.ones((1, 1_96) , dtype=torch.bool ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): A__ : Dict =model(pixel_values=lowerCAmelCase_ , bool_masked_pos=lowerCAmelCase_ ) A__ : str =outputs.logits # verify the logits A__ : Tuple =torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) A__ : List[Any] =torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase_ , atol=1e-2 ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(lowerCAmelCase_ ) A__ : List[Any] =self.default_image_processor A__ : Tuple =prepare_img() A__ : str =image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): A__ : Optional[int] =model(**lowerCAmelCase_ ) A__ : int =outputs.logits # verify the logits A__ : str =torch.Size((1, 10_00) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) A__ : Optional[int] =torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) A__ : Optional[Any] =2_81 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase_ ) @slow def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( lowerCAmelCase_ ) A__ : Optional[Any] =self.default_image_processor A__ : Optional[Any] =prepare_img() A__ : Optional[Any] =image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): A__ : List[Any] =model(**lowerCAmelCase_ ) A__ : Any =outputs.logits # verify the logits A__ : Dict =torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) A__ : Dict =23_96 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase_ ) @slow def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' A__ : Dict =BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) A__ : List[str] =model.to(lowerCAmelCase_ ) A__ : int =BeitImageProcessor(do_resize=lowerCAmelCase_ , size=6_40 , do_center_crop=lowerCAmelCase_ ) A__ : List[Any] =load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A__ : str =Image.open(ds[0]["""file"""] ) A__ : List[Any] =image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): A__ : Optional[Any] =model(**lowerCAmelCase_ ) A__ : Optional[int] =outputs.logits # verify the logits A__ : int =torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) A__ : List[Any] =version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: A__ : Optional[int] =torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCAmelCase_ , ) else: A__ : List[str] =torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase__ ( self : int ) -> str: '''simple docstring''' A__ : Dict =BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) A__ : Dict =model.to(lowerCAmelCase_ ) A__ : Any =BeitImageProcessor(do_resize=lowerCAmelCase_ , size=6_40 , do_center_crop=lowerCAmelCase_ ) A__ : Optional[int] =load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A__ : Any =Image.open(ds[0]["""file"""] ) A__ : Optional[Any] =image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): A__ : Optional[int] =model(**lowerCAmelCase_ ) A__ : Optional[Any] =outputs.logits.detach().cpu() A__ : Any =image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ , target_sizes=[(5_00, 3_00)] ) A__ : Optional[int] =torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase_ ) A__ : int =image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ ) A__ : Union[str, Any] =torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase_ )
134
'''simple docstring''' import os from math import logaa def __lowerCamelCase ( __snake_case : str = "base_exp.txt" ) -> int: """simple docstring""" A__ : float =0 A__ : Optional[int] =0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ), __snake_case ) ) ): A__ , A__ : Union[str, Any] =list(map(__snake_case, line.split(""",""" ) ) ) if x * logaa(__snake_case ) > largest: A__ : List[str] =x * logaa(__snake_case ) A__ : Any =i + 1 return result if __name__ == "__main__": print(solution())
134
1
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase : Tuple = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class A__ ( __lowercase ): def __init__( self : str , *_a : Tuple , **_a : Optional[int] ) -> Tuple: '''simple docstring''' super().__init__(*_a , **_a ) requires_backends(self , 'decord' ) self.check_model_type(_a ) def A ( self : Optional[int] , _a : Optional[int]=None , _a : List[str]=None , _a : Tuple=None ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if frame_sampling_rate is not None: _SCREAMING_SNAKE_CASE =frame_sampling_rate if num_frames is not None: _SCREAMING_SNAKE_CASE =num_frames _SCREAMING_SNAKE_CASE ={} if top_k is not None: _SCREAMING_SNAKE_CASE =top_k return preprocess_params, {}, postprocess_params def __call__( self : str , _a : Optional[int] , **_a : int ) -> Tuple: '''simple docstring''' return super().__call__(_a , **_a ) def A ( self : Union[str, Any] , _a : Optional[Any] , _a : Optional[Any]=None , _a : Any=1 ) -> List[str]: '''simple docstring''' if num_frames is None: _SCREAMING_SNAKE_CASE =self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): _SCREAMING_SNAKE_CASE =BytesIO(requests.get(_a ).content ) _SCREAMING_SNAKE_CASE =VideoReader(_a ) videoreader.seek(0 ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =num_frames * frame_sampling_rate - 1 _SCREAMING_SNAKE_CASE =np.linspace(_a , _a , num=_a , dtype=np.intaa ) _SCREAMING_SNAKE_CASE =videoreader.get_batch(_a ).asnumpy() _SCREAMING_SNAKE_CASE =list(_a ) _SCREAMING_SNAKE_CASE =self.image_processor(_a , return_tensors=self.framework ) return model_inputs def A ( self : List[Any] , _a : Optional[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model(**_a ) return model_outputs def A ( self : int , _a : Tuple , _a : List[str]=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: _SCREAMING_SNAKE_CASE =self.model.config.num_labels if self.framework == "pt": _SCREAMING_SNAKE_CASE =model_outputs.logits.softmax(-1 )[0] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =probs.topk(_a ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) _SCREAMING_SNAKE_CASE =scores.tolist() _SCREAMING_SNAKE_CASE =ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_a , _a )]
350
'''simple docstring''' from math import factorial def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : float ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _SCREAMING_SNAKE_CASE =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _SCREAMING_SNAKE_CASE =float(factorial(_UpperCamelCase ) ) coefficient /= factorial(_UpperCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.7_5))
114
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): __lowerCAmelCase = key.replace("module.encoder" , "glpn.encoder" ) if key.startswith("module.decoder" ): __lowerCAmelCase = key.replace("module.decoder" , "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __lowerCAmelCase = key[key.find("patch_embed" ) + len("patch_embed" )] __lowerCAmelCase = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(UpperCAmelCase__ )-1}""" ) if "norm" in key: __lowerCAmelCase = key.replace("norm" , "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __lowerCAmelCase = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] __lowerCAmelCase = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(UpperCAmelCase__ )-1}""" ) if "layer_norm1" in key: __lowerCAmelCase = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: __lowerCAmelCase = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 __lowerCAmelCase = key[key.find("block" ) + len("block" )] __lowerCAmelCase = key.replace(F"""block{idx}""" , F"""block.{int(UpperCAmelCase__ )-1}""" ) if "attn.q" in key: __lowerCAmelCase = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: __lowerCAmelCase = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: __lowerCAmelCase = key.replace("attn" , "attention.self" ) if "fc1" in key: __lowerCAmelCase = key.replace("fc1" , "dense1" ) if "fc2" in key: __lowerCAmelCase = key.replace("fc2" , "dense2" ) if "linear_pred" in key: __lowerCAmelCase = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: __lowerCAmelCase = key.replace("linear_fuse.conv" , "linear_fuse" ) __lowerCAmelCase = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __lowerCAmelCase = key[key.find("linear_c" ) + len("linear_c" )] __lowerCAmelCase = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(UpperCAmelCase__ )-1}""" ) if "bot_conv" in key: __lowerCAmelCase = key.replace("bot_conv" , "0.convolution" ) if "skip_conv1" in key: __lowerCAmelCase = key.replace("skip_conv1" , "1.convolution" ) if "skip_conv2" in key: __lowerCAmelCase = key.replace("skip_conv2" , "2.convolution" ) if "fusion1" in key: __lowerCAmelCase = key.replace("fusion1" , "1.fusion" ) if "fusion2" in key: __lowerCAmelCase = key.replace("fusion2" , "2.fusion" ) if "fusion3" in key: __lowerCAmelCase = key.replace("fusion3" , "3.fusion" ) if "fusion" in key and "conv" in key: __lowerCAmelCase = key.replace("conv" , "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): __lowerCAmelCase = key.replace("module.last_layer_depth" , "head.head" ) __lowerCAmelCase = value return new_state_dict def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __lowerCAmelCase = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict __lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] __lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] __lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] __lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def _a ( ): __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : str=None ): __lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) __lowerCAmelCase = GLPNImageProcessor() # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict __lowerCAmelCase = torch.load(UpperCAmelCase__ , map_location=torch.device("cpu" ) ) # rename keys __lowerCAmelCase = rename_keys(UpperCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCAmelCase__ , UpperCAmelCase__ ) # create HuggingFace model and load state dict __lowerCAmelCase = GLPNForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # forward pass __lowerCAmelCase = model(UpperCAmelCase__ ) __lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __lowerCAmelCase = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: __lowerCAmelCase = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) __lowerCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__ , UpperCAmelCase__ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=UpperCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__ , UpperCAmelCase__ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=UpperCAmelCase__ , ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) UpperCamelCase__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
92
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = PriorTransformer UpperCamelCase__ = '''hidden_states''' @property def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[Any] = 4 lowercase_ : int = 8 lowercase_ : Union[str, Any] = 7 lowercase_ : List[str] = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Tuple = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[Any]=0 ): torch.manual_seed(lowercase_ ) lowercase_ : int = 4 lowercase_ : Any = 8 lowercase_ : Tuple = 7 lowercase_ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Tuple = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Union[str, Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def SCREAMING_SNAKE_CASE_ ( self : str ): return (4, 8) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return (4, 8) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Optional[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } lowercase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : Tuple = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowercase_ ) lowercase_ : Optional[int] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ , lowercase_ : str = self.prepare_init_args_and_inputs_for_common() lowercase_ : List[Any] = self.model_class(**lowercase_ ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) lowercase_ : Any = model.to(lowercase_ ) if hasattr(lowercase_ , """set_default_attn_processor""" ): model.set_default_attn_processor() lowercase_ : Any = self.get_dummy_seed_input() with torch.no_grad(): lowercase_ : List[str] = model(**lowercase_ )[0] lowercase_ : Tuple = output[0, :5].flatten().cpu() print(lowercase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase_ : Dict = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2 ) ) @slow class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Union[str, Any]=1 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=77 , lowercase_ : Optional[int]=0 ): torch.manual_seed(lowercase_ ) lowercase_ : Optional[Any] = batch_size lowercase_ : int = embedding_dim lowercase_ : int = num_embeddings lowercase_ : Dict = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Any = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Any , lowercase_ : List[str] ): lowercase_ : List[Any] = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(lowercase_ ) lowercase_ : Optional[Any] = self.get_dummy_seed_input(seed=lowercase_ ) with torch.no_grad(): lowercase_ : Tuple = model(**lowercase_ )[0] assert list(sample.shape ) == [1, 768] lowercase_ : Union[str, Any] = sample[0, :8].flatten().cpu() print(lowercase_ ) lowercase_ : Optional[Any] = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1E-3 )
239
0
"""simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 8.314_4598 def lowerCAmelCase_( lowercase_ : float , lowercase_ : float ) -> int: if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __SCREAMING_SNAKE_CASE : Optional[Any] = 3_0_0 __SCREAMING_SNAKE_CASE : int = 2_8 __SCREAMING_SNAKE_CASE : int = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
370
"""simple docstring""" import os import sys __SCREAMING_SNAKE_CASE : Dict = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __SCREAMING_SNAKE_CASE : List[Any] = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase_( *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> Optional[Any]: return AutoConfig.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase_( *lowercase_ : List[Any] , **lowercase_ : List[Any] ) -> Tuple: return AutoTokenizer.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase_( *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any] ) -> int: return AutoModel.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase_( *lowercase_ : Dict , **lowercase_ : List[Any] ) -> int: return AutoModelForCausalLM.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase_( *lowercase_ : str , **lowercase_ : List[Any] ) -> Any: return AutoModelForMaskedLM.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase_( *lowercase_ : Tuple , **lowercase_ : List[Any] ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*lowercase_ , **lowercase_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase_( *lowercase_ : List[str] , **lowercase_ : List[str] ) -> str: return AutoModelForQuestionAnswering.from_pretrained(*lowercase_ , **lowercase_ )
73
0
from __future__ import annotations _snake_case = 1.6021e-19 # units = C def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
26
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFResNetModel(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _a : Optional[int] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) _a : Optional[int] = False _a : Optional[Any] = False _a : int = False _a : Union[str, Any] = False _a : str = False def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( ) -> str: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
362
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCAmelCase__ ( a__: str , a__: List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) _UpperCAmelCase = transform(a__ ).unsqueeze(0 ).to(a__ ) return image def lowerCAmelCase__ ( a__: Optional[int] ) -> int: '''simple docstring''' if "visual_encoder" in key: _UpperCAmelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , a__ ) if "blocks" in key: _UpperCAmelCase = re.sub(R'blocks' , 'layers' , a__ ) if "attn" in key: _UpperCAmelCase = re.sub(R'attn' , 'self_attn' , a__ ) if "norm1" in key: _UpperCAmelCase = re.sub(R'norm1' , 'layer_norm1' , a__ ) if "norm2" in key: _UpperCAmelCase = re.sub(R'norm2' , 'layer_norm2' , a__ ) if "encoder.norm" in key: _UpperCAmelCase = re.sub(R'encoder.norm' , 'post_layernorm' , a__ ) if "encoder.patch_embed.proj" in key: _UpperCAmelCase = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , a__ ) if "encoder.pos_embed" in key: _UpperCAmelCase = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , a__ ) if "encoder.cls_token" in key: _UpperCAmelCase = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , a__ ) if "self_attn" in key: _UpperCAmelCase = re.sub(R'self_attn.proj' , 'self_attn.projection' , a__ ) return key @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[Any] , a__: List[str]=None ) -> Optional[Any]: '''simple docstring''' if config_path is not None: _UpperCAmelCase = BlipConfig.from_pretrained(a__ ) else: _UpperCAmelCase = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) _UpperCAmelCase = BlipForConditionalGeneration(a__ ).eval() _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _UpperCAmelCase = blip_decoder(pretrained=a__ , image_size=3_8_4 , vit='base' ) _UpperCAmelCase = pt_model.eval() _UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value hf_model.load_state_dict(a__ ) _UpperCAmelCase = 3_8_4 _UpperCAmelCase = load_demo_image(image_size=a__ , device='cpu' ) _UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCAmelCase = tokenizer(['a picture of'] ).input_ids _UpperCAmelCase = hf_model.generate(a__ , a__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] _UpperCAmelCase = hf_model.generate(a__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(a__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCAmelCase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _UpperCAmelCase = blip_vqa(pretrained=a__ , image_size=a__ , vit='base' ) vqa_model.eval() _UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForQuestionAnswering(a__ ) hf_vqa_model.load_state_dict(a__ ) _UpperCAmelCase = ['How many dogs are in this image?'] _UpperCAmelCase = tokenizer(a__ , return_tensors='pt' ).input_ids _UpperCAmelCase = hf_vqa_model.generate(a__ , a__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _UpperCAmelCase = blip_itm(pretrained=a__ , image_size=a__ , vit='base' ) itm_model.eval() _UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForImageTextRetrieval(a__ ) _UpperCAmelCase = ['A picture of a woman with a dog sitting in a beach'] _UpperCAmelCase = tokenizer( a__ , return_tensors='pt' , padding='max_length' , truncation=a__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(a__ ) hf_itm_model.eval() _UpperCAmelCase = hf_itm_model(a__ , a__ , use_itm_head=a__ ) _UpperCAmelCase = hf_itm_model(a__ , a__ , use_itm_head=a__ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase__ :int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase__ :List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
185
0
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE_: int =getLogger(__name__) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] = 8 , snake_case_ : Any = 10_24 , snake_case_ : List[str]="val" , snake_case_ : List[Any]=None , snake_case_ : Optional[Any]=False , snake_case_ : Optional[Any]="summarization" , snake_case_ : Tuple=None , snake_case_ : str=1 , snake_case_ : Optional[int] = None , snake_case_ : Any="" , **snake_case_ : Optional[int] , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = str(lowerCAmelCase_ ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=lowerCAmelCase_ ) UpperCAmelCase_ = Path(lowerCAmelCase_ ) UpperCAmelCase_ = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(lowerCAmelCase_ ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).cuda() if fpaa: UpperCAmelCase_ = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase_ , lowerCAmelCase_ ) # update config with task specific params UpperCAmelCase_ = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase_ = num_return_sequences UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase_ = tokenizer.model_max_length if prefix is None: UpperCAmelCase_ = prefix or getattr(model.config , "prefix" , "" ) or '''''' UpperCAmelCase_ = SeqaSeqDataset( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , max_target_length=10_24 , type_path=lowerCAmelCase_ , n_obs=lowerCAmelCase_ , prefix=lowerCAmelCase_ , **lowerCAmelCase_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase_ = ds.make_sortish_sampler(lowerCAmelCase_ , distributed=lowerCAmelCase_ , add_extra_examples=lowerCAmelCase_ , shuffle=lowerCAmelCase_ ) UpperCAmelCase_ = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , collate_fn=ds.collate_fn ) UpperCAmelCase_ = [] for batch in tqdm(lowerCAmelCase_ ): UpperCAmelCase_ = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=lowerCAmelCase_ , num_beams=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) UpperCAmelCase_ = batch['''ids'''] if num_return_sequences > 1: UpperCAmelCase_ = chunks(lowerCAmelCase_ , lowerCAmelCase_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase_ ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(lowerCAmelCase_ , lowerCAmelCase_ ) return results, sampler.num_replicas def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=lowerCAmelCase_ , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=lowerCAmelCase_ , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=lowerCAmelCase_ , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=lowerCAmelCase_ , default=lowerCAmelCase_ ) parser.add_argument( "--type_path" , type=lowerCAmelCase_ , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=lowerCAmelCase_ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowerCAmelCase_ , default=8 , required=lowerCAmelCase_ , help="batch size" ) parser.add_argument( "--local_rank" , type=lowerCAmelCase_ , default=-1 , required=lowerCAmelCase_ , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=lowerCAmelCase_ , default=1 , required=lowerCAmelCase_ , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=lowerCAmelCase_ , default=6_00 , required=lowerCAmelCase_ , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ ) parser.add_argument( "--prefix" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , default=lowerCAmelCase_ , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase_ = time.time() UpperCAmelCase_ = parser.parse_known_args() UpperCAmelCase_ = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase_ ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) UpperCAmelCase_ = Path(args.save_dir + "_tmp" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) # this handles locking. UpperCAmelCase_ = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase_ = {} if args.src_lang is not None: UpperCAmelCase_ = args.src_lang if args.tgt_lang is not None: UpperCAmelCase_ = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase_ ) UpperCAmelCase_ = eval_data_dir( args.data_dir , lowerCAmelCase_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase_ , **lowerCAmelCase_ , ) if args.local_rank <= 0: UpperCAmelCase_ = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase_ ) UpperCAmelCase_ = gather_results_from_each_node(lowerCAmelCase_ , lowerCAmelCase_ , args.sync_timeout ) UpperCAmelCase_ = combine_partial_results(lowerCAmelCase_ ) if args.num_return_sequences > 1: UpperCAmelCase_ = save_dir.joinpath("pseudolabel_results.json" ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(lowerCAmelCase_ , lowerCAmelCase_ ) return UpperCAmelCase_ = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(lowerCAmelCase_ ) as f: UpperCAmelCase_ = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase_ )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase_ = '''translation''' in args.task UpperCAmelCase_ = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase_ = '''bleu''' if calc_bleu else '''rouge''' UpperCAmelCase_ = score_fn(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ = len(lowerCAmelCase_ ) UpperCAmelCase_ = time.time() - start_time UpperCAmelCase_ = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase_ = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase_ = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) print(lowerCAmelCase_ ) write_txt_file(lowerCAmelCase_ , save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(lowerCAmelCase_ , save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(lowerCAmelCase_ ) def lowerCAmelCase_ ( snake_case_ : Tuple ) -> List: '''simple docstring''' UpperCAmelCase_ = [] for partial_result in partial_results: records.extend(lowerCAmelCase_ ) UpperCAmelCase_ = sorted(lowerCAmelCase_ , key=lambda snake_case_ : x["id"] ) UpperCAmelCase_ = [x['''pred'''] for x in records] return preds def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Any ) -> List[Dict[str, List]]: '''simple docstring''' UpperCAmelCase_ = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase_ = None while (time.time() - start_wait) < timeout: UpperCAmelCase_ = list(save_dir.glob("rank_*.json" ) ) if len(lowerCAmelCase_ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase_ = lmap(lowerCAmelCase_ , lowerCAmelCase_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCAmelCase ( )-> int: lowerCAmelCase_ : int = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) lowerCAmelCase_ : Dict = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go lowerCAmelCase_ : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run lowerCAmelCase_ : List[Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
262
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _a : str = datasets.utils.logging.get_logger(__name__) class __A ( folder_based_builder.FolderBasedBuilderConfig ): _UpperCamelCase : bool = None _UpperCamelCase : bool = None class __A ( folder_based_builder.FolderBasedBuilder ): _UpperCamelCase : str = datasets.Audio() _UpperCamelCase : Optional[int] = "audio" _UpperCamelCase : int = AudioFolderConfig _UpperCamelCase : List[str] # definition at the bottom of the script _UpperCamelCase : Optional[int] = AudioClassification(audio_column="audio" , label_column="label" ) _a : Any = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] _a : Optional[int] = AUDIO_EXTENSIONS
350
"""simple docstring""" from manim import * class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : Any = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Any = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[Any] = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Dict = Text("""CPU""" , font_size=24 ) _lowerCAmelCase : str = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCAmelCase : Dict = [mem.copy() for i in range(4 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = Text("""GPU""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : List[str] = Text("""Model""" , font_size=24 ) _lowerCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCAmelCase : Tuple = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase : List[str] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) cpu_targs.append(a__ ) _lowerCAmelCase : Any = [mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , aligned_edge=a__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase : List[str] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCAmelCase : int = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase : List[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) , Write(a__ ) ) self.play(Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _lowerCAmelCase : int = [] _lowerCAmelCase : List[Any] = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : Tuple = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) first_animations.append(GrowFromCenter(a__ , run_time=1 ) ) _lowerCAmelCase : Optional[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(*a__ ) self.wait()
126
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : List[Any] = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class a ( lowercase__ ): """simple docstring""" a : List[Any] = 'xglm' a : str = ['past_key_values'] a : Any = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , __lowercase : int=256008 , __lowercase : Tuple=2048 , __lowercase : List[Any]=1024 , __lowercase : str=4096 , __lowercase : Optional[Any]=24 , __lowercase : Optional[int]=16 , __lowercase : List[Any]="gelu" , __lowercase : str=0.1 , __lowercase : Dict=0.1 , __lowercase : Tuple=0.0 , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.02 , __lowercase : Optional[int]=True , __lowercase : Any=True , __lowercase : Dict=2 , __lowercase : Optional[Any]=1 , __lowercase : List[Any]=0 , __lowercase : Optional[Any]=2 , **__lowercase : List[str] , ) -> Optional[int]: __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : str = ffn_dim __UpperCAmelCase : List[str] = num_layers __UpperCAmelCase : Dict = attention_heads __UpperCAmelCase : str = activation_function __UpperCAmelCase : Optional[Any] = dropout __UpperCAmelCase : Any = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Tuple = layerdrop __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = use_cache super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , **__lowercase , )
114
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase ) -> bool: _lowerCAmelCase =str(__UpperCamelCase ) return n == n[::-1] def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str: _lowerCAmelCase =0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
341
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase ) -> bool: _lowerCAmelCase =str(__UpperCamelCase ) return n == n[::-1] def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str: _lowerCAmelCase =0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
341
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = """camembert""" def __init__( self : Any , __lowerCamelCase : Tuple=3_05_22 , __lowerCamelCase : Optional[Any]=7_68 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Any=30_72 , __lowerCamelCase : str="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[Any]=5_12 , __lowerCamelCase : Any=2 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : int=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Dict , ) -> Tuple: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = classifier_dropout class snake_case__ (_UpperCamelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a = {0: "batch", 1: "choice", 2: "sequence"} else: a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
107
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list: if len(lowerCamelCase__ ) != 2 or len(a[0] ) != 2 or len(lowerCamelCase__ ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) __lowerCamelCase : Optional[int] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase__ ) ) ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase__ ) ) ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[list, list, list, list]: if len(lowerCamelCase__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) __lowerCamelCase : Tuple = len(lowerCamelCase__ ) __lowerCamelCase : List[Any] = matrix_length // 2 __lowerCamelCase : Dict = [[a[i][j] for j in range(lowerCamelCase__ , lowerCamelCase__ )] for i in range(lowerCamelCase__ )] __lowerCamelCase : str = [ [a[i][j] for j in range(lowerCamelCase__ , lowerCamelCase__ )] for i in range(lowerCamelCase__ , lowerCamelCase__ ) ] __lowerCamelCase : Dict = [[a[i][j] for j in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ )] __lowerCamelCase : Optional[Any] = [[a[i][j] for j in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ , lowerCamelCase__ )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[int, int]: return len(lowerCamelCase__ ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: print('\n'.join(str(lowerCamelCase__ ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list: if matrix_dimensions(lowerCamelCase__ ) == (2, 2): return default_matrix_multiplication(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = split_matrix(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = split_matrix(lowerCamelCase__ ) __lowerCamelCase : str = actual_strassen(lowerCamelCase__ , matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : List[str] = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : List[Any] = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : Tuple = actual_strassen(lowerCamelCase__ , matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Optional[int] = actual_strassen(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Dict = actual_strassen(matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Tuple = actual_strassen(matrix_subtraction(lowerCamelCase__ , lowerCamelCase__ ) , matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase : Dict = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : Tuple = matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : List[str] = matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Any = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) , lowerCamelCase__ ) # construct the new matrix from our 4 quadrants __lowerCamelCase : List[Any] = [] for i in range(len(lowerCamelCase__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCamelCase__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list: if matrix_dimensions(lowerCamelCase__ )[1] != matrix_dimensions(lowerCamelCase__ )[0]: __lowerCamelCase : Any = ( 'Unable to multiply these matrices, please check the dimensions.\n' F"Matrix A: {matrixa}\n" F"Matrix B: {matrixa}" ) raise Exception(lowerCamelCase__ ) __lowerCamelCase : str = matrix_dimensions(lowerCamelCase__ ) __lowerCamelCase : List[str] = matrix_dimensions(lowerCamelCase__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCamelCase : str = max(*lowerCamelCase__ , *lowerCamelCase__ ) __lowerCamelCase : List[str] = int(math.pow(2 , math.ceil(math.loga(lowerCamelCase__ ) ) ) ) __lowerCamelCase : Any = matrixa __lowerCamelCase : int = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCamelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __lowerCamelCase : List[str] = actual_strassen(lowerCamelCase__ , lowerCamelCase__ ) # Removing the additional zeros for i in range(0 , lowerCamelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a =[ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a =[[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
73
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ (UpperCamelCase__ : list ): if not nums: raise ValueError('''List is empty''' ) return sum(snake_case_ ) / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Tuple: _UpperCAmelCase : str = {} def __lowerCAmelCase ( self , A , A , A=1 ) -> Optional[Any]: if self.graph.get(A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Optional[int] = [[w, v]] if not self.graph.get(A ): _UpperCAmelCase : List[str] = [] def __lowerCAmelCase ( self ) -> Optional[int]: return list(self.graph ) def __lowerCAmelCase ( self , A , A ) -> int: if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Optional[int]: if s == d: return [] _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: _UpperCAmelCase : List[str] = stack[len(A ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(A ) == 0: return visited def __lowerCAmelCase ( self , A=-1 ) -> List[Any]: if c == -1: _UpperCAmelCase : Optional[int] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(A , A , 1 ) def __lowerCAmelCase ( self , A=-2 ) -> Optional[Any]: _UpperCAmelCase : int = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Tuple = list(self.graph )[0] d.append(A ) visited.append(A ) while d: _UpperCAmelCase : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self , A ) -> Optional[int]: _UpperCAmelCase : str = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowerCAmelCase ( self , A ) -> int: return len(self.graph[u] ) def __lowerCAmelCase ( self , A=-2 ) -> str: _UpperCAmelCase : int = [] _UpperCAmelCase : Union[str, Any] = [] if s == -2: _UpperCAmelCase : Any = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : str = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(A ) - 1] else: _UpperCAmelCase : List[str] = ss # check if se have reached the starting point if len(A ) == 0: return sorted_nodes def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Union[str, Any] = -2 _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Union[str, Any] = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Tuple = True if len(A ) != 0: _UpperCAmelCase : Union[str, Any] = stack[len(A ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(A ) _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : int = -2 _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[Any] = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(A ) != 0: _UpperCAmelCase : int = stack[len(A ) - 1] else: _UpperCAmelCase : List[str] = False indirect_parents.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Any = ss # check if se have reached the starting point if len(A ) == 0: return False def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Dict: _UpperCAmelCase : Tuple = time() self.dfs(A , A ) _UpperCAmelCase : Optional[int] = time() return end - begin def __lowerCAmelCase ( self , A=-2 ) -> Dict: _UpperCAmelCase : int = time() self.bfs(A ) _UpperCAmelCase : str = time() return end - begin class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _UpperCAmelCase : str = {} def __lowerCAmelCase ( self , A , A , A=1 ) -> str: # check if the u exists if self.graph.get(A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : int = [[w, v]] # add the other way if self.graph.get(A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : List[Any] = [[w, u]] def __lowerCAmelCase ( self , A , A ) -> List[str]: if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) # the other way round if self.graph.get(A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Any: if s == d: return [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: _UpperCAmelCase : Dict = stack[len(A ) - 1] else: _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(A ) == 0: return visited def __lowerCAmelCase ( self , A=-1 ) -> List[str]: if c == -1: _UpperCAmelCase : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(A , A , 1 ) def __lowerCAmelCase ( self , A=-2 ) -> Tuple: _UpperCAmelCase : List[str] = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] d.append(A ) visited.append(A ) while d: _UpperCAmelCase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self , A ) -> List[str]: return len(self.graph[u] ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : str = [] _UpperCAmelCase : Any = [] _UpperCAmelCase : Optional[Any] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Any = -2 _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(A ) != 0: _UpperCAmelCase : List[str] = stack[len(A ) - 1] else: _UpperCAmelCase : str = False indirect_parents.append(A ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Tuple = -2 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Any = s _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[str] = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(A ) != 0: _UpperCAmelCase : Dict = stack[len(A ) - 1] else: _UpperCAmelCase : str = False indirect_parents.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(A ) == 0: return False def __lowerCAmelCase ( self ) -> int: return list(self.graph ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> str: _UpperCAmelCase : List[Any] = time() self.dfs(A , A ) _UpperCAmelCase : Union[str, Any] = time() return end - begin def __lowerCAmelCase ( self , A=-2 ) -> Optional[int]: _UpperCAmelCase : List[Any] = time() self.bfs(A ) _UpperCAmelCase : Optional[int] = time() return end - begin
68
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
72
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Dict: __lowerCamelCase : int = ort.SessionOptions() __lowerCamelCase : Optional[Any] = False return options def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCamelCase : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = 'A red cat sitting on a park bench' __lowerCamelCase : Union[str, Any] = np.random.RandomState(0 ) __lowerCamelCase : Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : Tuple = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : Union[str, Any] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCamelCase : Dict = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = 'A red cat sitting on a park bench' __lowerCamelCase : Tuple = np.random.RandomState(0 ) __lowerCamelCase : Optional[int] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) __lowerCamelCase : List[str] = output.images __lowerCamelCase : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : Tuple = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
185
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __UpperCAmelCase = parser.parse_args() if args.model_type == "roberta": __UpperCAmelCase = RobertaForMaskedLM.from_pretrained(args.model_name) __UpperCAmelCase = 'roberta' elif args.model_type == "gpt2": __UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name) __UpperCAmelCase = 'transformer' __UpperCAmelCase = model.state_dict() __UpperCAmelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __UpperCAmelCase = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __UpperCAmelCase = f"""{prefix}.embeddings.{w}.weight""" __UpperCAmelCase = state_dict[param_name] for w in ["weight", "bias"]: __UpperCAmelCase = f"""{prefix}.embeddings.LayerNorm.{w}""" __UpperCAmelCase = state_dict[param_name] # Transformer Blocks # __UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] __UpperCAmelCase = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __UpperCAmelCase = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[f"""lm_head.dense.{w}"""] __UpperCAmelCase = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[f"""{prefix}.ln_f.{w}"""] __UpperCAmelCase = state_dict['lm_head.weight'] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
28
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _A = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ _A = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ _A = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ _A = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ _A = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : List[str]=[1, 10, 1_00] , UpperCamelCase : int=4 , UpperCamelCase : Dict=3.0 ) -> Optional[int]: """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=lowerCamelCase_ ) as executor: lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = Counter() lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Optional[int] = defaultdict(lowerCamelCase_ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): for candidate in candidates: lowerCAmelCase__ : List[Any] = candidate + '\n' + test_case lowerCAmelCase__ : str = (test_program, timeout, task_id, completion_id[task_id]) lowerCAmelCase__ : Union[str, Any] = executor.submit(lowerCamelCase_ , *lowerCamelCase_ ) futures.append(lowerCamelCase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase_ ): lowerCAmelCase__ : int = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) lowerCAmelCase__ : List[Any] = [], [] for result in results.values(): result.sort() lowerCAmelCase__ : Dict = [r[1]['passed'] for r in result] total.append(len(lowerCamelCase_ ) ) correct.append(sum(lowerCamelCase_ ) ) lowerCAmelCase__ : List[str] = np.array(lowerCamelCase_ ) lowerCAmelCase__ : List[str] = np.array(lowerCamelCase_ ) lowerCAmelCase__ : Optional[int] = k lowerCAmelCase__ : Optional[int] = {f"""pass@{k}""": estimate_pass_at_k(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: def estimator(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case_ , snake_case_ ): lowerCAmelCase__ : Dict = itertools.repeat(snake_case_ , len(snake_case_ ) ) else: assert len(snake_case_ ) == len(snake_case_ ) lowerCAmelCase__ : Any = iter(snake_case_ ) return np.array([estimator(int(snake_case_ ) , int(snake_case_ ) , snake_case_ ) for n, c in zip(snake_case_ , snake_case_ )] )
242
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ lowerCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ lowerCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] , ) def UpperCAmelCase__ ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Optional[Any]="binary" , lowerCamelCase_ :int=None , lowerCamelCase_ :List[Any]="warn" , ): """simple docstring""" lowerCamelCase__ : List[str] =recall_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ , zero_division=lowerCamelCase_ , ) return {"recall": float(lowerCamelCase_ ) if score.size == 1 else score}
126
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
1
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 100_0000 ): _snake_case = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
341
'''simple docstring''' from math import factorial, radians def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ): _snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _snake_case = radians(_SCREAMING_SNAKE_CASE ) _snake_case = angle_in_radians _snake_case = 3 _snake_case = -1 for _ in range(_SCREAMING_SNAKE_CASE ): result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE ) _snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __import__('doctest').testmod()
341
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCAmelCase : str = Lock() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case_ = min(lowerCAmelCase__ , lowerCAmelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case_ = max(lowerCAmelCase__ , lowerCAmelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] snake_case_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case_ = Pipe() snake_case_ = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case_ = temp_rs snake_case_ = temp_rr for i in range(1 , len(lowerCAmelCase__ ) - 1 ): snake_case_ = Pipe() snake_case_ = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case_ = temp_rs snake_case_ = temp_rr process_array_.append( Process( target=lowerCAmelCase__ , args=( len(lowerCAmelCase__ ) - 1, arr[len(lowerCAmelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase__ ) ): snake_case_ = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*lowerCAmelCase__ ) snake_case_ = odd_even_transposition(lowerCAmelCase__ ) print('Sorted List\n' ) print(*lowerCAmelCase__ ) if __name__ == "__main__": main()
366
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ): '''simple docstring''' if start is None: snake_case_ = 0 if end is None: snake_case_ = len(UpperCamelCase__ ) - 1 if start >= end: return snake_case_ = (start + end) // 2 slowsort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) slowsort(UpperCamelCase__ , mid + 1 , UpperCamelCase__ ) if sequence[end] < sequence[mid]: snake_case_ , snake_case_ = sequence[mid], sequence[end] slowsort(UpperCamelCase__ , UpperCamelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
200
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : int=1_3 ,lowercase__ : Optional[int]=7 ,lowercase__ : List[Any]=True ,lowercase__ : Tuple=True ,lowercase__ : List[Any]=False ,lowercase__ : Dict=True ,lowercase__ : List[str]=9_9 ,lowercase__ : List[str]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : int=4 ,lowercase__ : Tuple=3_7 ,lowercase__ : List[str]="gelu" ,lowercase__ : Dict=0.1 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Any=5_1_2 ,lowercase__ : Tuple=1_6 ,lowercase__ : Optional[Any]=2 ,lowercase__ : str=0.0_2 ,lowercase__ : List[Any]=3 ,lowercase__ : Any=4 ,lowercase__ : List[Any]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : str ): return DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,lowercase__ : int ): __lowercase = DistilBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Tuple ): __lowercase = DistilBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Dict ,lowercase__ : Union[str, Any] ): __lowercase = DistilBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Tuple ): __lowercase = self.num_labels __lowercase = DistilBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ): __lowercase = self.num_labels __lowercase = DistilBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any ): __lowercase = self.num_choices __lowercase = DistilBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE : Dict = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : int = True def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = DistilBertModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,dim=3_7 ) def SCREAMING_SNAKE_CASE ( self : Any ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DistilBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''traced_model.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''traced_model.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
104
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ = """\ Text data. Second line of data.""" lowerCAmelCase__ = """file""" @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[int]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") A__ = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> List[str]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , "w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: int ) -> Any: '''simple docstring''' A__ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} A__ = input_paths[compression_format] A__ = tmp_path / "cache" A__ = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: str ) -> Dict: '''simple docstring''' A__ = "custom_cache" A__ = "custom_extracted_dir" A__ = tmp_path / "custom_extracted_path" if default_extracted: A__ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(SCREAMING_SNAKE_CASE_ ) ) A__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A__ = xz_file A__ = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]: '''simple docstring''' A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[str]: '''simple docstring''' A__ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path A__ = "./__missing_file__.txt" with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Union[str, Any]: '''simple docstring''' A__ = get_from_cache(F'tmp://{tmpfs_file}' ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> int: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get("https://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[Any]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get("ftp://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> str: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get("s3://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head("s3://huggingface.co" )
68
0
from pathlib import Path import numpy as np from PIL import Image def lowerCAmelCase( __lowerCamelCase ): __a , __a , __a = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def lowerCAmelCase( __lowerCamelCase ): return (gray > 127) & (gray <= 255) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = np.zeros_like(__lowerCamelCase ) __a = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __a = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __a = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __a = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCamelCase_ : Optional[int] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" lowerCamelCase_ : Union[str, Any] = np.array(Image.open(lena_path)) # kernel to be applied lowerCamelCase_ : Optional[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCamelCase_ : Any = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCamelCase_ : Optional[int] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
370
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a__ ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase ) -> List[Any]: __a = parent __a = config_class __a = has_text_modality __a = kwargs __a = common_properties def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.config_class(**self.inputs_dict ) __a = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase ): try: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual( getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase , UpperCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase ): try: __a = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase , UpperCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) __a = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(UpperCAmelCase , 'config.json' ) config_first.to_json_file(UpperCAmelCase ) __a = self.config_class.from_json_file(UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase ) __a = self.config_class.from_pretrained(UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.config_class(**self.inputs_dict ) __a = 'test' with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(UpperCAmelCase , UpperCAmelCase ) config_first.save_pretrained(UpperCAmelCase ) __a = self.config_class.from_pretrained(UpperCAmelCase , subfolder=UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __a = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: if self.config_class.is_composition: return __a = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = copy.deepcopy(UpperCAmelCase ) __a = self.config_class(**UpperCAmelCase ) __a = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase , UpperCAmelCase ) != value: wrong_values.append((key, getattr(UpperCAmelCase , UpperCAmelCase ), value) ) if len(UpperCAmelCase ) > 0: __a = '\n'.join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
197
0
'''simple docstring''' from __future__ import annotations class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : list[list[int]] ): """simple docstring""" UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(UpperCamelCase__ ) != 0: UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(UpperCamelCase__ ) != cols: raise error for value in row: if not isinstance(UpperCamelCase__ , (int, float) ): raise error UpperCamelCase = rows else: UpperCamelCase = [] def A ( self : Dict ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def A ( self : int ): """simple docstring""" return len(self.rows ) @property def A ( self : Dict ): """simple docstring""" return len(self.rows[0] ) @property def A ( self : int ): """simple docstring""" return (self.num_rows, self.num_columns) @property def A ( self : List[Any] ): """simple docstring""" return self.order[0] == self.order[1] def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(UpperCamelCase__ ) def A ( self : str ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def A ( self : Optional[Any] ): """simple docstring""" return bool(self.determinant() ) def A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(UpperCamelCase__ ).determinant() def A ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(UpperCamelCase__ , UpperCamelCase__ ) return -1 * self.get_minor(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" return Matrix( [ [self.get_minor(UpperCamelCase__ , UpperCamelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def A ( self : Optional[Any] ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Union[str, Any] ): """simple docstring""" return str(self.rows ) def __str__( self : Any ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCamelCase__ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def A ( self : Optional[Any] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int | None = None ): """simple docstring""" UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise type_error for value in row: if not isinstance(UpperCamelCase__ , (int, float) ): raise type_error if len(UpperCamelCase__ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(UpperCamelCase__ ) else: UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def A ( self : str , UpperCamelCase__ : list[int] , UpperCamelCase__ : int | None = None ): """simple docstring""" UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise type_error for value in column: if not isinstance(UpperCamelCase__ , (int, float) ): raise type_error if len(UpperCamelCase__ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Optional[Any] , UpperCamelCase__ : object ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self : int , UpperCamelCase__ : object ): """simple docstring""" return not self == other def __neg__( self : Optional[Any] ): """simple docstring""" return self * -1 def __add__( self : Optional[int] , UpperCamelCase__ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : int , UpperCamelCase__ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : List[str] , UpperCamelCase__ : Matrix | int | float ): """simple docstring""" if isinstance(UpperCamelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(UpperCamelCase__ , UpperCamelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Tuple , UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def A ( cls : Optional[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCamelCase : Optional[int] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _lowerCamelCase : Union[str, Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _lowerCamelCase : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _lowerCamelCase : List[Any] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _lowerCamelCase : List[str] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = randrange(len(A__ ) ), randrange(len(A__ ) ) UpperCamelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCamelCase ( A__ = 100 ) -> Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> str: """simple docstring""" UpperCamelCase = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowerCamelCase ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = [PokerHand(A__ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(A__ ) UpperCamelCase = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCamelCase ( ) -> str: """simple docstring""" # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand('2C 4S AS 3D 5C' ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCamelCase ( ) -> List[str]: """simple docstring""" # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(A__ ) ) UpperCamelCase = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(A__ ), PokerHand(A__ ) UpperCamelCase = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
28
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = None a : Optional[int] = None @property def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCamelCase ,'''feature_size''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''sampling_rate''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''padding_value''' ) ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCamelCase ) == len(_lowerCamelCase ) for x, y in zip(_lowerCamelCase ,processed_features[input_name] ) ) ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCamelCase ) __lowercase = BatchFeature({input_name: speech_inputs} ,tensor_type='''np''' ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCamelCase ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ,tensor_type='''pt''' ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCamelCase ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ,tensor_type='''tf''' ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _UpperCAmelCase (self ,_lowerCamelCase=False ) -> Dict: '''simple docstring''' def _inputs_have_equal_length(_lowerCamelCase ): __lowercase = len(input[0] ) for input_slice in input[1:]: if len(_lowerCamelCase ) != length: return False return True def _inputs_are_equal(_lowerCamelCase ,_lowerCamelCase ): if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCamelCase ,_lowerCamelCase ): if not np.allclose(np.asarray(_lowerCamelCase ) ,np.asarray(_lowerCamelCase ) ,atol=1E-3 ): return False return True __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCamelCase ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = self.feat_extract_tester.seq_length_diff __lowercase = self.feat_extract_tester.max_seq_length + pad_diff __lowercase = self.feat_extract_tester.min_seq_length __lowercase = self.feat_extract_tester.batch_size __lowercase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __lowercase = feat_extract.pad(_lowerCamelCase ,padding=_lowerCamelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''longest''' ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[-1] ) ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,return_tensors='''np''' ) __lowercase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase ,padding='''max_length''' )[input_name] __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=_lowerCamelCase ,return_tensors='''np''' ) __lowercase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCamelCase ,_lowerCamelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __lowercase = feat_extract.pad(_lowerCamelCase ,pad_to_multiple_of=10 ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,pad_to_multiple_of=10 ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,pad_to_multiple_of=10 ,max_length=_lowerCamelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,pad_to_multiple_of=10 ,max_length=_lowerCamelCase ,return_tensors='''np''' ,) __lowercase = input_a[input_name] self.assertTrue(all(len(_lowerCamelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_lowerCamelCase ,_lowerCamelCase ) ) __lowercase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_lowerCamelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __lowercase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def _UpperCAmelCase (self ,_lowerCamelCase=False ) -> Optional[Any]: '''simple docstring''' def _inputs_have_equal_length(_lowerCamelCase ): __lowercase = len(input[0] ) for input_slice in input[1:]: if len(_lowerCamelCase ) != length: return False return True def _inputs_are_equal(_lowerCamelCase ,_lowerCamelCase ): if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCamelCase ,_lowerCamelCase ): if not np.allclose(np.asarray(_lowerCamelCase ) ,np.asarray(_lowerCamelCase ) ,atol=1E-3 ): return False return True __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCamelCase ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[0] ) ,truncation=_lowerCamelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[0] ) ) __lowercase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) # truncate to smallest with np __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[0] ) ,return_tensors='''np''' ,truncation=_lowerCamelCase ,) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[0] ) ,return_tensors='''np''' ) __lowercase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) # truncate to middle __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[1] ) ,truncation=_lowerCamelCase ,return_tensors='''np''' ,) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[1] ) ,truncation=_lowerCamelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[1] ) ,return_tensors='''np''' ) __lowercase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCamelCase ,_lowerCamelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase ,truncation=_lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,truncation=_lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,truncation=_lowerCamelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase ,padding='''max_length''' ,truncation=_lowerCamelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __lowercase = 12 __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_lowerCamelCase ,truncation=_lowerCamelCase ,) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_lowerCamelCase ,) __lowercase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __lowercase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __lowercase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' self._check_padding(numpify=_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' self._check_padding(numpify=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' self._check_truncation(numpify=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' self._check_truncation(numpify=_lowerCamelCase ) @require_torch def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,return_tensors='''np''' )[input_name] __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,return_tensors='''np''' )[input_name] __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**_lowerCamelCase ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = [len(_lowerCamelCase ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCamelCase ,padding='''longest''' ,return_tensors='''np''' ) self.assertIn('''attention_mask''' ,_lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**_lowerCamelCase ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = [len(_lowerCamelCase ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = min(_lowerCamelCase ) __lowercase = feat_extract.pad( _lowerCamelCase ,padding='''max_length''' ,max_length=_lowerCamelCase ,truncation=_lowerCamelCase ,return_tensors='''np''' ) self.assertIn('''attention_mask''' ,_lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
217
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
217
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Tuple = 384 if "tiny" in model_name: __magic_name__ : Optional[int] = [3, 3, 9, 3] __magic_name__ : Optional[int] = [96, 192, 384, 768] if "small" in model_name: __magic_name__ : List[str] = [3, 3, 27, 3] __magic_name__ : List[Any] = [96, 192, 384, 768] if "base" in model_name: __magic_name__ : Any = [3, 3, 27, 3] __magic_name__ : List[Any] = [128, 256, 512, 1024] __magic_name__ : Optional[Any] = 512 if "large" in model_name: __magic_name__ : Optional[Any] = [3, 3, 27, 3] __magic_name__ : Any = [192, 384, 768, 1536] __magic_name__ : Tuple = 768 if "xlarge" in model_name: __magic_name__ : Any = [3, 3, 27, 3] __magic_name__ : List[str] = [256, 512, 1024, 2048] __magic_name__ : Optional[Any] = 1024 # set label information __magic_name__ : Optional[Any] = 150 __magic_name__ : Optional[int] = """huggingface/label-files""" __magic_name__ : Any = """ade20k-id2label.json""" __magic_name__ : Dict = json.load(open(hf_hub_download(_A, _A, repo_type="""dataset""" ), """r""" ) ) __magic_name__ : List[str] = {int(_A ): v for k, v in idalabel.items()} __magic_name__ : List[Any] = {v: k for k, v in idalabel.items()} __magic_name__ : Dict = ConvNextConfig( depths=_A, hidden_sizes=_A, out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __magic_name__ : Optional[Any] = UperNetConfig( backbone_config=_A, auxiliary_in_channels=_A, num_labels=_A, idalabel=_A, labelaid=_A, ) return config def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Union[str, Any] = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Tuple = dct.pop(_A ) __magic_name__ : int = val def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : str = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } __magic_name__ : Optional[int] = model_name_to_url[model_name] __magic_name__ : Tuple = torch.hub.load_state_dict_from_url(_A, map_location="""cpu""" )["""state_dict"""] __magic_name__ : List[str] = get_upernet_config(_A ) __magic_name__ : Union[str, Any] = UperNetForSemanticSegmentation(_A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __magic_name__ : Dict = state_dict.pop(_A ) if "bn" in key: __magic_name__ : Union[str, Any] = key.replace("""bn""", """batch_norm""" ) __magic_name__ : Dict = val # rename keys __magic_name__ : Tuple = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A, _A, _A ) model.load_state_dict(_A ) # verify on image __magic_name__ : Any = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __magic_name__ : str = Image.open(requests.get(_A, stream=_A ).raw ).convert("""RGB""" ) __magic_name__ : List[Any] = SegformerImageProcessor() __magic_name__ : str = processor(_A, return_tensors="""pt""" ).pixel_values with torch.no_grad(): __magic_name__ : Union[str, Any] = model(_A ) if model_name == "upernet-convnext-tiny": __magic_name__ : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __magic_name__ : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __magic_name__ : Tuple = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __magic_name__ : Any = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __magic_name__ : List[Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("""Logits:""", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], _A, atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_A ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": __magic_name__: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __magic_name__: Union[str, Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Optional[int]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : List[str] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Optional[Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Any ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : int ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : Tuple ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : str ): pass def lowercase ( self : Optional[int] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : str ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[int] ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> Tuple: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Optional[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : str ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : Optional[int] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
40
0
UpperCAmelCase_ = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
12
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase_ : Union[str, Any] = pytest.mark.integration UpperCAmelCase_ : List[Any] = {'comet'} UpperCAmelCase_ : int = importlib.util.find_spec('fairseq') is not None UpperCAmelCase_ : Optional[Any] = {'code_eval'} UpperCAmelCase_ : Optional[int] = os.name == 'nt' UpperCAmelCase_ : Dict = {'bertscore', 'frugalscore', 'perplexity'} UpperCAmelCase_ : Dict = importlib.util.find_spec('transformers') is not None def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _snake_case , _snake_case , _snake_case ) @local class lowercase__ ( parameterized.TestCase ): '''simple docstring''' A_ : Optional[int] = {} A_ : Union[str, Any] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : str = """[...]""" _SCREAMING_SNAKE_CASE : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , __snake_case ) ).module_path ) _SCREAMING_SNAKE_CASE : Optional[int] = datasets.load.import_main_class(metric_module.__name__ , dataset=__snake_case ) # check parameters _SCREAMING_SNAKE_CASE : Tuple = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__snake_case , metric_module.__name__ ): with self.use_local_metrics(): try: _SCREAMING_SNAKE_CASE : int = doctest.testmod(__snake_case , verbose=__snake_case , raise_on_error=__snake_case ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = """[...]""" _SCREAMING_SNAKE_CASE : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , __snake_case ) ).module_path ) # run doctest with self.use_local_metrics(): _SCREAMING_SNAKE_CASE : List[str] = doctest.testmod(__snake_case , verbose=__snake_case , raise_on_error=__snake_case ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCAmelCase_ ( self , __snake_case , __snake_case ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__snake_case ): yield else: yield @contextmanager def UpperCAmelCase_ ( self ): def load_local_metric(__snake_case , *__snake_case , **__snake_case ): return load_metric(os.path.join("""metrics""" , __snake_case ) , *__snake_case , **__snake_case ) with patch("""datasets.load_metric""" ) as mock_load_metric: _SCREAMING_SNAKE_CASE : Union[str, Any] = load_local_metric yield @classmethod def UpperCAmelCase_ ( cls , __snake_case ): def wrapper(__snake_case ): _SCREAMING_SNAKE_CASE : Any = contextmanager(__snake_case ) _SCREAMING_SNAKE_CASE : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class lowercase__ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: _SCREAMING_SNAKE_CASE : Any = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: _SCREAMING_SNAKE_CASE : Any = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def load_from_checkpoint(SCREAMING_SNAKE_CASE__ ): class lowercase__ : '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case , *__snake_case , **__snake_case ): assert len(__snake_case ) == 2 _SCREAMING_SNAKE_CASE : Dict = [0.19, 0.92] return scores, sum(__snake_case ) / len(__snake_case ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: _SCREAMING_SNAKE_CASE : Any = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: _SCREAMING_SNAKE_CASE : List[str] = load_from_checkpoint yield def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) _SCREAMING_SNAKE_CASE : List[str] = """ERROR""" _SCREAMING_SNAKE_CASE : Tuple = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(SCREAMING_SNAKE_CASE__ , match=re.escape(SCREAMING_SNAKE_CASE__ ) ): metric.compute(predictions=[] , references=[] , scheme=SCREAMING_SNAKE_CASE__ )
200
0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: while a != 0: UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = b % a, a return b def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: if gcd(__lowerCAmelCase , __lowerCAmelCase ) != 1: UpperCamelCase__ : Any = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : int = 1, 0, a UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[int] = 0, 1, m while va != 0: UpperCamelCase__ : List[Any] = ua // va UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
196
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase : str =logging.get_logger(__name__) @add_end_docstrings(A__ ) class __a ( A__ ): def __init__( self : List[str] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : List[Any] = {} if "candidate_labels" in kwargs: UpperCamelCase__ : Optional[Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase__ : int = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ): '''simple docstring''' UpperCamelCase__ : Dict = load_image(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) UpperCamelCase__ : Any = candidate_labels UpperCamelCase__ : Dict = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels] UpperCamelCase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [text_inputs] return inputs def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = model_inputs.pop("candidate_labels" ) UpperCamelCase__ : List[str] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = text_inputs[0] else: # Batching case. UpperCamelCase__ : Union[str, Any] = text_inputs[0][0] UpperCamelCase__ : Any = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = model_outputs.pop("candidate_labels" ) UpperCamelCase__ : int = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase__ : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCamelCase__ : Optional[Any] = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[Any] = [scores] elif self.framework == "tf": UpperCamelCase__ : Optional[Any] = stable_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) UpperCamelCase__ : Optional[int] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) UpperCamelCase__ : Optional[int] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] ) ] return result
196
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase) class A__ ( _lowerCamelCase): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True}) A_ : ClassVar[Features] = Features({'question': Value('string'), 'context': Value('string')}) A_ : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string'), 'answer_start': Value('int32'), }) }) A_ : str = "question" A_ : str = "context" A_ : str = "answers" @property def __lowerCamelCase ( self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
86
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase = len(__lowerCAmelCase ) - 1 def A__ ( self , __lowerCAmelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowerCAmelCase ) , 5 ) == 1 return output_values def A__ ( self , __lowerCAmelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase = self.basis_function(__lowerCAmelCase ) lowercase = 0.0 lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A__ ( self , __lowerCAmelCase = 0.0_1 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowercase = [] # x coordinates of points to plot lowercase = [] # y coordinates of points to plot lowercase = 0.0 while t <= 1: lowercase = self.bezier_curve_function(__lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase = [i[0] for i in self.list_of_points] lowercase = [i[1] for i in self.list_of_points] plt.plot( __lowerCAmelCase , __lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(__lowerCAmelCase , __lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
197
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __magic_name__ : """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Optional[Any] , snake_case :Union[str, Any] , snake_case :Tuple ): '''simple docstring''' return None class __magic_name__ : """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Any , snake_case :Tuple , snake_case :Dict , snake_case :int ): '''simple docstring''' return None class __magic_name__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , "tf" , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , "pt" , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' from transformers import BertModel A_ : Dict = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(snake_case ) ) vocab_file.flush() A_ : List[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: A_ : int = BertModel(BertConfig(vocab_size=len(snake_case ) ) ) model.save_pretrained(snake_case ) self._test_export(snake_case , "pt" , 12 , snake_case ) @require_tf @slow def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A_ : int = self._test_export(snake_case , "tf" , 12 , **snake_case ) A_ : Optional[Any] = quantize(Path(snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A_ : List[Any] = self._test_export(snake_case , "pt" , 12 , **snake_case ) A_ : str = quantize(snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[Any] , snake_case :Any , snake_case :List[Any] , snake_case :Any=None , **snake_case :Optional[int] ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: A_ : Any = Path(snake_case ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case ) return path except Exception as e: self.fail(snake_case ) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' from transformers import BertModel A_ : Dict = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) A_ : int = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(snake_case , snake_case , "pt" ) @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' from transformers import TFBertModel A_ : Tuple = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) A_ : List[Any] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(snake_case , snake_case , "tf" ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :int , snake_case :Union[str, Any] ): '''simple docstring''' A_ : Tuple = FeatureExtractionPipeline(snake_case , snake_case ) A_ : Optional[int] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] A_ : Union[str, Any] = infer_shapes(snake_case , snake_case ) # Assert all variables are present self.assertEqual(len(snake_case ) , len(snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , snake_case ) self.assertSequenceEqual(variable_names[3:] , snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Dict = ['input_ids', 'attention_mask', 'token_type_ids'] A_ : Dict = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} A_ : Optional[int] = ensure_valid_input(FuncContiguousArgs() , snake_case , snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case ) , 3 ) # Should have exactly the same input names self.assertEqual(set(snake_case ) , set(snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) A_ : List[str] = ensure_valid_input(FuncNonContiguousArgs() , snake_case , snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case ) , 1 ) self.assertEqual(len(snake_case ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : List[str] = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
367
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : torch.FloatTensor class snake_case ( __snake_case, __snake_case ): @register_to_config def __init__( self : Tuple , UpperCamelCase__ : int = 6_5_5_3_6 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 0 , UpperCamelCase__ : str = "fourier" , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = False , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCamelCase__ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCamelCase__ : Tuple[str] = "UNetMidBlock1D" , UpperCamelCase__ : str = None , UpperCamelCase__ : Tuple[int] = (3_2, 3_2, 6_4) , UpperCamelCase__ : str = None , UpperCamelCase__ : int = 8 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : bool = False , )-> Tuple: '''simple docstring''' super().__init__() __lowerCAmelCase: str = sample_size # time if time_embedding_type == "fourier": __lowerCAmelCase: Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCamelCase__ , log=UpperCamelCase__ , flip_sin_to_cos=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCAmelCase: Tuple = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCamelCase__ , downscale_freq_shift=UpperCamelCase__) __lowerCAmelCase: int = block_out_channels[0] if use_timestep_embedding: __lowerCAmelCase: Optional[int] = block_out_channels[0] * 4 __lowerCAmelCase: Optional[Any] = TimestepEmbedding( in_channels=UpperCamelCase__ , time_embed_dim=UpperCamelCase__ , act_fn=UpperCamelCase__ , out_dim=block_out_channels[0] , ) __lowerCAmelCase: Optional[int] = nn.ModuleList([]) __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Any = nn.ModuleList([]) __lowerCAmelCase: int = None # down __lowerCAmelCase: Union[str, Any] = in_channels for i, down_block_type in enumerate(UpperCamelCase__): __lowerCAmelCase: Optional[int] = output_channel __lowerCAmelCase: str = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCAmelCase: Optional[Any] = i == len(UpperCamelCase__) - 1 __lowerCAmelCase: Union[str, Any] = get_down_block( UpperCamelCase__ , num_layers=UpperCamelCase__ , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCamelCase__) # mid __lowerCAmelCase: Any = get_mid_block( UpperCamelCase__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCamelCase__ , add_downsample=UpperCamelCase__ , ) # up __lowerCAmelCase: Dict = list(reversed(UpperCamelCase__)) __lowerCAmelCase: str = reversed_block_out_channels[0] if out_block_type is None: __lowerCAmelCase: List[str] = out_channels else: __lowerCAmelCase: int = block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__): __lowerCAmelCase: Optional[Any] = output_channel __lowerCAmelCase: str = ( reversed_block_out_channels[i + 1] if i < len(UpperCamelCase__) - 1 else final_upsample_channels ) __lowerCAmelCase: Tuple = i == len(UpperCamelCase__) - 1 __lowerCAmelCase: List[str] = get_up_block( UpperCamelCase__ , num_layers=UpperCamelCase__ , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCamelCase__) __lowerCAmelCase: Tuple = output_channel # out __lowerCAmelCase: str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2) __lowerCAmelCase: int = get_out_block( out_block_type=UpperCamelCase__ , num_groups_out=UpperCamelCase__ , embed_dim=block_out_channels[0] , out_channels=UpperCamelCase__ , act_fn=UpperCamelCase__ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase_ ( self : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Union[torch.Tensor, float, int] , UpperCamelCase__ : bool = True , )-> Union[UNetaDOutput, Tuple]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = timestep if not torch.is_tensor(UpperCamelCase__): __lowerCAmelCase: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(UpperCamelCase__) and len(timesteps.shape) == 0: __lowerCAmelCase: Any = timesteps[None].to(sample.device) __lowerCAmelCase: Any = self.time_proj(UpperCamelCase__) if self.config.use_timestep_embedding: __lowerCAmelCase: str = self.time_mlp(UpperCamelCase__) else: __lowerCAmelCase: Tuple = timestep_embed[..., None] __lowerCAmelCase: Optional[int] = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __lowerCAmelCase: Union[str, Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __lowerCAmelCase: str = () for downsample_block in self.down_blocks: __lowerCAmelCase , __lowerCAmelCase: Any = downsample_block(hidden_states=UpperCamelCase__ , temb=UpperCamelCase__) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCAmelCase: Optional[int] = self.mid_block(UpperCamelCase__ , UpperCamelCase__) # 4. up for i, upsample_block in enumerate(self.up_blocks): __lowerCAmelCase: Tuple = down_block_res_samples[-1:] __lowerCAmelCase: Tuple = down_block_res_samples[:-1] __lowerCAmelCase: Union[str, Any] = upsample_block(UpperCamelCase__ , res_hidden_states_tuple=UpperCamelCase__ , temb=UpperCamelCase__) # 5. post-process if self.out_block: __lowerCAmelCase: str = self.out_block(UpperCamelCase__ , UpperCamelCase__) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCamelCase__)
217
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } __A = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizer def __init__( self : Optional[int] , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int="replace" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : List[Any]="</s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : int="<mask>" , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Tuple , )-> Optional[int]: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: str = getattr(UpperCamelCase__ , pre_tok_state.pop("type")) __lowerCAmelCase: Optional[int] = add_prefix_space __lowerCAmelCase: Dict = pre_tok_class(**UpperCamelCase__) __lowerCAmelCase: Any = add_prefix_space __lowerCAmelCase: int = "post_processor" __lowerCAmelCase: Optional[Any] = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) if tokenizer_component_instance: __lowerCAmelCase: Dict = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase: List[Any] = tuple(state["sep"]) if "cls" in state: __lowerCAmelCase: str = tuple(state["cls"]) __lowerCAmelCase: str = False if state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Optional[Any] = add_prefix_space __lowerCAmelCase: List[str] = True if state.get("trim_offsets" , UpperCamelCase__) != trim_offsets: __lowerCAmelCase: Any = trim_offsets __lowerCAmelCase: List[str] = True if changes_to_apply: __lowerCAmelCase: str = getattr(UpperCamelCase__ , state.pop("type")) __lowerCAmelCase: List[str] = component_class(**UpperCamelCase__) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) @property def lowercase_ ( self : List[str])-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def lowercase_ ( self : Tuple , UpperCamelCase__ : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else value __lowerCAmelCase: int = value def lowercase_ ( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : List[Any])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : int , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: str = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__) return tuple(UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = [self.sep_token_id] __lowerCAmelCase: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
217
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" snake_case = "nat" snake_case = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=[3, 4, 6, 5] , _SCREAMING_SNAKE_CASE=[2, 4, 8, 16] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : str = len(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = num_heads A_ : Optional[int] = kernel_size A_ : int = mlp_ratio A_ : Optional[int] = qkv_bias A_ : Union[str, Any] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Dict = drop_path_rate A_ : str = hidden_act A_ : Any = layer_norm_eps A_ : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : int = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) A_ : Optional[Any] = layer_scale_init_value A_ : Union[str, Any] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] A_ , A_ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
65
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCamelCase = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): require_version(deps[pkg] , SCREAMING_SNAKE_CASE )
65
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : List[Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : int = latents.to(lowercase_ ) UpperCAmelCase_ : List[Any] = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Dict = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Tuple = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : int = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self._execution_device UpperCAmelCase_ : Dict = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[int] = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Any = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Optional[Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Tuple = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : Any = self.scheduler.timesteps UpperCAmelCase_ : List[Any] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = variance_pred.chunk(2 ) UpperCAmelCase_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Dict = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Optional[Any] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : Any = image * 0.5 + 0.5 UpperCAmelCase_ : Tuple = image.clamp(0 , 1 ) UpperCAmelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Tuple = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
61
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCAmelCase : Tuple = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCAmelCase : List[str] = """document_qa""" UpperCAmelCase : str = AutoProcessor UpperCAmelCase : Optional[int] = VisionEncoderDecoderModel UpperCAmelCase : int = ["""image""", """text"""] UpperCAmelCase : int = ["""text"""] def __init__( self : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") super().__init__(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : "Image" , __UpperCAmelCase : str): a : Any = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a : Union[str, Any] = task_prompt.replace("{user_input}" , __UpperCAmelCase) a : Optional[Any] = self.pre_processor.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors="pt").input_ids a : Any = self.pre_processor(__UpperCAmelCase , return_tensors="pt").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __snake_case ( self : int , __UpperCAmelCase : int): return self.model.generate( inputs["pixel_values"].to(self.device) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCAmelCase , ).sequences def __snake_case ( self : str , __UpperCAmelCase : List[Any]): a : Union[str, Any] = self.pre_processor.batch_decode(__UpperCAmelCase)[0] a : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , "") a : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , "") a : Optional[Any] = re.sub(r"<.*?>" , "" , __UpperCAmelCase , count=1).strip() # remove first task start token a : List[str] = self.pre_processor.tokenajson(__UpperCAmelCase) return sequence["answer"]
40
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def __UpperCAmelCase ( *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> str: pass def a_ ( lowerCamelCase : Image ): """simple docstring""" lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase ): lowerCamelCase : List[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = DepthEstimationPipeline(model=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str ) -> Optional[Any]: lowerCAmelCase = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , UpperCAmelCase__ ) import datasets lowerCAmelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowerCAmelCase = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , UpperCAmelCase__ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: pass @slow @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase = 'Intel/dpt-large' lowerCAmelCase = pipeline('depth-estimation' , model=UpperCAmelCase__ ) lowerCAmelCase = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowerCAmelCase = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __UpperCAmelCase ( self : str ) -> List[str]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
364
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __snake_case =logging.getLogger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : List[str] , UpperCAmelCase__ : Optional[Any]=-1 ) -> Dict: # in NER datasets, the last column is usually reserved for NER label lowerCAmelCase = label_idx def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = mode.value lowerCAmelCase = os.path.join(UpperCAmelCase__ , F'''{mode}.txt''' ) lowerCAmelCase = 1 lowerCAmelCase = [] with open(UpperCAmelCase__ , encoding='utf-8' ) as f: lowerCAmelCase = [] lowerCAmelCase = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 lowerCAmelCase = [] lowerCAmelCase = [] else: lowerCAmelCase = line.split(' ' ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Any: lowerCAmelCase = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(UpperCAmelCase__ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , 'r' ) as f: lowerCAmelCase = f.read().splitlines() if "O" not in labels: lowerCAmelCase = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] ) -> str: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , 'r' ) as f: lowerCAmelCase = f.read().splitlines() if "O" not in labels: lowerCAmelCase = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCAmelCase_ ( __lowercase ): def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = mode.value lowerCAmelCase = os.path.join(UpperCAmelCase__ , F'''{mode}.txt''' ) lowerCAmelCase = 1 lowerCAmelCase = [] with open(UpperCAmelCase__ , encoding='utf-8' ) as f: for sentence in parse_incr(UpperCAmelCase__ ): lowerCAmelCase = [] lowerCAmelCase = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> str: lowerCAmelCase = 0 for sentence in parse_incr(UpperCAmelCase__ ): lowerCAmelCase = preds_list[example_id] lowerCAmelCase = '' for token in sentence: out += F'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
55
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCAmelCase = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def snake_case_ ( snake_case , snake_case , snake_case=8 ) -> List[str]: lowercase__: List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase__: Any = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , movq=lowerCAmelCase__ , ) lowercase__: Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if latents is None: lowercase__: List[str] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__: Any = latents.to(lowerCAmelCase__ ) lowercase__: str = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[int] = len(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else 1 # get prompt text embeddings lowercase__: List[str] = self.tokenizer( lowerCAmelCase__ , padding='max_length' , truncation=lowerCAmelCase__ , max_length=77 , return_attention_mask=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors='pt' , ) lowercase__: Optional[int] = text_inputs.input_ids lowercase__: Union[str, Any] = self.tokenizer(lowerCAmelCase__ , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: List[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowercase__: List[str] = text_input_ids.to(lowerCAmelCase__ ) lowercase__: Dict = text_inputs.attention_mask.to(lowerCAmelCase__ ) lowercase__ , lowercase__: int = self.text_encoder( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) lowercase__: List[str] = prompt_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) lowercase__: int = text_encoder_hidden_states.repeat_interleave(lowerCAmelCase__ , dim=0 ) lowercase__: Optional[int] = text_mask.repeat_interleave(lowerCAmelCase__ , dim=0 ) if do_classifier_free_guidance: lowercase__: List[str] if negative_prompt is None: lowercase__: Union[str, Any] = [''] * batch_size elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !=' F' {type(lowerCAmelCase__ )}.' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Union[str, Any] = [negative_prompt] elif batch_size != len(lowerCAmelCase__ ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: lowercase__: int = negative_prompt lowercase__: int = self.tokenizer( lowerCAmelCase__ , padding='max_length' , max_length=77 , truncation=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors='pt' , ) lowercase__: List[str] = uncond_input.input_ids.to(lowerCAmelCase__ ) lowercase__: int = uncond_input.attention_mask.to(lowerCAmelCase__ ) lowercase__ , lowercase__: Optional[int] = self.text_encoder( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__: Tuple = negative_prompt_embeds.shape[1] lowercase__: Union[str, Any] = negative_prompt_embeds.repeat(1 , lowerCAmelCase__ ) lowercase__: Tuple = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCAmelCase__ ) lowercase__: Optional[int] = uncond_text_encoder_hidden_states.shape[1] lowercase__: Optional[Any] = uncond_text_encoder_hidden_states.repeat(1 , lowerCAmelCase__ , 1 ) lowercase__: Union[str, Any] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) lowercase__: Dict = uncond_text_mask.repeat_interleave(lowerCAmelCase__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__: List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase__: List[str] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase__: Optional[Any] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase__: List[str] = torch.device(F'cuda:{gpu_id}' ) lowercase__: Optional[int] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=0 ) -> Optional[Any]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase__: Optional[int] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowerCAmelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase__: List[Any] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase__ , lowercase__: Optional[Any] = cpu_offload_with_hook(lowerCAmelCase__ , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__ ) if self.safety_checker is not None: lowercase__ , lowercase__: Union[str, Any] = cpu_offload_with_hook(self.safety_checker , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__ ) # We'll offload the last model manually. lowercase__: int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 512 , lowerCAmelCase__ = 512 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> str: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Tuple = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: List[str] = len(lowerCAmelCase__ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}' ) lowercase__: int = self._execution_device lowercase__: str = batch_size * num_images_per_prompt lowercase__: Optional[Any] = guidance_scale > 1.0 lowercase__ , lowercase__ , lowercase__: Optional[int] = self._encode_prompt( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: List[Any] = torch.cat(lowerCAmelCase__ , dim=0 ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Optional[Any] = torch.cat(lowerCAmelCase__ , dim=0 ) if do_classifier_free_guidance: lowercase__: List[str] = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) lowercase__: Tuple = negative_image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) lowercase__: Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowerCAmelCase__ ) self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__ ) lowercase__: int = self.scheduler.timesteps lowercase__: Union[str, Any] = self.unet.config.in_channels lowercase__ , lowercase__: List[Any] = get_new_h_w(lowerCAmelCase__ , lowerCAmelCase__ , self.movq_scale_factor ) # create initial latent lowercase__: Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance lowercase__: Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__: Dict = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} lowercase__: str = self.unet( sample=lowerCAmelCase__ , timestep=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , added_cond_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] if do_classifier_free_guidance: lowercase__ , lowercase__: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase__ , lowercase__: List[str] = noise_pred.chunk(2 ) lowercase__ , lowercase__: List[Any] = variance_pred.chunk(2 ) lowercase__: Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase__: Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase__ , lowercase__: List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase__: Dict = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ , ).prev_sample # post-processing lowercase__: Optional[int] = self.movq.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowercase__: Optional[int] = image * 0.5 + 0.5 lowercase__: int = image.clamp(0 , 1 ) lowercase__: Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__: List[Any] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
196
def snake_case_ ( snake_case , snake_case ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
196
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : int = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : List[Any] = '''ViTImageProcessor''' __UpperCamelCase : List[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase_ , ) _A: List[Any] = kwargs.pop('''feature_extractor''' ) _A: Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : Dict , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: _A: str = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if visual_prompt is not None: _A: Optional[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if images is not None: _A: Union[str, Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if visual_prompt is not None and images is not None: _A: Dict = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A: Dict = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A: List[Any] = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def __magic_name__ ( self : int , *lowerCAmelCase_ : str , **lowerCAmelCase_ : int ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : str , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : List[Any] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase_ , ) return self.image_processor_class @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase_ , ) return self.image_processor
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
class __lowerCAmelCase : def __init__( self ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def snake_case ( self , _snake_case ): """simple docstring""" if vertex not in self.adjacency: _lowerCAmelCase = {} self.num_vertices += 1 def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" self.add_vertex(_snake_case ) self.add_vertex(_snake_case ) if head == tail: return _lowerCAmelCase = weight _lowerCAmelCase = weight def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edge edges.remove((tail, head, weight) ) for i in range(len(_snake_case ) ): _lowerCAmelCase = list(edges[i] ) edges.sort(key=lambda _snake_case : e[2] ) for i in range(len(_snake_case ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edge _lowerCAmelCase = weight _lowerCAmelCase = weight def __str__( self ): """simple docstring""" _lowerCAmelCase = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase = self.adjacency[head][tail] string += F'{head} -> {tail} == {weight}\n' return string.rstrip("""\n""" ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def snake_case ( self ): """simple docstring""" return self.adjacency.keys() @staticmethod def snake_case ( _snake_case=None , _snake_case=None ): """simple docstring""" _lowerCAmelCase = Graph() if vertices is None: _lowerCAmelCase = [] if edges is None: _lowerCAmelCase = [] for vertex in vertices: g.add_vertex(_snake_case ) for edge in edges: g.add_edge(*_snake_case ) return g class __lowerCAmelCase : def __init__( self ): """simple docstring""" _lowerCAmelCase = {} _lowerCAmelCase = {} def __len__( self ): """simple docstring""" return len(self.parent ) def snake_case ( self , _snake_case ): """simple docstring""" if item in self.parent: return self.find(_snake_case ) _lowerCAmelCase = item _lowerCAmelCase = 0 return item def snake_case ( self , _snake_case ): """simple docstring""" if item not in self.parent: return self.make_set(_snake_case ) if item != self.parent[item]: _lowerCAmelCase = self.find(self.parent[item] ) return self.parent[item] def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = self.find(_snake_case ) _lowerCAmelCase = self.find(_snake_case ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase = roota return roota return None @staticmethod def snake_case ( _snake_case ): """simple docstring""" _lowerCAmelCase = graph.num_vertices _lowerCAmelCase = Graph.UnionFind() _lowerCAmelCase = [] while num_components > 1: _lowerCAmelCase = {} for vertex in graph.get_vertices(): _lowerCAmelCase = -1 _lowerCAmelCase = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edge edges.remove((tail, head, weight) ) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edge _lowerCAmelCase = union_find.find(_snake_case ) _lowerCAmelCase = union_find.find(_snake_case ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = cheap_edge[vertex] if union_find.find(_snake_case ) != union_find.find(_snake_case ): union_find.union(_snake_case , _snake_case ) mst_edges.append(cheap_edge[vertex] ) _lowerCAmelCase = num_components - 1 _lowerCAmelCase = Graph.build(edges=_snake_case ) return mst
82
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase : _lowercase: List[str] _lowercase: Optional[str] = None # Automatically constructed _lowercase: ClassVar[str] = "dict" _lowercase: ClassVar[Any] = None _lowercase: str = field(default='''Translation''' , init=snake_case_ , repr=snake_case_ ) def __call__( self : Optional[int] ) -> Optional[int]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase : _lowercase: Optional[List] = None _lowercase: Optional[int] = None _lowercase: Optional[str] = None # Automatically constructed _lowercase: ClassVar[str] = "dict" _lowercase: ClassVar[Any] = None _lowercase: str = field(default='''TranslationVariableLanguages''' , init=snake_case_ , repr=snake_case_ ) def lowercase__ ( self : Any ) -> Optional[Any]: _lowerCAmelCase = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase = len(self.languages ) if self.languages else None def __call__( self : List[str] ) -> Optional[Any]: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def lowercase__ ( self : Optional[Any] , __snake_case : Tuple ) -> Any: _lowerCAmelCase = set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase = zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def lowercase__ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
70
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Optional[int] = """ZinengTang/tvlt-base""" A__ : Dict = tempfile.mkdtemp() def __A ( self , **A__ ): return TvltImageProcessor.from_pretrained(self.checkpoint , **A__ ) def __A ( self , **A__ ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **A__ ) def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): A__ : Union[str, Any] = self.get_image_processor() A__ : str = self.get_feature_extractor() A__ : str = TvltProcessor(image_processor=A__ , feature_extractor=A__ ) processor.save_pretrained(self.tmpdirname ) A__ : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , A__ ) self.assertIsInstance(processor.image_processor , A__ ) def __A ( self ): A__ : int = self.get_image_processor() A__ : Optional[int] = self.get_feature_extractor() A__ : Union[str, Any] = TvltProcessor(image_processor=A__ , feature_extractor=A__ ) A__ : Dict = np.ones([1_2000] ) A__ : List[str] = feature_extractor(A__ , return_tensors="""np""" ) A__ : Tuple = processor(audio=A__ , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ): A__ : Union[str, Any] = self.get_image_processor() A__ : Union[str, Any] = self.get_feature_extractor() A__ : Any = TvltProcessor(image_processor=A__ , feature_extractor=A__ ) A__ : Optional[Any] = np.ones([3, 224, 224] ) A__ : List[str] = image_processor(A__ , return_tensors="""np""" ) A__ : Any = processor(images=A__ , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ): A__ : Union[str, Any] = self.get_image_processor() A__ : List[Any] = self.get_feature_extractor() A__ : Any = TvltProcessor(image_processor=A__ , feature_extractor=A__ ) A__ : Any = np.ones([1_2000] ) A__ : str = np.ones([3, 224, 224] ) A__ : Tuple = processor(audio=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def __A ( self ): A__ : Dict = self.get_image_processor() A__ : Tuple = self.get_feature_extractor() A__ : Tuple = TvltProcessor(image_processor=A__ , feature_extractor=A__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
141
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=A__ ).to(A__ ) A__ : str = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A__ : int = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids A__ : List[Any] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids A__ : Union[str, Any] = model(input_ids.to(A__ ) , labels=labels.to(A__ ) ).loss A__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) A__ : Any = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
141
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A : @property def lowercase_ (self : Tuple ) -> str: """simple docstring""" return self.get_dummy_input() @property def lowercase_ (self : str ) -> Tuple: """simple docstring""" if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def lowercase_ (self : Dict , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : str=False , __UpperCAmelCase : Optional[Any]=False , ) -> Any: """simple docstring""" UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = (3_2, 3_2) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = torch.device(__UpperCAmelCase ) UpperCAmelCase__ = (batch_size, num_channels) + sizes UpperCAmelCase__ = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase ) UpperCAmelCase__ = {"hidden_states": hidden_states} if include_temb: UpperCAmelCase__ = 1_2_8 UpperCAmelCase__ = randn_tensor((batch_size, temb_channels) , generator=__UpperCAmelCase , device=__UpperCAmelCase ) if include_res_hidden_states_tuple: UpperCAmelCase__ = torch.manual_seed(1 ) UpperCAmelCase__ = (randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase ),) if include_encoder_hidden_states: UpperCAmelCase__ = floats_tensor((batch_size, 3_2, 3_2) ).to(__UpperCAmelCase ) if include_skip_sample: UpperCAmelCase__ = randn_tensor(((batch_size, 3) + sizes) , generator=__UpperCAmelCase , device=__UpperCAmelCase ) return dummy_input def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = { "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": UpperCAmelCase__ = 3_2 if self.block_type == "mid": init_dict.pop("out_channels" ) UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict def lowercase_ (self : List[str] , __UpperCAmelCase : Any ) -> str: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = self.block_class(**__UpperCAmelCase ) unet_block.to(__UpperCAmelCase ) unet_block.eval() with torch.no_grad(): UpperCAmelCase__ = unet_block(**__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = output[0] self.assertEqual(output.shape , self.output_shape ) UpperCAmelCase__ = output[0, -1, -3:, -3:] UpperCAmelCase__ = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , __UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def lowercase_ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = self.block_class(**__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() UpperCAmelCase__ = model(**__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = output[0] UpperCAmelCase__ = torch.device(__UpperCAmelCase ) UpperCAmelCase__ = randn_tensor(output.shape , device=__UpperCAmelCase ) UpperCAmelCase__ = torch.nn.functional.mse_loss(__UpperCAmelCase , __UpperCAmelCase ) loss.backward()
65
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." ) parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." ) parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." ) UpperCAmelCase__ = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, "r", encoding="utf8" ) as fp: UpperCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(f"""{len(__A )} examples to process.""" ) UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 10_000 UpperCAmelCase__ = time.time() for text in data: UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}""" UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A ) rslt.append(__A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(f"""{len(__A )} examples processed.""" ) UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt] else: UpperCAmelCase__ = [np.intaa(__A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(__A, "wb" ) as handle: pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
65
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( __lowercase , unittest.TestCase ): lowercase__: Tuple = VideoToVideoSDPipeline lowercase__: List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} lowercase__: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} lowercase__: Optional[int] = PipelineTesterMixin.required_optional_params - {'''latents'''} lowercase__: int = False # No `output_type`. lowercase__: Any = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) __snake_case : int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __snake_case : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __snake_case : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __snake_case : List[Any] = CLIPTextModel(__UpperCAmelCase ) __snake_case : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __snake_case : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : Optional[Any]=0 ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith("""mps""" ): __snake_case : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __snake_case : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : int = self.get_dummy_components() __snake_case : List[Any] = VideoToVideoSDPipeline(**__UpperCAmelCase ) __snake_case : int = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __snake_case : str = self.get_dummy_inputs(__UpperCAmelCase ) __snake_case : Tuple = """np""" __snake_case : Any = sd_pipe(**__UpperCAmelCase ).frames __snake_case : Tuple = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __snake_case : List[str] = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=5E-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : Dict ) -> str: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : Tuple = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __snake_case : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case : Tuple = torch.randn((1, 10, 3, 10_24, 5_76) , generator=__UpperCAmelCase ) __snake_case : Any = video.to("""cuda""" ) __snake_case : Optional[Any] = """Spiderman is surfing""" __snake_case : Optional[int] = pipe(__UpperCAmelCase , video=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=3 , output_type="""pt""" ).frames __snake_case : Any = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , A : Any , A : Dict=13 , A : List[Any]=7 , A : Dict=True , A : Dict=True , A : Union[str, Any]=True , A : Dict=True , A : Optional[int]=99 , A : Union[str, Any]=32 , A : List[str]=2 , A : Dict=4 , A : List[Any]=37 , A : str="gelu" , A : List[Any]=0.1 , A : int=0.1 , A : Optional[Any]=512 , A : str=16 , A : Dict=2 , A : Dict=0.02 , A : Optional[int]=3 , A : int=4 , A : int=None , A : Tuple=0 , ): _UpperCAmelCase : int = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : List[str] = seq_length _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : Dict = use_input_mask _UpperCAmelCase : str = use_token_type_ids _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : str = num_labels _UpperCAmelCase : int = num_choices _UpperCAmelCase : List[Any] = scope _UpperCAmelCase : str = projection_dim def _A ( self : Tuple ): _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[int] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : str = None if self.use_token_type_ids: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[int] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) _UpperCAmelCase : List[str] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : int , A : str , A : Optional[Any] , A : str , A : List[Any] , A : Optional[int] , A : Optional[int] , A : int ): _UpperCAmelCase : Optional[Any] = TFDPRContextEncoder(config=A ) _UpperCAmelCase : Optional[int] = model(A , attention_mask=A , token_type_ids=A ) _UpperCAmelCase : Optional[Any] = model(A , token_type_ids=A ) _UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _A ( self : str , A : int , A : Optional[int] , A : int , A : List[Any] , A : int , A : Union[str, Any] , A : List[Any] ): _UpperCAmelCase : Optional[Any] = TFDPRQuestionEncoder(config=A ) _UpperCAmelCase : List[Any] = model(A , attention_mask=A , token_type_ids=A ) _UpperCAmelCase : str = model(A , token_type_ids=A ) _UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _A ( self : Optional[int] , A : Any , A : Dict , A : Union[str, Any] , A : Any , A : List[str] , A : Tuple , A : List[Any] ): _UpperCAmelCase : int = TFDPRReader(config=A ) _UpperCAmelCase : int = model(A , attention_mask=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : str = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Dict = {"input_ids": input_ids} return config, inputs_dict @require_tf class lowerCamelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __UpperCamelCase: int = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __UpperCamelCase: Optional[int] = False __UpperCamelCase: Dict = False __UpperCamelCase: int = False __UpperCamelCase: str = False __UpperCamelCase: int = False def _A ( self : Optional[Any] ): _UpperCAmelCase : Tuple = TFDPRModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=37 ) def _A ( self : str ): self.config_tester.run_common_tests() def _A ( self : int ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*A ) def _A ( self : int ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*A ) def _A ( self : List[str] ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*A ) @slow def _A ( self : Optional[Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = TFDPRContextEncoder.from_pretrained(A ) self.assertIsNotNone(A ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = TFDPRContextEncoder.from_pretrained(A ) self.assertIsNotNone(A ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = TFDPRQuestionEncoder.from_pretrained(A ) self.assertIsNotNone(A ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = TFDPRReader.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @slow def _A ( self : Any ): _UpperCAmelCase : str = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _UpperCAmelCase : List[str] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _UpperCAmelCase : List[str] = model(A )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCAmelCase : List[Any] = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
31
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a_ : Dict = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" super().__init__() lowerCamelCase_ = nn.ModuleList(UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(UpperCamelCase , UpperCamelCase , self.nets ) ): lowerCamelCase_ ,lowerCamelCase_ = controlnet( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) # merge samples if i == 0: lowerCamelCase_ ,lowerCamelCase_ = down_samples, mid_sample else: lowerCamelCase_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCamelCase , UpperCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def snake_case ( self , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , ): """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCamelCase , is_main_process=UpperCamelCase , save_function=UpperCamelCase , safe_serialization=UpperCamelCase , variant=UpperCamelCase , ) idx += 1 lowerCamelCase_ = model_path_to_save + f'''_{idx}''' @classmethod def snake_case ( cls , UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCamelCase_ = pretrained_model_path while os.path.isdir(UpperCamelCase ): lowerCamelCase_ = ControlNetModel.from_pretrained(UpperCamelCase , **UpperCamelCase ) controlnets.append(UpperCamelCase ) idx += 1 lowerCamelCase_ = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(UpperCamelCase )} controlnets loaded from {pretrained_model_path}.''' ) if len(UpperCamelCase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(UpperCamelCase )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(UpperCamelCase )
55
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''biogpt''' def __init__( self ,lowerCamelCase_=4_2_3_8_4 ,lowerCamelCase_=1_0_2_4 ,lowerCamelCase_=2_4 ,lowerCamelCase_=1_6 ,lowerCamelCase_=4_0_9_6 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=1_0_2_4 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1E-12 ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.0 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,lowerCamelCase_=2 ,**lowerCamelCase_ ,) -> Any: A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ )
77
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCAmelCase =parser.parse_args() UpperCAmelCase =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase =CLIPImageProcessor() UpperCAmelCase =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCAmelCase =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
77
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Dict = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['LayoutLMv3FeatureExtractor'] _lowerCamelCase : List[str] = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
"""simple docstring""" import sys import turtle def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) SCREAMING_SNAKE_CASE_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') SCREAMING_SNAKE_CASE_ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['PoolFormerFeatureExtractor'] A_ = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
358
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : int = nn.Linear(3 , 4 ) A__ : Union[str, Any] = nn.BatchNormad(4 ) A__ : Union[str, Any] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self : str , snake_case : List[str] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , model.state_dict() ) A__ : List[str] = os.path.join(snake_case , """index.json""" ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A__ : List[str] = os.path.join(snake_case , F'{key}.dat' ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on the fact weights are properly loaded def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A__ : str = torch.randn(2 , 3 , dtype=snake_case ) with TemporaryDirectory() as tmp_dir: A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} ) A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" ) self.assertTrue(os.path.isfile(snake_case ) ) self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} ) A__ : str = load_offloaded_weight(snake_case , index["""weight"""] ) self.assertTrue(torch.equal(snake_case , snake_case ) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = ModelForTest() A__ : Union[str, Any] = model.state_dict() A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k} A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k} A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) # Duplicates are removed A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} ) A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
296
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( lowercase__ : float, lowercase__ : float, lowercase__ : float ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
141
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class lowerCAmelCase ( A , A ): lowerCAmelCase_ = "bit" lowerCAmelCase_ = ["preactivation", "bottleneck"] lowerCAmelCase_ = ["SAME", "VALID"] def __init__( self : Union[str, Any] , __lowercase : Tuple=3 , __lowercase : Tuple=64 , __lowercase : List[str]=[256, 512, 1024, 2048] , __lowercase : int=[3, 4, 6, 3] , __lowercase : Optional[Any]="preactivation" , __lowercase : str="relu" , __lowercase : Tuple=None , __lowercase : int=32 , __lowercase : int=0.0 , __lowercase : Dict=False , __lowercase : List[Any]=32 , __lowercase : List[str]=1 , __lowercase : str=None , __lowercase : Any=None , **__lowercase : List[str] , ): """simple docstring""" super().__init__(**__lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowercase =global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __lowercase =num_channels __lowercase =embedding_size __lowercase =hidden_sizes __lowercase =depths __lowercase =layer_type __lowercase =hidden_act __lowercase =global_padding __lowercase =num_groups __lowercase =drop_path_rate __lowercase =embedding_dynamic_padding __lowercase =output_stride __lowercase =width_factor __lowercase =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(__lowercase ) + 1 )] __lowercase , __lowercase =get_aligned_output_features_output_indices( out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
141
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (snake_case_ ): """simple docstring""" __a =(DEISMultistepScheduler,) __a =(('num_inference_steps', 25),) def UpperCamelCase__ ( self : Optional[Any] , **__a : List[str] ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**__a ) return config def UpperCamelCase__ ( self : Any , __a : Dict=0 , **__a : Dict ): _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , __a ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals _a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) _a = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals _a = dummy_past_residuals[: new_scheduler.config.solver_order] _a , _a = sample, sample for t in range(__a , time_step + scheduler.config.solver_order + 1 ): _a = scheduler.step(__a , __a , __a , **__a ).prev_sample _a = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self : List[str] ): pass def UpperCamelCase__ ( self : Any , __a : Optional[Any]=0 , **__a : Dict ): _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , __a ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) _a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) _a = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) _a = dummy_past_residuals[: new_scheduler.config.solver_order] _a = scheduler.step(__a , __a , __a , **__a ).prev_sample _a = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[int]=None , **__a : Optional[Any] ): if scheduler is None: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a = 10 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : Any ): _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , __a ) for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = self.dummy_sample _a = 0.1 * sample if num_inference_steps is not None and hasattr(__a , "set_timesteps" ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , "set_timesteps" ): _a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _a = [residual + 0.2, residual + 0.15, residual + 0.10] _a = dummy_past_residuals[: scheduler.config.solver_order] _a = scheduler.timesteps[5] _a = scheduler.timesteps[6] _a = scheduler.step(__a , __a , __a , **__a ).prev_sample _a = scheduler.step(__a , __a , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Optional[Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults _a = DEISMultistepScheduler(**self.get_scheduler_config() ) _a = self.full_loop(scheduler=__a ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 _a = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _a = DPMSolverMultistepScheduler.from_config(scheduler.config ) _a = UniPCMultistepScheduler.from_config(scheduler.config ) _a = DEISMultistepScheduler.from_config(scheduler.config ) _a = self.full_loop(scheduler=__a ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def UpperCamelCase__ ( self : Tuple ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Optional[int] ): self.check_over_configs(thresholding=__a ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , algorithm_type="deis" , solver_order=__a , solver_type=__a , ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Optional[int] ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) _a = self.full_loop( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) assert not torch.isnan(__a ).any(), "Samples have nan numbers" def UpperCamelCase__ ( self : Any ): self.check_over_configs(lower_order_final=__a ) self.check_over_configs(lower_order_final=__a ) def UpperCamelCase__ ( self : List[str] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=__a , time_step=0 ) def UpperCamelCase__ ( self : List[Any] ): _a = self.full_loop() _a = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def UpperCamelCase__ ( self : Tuple ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 ) _a = scheduler_class(**__a ) _a = 10 _a = self.dummy_model() _a = self.dummy_sample_deter.half() scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a ).prev_sample assert sample.dtype == torch.floataa
353
'''simple docstring''' from manim import * class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): _a = Rectangle(height=0.5 , width=0.5 ) _a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _a = [mem.copy() for i in range(6 )] _a = [mem.copy() for i in range(6 )] _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = VGroup(__a , __a ).arrange(__a , buff=0 ) _a = Text("CPU" , font_size=24 ) _a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) _a = [mem.copy() for i in range(4 )] _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = Text("GPU" , font_size=24 ) _a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = Text("Model" , font_size=24 ) _a = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) _a = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _a = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) cpu_targs.append(__a ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*__a ).arrange(__a , buff=0 ) _a = Text("Loaded Checkpoint" , font_size=24 ) _a = Group(__a , __a ).arrange(__a , aligned_edge=__a , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _a = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) _a = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _a = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a ) , Write(__a ) ) self.play(Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) _a = [] _a = [] for i, rect in enumerate(__a ): _a = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) first_animations.append(GrowFromCenter(__a , run_time=1 ) ) _a = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(*__a ) self.wait()
346
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> List[str]: _A : Optional[Any] = parent _A : int = batch_size _A : List[Any] = seq_length _A : List[Any] = is_training _A : str = use_input_mask _A : List[Any] = use_token_type_ids _A : Any = use_labels _A : Dict = vocab_size _A : List[str] = hidden_size _A : Optional[int] = num_hidden_layers _A : List[str] = num_attention_heads _A : Tuple = intermediate_size _A : Optional[int] = hidden_act _A : Optional[int] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : str = max_position_embeddings _A : Any = type_vocab_size _A : Optional[Any] = type_sequence_label_size _A : Optional[Any] = initializer_range _A : Any = num_labels _A : int = num_choices _A : Any = scope def a__ ( self ) -> List[Any]: _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Union[str, Any] = None if self.use_input_mask: _A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _A : Tuple = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Dict = None _A : List[Any] = None _A : Dict = None if self.use_labels: _A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _A : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> List[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _A : Optional[int] = LlamaModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a ) _A : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]: _A : Union[str, Any] = True _A : Any = LlamaModel(_a ) model.to(_a ) model.eval() _A : int = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _A : Optional[int] = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) _A : Optional[int] = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int: _A : List[Any] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Any: _A : Optional[Any] = True _A : Tuple = True _A : str = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass _A : Union[str, Any] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) _A : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _A : Dict = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0] _A : Optional[int] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0] # select random slice _A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> int: _A : List[Any] = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Any = config_and_inputs _A : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _a = (LlamaForCausalLM,) if is_torch_available() else () _a = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def a__ ( self ) -> List[str]: _A : Union[str, Any] = LlamaModelTester(self ) _A : Dict = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Union[str, Any]: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Optional[Any] = type self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Optional[Any] = input_dict["""input_ids"""] _A : Tuple = input_ids.ne(1 ).to(_a ) _A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Tuple = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> Tuple: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : int = 3 _A : Union[str, Any] = """single_label_classification""" _A : Union[str, Any] = input_dict["""input_ids"""] _A : int = input_ids.ne(1 ).to(_a ) _A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Optional[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Union[str, Any] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> str: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Tuple = """multi_label_classification""" _A : List[str] = input_dict["""input_ids"""] _A : Union[str, Any] = input_ids.ne(1 ).to(_a ) _A : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _A : Optional[int] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Tuple = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def a__ ( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def a__ ( self , _a ) -> Any: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Dict = ids_tensor([1, 10] , config.vocab_size ) _A : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : str = LlamaModel(_a ) original_model.to(_a ) original_model.eval() _A : Dict = original_model(_a ).last_hidden_state _A : Union[str, Any] = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} _A : Optional[Any] = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() _A : Tuple = scaled_model(_a ).last_hidden_state _A : Any = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a , _a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Dict: _A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) _A : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _A : Optional[int] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : Any = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Any: _A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) _A : Dict = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Dict = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Optional[Any]: _A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) _A : Optional[int] = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Tuple = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def a__ ( self ) -> Optional[Any]: _A : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) _A : int = model(torch.tensor(_a ) ) _A : Tuple = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # fmt: off _A : Any = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def a__ ( self ) -> Any: _A : Any = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _A : List[Any] = """Simply put, the theory of relativity states that """ _A : Dict = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _A : List[str] = tokenizer.encode(_a , return_tensors="""pt""" ) _A : Optional[Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=_a ) # greedy generation outputs _A : Optional[Any] = model.generate(_a , max_new_tokens=64 , top_p=_a , temperature=1 , do_sample=_a ) _A : Union[str, Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_a ) self.assertEqual(_a , _a )
26
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
229
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''convbert''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=768 , _lowercase=2 , _lowercase=9 , _lowercase=1 , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = embedding_size _lowerCAmelCase = head_ratio _lowerCAmelCase = conv_kernel_size _lowerCAmelCase = num_groups _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
229
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = 0 def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Tuple = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : str = Path(a ) / 'preprocessor_config.json' lowercase__ : str = Path(a ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : str = Path(a ) / 'preprocessor_config.json' lowercase__ : int = Path(a ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) lowercase__ : List[str] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase__ : Optional[int] = Path(a ) / 'preprocessor_config.json' lowercase__ : Optional[int] = Path(a ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase__ : int = AutoImageProcessor.from_pretrained(a ).to_dict() config_dict.pop('image_processor_type' ) lowercase__ : Tuple = CLIPImageProcessor(**a ) # save in new folder model_config.save_pretrained(a ) config.save_pretrained(a ) lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained(a ) # make sure private variable is not incorrectly saved lowercase__ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Dict = Path(a ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) lowercase__ : List[str] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _UpperCAmelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( a , 'clip-base is not a local folder and is not a valid model identifier' ): lowercase__ : Any = AutoImageProcessor.from_pretrained('clip-base' ) def _UpperCAmelCase ( self ) -> List[Any]: with self.assertRaisesRegex( a , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase__ : Dict = AutoImageProcessor.from_pretrained(a , revision='aaaaaa' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( a , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowercase__ : int = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def _UpperCAmelCase ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a ): lowercase__ : List[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): lowercase__ : Optional[int] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) lowercase__ : Union[str, Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a ) lowercase__ : str = AutoImageProcessor.from_pretrained(a , trust_remote_code=a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def _UpperCAmelCase ( self ) -> int: try: AutoConfig.register('custom' , a ) AutoImageProcessor.register(a , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoImageProcessor.register(a , a ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Optional[Any] = Path(a ) / 'preprocessor_config.json' lowercase__ : List[Any] = Path(a ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) lowercase__ : Union[str, Any] = CustomImageProcessor.from_pretrained(a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a ) lowercase__ : Optional[int] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ) -> Dict: class UpperCAmelCase_ ( _a): lowerCamelCase__ : Union[str, Any] = True try: AutoConfig.register('custom' , a ) AutoImageProcessor.register(a , a ) # If remote code is not set, the default is to use local lowercase__ : int = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase__ : Optional[int] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase__ : int = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(a , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
77
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def a_ ( _lowerCAmelCase : Callable[[int | float], int | float] , _lowerCAmelCase : int | float , _lowerCAmelCase : int | float , _lowerCAmelCase : int = 100 , ): '''simple docstring''' lowercase__ : Dict = x_start lowercase__ : Union[str, Any] = fnc(_lowerCAmelCase ) lowercase__ : Optional[Any] = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ : Union[str, Any] = (x_end - x_start) / steps + xa lowercase__ : Union[str, Any] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ : Union[str, Any] = xa lowercase__ : int = fxa return length if __name__ == "__main__": def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _UpperCamelCase : str = 10 while i <= 10_00_00: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
77
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase = TaTokenizerFast lowerCamelCase = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
241
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Union[str, Any] , *_UpperCAmelCase : Any , **_UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : int ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Union[str, Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Dict ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : Dict , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Any , *_UpperCAmelCase : str , **_UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : int ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : str , *_UpperCAmelCase : int , **_UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Dict , *_UpperCAmelCase : Any , **_UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Union[str, Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : str ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : Any , **_UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : int ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : Tuple , *_UpperCAmelCase : int , **_UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : int , *_UpperCAmelCase : Dict , **_UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax'''] def __init__( self : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowercase__ ( cls : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] )
241
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCamelCase ( ) -> Any: _a : List[Any] = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=lowerCAmelCase_ ) _a : Dict = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=lowerCAmelCase_ ) env_command_parser(subparsers=lowerCAmelCase_ ) launch_command_parser(subparsers=lowerCAmelCase_ ) tpu_command_parser(subparsers=lowerCAmelCase_ ) test_command_parser(subparsers=lowerCAmelCase_ ) # Let's go _a : Optional[Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , 'func' ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase_ ) if __name__ == "__main__": main()
89
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
296
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home A_ :Any = HUGGINGFACE_HUB_CACHE A_ :Optional[Any] = '''config.json''' A_ :List[str] = '''diffusion_pytorch_model.bin''' A_ :Union[str, Any] = '''diffusion_flax_model.msgpack''' A_ :Optional[int] = '''model.onnx''' A_ :List[str] = '''diffusion_pytorch_model.safetensors''' A_ :Dict = '''weights.pb''' A_ :Optional[int] = '''https://huggingface.co''' A_ :int = default_cache_path A_ :Optional[int] = '''diffusers_modules''' A_ :Dict = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) A_ :Any = ['''fp16''', '''non-ema'''] A_ :Optional[Any] = '''.self_attn'''
363
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __A : """simple docstring""" def __init__( self , lowerCamelCase__ = None ): """simple docstring""" if components is None: __UpperCamelCase : Dict =[] __UpperCamelCase : List[str] =list(lowerCamelCase__ ) def __len__( self ): """simple docstring""" return len(self.__components ) def __str__( self ): """simple docstring""" return "(" + ",".join(map(lowerCamelCase__ , self.__components ) ) + ")" def __add__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =len(self ) if size == len(lowerCamelCase__ ): __UpperCamelCase : Any =[self.__components[i] + other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =len(self ) if size == len(lowerCamelCase__ ): __UpperCamelCase : Union[str, Any] =[self.__components[i] - other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , lowerCamelCase__ ): """simple docstring""" ... @overload def __mul__( self , lowerCamelCase__ ): """simple docstring""" ... def __mul__( self , lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , (float, int) ): __UpperCamelCase : str =[c * other for c in self.__components] return Vector(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(self ) == len(lowerCamelCase__ ): __UpperCamelCase : Tuple =len(self ) __UpperCamelCase : Union[str, Any] =[self.__components[i] * other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return sum(lowerCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def __lowercase ( self ): """simple docstring""" return Vector(self.__components ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase : List[Any] =value def __lowercase ( self ): """simple docstring""" if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase : Tuple =[c**2 for c in self.__components] return math.sqrt(sum(lowerCamelCase__ ) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" __UpperCamelCase : List[Any] =self * other __UpperCamelCase : str =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def A ( a_ ) -> Vector: assert isinstance(a_ ,a_ ) return Vector([0] * dimension ) def A ( a_ ,a_ ) -> Vector: assert isinstance(a_ ,a_ ) and (isinstance(a_ ,a_ )) __UpperCamelCase : Tuple =[0] * dimension __UpperCamelCase : List[str] =1 return Vector(a_ ) def A ( a_ ,a_ ,a_ ) -> Vector: assert ( isinstance(a_ ,a_ ) and isinstance(a_ ,a_ ) and (isinstance(a_ ,(int, float) )) ) return x * scalar + y def A ( a_ ,a_ ,a_ ) -> Vector: random.seed(a_ ) __UpperCamelCase : List[Any] =[random.randint(a_ ,a_ ) for _ in range(a_ )] return Vector(a_ ) class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =matrix __UpperCamelCase : List[str] =w __UpperCamelCase : int =h def __str__( self ): """simple docstring""" __UpperCamelCase : Optional[Any] ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCamelCase__ ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase : int =[] for i in range(self.__height ): __UpperCamelCase : str =[ self.__matrix[i][j] + other.component(lowerCamelCase__ , lowerCamelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCamelCase__ ) return Matrix(lowerCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , lowerCamelCase__ ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase : str =[] for i in range(self.__height ): __UpperCamelCase : Optional[int] =[ self.__matrix[i][j] - other.component(lowerCamelCase__ , lowerCamelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCamelCase__ ) return Matrix(lowerCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , lowerCamelCase__ ): """simple docstring""" ... @overload def __mul__( self , lowerCamelCase__ ): """simple docstring""" ... def __mul__( self , lowerCamelCase__ ): """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # matrix-vector if len(lowerCamelCase__ ) == self.__width: __UpperCamelCase : Dict =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase : Optional[Any] =[ self.__matrix[i][j] * other.component(lowerCamelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCamelCase__ , sum(lowerCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(lowerCamelCase__ , (int, float) ): # matrix-scalar __UpperCamelCase : Any =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCamelCase__ , self.__width , self.__height ) return None def __lowercase ( self ): """simple docstring""" return self.__height def __lowercase ( self ): """simple docstring""" return self.__width def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase : Tuple =value else: raise Exception('change_component: indices out of bounds' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase : Any =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCamelCase__ ) ): __UpperCamelCase : Optional[Any] =minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCamelCase__ , lowerCamelCase__ ) else: raise Exception('Indices out of bounds' ) def __lowercase ( self ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase : Tuple =[ self.__matrix[0][y] * self.cofactor(0 , lowerCamelCase__ ) for y in range(self.__width ) ] return sum(lowerCamelCase__ ) def A ( a_ ) -> Matrix: __UpperCamelCase : list[list[float]] =[[0] * n for _ in range(a_ )] return Matrix(a_ ,a_ ,a_ ) def A ( a_ ,a_ ,a_ ,a_ ) -> Matrix: random.seed(a_ ) __UpperCamelCase : list[list[float]] =[ [random.randint(a_ ,a_ ) for _ in range(a_ )] for _ in range(a_ ) ] return Matrix(a_ ,a_ ,a_ )
245
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Optional[int] = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Dict = { "google/realm-cc-news-pretrained-embedder": 5_1_2, "google/realm-cc-news-pretrained-encoder": 5_1_2, "google/realm-cc-news-pretrained-scorer": 5_1_2, "google/realm-cc-news-pretrained-openqa": 5_1_2, "google/realm-orqa-nq-openqa": 5_1_2, "google/realm-orqa-nq-reader": 5_1_2, "google/realm-orqa-wq-openqa": 5_1_2, "google/realm-orqa-wq-reader": 5_1_2, } lowerCamelCase : int = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class A__ ( A__ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_INIT_CONFIGURATION A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = RealmTokenizer def __init__( self : Tuple , _a : Union[str, Any]=None , _a : List[Any]=None , _a : str=True , _a : Dict="[UNK]" , _a : List[Any]="[SEP]" , _a : List[str]="[PAD]" , _a : int="[CLS]" , _a : List[Any]="[MASK]" , _a : List[Any]=True , _a : str=None , **_a : Any , ) -> str: '''simple docstring''' super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) _SCREAMING_SNAKE_CASE =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _a ) != do_lower_case or normalizer_state.get('strip_accents' , _a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _a ) != tokenize_chinese_chars ): _SCREAMING_SNAKE_CASE =getattr(_a , normalizer_state.pop('type' ) ) _SCREAMING_SNAKE_CASE =do_lower_case _SCREAMING_SNAKE_CASE =strip_accents _SCREAMING_SNAKE_CASE =tokenize_chinese_chars _SCREAMING_SNAKE_CASE =normalizer_class(**_a ) _SCREAMING_SNAKE_CASE =do_lower_case def A ( self : int , _a : Union[str, Any] , **_a : List[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =PaddingStrategy.MAX_LENGTH _SCREAMING_SNAKE_CASE =text _SCREAMING_SNAKE_CASE =kwargs.pop('text_pair' , _a ) _SCREAMING_SNAKE_CASE =kwargs.pop('return_tensors' , _a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_a ): if batch_text_pair is not None: _SCREAMING_SNAKE_CASE =batch_text_pair[idx] else: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =super().__call__(_a , _a , return_tensors=_a , **_a ) _SCREAMING_SNAKE_CASE =encoded_candidates.get('input_ids' ) _SCREAMING_SNAKE_CASE =encoded_candidates.get('attention_mask' ) _SCREAMING_SNAKE_CASE =encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_a ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_a ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_a ) _SCREAMING_SNAKE_CASE ={key: item for key, item in output_data.items() if len(_a ) != 0} return BatchEncoding(_a , tensor_type=_a ) def A ( self : int , _a : Optional[Any] , _a : Optional[int]=None ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : str , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Dict , _a : str , _a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
47
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase_ = '\\n\n' UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = """cuda""" else: UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = model.to(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) UpperCAmelCase__ = encodings["""input_ids"""] UpperCAmelCase__ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
346
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase = random.Random() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=1.0 , __lowercase=None , __lowercase=None ) -> List[str]: if rng is None: A: List[Any] = global_rng A: Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=7 , SCREAMING_SNAKE_CASE_ : Optional[Any]=4_00 , SCREAMING_SNAKE_CASE_ : List[Any]=20_00 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : int=1_60_00 , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Any=True , ) -> Union[str, Any]: '''simple docstring''' A: Optional[Any] = parent A: Tuple = batch_size A: List[Any] = min_seq_length A: Union[str, Any] = max_seq_length A: Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A: List[Any] = feature_size A: Tuple = padding_value A: Dict = sampling_rate A: Tuple = return_attention_mask A: List[str] = do_normalize def _snake_case ( self : int ) -> List[str]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Tuple=False ) -> Dict: '''simple docstring''' def _flatten(SCREAMING_SNAKE_CASE_ : Optional[Any] ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: A: int = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A: int = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A: int = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = WavaVecaFeatureExtractor def _snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' A: List[str] = WavaVecaFeatureExtractionTester(self ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Any: '''simple docstring''' self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_ , axis=0 ) - 1 ) < 1E-3 ) ) def _snake_case ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A: str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A: Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] A: Any = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input A: List[Any] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values A: str = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test batched A: Any = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values A: List[str] = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A: int = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] A: List[str] = np.asarray(SCREAMING_SNAKE_CASE_ ) A: str = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values A: List[str] = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A: Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A: Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] A: List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] A: Tuple = [None, 16_00, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) A: Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _snake_case ( self : Any ) -> Optional[Any]: '''simple docstring''' A: Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A: Dict = range(8_00 , 14_00 , 2_00 ) A: Optional[int] = [floats_list((1, x) )[0] for x in lengths] A: Tuple = ['''longest''', '''max_length''', '''do_not_pad'''] A: Union[str, Any] = [None, 16_00, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A: Tuple = feat_extract(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _snake_case ( self : Any ) -> Any: '''simple docstring''' A: List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A: List[str] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] A: Optional[Any] = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10_00 , padding='''max_length''' , return_tensors='''np''' ) A: Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' A: int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A: Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] A: int = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10_00 , padding='''longest''' , return_tensors='''np''' ) A: List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) A: int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] A: int = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=20_00 , padding='''longest''' , return_tensors='''np''' ) A: str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def _snake_case ( self : Optional[int] ) -> List[str]: '''simple docstring''' import torch A: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A: str = np.random.rand(1_00 ).astype(np.floataa ) A: List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A: Optional[int] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A: List[str] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _snake_case ( self : Dict ) -> Tuple: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: A: Tuple = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) A: str = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
334
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
1
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _A : Optional[int] = '''CompVis/stable-diffusion-v1-1''' _A : List[Any] = '''CompVis/stable-diffusion-v1-2''' _A : Optional[Any] = '''CompVis/stable-diffusion-v1-3''' _A : int = '''CompVis/stable-diffusion-v1-4''' class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : AutoencoderKL , SCREAMING_SNAKE_CASE__ : CLIPTextModel , SCREAMING_SNAKE_CASE__ : CLIPTokenizer , SCREAMING_SNAKE_CASE__ : UNetaDConditionModel , SCREAMING_SNAKE_CASE__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE__ : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE__ : CLIPImageProcessor , SCREAMING_SNAKE_CASE__ : bool = True , ) -> List[Any]: super()._init_() __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , requires_safety_checker=SCREAMING_SNAKE_CASE__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def a ( self : List[Any] ) -> Dict[str, Any]: return {k: getattr(self , SCREAMING_SNAKE_CASE__ ) for k in self.config.keys() if not k.startswith("""_""" )} def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = "auto" ) -> Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Optional[int]: self.enable_attention_slicing(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def a ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : float = 7.5 , SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> List[str]: return self.pipea( prompt=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def a ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : float = 7.5 , SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[str]: return self.pipea( prompt=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : float = 7.5 , SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> Union[str, Any]: return self.pipea( prompt=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : float = 7.5 , SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> List[Any]: return self.pipea( prompt=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def a ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : float = 7.5 , SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , **SCREAMING_SNAKE_CASE__ : int , ) -> List[str]: __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(SCREAMING_SNAKE_CASE__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowerCAmelCase = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowerCAmelCase = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowerCAmelCase = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowerCAmelCase = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
229
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_ ( snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def UpperCamelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) __lowerCAmelCase = emb.weight.data return lin_layer def UpperCamelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] __lowerCAmelCase = mam_aaa["""model"""] remove_ignore_keys_(snake_case_ ) __lowerCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] __lowerCAmelCase = MaMaaaConfig( vocab_size=snake_case_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) __lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] __lowerCAmelCase = MaMaaaForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ , strict=snake_case_ ) __lowerCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : str = parser.parse_args() _A : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
229
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = "informer" a__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Any , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "student_t" , __lowerCamelCase : str = "nll" , __lowerCamelCase : int = 1 , __lowerCamelCase : List[int] = None , __lowerCamelCase : Optional[Union[str, bool]] = "mean" , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : bool = True , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.05 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 1_00 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : str = "prob" , __lowerCamelCase : int = 5 , __lowerCamelCase : bool = True , **__lowerCamelCase : Union[str, Any] , ) -> str: # time series specific configuration A : List[Any] = prediction_length A : Any = context_length or prediction_length A : Optional[Any] = distribution_output A : List[str] = loss A : Union[str, Any] = input_size A : List[Any] = num_time_features A : int = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A : str = scaling A : str = num_dynamic_real_features A : Any = num_static_real_features A : str = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) A : Dict = cardinality else: A : str = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) A : Optional[Any] = embedding_dimension else: A : Union[str, Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A : Union[str, Any] = num_parallel_samples # Transformer architecture configuration A : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features A : List[Any] = d_model A : int = encoder_attention_heads A : int = decoder_attention_heads A : Optional[Any] = encoder_ffn_dim A : int = decoder_ffn_dim A : List[str] = encoder_layers A : List[str] = decoder_layers A : int = dropout A : Union[str, Any] = attention_dropout A : int = activation_dropout A : Any = encoder_layerdrop A : Union[str, Any] = decoder_layerdrop A : Any = activation_function A : Dict = init_std A : Optional[int] = use_cache # Informer A : Dict = attention_type A : int = sampling_factor A : Union[str, Any] = distil super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
256
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = CLIPConfig a__ = ["CLIPEncoderLayer"] def __init__( self : Optional[Any] , __lowerCamelCase : CLIPConfig ) -> Tuple: super().__init__(__lowerCamelCase ) A : List[Any] = CLIPVisionModelWithProjection(config.vision_config ) A : List[str] = nn.Linear(config.vision_config.projection_dim , 1 ) A : Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=0.5 , __lowerCamelCase : Dict=0.5 ) -> Optional[int]: A : List[str] = self.vision_model(__lowerCamelCase )[0] A : Dict = self.p_head(__lowerCamelCase ) A : Dict = nsfw_detected.flatten() A : Any = nsfw_detected > p_threshold A : Optional[int] = nsfw_detected.tolist() if any(__lowerCamelCase ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(__lowerCamelCase ): if nsfw_detected_: A : List[str] = np.zeros(images[idx].shape ) A : List[str] = self.w_head(__lowerCamelCase ) A : str = watermark_detected.flatten() A : List[Any] = watermark_detected > w_threshold A : List[Any] = watermark_detected.tolist() if any(__lowerCamelCase ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(__lowerCamelCase ): if watermark_detected_: A : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
256
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase__ = logging.get_logger("""transformers.models.speecht5""") def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase_ : List[Any] = checkpoint["input_conv.weight_g"] lowerCAmelCase_ : List[Any] = checkpoint["input_conv.weight_v"] lowerCAmelCase_ : List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : str = checkpoint[f'''upsamples.{i}.1.weight_g'''] lowerCAmelCase_ : int = checkpoint[f'''upsamples.{i}.1.weight_v'''] lowerCAmelCase_ : str = checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : List[Any] = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] lowerCAmelCase_ : List[str] = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] lowerCAmelCase_ : Any = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] lowerCAmelCase_ : Union[str, Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] lowerCAmelCase_ : Optional[Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] lowerCAmelCase_ : List[str] = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] lowerCAmelCase_ : Union[str, Any] = checkpoint["output_conv.1.weight_g"] lowerCAmelCase_ : Optional[int] = checkpoint["output_conv.1.weight_v"] lowerCAmelCase_ : Any = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ) -> str: """simple docstring""" if config_path is not None: lowerCAmelCase_ : str = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : Dict = SpeechTaHifiGan(__UpperCamelCase ) lowerCAmelCase_ : int = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , __UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : List[Any] = np.load(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = stats[0].reshape(-1 ) lowerCAmelCase_ : Any = stats[1].reshape(-1 ) lowerCAmelCase_ : List[str] = torch.from_numpy(__UpperCamelCase ).float() lowerCAmelCase_ : Any = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowercase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
241
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""CLIPFeatureExtractor"""] lowercase__ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
241
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Tuple=13 , __a : Optional[Any]=7 , __a : Dict=True , __a : Tuple=True , __a : List[str]=True , __a : List[str]=True , __a : Optional[int]=True , __a : Optional[Any]=False , __a : Union[str, Any]=False , __a : List[str]=False , __a : str=2 , __a : str=99 , __a : List[Any]=0 , __a : List[Any]=32 , __a : Dict=5 , __a : Tuple=4 , __a : Dict=0.1 , __a : Optional[int]=0.1 , __a : Tuple=5_12 , __a : int=12 , __a : int=2 , __a : str=0.02 , __a : int=3 , __a : Dict=4 , __a : Dict="last" , __a : List[Any]=None , __a : Tuple=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope def UpperCamelCase__ ( self : List[str] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase__ ( self : Tuple ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] , __a : Optional[Any] , __a : Tuple , __a : Optional[int] , __a : List[Any] , __a : Any , __a : int , __a : Optional[int] , ): _a = FlaubertModel(config=__a ) model.to(__a ) model.eval() _a = model(__a , lengths=__a , langs=__a ) _a = model(__a , langs=__a ) _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : Union[str, Any] , __a : Dict , __a : Optional[int] , __a : str , __a : Dict , __a : Optional[int] , __a : str , __a : Union[str, Any] , ): _a = FlaubertWithLMHeadModel(__a ) model.to(__a ) model.eval() _a = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : Dict , __a : Any , __a : Any , __a : int , __a : int , __a : Dict , __a : List[str] , __a : List[Any] , __a : Any , __a : str , ): _a = FlaubertForQuestionAnsweringSimple(__a ) model.to(__a ) model.eval() _a = model(__a ) _a = model(__a , start_positions=__a , end_positions=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : Union[str, Any] , __a : List[str] , __a : Optional[int] , __a : str , __a : Tuple , __a : List[Any] , __a : List[str] , __a : Tuple , __a : Any , __a : Optional[int] , ): _a = FlaubertForQuestionAnswering(__a ) model.to(__a ) model.eval() _a = model(__a ) _a = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , p_mask=__a , ) _a = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , ) ((_a ) , ) = result_with_labels.to_tuple() _a = model(__a , start_positions=__a , end_positions=__a ) ((_a ) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase__ ( self : str , __a : List[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : Any , __a : Dict , __a : List[Any] , __a : Optional[int] , __a : int , __a : Dict , ): _a = FlaubertForSequenceClassification(__a ) model.to(__a ) model.eval() _a = model(__a ) _a = model(__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self : str , __a : Optional[int] , __a : List[str] , __a : List[str] , __a : Optional[Any] , __a : Tuple , __a : List[str] , __a : List[Any] , __a : int , __a : Dict , ): _a = self.num_labels _a = FlaubertForTokenClassification(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : Any , __a : Tuple , __a : List[Any] , __a : Optional[Any] , __a : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[Any] , ): _a = self.num_choices _a = FlaubertForMultipleChoice(config=__a ) model.to(__a ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self : int ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __a =( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : Any , __a : Union[str, Any] , __a : Dict , __a : List[str] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase__ ( self : Dict , __a : str , __a : int , __a : List[str]=False ): _a = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def UpperCamelCase__ ( self : Optional[Any] ): _a = FlaubertModelTester(self ) _a = ConfigTester(self , config_class=__a , emb_dim=37 ) def UpperCamelCase__ ( self : List[str] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__a ) def UpperCamelCase__ ( self : str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__a ) def UpperCamelCase__ ( self : Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__a ) def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__a ) def UpperCamelCase__ ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__a ) @slow def UpperCamelCase__ ( self : List[Any] ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = FlaubertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @slow @require_torch_gpu def UpperCamelCase__ ( self : Any ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _a = True _a = model_class(config=__a ) _a = self._prepare_for_class(__a , __a ) _a = torch.jit.trace( __a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , "traced_model.pt" ) ) _a = torch.jit.load(os.path.join(__a , "traced_model.pt" ) , map_location=__a ) loaded(inputs_dict["input_ids"].to(__a ) , inputs_dict["attention_mask"].to(__a ) ) @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : List[Any] ): _a = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) _a = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): _a = model(__a )[0] _a = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __a ) _a = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
358
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase_ : List[str] = TypeVar('T') lowerCAmelCase_ : Dict = TypeVar('U') class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ): _a = key _a = val _a = None _a = None def __repr__( self : Any ): return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Dict ): _a = DoubleLinkedListNode(__a , __a ) _a = DoubleLinkedListNode(__a , __a ) _a , _a = self.rear, self.head def __repr__( self : str ): _a = ["DoubleLinkedList"] _a = self.head while node.next is not None: rep.append(str(__a ) ) _a = node.next rep.append(str(self.rear ) ) return ",\n ".join(__a ) def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ): _a = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a = node _a = previous _a = node _a = self.rear def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ): if node.prev is None or node.next is None: return None _a = node.next _a = node.prev _a = None _a = None return node class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" __a ={} def __init__( self : Union[str, Any] , __a : int ): _a = DoubleLinkedList() _a = capacity _a = 0 _a = 0 _a = 0 _a = {} def __repr__( self : Optional[int] ): return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : str , __a : T ): return key in self.cache def UpperCamelCase__ ( self : str , __a : T ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a = self.cache[key] _a = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__a ) return node.val self.miss += 1 return None def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a = DoubleLinkedListNode(__a , __a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a = value self.list.add(__a ) @classmethod def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ): def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*__a : T ) -> U: if func not in cls.decorator_function_to_instance_map: _a = LRUCache(__a ) _a = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a = func(*__a ) cls.decorator_function_to_instance_map[func].put(args[0] , __a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__a , "cache_info" , __a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
346
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : """simple docstring""" def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 1 def snake_case__ ( self : int )-> List[str]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Tuple )-> List[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,) def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]: '''simple docstring''' A__ = TFViTModel(config=lowercase_ ) A__ = model(lowercase_,training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. A__ = self.image_size // 2 A__ = pixel_values[:, :, :image_size, :image_size] A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ ) A__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFViTForImageClassification(lowercase_ ) A__ = model(lowercase_,labels=lowercase_,training=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. A__ = self.image_size // 2 A__ = pixel_values[:, :, :image_size, :image_size] A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = TFViTForImageClassification(lowercase_ ) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' A__ = TFViTModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case__ ( self : Any )-> int: '''simple docstring''' pass def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) ) def snake_case__ ( self : int )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(lowercase_ ) def _snake_case( ) -> str: '''simple docstring''' A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowercase_,return_tensors='tf' ) # forward pass A__ = model(**lowercase_ ) # verify the logits A__ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
7
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : int ="""openai/whisper-base""" UpperCAmelCase__ : Dict =( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase__ : List[str] ="""transcriber""" UpperCAmelCase__ : Union[str, Any] =WhisperProcessor UpperCAmelCase__ : Union[str, Any] =WhisperForConditionalGeneration UpperCAmelCase__ : Tuple =["""audio"""] UpperCAmelCase__ : List[Any] =["""text"""] def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[str] ) ->Union[str, Any]: """simple docstring""" return self.pre_processor(UpperCAmelCase__ , return_tensors="""pt""" ).input_features def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[int] ) ->Dict: """simple docstring""" return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : Optional[int] ) ->Optional[Any]: """simple docstring""" return self.pre_processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )[0]
245
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __snake_case = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase__ ) -> int: '''simple docstring''' super().__init__() snake_case : List[str] = torchvision.models.resnetaaa(pretrained=UpperCamelCase__ ) snake_case : Tuple = list(model.children() )[:-2] snake_case : str = nn.Sequential(*UpperCamelCase__ ) snake_case : Optional[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = self.pool(self.model(UpperCamelCase__ ) ) snake_case : int = torch.flatten(UpperCamelCase__ , start_dim=2 ) snake_case : Optional[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _lowerCAmelCase ( snake_case_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : int = [json.loads(UpperCamelCase__ ) for l in open(UpperCamelCase__ )] snake_case : Optional[int] = os.path.dirname(UpperCamelCase__ ) snake_case : Optional[Any] = tokenizer snake_case : int = labels snake_case : Dict = len(UpperCamelCase__ ) snake_case : List[str] = max_seq_length snake_case : Optional[int] = transforms def __len__( self ) -> Optional[Any]: '''simple docstring''' return len(self.data ) def __getitem__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Dict = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=UpperCamelCase__ ) ) snake_case ,snake_case ,snake_case : Dict = sentence[0], sentence[1:-1], sentence[-1] snake_case : int = sentence[: self.max_seq_length] snake_case : Tuple = torch.zeros(self.n_classes ) snake_case : List[Any] = 1 snake_case : Dict = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) snake_case : List[str] = self.transforms(UpperCamelCase__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Tuple = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def __lowerCAmelCase ( lowercase : int ) -> Optional[Any]: """simple docstring""" snake_case : Union[str, Any] = [len(row["sentence"] ) for row in batch] snake_case ,snake_case : Any = len(lowercase ), max(lowercase ) snake_case : Optional[Any] = torch.zeros(lowercase , lowercase , dtype=torch.long ) snake_case : Optional[int] = torch.zeros(lowercase , lowercase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowercase , lowercase ) ): snake_case : Tuple = input_row["sentence"] snake_case : int = 1 snake_case : Optional[int] = torch.stack([row["image"] for row in batch] ) snake_case : Optional[int] = torch.stack([row["label"] for row in batch] ) snake_case : List[Any] = torch.stack([row["image_start_token"] for row in batch] ) snake_case : Optional[int] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __lowerCAmelCase ( ) -> Dict: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __lowerCAmelCase ( ) -> List[Any]: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
112
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Union[List[PIL.Image.Image], np.ndarray] __UpperCAmelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : np.ndarray __UpperCAmelCase : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
112
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _lowerCamelCase =random.Random() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=1.0, lowerCAmelCase_=None, lowerCAmelCase_=None ): """simple docstring""" if rng is None: SCREAMING_SNAKE_CASE =global_rng SCREAMING_SNAKE_CASE =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict ,snake_case : str ,snake_case : List[Any]=7 ,snake_case : List[Any]=400 ,snake_case : int=2000 ,snake_case : Union[str, Any]=1 ,snake_case : str=0.0 ,snake_case : Union[str, Any]=16000 ,snake_case : List[Any]=True ,snake_case : Tuple=True ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =min_seq_length SCREAMING_SNAKE_CASE =max_seq_length SCREAMING_SNAKE_CASE =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE =feature_size SCREAMING_SNAKE_CASE =padding_value SCREAMING_SNAKE_CASE =sampling_rate SCREAMING_SNAKE_CASE =return_attention_mask SCREAMING_SNAKE_CASE =do_normalize def _lowerCAmelCase ( self : Any ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCAmelCase ( self : str ,snake_case : Optional[Any]=False ,snake_case : Union[str, Any]=False ): def _flatten(snake_case : Optional[Any] ): return list(itertools.chain(*snake_case ) ) if equal_length: SCREAMING_SNAKE_CASE =floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE =[ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE =[np.asarray(snake_case ) for x in speech_inputs] return speech_inputs class a_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = WavaVecaFeatureExtractor def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =WavaVecaFeatureExtractionTester(self ) def _lowerCAmelCase ( self : List[str] ,snake_case : str ): self.assertTrue(np.all(np.mean(snake_case ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ,axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCAmelCase ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE =[np.asarray(snake_case ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE =feat_extract(speech_inputs[0] ,return_tensors='np' ).input_values SCREAMING_SNAKE_CASE =feat_extract(np_speech_inputs[0] ,return_tensors='np' ).input_values self.assertTrue(np.allclose(snake_case ,snake_case ,atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE =feat_extract(snake_case ,return_tensors='np' ).input_values SCREAMING_SNAKE_CASE =feat_extract(snake_case ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(snake_case ,snake_case ): self.assertTrue(np.allclose(snake_case ,snake_case ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE =np.asarray(snake_case ) SCREAMING_SNAKE_CASE =feat_extract(snake_case ,return_tensors='np' ).input_values SCREAMING_SNAKE_CASE =feat_extract(snake_case ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(snake_case ,snake_case ): self.assertTrue(np.allclose(snake_case ,snake_case ,atol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE =['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE =[None, 1600, None] for max_length, padding in zip(snake_case ,snake_case ): SCREAMING_SNAKE_CASE =feat_extract(snake_case ,padding=snake_case ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE =range(800 ,1400 ,200 ) SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE =['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE =[None, 1600, None] for max_length, padding in zip(snake_case ,snake_case ): SCREAMING_SNAKE_CASE =feat_extract(snake_case ,max_length=snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE =feat_extract( snake_case ,truncation=snake_case ,max_length=1000 ,padding='max_length' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE =feat_extract( snake_case ,truncation=snake_case ,max_length=1000 ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE =feat_extract( snake_case ,truncation=snake_case ,max_length=2000 ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def _lowerCAmelCase ( self : List[Any] ): import torch SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE =np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_values': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_values': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowerCAmelCase ( self : List[Any] ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: SCREAMING_SNAKE_CASE =WavaVecaConfig.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE =WavaVecaFeatureExtractor.from_pretrained(snake_case ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask ,config.feat_extract_norm == 'layer' )
334
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowercase : List[Any] = threading.Lock() lowercase : Optional[logging.Handler] = None lowercase : Union[str, Any] = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowercase : Tuple = logging.WARNING lowercase : str = True def lowerCAmelCase__ ( ): snake_case_ : str = os.getenv("TRANSFORMERS_VERBOSITY" , _a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowerCAmelCase__ ( ): return __name__.split("." )[0] def lowerCAmelCase__ ( ): return logging.getLogger(_get_library_name() ) def lowerCAmelCase__ ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return snake_case_ : List[str] = logging.StreamHandler() # Set sys.stderr as stream. snake_case_ : int = sys.stderr.flush # Apply our default configuration to the library root logger. snake_case_ : Tuple = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) snake_case_ : Union[str, Any] = False def lowerCAmelCase__ ( ): global _default_handler with _lock: if not _default_handler: return snake_case_ : Tuple = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) snake_case_ : Any = None def lowerCAmelCase__ ( ): return log_levels def lowerCAmelCase__ ( _a : Optional[str] = None ): if name is None: snake_case_ : int = _get_library_name() _configure_library_root_logger() return logging.getLogger(_a ) def lowerCAmelCase__ ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase__ ( _a : int ): _configure_library_root_logger() _get_library_root_logger().setLevel(_a ) def lowerCAmelCase__ ( ): return set_verbosity(_a ) def lowerCAmelCase__ ( ): return set_verbosity(_a ) def lowerCAmelCase__ ( ): return set_verbosity(_a ) def lowerCAmelCase__ ( ): return set_verbosity(_a ) def lowerCAmelCase__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowerCAmelCase__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowerCAmelCase__ ( _a : logging.Handler ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_a ) def lowerCAmelCase__ ( _a : logging.Handler ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_a ) def lowerCAmelCase__ ( ): _configure_library_root_logger() snake_case_ : List[str] = False def lowerCAmelCase__ ( ): _configure_library_root_logger() snake_case_ : Any = True def lowerCAmelCase__ ( ): snake_case_ : Tuple = _get_library_root_logger().handlers for handler in handlers: snake_case_ : Optional[int] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(_a ) def lowerCAmelCase__ ( ): snake_case_ : str = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_a ) def lowerCAmelCase__ ( self : int , *_a : Optional[Any] , **_a : Optional[Any] ): snake_case_ : str = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _a ) if no_advisory_warnings: return self.warning(*_a , **_a ) lowercase : Dict = warning_advice @functools.lru_cache(_a ) def lowerCAmelCase__ ( self : int , *_a : str , **_a : Tuple ): self.warning(*_a , **_a ) lowercase : str = warning_once class UpperCAmelCase_ : '''simple docstring''' def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: # pylint: disable=unused-argument snake_case_ : Optional[int] = args[0] if args else None def __iter__( self ) -> List[str]: return iter(self._iterator ) def __getattr__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: def empty_fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Optional[int]: return self def __exit__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: return class UpperCAmelCase_ : '''simple docstring''' def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: if _tqdm_active: return tqdm_lib.tqdm(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: return EmptyTqdm(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ : int = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase : int = _tqdm_cls() def lowerCAmelCase__ ( ): global _tqdm_active return bool(_tqdm_active ) def lowerCAmelCase__ ( ): global _tqdm_active snake_case_ : int = True hf_hub_utils.enable_progress_bars() def lowerCAmelCase__ ( ): global _tqdm_active snake_case_ : Tuple = False hf_hub_utils.disable_progress_bars()
36
def lowerCAmelCase__ ( _a : dict ): snake_case_ : List[Any] = set() # edges = list of graph's edges snake_case_ : int = get_edges(_a ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: snake_case_ , snake_case_ : Dict = edges.pop() chosen_vertices.add(_a ) chosen_vertices.add(_a ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_a ) return chosen_vertices def lowerCAmelCase__ ( _a : dict ): snake_case_ : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
36
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } UpperCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowercase ( a__ : Union[str, Any] , a__ : Any , a__ : Any , a__ : List[Any] , a__ : Dict ) -> Optional[int]: for attribute in key.split('''.''' ): _UpperCamelCase = getattr(a__ , a__ ) if weight_type is not None: _UpperCamelCase = getattr(a__ , a__ ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase ( a__ : Dict , a__ : Optional[int] ) -> int: _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _UpperCamelCase = None for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True elif name.split('''.''' )[0] == "proj": _UpperCamelCase = fairseq_model.proj _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(a__ )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def lowercase ( a__ : Tuple , a__ : List[Any] , a__ : int , a__ : str , a__ : Optional[int] ) -> Any: _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(a__ ) def lowercase ( a__ : List[str] ) -> Optional[int]: _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(a__ , a__ , bias=a__ ) _UpperCamelCase = emb.weight.data return lin_layer def lowercase ( a__ : Optional[Any] ) -> str: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.split(''' ''' )[0] for line in lines] _UpperCamelCase = len(a__ ) _UpperCamelCase = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(a__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowercase ( a__ : Optional[Any] , a__ : str , a__ : str , a__ : int , a__ : Dict , a__ : Dict , a__ : Any , ) -> int: _UpperCamelCase = WavaVecaConfig.from_pretrained(a__ ) _UpperCamelCase = SpeechaTextaConfig.from_pretrained( a__ , vocab_size=a__ , decoder_layers=a__ , do_stable_layer_norm=a__ ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) _UpperCamelCase = model[0].eval() # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(a__ ) _UpperCamelCase = recursively_load_weights_wavaveca(model.encoder , a__ ) _UpperCamelCase = SpeechaTextaForCausalLM(a__ ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a__ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) _UpperCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=a__ , decoder=a__ ) _UpperCamelCase = False # add projection layer _UpperCamelCase = nn.Parameter(projection_layer.weight ) _UpperCamelCase = nn.Parameter(projection_layer.bias ) _UpperCamelCase = create_vocab_dict(a__ ) with open(os.path.join(a__ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(a__ , a__ ) _UpperCamelCase = SpeechaTextaTokenizer(os.path.join(a__ , '''vocab.json''' ) ) tokenizer.save_pretrained(a__ ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''speech_to_text_2''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(a__ ) hf_wavavec.save_pretrained(a__ ) feature_extractor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=10_224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
256
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """spiece.model"""} UpperCAmelCase = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } UpperCAmelCase = {"""bert_for_seq_generation""": 512} class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = [] snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[int]="<s>" , __UpperCamelCase : Optional[Any]="</s>" , __UpperCamelCase : Optional[Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : int="<::::>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Any , ) -> None: _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sep_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def _UpperCamelCase ( self : Optional[int] ) -> Tuple: return self.sp_model.get_piece_size() def _UpperCamelCase ( self : int ) -> Optional[int]: _UpperCamelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : str , __UpperCamelCase : Any ) -> Tuple: _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> List[str]: return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Any ) -> Optional[int]: return self.sp_model.piece_to_id(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[int] ) -> Optional[Any]: _UpperCamelCase = self.sp_model.IdToPiece(__UpperCamelCase ) return token def _UpperCamelCase ( self : str , __UpperCamelCase : Dict ) -> Optional[Any]: _UpperCamelCase = [] _UpperCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token _UpperCamelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
256
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : str ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int]=7 ,lowerCamelCase__ : Optional[int]=3 ,lowerCamelCase__ : List[Any]=18 ,lowerCamelCase__ : List[str]=30 ,lowerCamelCase__ : Any=400 ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[Any]=32 ,lowerCamelCase__ : str=True ,): '''simple docstring''' _UpperCamelCase : List[str] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : Tuple = num_channels _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Any = min_resolution _UpperCamelCase : Optional[int] = max_resolution _UpperCamelCase : str = do_resize _UpperCamelCase : Optional[int] = size_divisor _UpperCamelCase : int = do_rescale def UpperCamelCase_ ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : int = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size_divisor' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'resample' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_rescale' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case_ : Optional[Any] = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ['CLIPFeatureExtractor'] snake_case_ : Dict = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __a : @staticmethod def __lowercase ( *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Tuple: UpperCamelCase__ : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: UpperCamelCase__ : List[Any] = np.array(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Any = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __a ( unittest.TestCase ): _lowerCAmelCase : Optional[Any] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCAmelCase : Dict = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Dict = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __lowercase ( self : Any ): '''simple docstring''' pass @slow @require_torch def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Dict = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCamelCase__ : List[Any] = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_56 ) # Shortening by hashing UpperCamelCase__ : List[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_80, 6_40)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (4_80, 6_40)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (4_80, 6_40)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (4_80, 6_40)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (4_80, 6_40)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (4_80, 6_40)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (4_80, 6_40)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (4_80, 6_40)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_80, 6_40)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (4_80, 6_40)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (4_80, 6_40)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (4_80, 6_40)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (4_80, 6_40)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (4_80, 6_40)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (4_80, 6_40)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (4_80, 6_40)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (4_80, 6_40)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (4_80, 6_40)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (4_80, 6_40)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = "facebook/sam-vit-huge" UpperCamelCase__ : Union[str, Any] = pipeline("mask-generation" , model=_UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing UpperCamelCase__ : Dict = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, ] , )
189
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = False while not completed: if counter == 1: self.reset() UpperCAmelCase__ = self.advance() if not self.does_advance(_UpperCAmelCase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCAmelCase__ = token_ids UpperCAmelCase__ = len(self.token_ids ) UpperCAmelCase__ = -1 # the index of the currently fulfilled step UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.fulfilled_idx += 1 UpperCAmelCase__ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase__ = True UpperCAmelCase__ = completed else: # failed to make progress. UpperCAmelCase__ = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.fulfilled_idx UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ): """simple docstring""" UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] ) UpperCAmelCase__ = {} for token_ids in nested_token_ids: UpperCAmelCase__ = root for tidx, token_id in enumerate(_UpperCAmelCase ): if token_id not in level: UpperCAmelCase__ = {} UpperCAmelCase__ = level[token_id] if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) UpperCAmelCase__ = root def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.trie for current_token in current_seq: UpperCAmelCase__ = start[current_token] UpperCAmelCase__ = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase ) return len(_UpperCAmelCase ) == 0 def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = list(root.values() ) if len(_UpperCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase ) return len(_UpperCAmelCase ) != leaf_count class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase ) UpperCAmelCase__ = nested_token_ids UpperCAmelCase__ = self.trie.max_height UpperCAmelCase__ = [] UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.current_seq.append(_UpperCAmelCase ) UpperCAmelCase__ = True else: UpperCAmelCase__ = True self.reset() UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase__ = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ): """simple docstring""" UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.current_seq UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ): """simple docstring""" UpperCAmelCase__ = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase__ = max([c.seqlen for c in constraints] ) UpperCAmelCase__ = len(_UpperCAmelCase ) UpperCAmelCase__ = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = None UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase__ = constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) else: UpperCAmelCase__ = self.inprogress_constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCAmelCase__ , UpperCAmelCase__ = False, False if self.completed: UpperCAmelCase__ = True UpperCAmelCase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) ) UpperCAmelCase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase__ = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_UpperCAmelCase ) UpperCAmelCase__ = None if not complete and stepped: UpperCAmelCase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ): """simple docstring""" UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase__ = [ constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
346
0
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=8 ): """simple docstring""" __lowercase =h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __lowercase =w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : MultilingualCLIP , _lowerCAmelCase : XLMRobertaTokenizer , _lowerCAmelCase : UNetaDConditionModel , _lowerCAmelCase : Union[DDIMScheduler, DDPMScheduler] , _lowerCAmelCase : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , movq=_lowerCAmelCase , ) __lowercase =2 ** (len(self.movq.config.block_out_channels) - 1) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int): '''simple docstring''' if latents is None: __lowercase =randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""") __lowercase =latents.to(_lowerCAmelCase) __lowercase =latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any]=None , ): '''simple docstring''' __lowercase =len(_lowerCAmelCase) if isinstance(_lowerCAmelCase , _lowerCAmelCase) else 1 # get prompt text embeddings __lowercase =self.tokenizer( _lowerCAmelCase , padding='max_length' , truncation=_lowerCAmelCase , max_length=7_7 , return_attention_mask=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='pt' , ) __lowercase =text_inputs.input_ids __lowercase =self.tokenizer(_lowerCAmelCase , padding='longest' , return_tensors='pt').input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_lowerCAmelCase , _lowerCAmelCase): __lowercase =self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""") __lowercase =text_input_ids.to(_lowerCAmelCase) __lowercase =text_inputs.attention_mask.to(_lowerCAmelCase) __lowercase , __lowercase =self.text_encoder( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase) __lowercase =prompt_embeds.repeat_interleave(_lowerCAmelCase , dim=0) __lowercase =text_encoder_hidden_states.repeat_interleave(_lowerCAmelCase , dim=0) __lowercase =text_mask.repeat_interleave(_lowerCAmelCase , dim=0) if do_classifier_free_guidance: __lowercase =42 if negative_prompt is None: __lowercase =[''] * batch_size elif type(_lowerCAmelCase) is not type(_lowerCAmelCase): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase)} !=""" f""" {type(_lowerCAmelCase)}.""") elif isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =[negative_prompt] elif batch_size != len(_lowerCAmelCase): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase)}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.') else: __lowercase =negative_prompt __lowercase =self.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=7_7 , truncation=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='pt' , ) __lowercase =uncond_input.input_ids.to(_lowerCAmelCase) __lowercase =uncond_input.attention_mask.to(_lowerCAmelCase) __lowercase , __lowercase =self.text_encoder( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase =negative_prompt_embeds.shape[1] __lowercase =negative_prompt_embeds.repeat(1 , _lowerCAmelCase) __lowercase =negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowerCAmelCase) __lowercase =uncond_text_encoder_hidden_states.shape[1] __lowercase =uncond_text_encoder_hidden_states.repeat(1 , _lowerCAmelCase , 1) __lowercase =uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _lowerCAmelCase , -1) __lowercase =uncond_text_mask.repeat_interleave(_lowerCAmelCase , dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase =torch.cat([negative_prompt_embeds, prompt_embeds]) __lowercase =torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) __lowercase =torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : int=0): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`') __lowercase =torch.device(f"""cuda:{gpu_id}""") __lowercase =[ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : str , _lowerCAmelCase : str=0): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0'): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.') __lowercase =torch.device(f"""cuda:{gpu_id}""") if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowerCAmelCase) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase =None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __lowercase , __lowercase =cpu_offload_with_hook(_lowerCAmelCase , _lowerCAmelCase , prev_module_hook=_lowerCAmelCase) if self.safety_checker is not None: __lowercase , __lowercase =cpu_offload_with_hook(self.safety_checker , _lowerCAmelCase , prev_module_hook=_lowerCAmelCase) # We'll offload the last model manually. __lowercase =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self : Any): '''simple docstring''' if not hasattr(self.unet , '_hf_hook'): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , '_hf_hook') and hasattr(module._hf_hook , 'execution_device') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(_lowerCAmelCase) def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, List[str]] , _lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase : Optional[Union[str, List[str]]] = None , _lowerCAmelCase : int = 5_1_2 , _lowerCAmelCase : int = 5_1_2 , _lowerCAmelCase : int = 1_0_0 , _lowerCAmelCase : float = 4.0 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : Optional[torch.FloatTensor] = None , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , ): '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =1 elif isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =len(_lowerCAmelCase) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase)}""") __lowercase =self._execution_device __lowercase =batch_size * num_images_per_prompt __lowercase =guidance_scale > 1.0 __lowercase , __lowercase , __lowercase =self._encode_prompt( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =torch.cat(_lowerCAmelCase , dim=0) if isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =torch.cat(_lowerCAmelCase , dim=0) if do_classifier_free_guidance: __lowercase =image_embeds.repeat_interleave(_lowerCAmelCase , dim=0) __lowercase =negative_image_embeds.repeat_interleave(_lowerCAmelCase , dim=0) __lowercase =torch.cat([negative_image_embeds, image_embeds] , dim=0).to( dtype=prompt_embeds.dtype , device=_lowerCAmelCase) self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase) __lowercase =self.scheduler.timesteps __lowercase =self.unet.config.in_channels __lowercase , __lowercase =get_new_h_w(_lowerCAmelCase , _lowerCAmelCase , self.movq_scale_factor) # create initial latent __lowercase =self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase)): # expand the latents if we are doing classifier free guidance __lowercase =torch.cat([latents] * 2) if do_classifier_free_guidance else latents __lowercase ={'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __lowercase =self.unet( sample=_lowerCAmelCase , timestep=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , added_cond_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] if do_classifier_free_guidance: __lowercase , __lowercase =noise_pred.split(latents.shape[1] , dim=1) __lowercase , __lowercase =noise_pred.chunk(2) __lowercase , __lowercase =variance_pred.chunk(2) __lowercase =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase =torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , 'variance_type') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase =noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __lowercase =self.scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase , ).prev_sample # post-processing __lowercase =self.movq.decode(_lowerCAmelCase , force_not_quantize=_lowerCAmelCase)['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""") if output_type in ["np", "pil"]: __lowercase =image * 0.5 + 0.5 __lowercase =image.clamp(0 , 1) __lowercase =image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __lowercase =self.numpy_to_pil(_lowerCAmelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase)
48
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """BridgeTowerImageProcessor""" lowerCAmelCase__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' __lowercase =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # add pixel_values + pixel_mask __lowercase =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , **_lowerCAmelCase) encoding.update(_lowerCAmelCase) return encoding def __lowerCamelCase ( self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.tokenizer.model_input_names __lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
48
1
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging UpperCamelCase__ : int = logging.get_logger(__name__) class _UpperCamelCase : '''simple docstring''' _A : Tuple = None @experimental def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Optional[Any] , _lowerCamelCase: str , _lowerCamelCase: Optional[int] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: int , _lowerCamelCase: List[str] ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return _map_with_joblib(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: int , _lowerCamelCase: Optional[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: Dict , _lowerCamelCase: Optional[int] ): __SCREAMING_SNAKE_CASE : Optional[int] = num_proc if num_proc <= len(_lowerCamelCase ) else len(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = [] # We organize the splits ourselve (contiguous splits) for index in range(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = len(_lowerCamelCase ) // num_proc __SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) % num_proc __SCREAMING_SNAKE_CASE : int = div * index + min(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_lowerCamelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(_lowerCamelCase )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(_lowerCamelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = None, None if not disable_tqdm: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = (RLock(),), tqdm.set_lock with Pool(_lowerCamelCase , initargs=_lowerCamelCase , initializer=_lowerCamelCase ) as pool: __SCREAMING_SNAKE_CASE : Optional[Any] = pool.map(_lowerCamelCase , _lowerCamelCase ) logger.info(F"Finished {num_proc} processes" ) __SCREAMING_SNAKE_CASE : Tuple = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(_lowerCamelCase )} objects" ) return mapped def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: str , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[Any] ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_lowerCamelCase ): return joblib.Parallel()( joblib.delayed(_lowerCamelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Any = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __SCREAMING_SNAKE_CASE : Optional[Any] = None
112
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int ): assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = 1, 1 for _ in range(number_of_steps - 1 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
112
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : str = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A ( _lowercase ): return (data["data"], data["target"]) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_lowercase , _lowercase ) # Predict target for test data SCREAMING_SNAKE_CASE : Optional[int] = xgb.predict(_lowercase ) SCREAMING_SNAKE_CASE : Dict = predictions.reshape(len(_lowercase ) , 1 ) return predictions def A ( ): SCREAMING_SNAKE_CASE : str = fetch_california_housing() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = data_handling(_lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = train_test_split( _lowercase , _lowercase , test_size=0.25 , random_state=1 ) SCREAMING_SNAKE_CASE : Any = xgboost(_lowercase , _lowercase , _lowercase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_lowercase , _lowercase )}""" ) print(f"""Mean Square Error : {mean_squared_error(_lowercase , _lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
258
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BartphoTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = ["▁This", "▁is", "▁a", "▁t", "est"] _lowerCAmelCase : List[str] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") _lowerCAmelCase : Optional[Any] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "This is a là test" _lowerCAmelCase : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) _lowerCAmelCase : List[Any] = "This is a là test" _lowerCAmelCase : str = "▁This ▁is ▁a ▁l à ▁t est".split() _lowerCAmelCase : str = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), __a)
36
1
"""simple docstring""" def lowerCamelCase ( a_ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowerCamelCase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
365
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=True , a=False , a=False , a=False , a=2 , a=99 , a=0 , a=32 , a=5 , a=4 , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=2 , a=4 , a="last" , a=True , a=None , a=0 , ): lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : str = seq_length lowercase__ : str = is_training lowercase__ : Tuple = use_input_lengths lowercase__ : List[Any] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Union[str, Any] = gelu_activation lowercase__ : str = sinusoidal_embeddings lowercase__ : Tuple = causal lowercase__ : int = asm lowercase__ : Optional[Any] = n_langs lowercase__ : Union[str, Any] = vocab_size lowercase__ : Any = n_special lowercase__ : Any = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : Any = type_sequence_label_size lowercase__ : str = initializer_range lowercase__ : int = num_labels lowercase__ : Optional[int] = num_choices lowercase__ : str = summary_type lowercase__ : List[str] = use_proj lowercase__ : List[str] = scope lowercase__ : Any = bos_token_id def snake_case_ ( self): lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : Union[str, Any] = None if self.use_input_lengths: lowercase__ : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length lowercase__ : Optional[Any] = None if self.use_token_type_ids: lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , 2).float() lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices) lowercase__ : Optional[int] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case_ ( self): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def snake_case_ ( self , a , a , a , a , a , a , a , a , a , ): lowercase__ : Tuple = XLMModel(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() lowercase__ : int = model(_lowerCAmelCase , lengths=_lowerCAmelCase , langs=_lowerCAmelCase) lowercase__ : int = model(_lowerCAmelCase , langs=_lowerCAmelCase) lowercase__ : Optional[Any] = model(_lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self , a , a , a , a , a , a , a , a , a , ): lowercase__ : Optional[int] = XLMWithLMHeadModel(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() lowercase__ : Dict = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case_ ( self , a , a , a , a , a , a , a , a , a , ): lowercase__ : Optional[int] = XLMForQuestionAnsweringSimple(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() lowercase__ : Optional[int] = model(_lowerCAmelCase) lowercase__ : Dict = model(_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase) lowercase__ : Optional[int] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self , a , a , a , a , a , a , a , a , a , ): lowercase__ : Any = XLMForQuestionAnswering(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() lowercase__ : Optional[int] = model(_lowerCAmelCase) lowercase__ : Optional[int] = model( _lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , cls_index=_lowerCAmelCase , is_impossible=_lowerCAmelCase , p_mask=_lowerCAmelCase , ) lowercase__ : Any = model( _lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , cls_index=_lowerCAmelCase , is_impossible=_lowerCAmelCase , ) (lowercase__ ) : int = result_with_labels.to_tuple() lowercase__ : Union[str, Any] = model(_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase) (lowercase__ ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def snake_case_ ( self , a , a , a , a , a , a , a , a , a , ): lowercase__ : Optional[int] = XLMForSequenceClassification(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() lowercase__ : Dict = model(_lowerCAmelCase) lowercase__ : Optional[int] = model(_lowerCAmelCase , labels=_lowerCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def snake_case_ ( self , a , a , a , a , a , a , a , a , a , ): lowercase__ : Dict = self.num_labels lowercase__ : Any = XLMForTokenClassification(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() lowercase__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case_ ( self , a , a , a , a , a , a , a , a , a , ): lowercase__ : Optional[Any] = self.num_choices lowercase__ : List[str] = XLMForMultipleChoice(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() lowercase__ : Tuple = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase__ : List[str] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase__ : int = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase__ : str = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case_ ( self): lowercase__ : Tuple = self.prepare_config_and_inputs() ( lowercase__ ) : int = config_and_inputs lowercase__ : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , __snake_case , unittest.TestCase ): __lowerCamelCase : List[str] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __lowerCamelCase : Tuple = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __lowerCamelCase : Any = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def snake_case_ ( self , a , a , a , a , a): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case_ ( self , a , a , a=False): lowercase__ : Tuple = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase) lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase) return inputs_dict def snake_case_ ( self): lowercase__ : str = XLMModelTester(self) lowercase__ : Tuple = ConfigTester(self , config_class=_lowerCAmelCase , emb_dim=37) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_lowerCAmelCase) def snake_case_ ( self): lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_lowerCAmelCase) def snake_case_ ( self): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_lowerCAmelCase) def snake_case_ ( self): lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_lowerCAmelCase) def snake_case_ ( self): lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_lowerCAmelCase) def snake_case_ ( self): lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_lowerCAmelCase) def snake_case_ ( self): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowerCAmelCase) def snake_case_ ( self , a , a , a , a , a , a=False , a=1): self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) self.assertListEqual( [isinstance(_lowerCAmelCase , _lowerCAmelCase) for iter_attentions in attentions] , [True] * len(_lowerCAmelCase)) self.assertEqual(len(_lowerCAmelCase) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(_lowerCAmelCase): # adds PAD dummy token lowercase__ : Any = min_length + idx + 1 lowercase__ : Tuple = min_length + idx + 1 lowercase__ : Union[str, Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_lowerCAmelCase)) def snake_case_ ( self , a , a , a , a , a , a=False , a=1): self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase) self.assertListEqual( [isinstance(_lowerCAmelCase , _lowerCAmelCase) for iter_hidden_states in hidden_states] , [True] * len(_lowerCAmelCase) , ) self.assertEqual(len(_lowerCAmelCase) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(_lowerCAmelCase): # adds PAD dummy token lowercase__ : Union[str, Any] = min_length + idx + 1 lowercase__ : str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_lowerCAmelCase) , ) pass @slow def snake_case_ ( self): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = XLMModel.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) @require_torch class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): @slow def snake_case_ ( self): lowercase__ : Any = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(_lowerCAmelCase) lowercase__ : Optional[Any] = torch.tensor([[14, 447]] , dtype=torch.long , device=_lowerCAmelCase) # the president lowercase__ : List[Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase__ : List[Any] = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _lowerCAmelCase)
214
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : int = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,lowercase__ : Any ,lowercase__ : int=7 ,lowercase__ : Any=3 ,lowercase__ : List[str]=3_0 ,lowercase__ : Any=4_0_0 ,lowercase__ : int=True ,lowercase__ : str=None ,lowercase__ : Union[str, Any]=True ,lowercase__ : Any=[0.5, 0.5, 0.5] ,lowercase__ : List[Any]=[0.5, 0.5, 0.5] ,lowercase__ : str=True ,lowercase__ : Optional[int]=1 / 2_5_5 ,lowercase__ : List[str]=True ,): __lowercase = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_pad def SCREAMING_SNAKE_CASE ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Any ,lowercase__ : Optional[Any]=False ): if not batched: __lowercase = image_inputs[0] if isinstance(_snake_case ,Image.Image ): __lowercase , __lowercase = image.size else: __lowercase , __lowercase = image.shape[1], image.shape[2] if w < h: __lowercase = int(self.size['''shortest_edge'''] * h / w ) __lowercase = self.size['''shortest_edge'''] elif w > h: __lowercase = self.size['''shortest_edge'''] __lowercase = int(self.size['''shortest_edge'''] * w / h ) else: __lowercase = self.size['''shortest_edge'''] __lowercase = self.size['''shortest_edge'''] else: __lowercase = [] for image in image_inputs: __lowercase , __lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase = max(_snake_case ,key=lambda lowercase__ : item[0] )[0] __lowercase = max(_snake_case ,key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = YolosImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = YolosImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case ,'''image_mean''' ) ) self.assertTrue(hasattr(_snake_case ,'''image_std''' ) ) self.assertTrue(hasattr(_snake_case ,'''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case ,'''do_resize''' ) ) self.assertTrue(hasattr(_snake_case ,'''size''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad ,_snake_case ) __lowercase = self.image_processing_class.from_dict( self.image_processor_dict ,size=4_2 ,max_size=8_4 ,pad_and_return_pixel_mask=_snake_case ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad ,_snake_case ) def SCREAMING_SNAKE_CASE ( self : str ): pass def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_snake_case ,batched=_snake_case ) __lowercase = image_processing(_snake_case ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_snake_case ,numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(_snake_case ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_snake_case ,batched=_snake_case ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_snake_case ,torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(_snake_case ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(_snake_case ,batched=_snake_case ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) __lowercase = self.image_processing_class(do_resize=_snake_case ,do_normalize=_snake_case ,do_rescale=_snake_case ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_snake_case ,torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case ,torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __lowercase = image_processing_a.pad(_snake_case ,return_tensors='''pt''' ) __lowercase = image_processing_a(_snake_case ,return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] ,encoded_images['''pixel_values'''] ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' ,'''r''' ) as f: __lowercase = json.loads(f.read() ) __lowercase = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them __lowercase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) __lowercase = image_processing(images=_snake_case ,annotations=_snake_case ,return_tensors='''pt''' ) # verify pixel values __lowercase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape ,_snake_case ) __lowercase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,_snake_case ,atol=1e-4 ) ) # verify area __lowercase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,_snake_case ) ) # verify boxes __lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,_snake_case ) __lowercase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,_snake_case ,atol=1e-3 ) ) # verify image_id __lowercase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,_snake_case ) ) # verify is_crowd __lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,_snake_case ) ) # verify class_labels __lowercase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,_snake_case ) ) # verify orig_size __lowercase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,_snake_case ) ) # verify size __lowercase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,_snake_case ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' ,'''r''' ) as f: __lowercase = json.loads(f.read() ) __lowercase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} __lowercase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __lowercase = YolosImageProcessor(format='''coco_panoptic''' ) __lowercase = image_processing(images=_snake_case ,annotations=_snake_case ,masks_path=_snake_case ,return_tensors='''pt''' ) # verify pixel values __lowercase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape ,_snake_case ) __lowercase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,_snake_case ,atol=1e-4 ) ) # verify area __lowercase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,_snake_case ) ) # verify boxes __lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,_snake_case ) __lowercase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,_snake_case ,atol=1e-3 ) ) # verify image_id __lowercase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,_snake_case ) ) # verify is_crowd __lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,_snake_case ) ) # verify class_labels __lowercase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,_snake_case ) ) # verify masks __lowercase = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() ,_snake_case ) # verify orig_size __lowercase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,_snake_case ) ) # verify size __lowercase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,_snake_case ) )
361
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowercase = [2, 4, 6, 8, 1_0, 1_2] __lowercase = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ ,lowercase__ ,lowercase__ ) ,2_1_0 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.assertRaisesRegex(lowercase__ ,'''Weight can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.assertRaisesRegex(lowercase__ ,'''Profit can not be negative.''' ) def SCREAMING_SNAKE_CASE ( self : int ): self.assertRaisesRegex(lowercase__ ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.assertRaisesRegex( lowercase__ ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
0
class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : int = val lowerCamelCase : Optional[int] = None lowerCamelCase : Any = None def _lowercase ( self , UpperCamelCase__ ) -> List[str]: if self.val: if val < self.val: if self.left is None: lowerCamelCase : Union[str, Any] = Node(UpperCamelCase__ ) else: self.left.insert(UpperCamelCase__ ) elif val > self.val: if self.right is None: lowerCamelCase : Optional[Any] = Node(UpperCamelCase__ ) else: self.right.insert(UpperCamelCase__ ) else: lowerCamelCase : List[str] = val def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: # Recursive traversal if root: inorder(root.left ,_SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right ,_SCREAMING_SNAKE_CASE ) def A ( _SCREAMING_SNAKE_CASE ) -> Dict: # Build BST if len(_SCREAMING_SNAKE_CASE ) == 0: return arr lowerCamelCase : List[Any] = Node(arr[0] ) for i in range(1 ,len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCamelCase : Optional[Any] = [] inorder(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
48
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCamelCase : str = (boundary[1] - boundary[0]) / steps lowerCamelCase : List[str] = boundary[0] lowerCamelCase : Union[str, Any] = boundary[1] lowerCamelCase : int = make_points(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : int = a + h while x < (b - h): yield x lowerCamelCase : List[str] = x + h def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # enter your function here lowerCamelCase : str = (x - 0) * (x - 0) return y def A ( ) -> int: lowerCamelCase : int = 0.0 # Lower bound of integration lowerCamelCase : int = 1.0 # Upper bound of integration lowerCamelCase : Dict = 10.0 # define number of steps or resolution lowerCamelCase : int = [a, b] # define boundary of integration lowerCamelCase : str = method_a(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
48
1
'''simple docstring''' import os import sys lowerCAmelCase__ = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase__ = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoConfig.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoTokenizer.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModel.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModel.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _A ( *A__ , **A__ ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*A__ , **A__ )
52
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : """simple docstring""" def __init__( self : int ,lowercase__ : str ,lowercase__ : List[Any]=1_3 ,lowercase__ : Optional[int]=3_2 ,lowercase__ : Any=3 ,lowercase__ : int=4 ,lowercase__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] ,lowercase__ : List[Any]=[2, 2, 3, 2] ,lowercase__ : List[Any]=True ,lowercase__ : Optional[Any]=True ,lowercase__ : int=3_7 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : Tuple=1_0 ,lowercase__ : int=0.0_2 ,lowercase__ : Any=["stage2", "stage3", "stage4"] ,lowercase__ : Optional[Any]=3 ,lowercase__ : Tuple=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = out_features __lowercase = num_labels __lowercase = scope __lowercase = num_stages def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : str ): return ConvNextConfig( num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return UperNetConfig( backbone_config=self.get_backbone_config() ,hidden_size=5_1_2 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=lowercase__ ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=4_0 ,auxiliary_channels=2_5_6 ,auxiliary_num_convs=1 ,auxiliary_concat_input=lowercase__ ,loss_ignore_index=2_5_5 ,num_labels=self.num_labels ,) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Any ): __lowercase = UperNetForSemanticSegmentation(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Tuple = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = UperNetModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : int ): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : Any ): def check_hidden_states_output(lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[str] ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(lowercase__ ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(lowercase__ ) __lowercase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowercase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F"Parameter {name} of model {model_class} seems not properly initialized" ,) @unittest.skip(reason='''UperNet does not have tied weights''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = UperNetForSemanticSegmentation.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) __lowercase = Image.open(A__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) __lowercase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(lowercase__ ) __lowercase = prepare_img() __lowercase = processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase__ ,atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) __lowercase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(lowercase__ ) __lowercase = prepare_img() __lowercase = processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase__ ,atol=1e-4 ) )
52
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase : Union[str, Any] = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
258
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __a ( UpperCAmelCase ) ->Tuple: # picklable for multiprocessing """simple docstring""" return x.sum() def __a ( UpperCAmelCase ) ->int: # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' def A (self : Tuple ): A = {} A = [] A = 1 A = [1, 2] A = {"""a""": 1, """b""": 2} A = {"""a""": [1, 2], """b""": [3, 4]} A = {"""a""": {"""1""": 1}, """b""": 2} A = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} A = {} A = [] A = 2 A = [2, 3] A = {"""a""": 2, """b""": 3} A = {"""a""": [2, 3], """b""": [4, 5]} A = {"""a""": {"""1""": 2}, """b""": 3} A = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) A = 2 self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) A = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} A = {"""a""": 2, """b""": 0, """c""": 2} A = { """a""": np.eye(2 ).astype(_lowerCAmelCase ), """b""": np.zeros(3 ).astype(_lowerCAmelCase ), """c""": np.ones(2 ).astype(_lowerCAmelCase ), } self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase , num_proc=_lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCAmelCase ): # can't pickle a local lambda map_nested(lambda _lowerCAmelCase : x + 1 , _lowerCAmelCase , num_proc=_lowerCAmelCase ) def A (self : List[Any] ): A = {"""a""": 1, """b""": 2} A = {"""a""": 3, """b""": 4} A = {"""a""": 5, """b""": 6} A = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) , _lowerCAmelCase ) def A (self : Union[str, Any] ): class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = '''bar''' A = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(_lowerCAmelCase , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: A = {f"""{i}""": i for i in range(UpperCAmelCase )} A = map_nested(lambda UpperCAmelCase : x + 10 , UpperCAmelCase , num_proc=UpperCAmelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __UpperCAmelCase ( A__ ): '''simple docstring''' @require_tf def A (self : Dict ): import tensorflow as tf from tensorflow.keras import layers A = layers.Dense(2 ) def gen_random_output(): A = tf.random.uniform((1, 3) ) return model(_lowerCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=_lowerCAmelCase ): A = gen_random_output() with temp_seed(42 , set_tensorflow=_lowerCAmelCase ): A = gen_random_output() A = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def A (self : Tuple ): import torch def gen_random_output(): A = torch.nn.Linear(3 , 2 ) A = torch.rand(1 , 3 ) return model(_lowerCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowerCAmelCase ): A = gen_random_output() with temp_seed(42 , set_pytorch=_lowerCAmelCase ): A = gen_random_output() A = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def A (self : str ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A = gen_random_output() with temp_seed(42 ): A = gen_random_output() A = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" A = NestedDataStructure(UpperCAmelCase ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" A = NestedDataStructure(UpperCAmelCase ).flatten() assert output == expected_output def __a ( ) ->Optional[Any]: """simple docstring""" A = A(x=1 , y="""foobar""" ) A = {"""x""": 1, """y""": """foobar"""} assert asdict(UpperCAmelCase ) == expected_output A = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} A = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(UpperCAmelCase ) == expected_output with pytest.raises(UpperCAmelCase ): asdict([1, A(x=10 , y="""foo""" )] ) def __a ( UpperCAmelCase ) ->Tuple: """simple docstring""" return text.split() def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __a ( ) ->Optional[int]: """simple docstring""" with Pool(2 ) as pool: A = list(iflatmap_unordered(UpperCAmelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(UpperCAmelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A = list(iflatmap_unordered(UpperCAmelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(UpperCAmelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A = [] for yield_time, content in iflatmap_unordered( UpperCAmelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCAmelCase ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(UpperCAmelCase ) == 4
258
1
from dataclasses import dataclass, field from typing import Optional @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) lowerCAmelCase = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) lowerCAmelCase = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) lowerCAmelCase = field( default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) lowerCAmelCase = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) lowerCAmelCase = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) lowerCAmelCase = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) lowerCAmelCase = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) lowerCAmelCase = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Training seed.'''} ) lowerCAmelCase = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) lowerCAmelCase = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) lowerCAmelCase = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) lowerCAmelCase = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) lowerCAmelCase = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) lowerCAmelCase = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) lowerCAmelCase = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) lowerCAmelCase = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default=_a , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) lowerCAmelCase = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) lowerCAmelCase = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) lowerCAmelCase = field( default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) lowerCAmelCase = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) lowerCAmelCase = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) lowerCAmelCase = field( default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) lowerCAmelCase = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
364
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __a = None __a = logging.get_logger(__name__) __a = '▁' __a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __a = { 'google/pegasus-xsum': 512, } class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = PegasusTokenizer lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<mask_2>" ,_SCREAMING_SNAKE_CASE="<mask_1>" ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=103 ,**_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: UpperCAmelCase_ : Dict = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCAmelCase_ : str = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) ,self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCAmelCase_ : int = additional_special_tokens_extended else: UpperCAmelCase_ : Any = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 ,self.offset )] super().__init__( _SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,mask_token_sent=_SCREAMING_SNAKE_CASE ,offset=_SCREAMING_SNAKE_CASE ,additional_special_tokens=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : Dict = False if not self.vocab_file else True def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Optional[int] = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file ,_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
235
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCamelCase ( UpperCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple =KandinskyVaaControlnetImgaImgPipeline __UpperCAmelCase : Optional[int] =["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] __UpperCAmelCase : str =["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] __UpperCAmelCase : str =[ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __UpperCAmelCase : Optional[int] =False @property def snake_case ( self ): return 32 @property def snake_case ( self ): return 32 @property def snake_case ( self ): return self.time_input_dim @property def snake_case ( self ): return self.time_input_dim * 4 @property def snake_case ( self ): return 1_00 @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowerCAmelCase = UNetaDConditionModel(**UpperCAmelCase__ ) return model @property def snake_case ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self ): __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } __lowerCAmelCase = DDIMScheduler(**UpperCAmelCase__ ) __lowerCAmelCase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case ( self , __a , __a=0 ): __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase__ ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create hint __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) if str(UpperCAmelCase__ ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: __lowerCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __lowerCAmelCase = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def snake_case ( self ): __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**UpperCAmelCase__ ) __lowerCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(UpperCAmelCase__ ) , return_dict=UpperCAmelCase__ , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __lowerCAmelCase = init_image.resize((5_12, 5_12) ) __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) __lowerCAmelCase = torch.from_numpy(np.array(UpperCAmelCase__ ) ).float() / 2_5_5.0 __lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowerCAmelCase = "A robot, 4k photo" __lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase__ ) __lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(UpperCAmelCase__ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( UpperCAmelCase__ , image=UpperCAmelCase__ , strength=0.8_5 , generator=UpperCAmelCase__ , negative_prompt="" , ).to_tuple() __lowerCAmelCase = pipeline( image=UpperCAmelCase__ , image_embeds=UpperCAmelCase__ , negative_image_embeds=UpperCAmelCase__ , hint=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ )
57
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __A = logging.get_logger(__name__) __A = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class lowercase_ ( lowerCAmelCase_ ): UpperCamelCase_ : int = 'van' def __init__( self : Any , A__ : Tuple=224 , A__ : List[Any]=3 , A__ : Tuple=[7, 3, 3, 3] , A__ : Dict=[4, 2, 2, 2] , A__ : Optional[Any]=[64, 128, 320, 512] , A__ : Optional[int]=[3, 3, 12, 3] , A__ : Dict=[8, 8, 4, 4] , A__ : int="gelu" , A__ : Optional[int]=0.02 , A__ : List[str]=1e-6 , A__ : Optional[int]=1e-2 , A__ : Any=0.0 , A__ : List[str]=0.0 , **A__ : Any , ) -> List[str]: super().__init__(**__lowerCAmelCase ) _snake_case = image_size _snake_case = num_channels _snake_case = patch_sizes _snake_case = strides _snake_case = hidden_sizes _snake_case = depths _snake_case = mlp_ratios _snake_case = hidden_act _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = layer_scale_init_value _snake_case = drop_path_rate _snake_case = dropout_rate
358
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A = logging.getLogger(__name__) @dataclass class lowercase_ : UpperCamelCase_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether tp freeze the encoder."} ) UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class lowercase_ : UpperCamelCase_ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCamelCase_ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) UpperCamelCase_ : Optional[int] = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_2_8 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Source language id for translation."} ) UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Target language id for translation."} ) UpperCamelCase_ : Optional[int] = field(default=__lowercase , metadata={"help": "# num_beams to use for evaluation."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , F"""{split}_results.json""" ) ) def snake_case_() -> List[Any]: """simple docstring""" _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case, _snake_case, _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case, _snake_case, _snake_case = parser.parse_args_into_dataclasses() check_output_dir(_UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): assert hasattr(_UpperCamelCase , _UpperCamelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) _snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCamelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCamelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _snake_case = SeqaSeqDataset # Get datasets _snake_case = ( dataset_class( _UpperCamelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) _snake_case = ( dataset_class( _UpperCamelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _snake_case = ( dataset_class( _UpperCamelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer _snake_case = ( build_compute_metrics_fn(data_args.task , _UpperCamelCase ) if training_args.predict_with_generate else None ) _snake_case = SeqaSeqTrainer( model=_UpperCamelCase , args=_UpperCamelCase , data_args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , data_collator=SeqaSeqDataCollator( _UpperCamelCase , _UpperCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) _snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _snake_case = train_result.metrics _snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _snake_case = trainer.evaluate(metric_key_prefix='''val''' ) _snake_case = data_args.n_val _snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _snake_case = trainer.predict(test_dataset=_UpperCamelCase , metric_key_prefix='''test''' ) _snake_case = test_output.metrics _snake_case = data_args.n_test if trainer.is_world_process_zero(): _snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.predict_with_generate: _snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) _snake_case = lmap(str.strip , _UpperCamelCase ) write_txt_file(_UpperCamelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_UpperCamelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
278
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[str] , **A : Tuple ): requires_backends(self , ["bs4"] ) super().__init__(**A ) def _A ( self : Any , A : Any ): _UpperCAmelCase : List[str] = [] _UpperCAmelCase : str = [] _UpperCAmelCase : int = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCAmelCase : Any = parent.find_all(child.name , recursive=A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(A ) else next(i for i, s in enumerate(A , 1 ) if s is child ) ) _UpperCAmelCase : Dict = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _A ( self : List[str] , A : List[Any] ): _UpperCAmelCase : Tuple = BeautifulSoup(A , "html.parser" ) _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[int] = [] for element in html_code.descendants: if type(A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _UpperCAmelCase : Optional[Any] = html.unescape(A ).strip() if not text_in_this_tag: continue all_doc_strings.append(A ) _UpperCAmelCase , _UpperCAmelCase : int = self.xpath_soup(A ) stringaxtag_seq.append(A ) stringaxsubs_seq.append(A ) if len(A ) != len(A ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(A ) != len(A ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _A ( self : Optional[int] , A : Tuple , A : Tuple ): _UpperCAmelCase : str = "" for tagname, subs in zip(A , A ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : Optional[Any] , A : str ): _UpperCAmelCase : int = False # Check that strings has a valid type if isinstance(A , A ): _UpperCAmelCase : Optional[int] = True elif isinstance(A , (list, tuple) ): if len(A ) == 0 or isinstance(html_strings[0] , A ): _UpperCAmelCase : List[Any] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F"""but is of type {type(A )}.""" ) _UpperCAmelCase : List[str] = bool(isinstance(A , (list, tuple) ) and (isinstance(html_strings[0] , A )) ) if not is_batched: _UpperCAmelCase : Tuple = [html_strings] # Get nodes + xpaths _UpperCAmelCase : List[str] = [] _UpperCAmelCase : str = [] for html_string in html_strings: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = self.get_three_from_single(A ) nodes.append(A ) _UpperCAmelCase : Optional[int] = [] for node, tag_list, sub_list in zip(A , A , A ): _UpperCAmelCase : Dict = self.construct_xpath(A , A ) xpath_strings.append(A ) xpaths.append(A ) # return as Dict _UpperCAmelCase : str = {"nodes": nodes, "xpaths": xpaths} _UpperCAmelCase : Any = BatchFeature(data=A , tensor_type=A ) return encoded_inputs
31
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCamelCase : List[Any] = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase : Optional[int] = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ __lowerCamelCase : str = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def A_ ( _lowerCAmelCase ) -> str: def remove_articles(_lowerCAmelCase ): UpperCamelCase : Tuple = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCAmelCase , " " , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): UpperCamelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = [any(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 100 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Optional[int] = Counter(_lowerCAmelCase ) UpperCamelCase : List[Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCamelCase : Tuple = scount * numref UpperCamelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCamelCase : Tuple = Counter() for cgram, ccount in cgramcounter.items(): UpperCamelCase : Dict = ccount * numref # KEEP UpperCamelCase : List[Any] = sgramcounter_rep & cgramcounter_rep UpperCamelCase : Union[str, Any] = keepgramcounter_rep & rgramcounter UpperCamelCase : Dict = sgramcounter_rep & rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Any = 1 UpperCamelCase : Any = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCamelCase : Union[str, Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCamelCase : Any = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCamelCase : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCamelCase : Any = sgramcounter_rep - cgramcounter_rep UpperCamelCase : str = delgramcounter_rep - rgramcounter UpperCamelCase : Any = sgramcounter_rep - rgramcounter UpperCamelCase : Optional[int] = 0 UpperCamelCase : Union[str, Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Dict = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : str = deltmpscorea / len(_lowerCAmelCase ) # ADDITION UpperCamelCase : List[str] = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : List[str] = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) UpperCamelCase : Dict = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase : Tuple = 1 UpperCamelCase : Tuple = 1 if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Tuple = addtmpscore / len(_lowerCAmelCase ) UpperCamelCase : List[str] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCamelCase : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: UpperCamelCase : int = len(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = ssent.split(" " ) UpperCamelCase : Dict = csent.split(" " ) UpperCamelCase : str = [] UpperCamelCase : Any = [] UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] UpperCamelCase : str = [] UpperCamelCase : str = [] UpperCamelCase : Dict = [] UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [] UpperCamelCase : Tuple = [] for rsent in rsents: UpperCamelCase : List[Any] = rsent.split(" " ) UpperCamelCase : List[str] = [] UpperCamelCase : int = [] UpperCamelCase : Tuple = [] ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Dict = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : List[Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : List[str] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Optional[int] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCamelCase : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCamelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[Any] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : str = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCamelCase : str = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCamelCase : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCamelCase : Union[str, Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = "13a" , _lowerCAmelCase = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCamelCase : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCamelCase : str = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: UpperCamelCase : Dict = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": UpperCamelCase : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase , escape=_lowerCAmelCase ) elif tokenizer == "penn": UpperCamelCase : str = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase ) else: UpperCamelCase : Union[str, Any] = sentence if not return_str: UpperCamelCase : Tuple = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError("Sources length must match predictions and references lengths." ) UpperCamelCase : Optional[Any] = 0 for src, pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ) , normalize(_lowerCAmelCase ) , [normalize(_lowerCAmelCase ) for sent in refs] ) UpperCamelCase : Optional[int] = sari_score / len(_lowerCAmelCase ) return 100 * sari_score def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="exp" , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> List[str]: UpperCamelCase : Optional[Any] = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase : Optional[int] = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] UpperCamelCase : Tuple = sacrebleu.corpus_bleu( _lowerCAmelCase , _lowerCAmelCase , smooth_method=_lowerCAmelCase , smooth_value=_lowerCAmelCase , force=_lowerCAmelCase , lowercase=_lowerCAmelCase , use_effective_order=_lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = {} result.update({"sari": compute_sari(sources=A_ , predictions=A_ , references=A_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=A_ , references=A_ )} ) result.update({"exact": compute_em(predictions=A_ , references=A_ )} ) return result
52
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase__ : def __init__( self , lowercase , lowercase=1_3 , lowercase=3_0 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1_0 , lowercase=0.02 , lowercase=3 , lowercase=None , lowercase=2 , ) -> List[Any]: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ) -> Tuple: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = TFDeiTModel(config=lowercase ) __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDeiTForMaskedImageModeling(config=lowercase ) __UpperCamelCase = model(lowercase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = TFDeiTForMaskedImageModeling(lowercase ) __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any: __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = TFDeiTForImageClassification(lowercase ) __UpperCamelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = TFDeiTForImageClassification(lowercase ) __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDeiTModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=3_7 ) def __lowerCamelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def __lowerCamelCase ( self ) -> Optional[Any]: pass def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Dense ) ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(lowercase ) __UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def __lowerCamelCase ( self ) -> str: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase=False ) -> Optional[int]: __UpperCamelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCamelCase ( self ) -> Optional[int]: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFDeiTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase__ ( unittest.TestCase): @cached_property def __lowerCamelCase ( self ) -> str: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=lowercase , return_tensors="""tf""" ) # forward pass __UpperCamelCase = model(**lowercase ) # verify the logits __UpperCamelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase ) __UpperCamelCase = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
371
'''simple docstring''' def _lowercase ( __A ): '''simple docstring''' if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
243
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def A_ ( _lowerCAmelCase ) -> Optional[int]: if "cls_token" in name: UpperCamelCase : Union[str, Any] = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: UpperCamelCase : str = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: UpperCamelCase : List[Any] = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase : List[Any] = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCamelCase : List[Any] = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCamelCase : str = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: UpperCamelCase : Any = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: UpperCamelCase : Any = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: UpperCamelCase : Any = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCamelCase : Union[str, Any] = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCamelCase : List[str] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCamelCase : List[Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCamelCase : List[Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCamelCase : List[Any] = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: UpperCamelCase : Any = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: UpperCamelCase : Union[str, Any] = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: UpperCamelCase : List[Any] = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase : Dict = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase : List[Any] = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): UpperCamelCase : int = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: UpperCamelCase : List[str] = key.split("." ) UpperCamelCase : List[Any] = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase : Optional[Any] = config.decoder_hidden_size UpperCamelCase : Union[str, Any] = "decoder.decoder_layers." if "weight" in key: UpperCamelCase : List[Any] = val[:dim, :] UpperCamelCase : Tuple = val[dim : dim * 2, :] UpperCamelCase : List[str] = val[-dim:, :] elif "bias" in key: UpperCamelCase : Tuple = val[:dim] UpperCamelCase : Union[str, Any] = val[dim : dim * 2] UpperCamelCase : str = val[-dim:] else: UpperCamelCase : Union[str, Any] = config.hidden_size UpperCamelCase : Union[str, Any] = "vit.encoder.layer." if "weight" in key: UpperCamelCase : Dict = val[:dim, :] UpperCamelCase : List[Any] = val[dim : dim * 2, :] UpperCamelCase : Any = val[-dim:, :] elif "bias" in key: UpperCamelCase : List[str] = val[:dim] UpperCamelCase : Optional[Any] = val[dim : dim * 2] UpperCamelCase : Optional[Any] = val[-dim:] else: UpperCamelCase : List[str] = val return orig_state_dict def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: UpperCamelCase : Union[str, Any] = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase : Optional[Any] = 1024 UpperCamelCase : Union[str, Any] = 4096 UpperCamelCase : List[Any] = 24 UpperCamelCase : Optional[Any] = 16 elif "huge" in checkpoint_url: UpperCamelCase : List[str] = 14 UpperCamelCase : Dict = 1280 UpperCamelCase : str = 5120 UpperCamelCase : Any = 32 UpperCamelCase : Any = 16 UpperCamelCase : Optional[Any] = ViTMAEForPreTraining(_lowerCAmelCase ) UpperCamelCase : Dict = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" )["model"] UpperCamelCase : Dict = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase : Any = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() UpperCamelCase : str = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" UpperCamelCase : List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) UpperCamelCase : List[Any] = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase : Union[str, Any] = image_processor(images=_lowerCAmelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) UpperCamelCase : str = model(**_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = outputs.logits if "large" in checkpoint_url: UpperCamelCase : Optional[int] = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: UpperCamelCase : Optional[Any] = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: UpperCamelCase : int = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __lowerCamelCase : Optional[int] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
52
from math import sqrt def A_ ( _lowerCAmelCase ) -> bool: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase : List[Any] = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase : List[Any] = False for divisor in range(2 , int(round(sqrt(_lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase : Union[str, Any] = False break # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'status' must been from type bool" return status def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase : int = list(range(2 , n + 1 ) ) UpperCamelCase : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1 , len(_lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase : Tuple = 0 # filters actual prime numbers. UpperCamelCase : str = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase : str = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_lowerCAmelCase ): ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase : Tuple = 2 UpperCamelCase : str = number if number == 0 or number == 1: ans.append(_lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCAmelCase ): while quotient != 1: if is_prime(_lowerCAmelCase ) and (quotient % factor == 0): ans.append(_lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase ) -> Any: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase : List[Any] = 0 # prime factorization of 'number' UpperCamelCase : Any = prime_factorization(_lowerCAmelCase ) UpperCamelCase : List[Any] = max(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase : List[Any] = 0 # prime factorization of 'number' UpperCamelCase : Dict = prime_factorization(_lowerCAmelCase ) UpperCamelCase : List[Any] = min(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A_ ( _lowerCAmelCase ) -> List[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A_ ( _lowerCAmelCase ) -> Any: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (number > 2) and is_even(_lowerCAmelCase ) ), "'number' must been an int, even and > 2" UpperCamelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase : Dict = get_prime_numbers(_lowerCAmelCase ) UpperCamelCase : Tuple = len(_lowerCAmelCase ) # run variable for while-loops. UpperCamelCase : Optional[int] = 0 UpperCamelCase : int = None # exit variable. for break up the loops UpperCamelCase : Union[str, Any] = True while i < len_pn and loop: UpperCamelCase : Tuple = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (len(_lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase : Tuple = 0 while numbera != 0: UpperCamelCase : Tuple = numbera % numbera UpperCamelCase : Any = numbera UpperCamelCase : Union[str, Any] = rest # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase : Optional[int] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase : List[Any] = prime_factorization(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = prime_factorization(_lowerCAmelCase ) elif numbera == 1 or numbera == 1: UpperCamelCase : Optional[Any] = [] UpperCamelCase : int = [] UpperCamelCase : List[Any] = max(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) UpperCamelCase : Tuple = prime_fac_a.count(_lowerCAmelCase ) for _ in range(max(_lowerCAmelCase , _lowerCAmelCase ) ): ans *= n else: UpperCamelCase : str = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase : Any = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A_ ( _lowerCAmelCase ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" UpperCamelCase : int = 0 UpperCamelCase : int = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCAmelCase ): ans += 1 # precondition assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and is_prime( _lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: assert ( is_prime(_lowerCAmelCase ) and is_prime(_lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase : str = p_number_a + 1 # jump to the next number UpperCamelCase : Dict = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(_lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ans[0] != p_number_a and ans[len(_lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A_ ( _lowerCAmelCase ) -> List[str]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase : Dict = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A_ ( _lowerCAmelCase ) -> int: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase : int = get_divisors(_lowerCAmelCase ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase : List[str] = gcd(abs(_lowerCAmelCase ) , abs(_lowerCAmelCase ) ) # precondition assert ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A_ ( _lowerCAmelCase ) -> Dict: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase : str = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A_ ( _lowerCAmelCase ) -> Tuple: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase : Dict = 0 UpperCamelCase : Dict = 1 UpperCamelCase : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase : Any = ans ans += fiba UpperCamelCase : str = tmp return ans
52
1
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration UpperCAmelCase : Optional[int] = HfArgumentParser(InitializationArguments) UpperCAmelCase : int = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks UpperCAmelCase : Optional[Any] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config UpperCAmelCase : Any = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
350
"""simple docstring""" from __future__ import annotations UpperCAmelCase = 8.988E9 # units = N * m^s * C^-2 def lowercase ( a__ : float , a__ : float , a__ : float , a__ : float ) -> dict[str, float]: _UpperCamelCase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: _UpperCamelCase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _UpperCamelCase = abs(a__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _UpperCamelCase = abs(a__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _UpperCamelCase = (COULOMBS_CONSTANT * charge_product / abs(a__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCamelCase_ : def __init__( self : str , _A : Optional[int] , _A : Optional[Any]=13 , _A : List[str]=10 , _A : List[Any]=3 , _A : str=2 , _A : Union[str, Any]=2 , _A : Dict=2 , _A : Dict=True , _A : int=True , _A : Dict=32 , _A : List[Any]=5 , _A : int=4 , _A : Union[str, Any]=37 , _A : List[Any]="gelu" , _A : Any=0.1 , _A : Any=0.1 , _A : Optional[Any]=10 , _A : int=0.0_2 , _A : Any=0.9 , _A : Optional[int]=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Optional[Any] = patch_size UpperCAmelCase__ : Optional[int] = tubelet_size UpperCAmelCase__ : Union[str, Any] = num_frames UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Optional[int] = mask_ratio UpperCAmelCase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : Tuple = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos UpperCAmelCase__ : Any = int(mask_ratio * self.seq_length ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self : List[Any] ): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , ) def lowercase_ ( self : str , _A : Optional[Any] , _A : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = VideoMAEModel(config=_a ) model.to(_a ) model.eval() UpperCAmelCase__ : Any = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : int , _A : int , _A : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = VideoMAEForPreTraining(_a ) model.to(_a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ : List[str] = torch.ones((self.num_masks,) ) UpperCAmelCase__ : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ : Tuple = mask.expand(self.batch_size , -1 ).bool() UpperCAmelCase__ : Dict = model(_a , _a ) # model only returns predictions for masked patches UpperCAmelCase__ : Optional[Any] = mask.sum().item() UpperCAmelCase__ : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCAmelCase__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = VideoMAEModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def lowercase_ ( self : int , _A : Any , _A : Optional[Any] , _A : Tuple=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = copy.deepcopy(_a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ : List[str] = torch.ones((self.model_tester.num_masks,) ) UpperCAmelCase__ : str = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() UpperCAmelCase__ : Optional[int] = bool_masked_pos.to(_a ) if return_labels: if model_class in [ *get_values(_a ), ]: UpperCAmelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def lowercase_ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_a ) UpperCAmelCase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Union[str, Any] = VideoMAEModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase_ ( self : str ): '''simple docstring''' if not self.has_attentions: pass else: UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Dict = True for model_class in self.all_model_classes: UpperCAmelCase__ : int = self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ : Optional[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : str = True UpperCAmelCase__ : Any = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): UpperCAmelCase__ : str = model(**self._prepare_for_class(_a , _a ) ) UpperCAmelCase__ : int = outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): UpperCAmelCase__ : int = model(**self._prepare_for_class(_a , _a ) ) UpperCAmelCase__ : int = outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase__ : int = len(_a ) # Check attention is always last and order is fine UpperCAmelCase__ : int = True UpperCAmelCase__ : int = True UpperCAmelCase__ : List[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Any = model(**self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + 1 , len(_a ) ) UpperCAmelCase__ : Tuple = outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase_ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(_A : str , _A : Dict , _A : Dict ): UpperCAmelCase__ : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**self._prepare_for_class(_a , _a ) ) UpperCAmelCase__ : int = outputs.hidden_states UpperCAmelCase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_a ) , _a ) UpperCAmelCase__ : Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ : str = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : str = True check_hidden_states_output(_a , _a , _a ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : str ): '''simple docstring''' pass def a__ ( ) -> Tuple: UpperCAmelCase__ : str = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) UpperCAmelCase__ : List[Any] = np.load(__a ) return list(__a ) @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Tuple ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( _a ) UpperCAmelCase__ : Any = self.default_image_processor UpperCAmelCase__ : Dict = prepare_video() UpperCAmelCase__ : List[str] = image_processor(_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**_a ) # verify the logits UpperCAmelCase__ : List[str] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _a ) UpperCAmelCase__ : List[Any] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(_a ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_video() UpperCAmelCase__ : Dict = image_processor(_a , return_tensors='''pt''' ).to(_a ) # add boolean mask, indicating which patches to mask UpperCAmelCase__ : Union[str, Any] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) UpperCAmelCase__ : Optional[int] = torch.load(_a ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**_a ) # verify the logits UpperCAmelCase__ : int = torch.Size([1, 1_408, 1_536] ) UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=_a ) self.assertEqual(outputs.logits.shape , _a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) UpperCAmelCase__ : str = torch.tensor([0.5_1_4_2] , device=_a ) self.assertTrue(torch.allclose(outputs.loss , _a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) UpperCAmelCase__ : List[str] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=_a ).to( _a ) with torch.no_grad(): UpperCAmelCase__ : Any = model(**_a ) UpperCAmelCase__ : Any = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=_a ) self.assertTrue(torch.allclose(outputs.loss , _a , atol=1e-4 ) )
181
def __UpperCAmelCase ( __a : float ) -> float: """simple docstring""" return 10 - x * x def __UpperCAmelCase ( __a : float ,__a : float ) -> float: """simple docstring""" if equation(__a ) * equation(__a ) >= 0: raise ValueError('''Wrong space!''' ) _a : Dict = a while (b - a) >= 0.01: # Find middle point _a : Any = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: _a : str = c else: _a : Union[str, Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
235
0
from collections.abc import Generator from math import sin def __lowerCamelCase ( __a :bytes ) -> bytes: """simple docstring""" if len(__a ) != 3_2: raise ValueError("""Input must be of length 32""" ) A__ = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __lowerCamelCase ( __a :int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) A__ = format(__a , """08x""" )[-8:] A__ = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def __lowerCamelCase ( __a :bytes ) -> bytes: """simple docstring""" A__ = b"""""" for char in message: bit_string += format(__a , """08b""" ).encode("""utf-8""" ) A__ = format(len(__a ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def __lowerCamelCase ( __a :bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__a ) , 5_1_2 ): A__ = bit_string[pos : pos + 5_1_2] A__ = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) A__ = format(__a , """032b""" ) A__ = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def __lowerCamelCase ( __a :int , __a :int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def __lowerCamelCase ( __a :int , __a :int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def __lowerCamelCase ( __a :bytes ) -> bytes: """simple docstring""" A__ = preprocess(__a ) A__ = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states A__ = 0X6_7_4_5_2_3_0_1 A__ = 0XE_F_C_D_A_B_8_9 A__ = 0X9_8_B_A_D_C_F_E A__ = 0X1_0_3_2_5_4_7_6 A__ = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): A__ = aa A__ = ba A__ = ca A__ = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A__ = d ^ (b & (c ^ d)) A__ = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A__ = c ^ (d & (b ^ c)) A__ = (5 * i + 1) % 1_6 elif i <= 4_7: A__ = b ^ c ^ d A__ = (3 * i + 5) % 1_6 else: A__ = c ^ (b | not_aa(__a )) A__ = (7 * i) % 1_6 A__ = (f + a + added_consts[i] + block_words[g]) % 2**3_2 A__ = d A__ = c A__ = b A__ = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total A__ = sum_aa(__a , __a ) A__ = sum_aa(__a , __a ) A__ = sum_aa(__a , __a ) A__ = sum_aa(__a , __a ) A__ = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
361
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : WhisperForConditionalGeneration , __lowerCAmelCase : WhisperProcessor , __lowerCAmelCase : AutoencoderKL , __lowerCAmelCase : CLIPTextModel , __lowerCAmelCase : CLIPTokenizer , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCAmelCase : StableDiffusionSafetyChecker , __lowerCAmelCase : CLIPImageProcessor , ) -> List[str]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__lowerCAmelCase , speech_processor=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , ) def a_ ( self : Tuple , __lowerCAmelCase : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def a_ ( self : Any ) -> str: """simple docstring""" self.enable_attention_slicing(__lowerCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int=1_60_00 , __lowerCAmelCase : int = 5_12 , __lowerCAmelCase : int = 5_12 , __lowerCAmelCase : int = 50 , __lowerCAmelCase : float = 7.5 , __lowerCAmelCase : Optional[Union[str, List[str]]] = None , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : Optional[Any] , ) -> Any: """simple docstring""" A__ = self.speech_processor.feature_extractor( __lowerCAmelCase , return_tensors="""pt""" , sampling_rate=__lowerCAmelCase ).input_features.to(self.device ) A__ = self.speech_model.generate(__lowerCAmelCase , max_length=48_00_00 ) A__ = self.speech_processor.tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , normalize=__lowerCAmelCase )[ 0 ] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = 1 elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = len(__lowerCAmelCase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__lowerCAmelCase )}.' ) # get prompt text embeddings A__ = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) A__ = text_input_ids[:, : self.tokenizer.model_max_length] A__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ = text_embeddings.shape A__ = text_embeddings.repeat(1 , __lowerCAmelCase , 1 ) A__ = text_embeddings.view(bs_embed * num_images_per_prompt , __lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [""""""] * batch_size elif type(__lowerCAmelCase ) is not type(__lowerCAmelCase ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCAmelCase )} !=' f' {type(__lowerCAmelCase )}.' ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = [negative_prompt] elif batch_size != len(__lowerCAmelCase ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__lowerCAmelCase )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: A__ = negative_prompt A__ = text_input_ids.shape[-1] A__ = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" , ) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = uncond_embeddings.shape[1] A__ = uncond_embeddings.repeat(1 , __lowerCAmelCase , 1 ) A__ = uncond_embeddings.view(batch_size * num_images_per_prompt , __lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device="""cpu""" , dtype=__lowerCAmelCase ).to( self.device ) else: A__ = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) A__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual A__ = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = 1 / 0.1_8_2_1_5 * latents A__ = self.vae.decode(__lowerCAmelCase ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__lowerCAmelCase , nsfw_content_detected=__lowerCAmelCase )
276
0
'''simple docstring''' import enum import shutil import sys UpperCamelCase__ , UpperCamelCase__: Tuple = shutil.get_terminal_size() UpperCamelCase__: int = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class SCREAMING_SNAKE_CASE( enum.Enum ): """simple docstring""" lowerCamelCase__ = 0 lowerCamelCase__ = 1 def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int]="" ) -> Tuple: sys.stdout.write(str(_lowerCAmelCase ) + end ) sys.stdout.flush() def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any="" ) -> List[str]: forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , _lowerCAmelCase ) def snake_case_ ( ) -> Any: forceWrite('''\r''' ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ) -> Dict: forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def snake_case_ ( ) -> List[str]: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def snake_case_ ( ) -> int: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
23
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCamelCase ( _A , _A ): assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_ = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = features.copy() if features else default_expected_features lowerCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} lowerCAmelCase_ = features.copy() if features else default_expected_features lowerCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __UpperCamelCase ( _A , _A ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowerCAmelCase_ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} lowerCAmelCase_ = features.copy() lowerCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __UpperCamelCase ( _A , _A , _A ): if issubclass(_A , _A ): lowerCAmelCase_ = jsonl_path elif issubclass(_A , _A ): lowerCAmelCase_ = [jsonl_path] lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def __UpperCamelCase ( _A , _A , _A=("train",) ): assert isinstance(_A , _A ) for split in splits: lowerCAmelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = features.copy() if features else default_expected_features lowerCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = JsonDatasetReader({'''train''': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCamelCase ( _A , _A , _A ): if split: lowerCAmelCase_ = {split: jsonl_path} else: lowerCAmelCase_ = '''train''' lowerCAmelCase_ = {'''train''': jsonl_path, '''test''': jsonl_path} lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCamelCase ( _A ): return json.load(_A ) def __UpperCamelCase ( _A ): return [json.loads(_A ) for line in buffer] class A : @pytest.mark.parametrize('''lines, load_json_function''', [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__ ).write() buffer.seek(0 ) lowerCAmelCase_ = load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) assert isinstance(exported_content[0], UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''', [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ], ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, orient=UpperCamelCase__ ).write() buffer.seek(0 ) lowerCAmelCase_ = load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__, '''keys''' ) and not hasattr(exported_content[0], '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''', [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase_ = load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) assert isinstance(exported_content[0], UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''', [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ], ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, orient=UpperCamelCase__, num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase_ = load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__, '''keys''' ) and not hasattr(exported_content[0], '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" with pytest.raises(UpperCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, num_proc=0 ) @pytest.mark.parametrize('''compression, extension''', [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / f"test.json.{extension}" lowerCAmelCase_ = str(shared_datadir / f"test_file.json.{extension}" ) JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, compression=UpperCamelCase__ ).write() with fsspec.open(UpperCamelCase__, '''rb''', compression='''infer''' ) as f: lowerCAmelCase_ = f.read() with fsspec.open(UpperCamelCase__, '''rb''', compression='''infer''' ) as f: lowerCAmelCase_ = f.read() assert exported_content == original_content
278
0
'''simple docstring''' __SCREAMING_SNAKE_CASE :int = '''Alexander Joslin''' import operator as op from .stack import Stack def UpperCAmelCase_ ( __lowercase : str ) -> int: '''simple docstring''' _UpperCAmelCase = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _UpperCAmelCase = Stack() _UpperCAmelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowercase ) elif i == ")": # RULE 4 _UpperCAmelCase = operator_stack.peek() operator_stack.pop() _UpperCAmelCase = operand_stack.peek() operand_stack.pop() _UpperCAmelCase = operand_stack.peek() operand_stack.pop() _UpperCAmelCase = operators[opr](__lowercase , __lowercase ) operand_stack.push(__lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Tuple = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
156
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE :List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') __SCREAMING_SNAKE_CASE :Any = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} __SCREAMING_SNAKE_CASE :Dict = '''>>zh<<''' __SCREAMING_SNAKE_CASE :Optional[Any] = '''Helsinki-NLP/''' if is_torch_available(): __SCREAMING_SNAKE_CASE :Optional[int] = '''pt''' elif is_tf_available(): __SCREAMING_SNAKE_CASE :Union[str, Any] = '''tf''' else: __SCREAMING_SNAKE_CASE :Union[str, Any] = '''jax''' @require_sentencepiece class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[str] = MarianTokenizer _lowerCamelCase : int = False _lowerCamelCase : Dict = True def lowercase ( self : Tuple ): super().setUp() _UpperCAmelCase = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _UpperCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _UpperCAmelCase = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["target_spm"] ) _UpperCAmelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : Tuple , **snake_case_ : Optional[Any] ): return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : Any ): return ( "This is a test", "This is a test", ) def lowercase ( self : Tuple ): _UpperCAmelCase = "</s>" _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(snake_case_ ) , 9 ) def lowercase ( self : int ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) _UpperCAmelCase = en_de_tokenizer(["I am a small frog"] , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _UpperCAmelCase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(snake_case_ , batch.input_ids[0] ) _UpperCAmelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case_ ) _UpperCAmelCase = [x.name for x in Path(snake_case_ ).glob("*" )] self.assertIn("source.spm" , snake_case_ ) MarianTokenizer.from_pretrained(snake_case_ ) def lowercase ( self : int ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = tok( ["I am a small frog" * 1_0_0_0, "I am a small frog"] , padding=snake_case_ , truncation=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = tok(["I am a tiny frog", "I am a small frog"] , padding=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def lowercase ( self : Any ): # fmt: off _UpperCAmelCase = {"input_ids": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def lowercase ( self : List[Any] ): _UpperCAmelCase = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) _UpperCAmelCase = "Tämä on testi" _UpperCAmelCase = "This is a test" _UpperCAmelCase = [7_6, 7, 2_0_4_7, 2] _UpperCAmelCase = [6_9, 1_2, 1_1, 9_4_0, 2] _UpperCAmelCase = tokenizer(snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) _UpperCAmelCase = tokenizer(text_target=snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) _UpperCAmelCase = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ )
156
1
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[Any] ) -> tuple[int, int]: if b == 0: return (1, 0) ((_a) , (_a)) = extended_euclid(lowercase , a % b ) _a = a // b return (y, x - k * y) def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : List[str] ) -> int: ((_a) , (_a)) = extended_euclid(lowercase , lowercase ) _a = na * na _a = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any] ) -> int: ((_a) , (_a)) = extended_euclid(lowercase , lowercase ) if b < 0: _a = (b % n + n) % n return b def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Optional[Any] ) -> int: _a , _a = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase ) _a = na * na _a = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
63
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
243
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _SCREAMING_SNAKE_CASE = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = int(__a ) # Initialize Result snake_case_ : Tuple = [] # Traverse through all denomination for denomination in reversed(__a ): # Find denominations while int(__a ) >= int(__a ): total_value -= int(__a ) answer.append(__a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): _SCREAMING_SNAKE_CASE = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) _SCREAMING_SNAKE_CASE = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter _SCREAMING_SNAKE_CASE = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] _SCREAMING_SNAKE_CASE = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') _SCREAMING_SNAKE_CASE = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
88
1