code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> Tuple: UpperCamelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowercase__ ( __UpperCamelCase = 100 )-> List[str]: UpperCamelCase = 1 UpperCamelCase = 2 for i in range(2 , max_n + 1 ): UpperCamelCase = pre_numerator UpperCamelCase = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase = cur_numerator UpperCamelCase = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase_ ) if __name__ == "__main__": print(f'{solution() = }')
321
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase_ : """simple docstring""" snake_case__ : Dict = PegasusConfig snake_case__ : Union[str, Any] = {} snake_case__ : Any = "gelu" def __init__( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int=1_3 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : List[Any]=9_9 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : List[Any]=3_7 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : List[Any]=2_0 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Optional[Any]=0 , ) -> Any: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __SCREAMING_SNAKE_CASE = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = np.concatenate([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) -> str: __SCREAMING_SNAKE_CASE = 2_0 __SCREAMING_SNAKE_CASE = model_class_name(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = 2_0 __SCREAMING_SNAKE_CASE = model_class_name(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ): '''simple docstring''' if attention_mask is None: __SCREAMING_SNAKE_CASE = np.not_equal(lowerCAmelCase_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Tuple = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case__ : Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case__ : Tuple = True snake_case__ : Union[str, Any] = False snake_case__ : int = False snake_case__ : List[Any] = False def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = FlaxPegasusModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : int ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __SCREAMING_SNAKE_CASE = encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self : Tuple ) -> Any: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __SCREAMING_SNAKE_CASE = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest("JIT Enabled" ): __SCREAMING_SNAKE_CASE = decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self : Dict ) -> Tuple: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("google/pegasus-large" , from_pt=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.ones((1, 1) ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) __SCREAMING_SNAKE_CASE = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) __SCREAMING_SNAKE_CASE = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __SCREAMING_SNAKE_CASE = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] __SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase__ , return_tensors="np" , truncation=UpperCAmelCase__ , max_length=5_1_2 , padding=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate(**UpperCAmelCase__ , num_beams=2 ).sequences __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) assert tgt_text == decoded
54
0
import qiskit def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int ): __lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCAmelCase = qiskit.QuantumCircuit(lowerCAmelCase_, lowerCAmelCase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1] ) # Execute the circuit on the qasm simulator __lowerCAmelCase = qiskit.execute(lowerCAmelCase_, lowerCAmelCase_, shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Optional[int] = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case : Optional[Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _snake_case : Dict = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _snake_case : Tuple = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _snake_case : Dict = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
64
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Tuple = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "roc_bert" def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :Tuple=3_0_5_2_2 , SCREAMING_SNAKE_CASE :List[str]=7_6_8 , SCREAMING_SNAKE_CASE :Dict=1_2 , SCREAMING_SNAKE_CASE :List[str]=1_2 , SCREAMING_SNAKE_CASE :Tuple=3_0_7_2 , SCREAMING_SNAKE_CASE :List[Any]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Optional[int]="absolute" , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :Optional[Any]=9_1_0 , SCREAMING_SNAKE_CASE :Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE :str=2_4_8_5_8 , SCREAMING_SNAKE_CASE :List[Any]=True , **SCREAMING_SNAKE_CASE :Tuple , ) -> Optional[int]: '''simple docstring''' _a : List[str] =vocab_size _a : List[str] =max_position_embeddings _a : Optional[Any] =hidden_size _a : List[Any] =num_hidden_layers _a : List[str] =num_attention_heads _a : int =intermediate_size _a : Any =hidden_act _a : Dict =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : str =initializer_range _a : Optional[int] =type_vocab_size _a : Any =layer_norm_eps _a : Any =use_cache _a : Optional[int] =enable_pronunciation _a : Optional[Any] =enable_shape _a : Optional[Any] =pronunciation_embed_dim _a : Tuple =pronunciation_vocab_size _a : Union[str, Any] =shape_embed_dim _a : Any =shape_vocab_size _a : Tuple =concat_input _a : List[str] =position_embedding_type _a : List[str] =classifier_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
276
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCAmelCase_ ( snake_case_ : int = 1_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = factorial(snake_case_ ) UpperCAmelCase_ = split_and_add(snake_case_ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
359
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE_: List[str] =get_logger() SCREAMING_SNAKE_CASE_: Optional[dict] =None class __A ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__(self : List[Any] , __a : Optional[int]=None , __a : Any=None , **__a : Dict ): super().__init__(features=__a ) import jax from jaxlib.xla_client import Device if isinstance(__a , __a ): raise ValueError( f"""Expected {device} to be a `str` not {type(__a )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) UpperCAmelCase_ = device if isinstance(__a , __a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) UpperCAmelCase_ = str(jax.devices()[0] ) UpperCAmelCase_ = jnp_array_kwargs @staticmethod def _lowercase (): import jax return {str(__a ): device for device in jax.devices()} def _lowercase (self : str , __a : Tuple ): import jax import jax.numpy as jnp if isinstance(__a , __a ) and column: if all( isinstance(__a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__a , axis=0 ) return column def _lowercase (self : Any , __a : Optional[int] ): import jax import jax.numpy as jnp if isinstance(__a , (str, bytes, type(__a )) ): return value elif isinstance(__a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ = {} if isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ = {"dtype": jnp.intaa} else: UpperCAmelCase_ = {"dtype": jnp.intaa} elif isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__a , PIL.Image.Image ): UpperCAmelCase_ = np.asarray(__a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__a , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase (self : int , __a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__a , "__array__" ) and not isinstance(__a , jax.Array ): UpperCAmelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) elif isinstance(__a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) return self._tensorize(__a ) def _lowercase (self : Union[str, Any] , __a : dict ): return map_nested(self._recursive_tensorize , __a , map_list=__a ) def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_row(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_row(__a ) return self.recursive_tensorize(__a ) def _lowercase (self : Tuple , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_column(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_column(__a , pa_table.column_names[0] ) UpperCAmelCase_ = self.recursive_tensorize(__a ) UpperCAmelCase_ = self._consolidate(__a ) return column def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_batch(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_batch(__a ) UpperCAmelCase_ = self.recursive_tensorize(__a ) for column_name in batch: UpperCAmelCase_ = self._consolidate(batch[column_name] ) return batch
106
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Union[str, Any]=13 , _snake_case : Optional[int]=30 , _snake_case : int=2 , _snake_case : Dict=3 , _snake_case : str=True , _snake_case : Union[str, Any]=True , _snake_case : Any=32 , _snake_case : str=5 , _snake_case : Tuple=4 , _snake_case : List[str]=37 , _snake_case : Optional[int]="gelu" , _snake_case : Union[str, Any]=0.1 , _snake_case : Any=0.1 , _snake_case : Any=10 , _snake_case : Tuple=0.02 , _snake_case : Optional[Any]=3 , _snake_case : Optional[Any]=0.6 , _snake_case : str=None , ): __lowercase : Any = parent __lowercase : List[str] = batch_size __lowercase : Tuple = image_size __lowercase : List[str] = patch_size __lowercase : Optional[int] = num_channels __lowercase : Dict = is_training __lowercase : Tuple = use_labels __lowercase : Tuple = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : int = hidden_act __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : int = type_sequence_label_size __lowercase : int = initializer_range __lowercase : str = mask_ratio __lowercase : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowercase : Union[str, Any] = (image_size // patch_size) ** 2 __lowercase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def snake_case_ ( self : List[Any] ): __lowercase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Any = self.get_config() return config, pixel_values, labels def snake_case_ ( self : List[str] ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def snake_case_ ( self : Any , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Any ): __lowercase : str = ViTMAEModel(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : Dict , _snake_case : Union[str, Any] , _snake_case : int , _snake_case : Optional[int] ): __lowercase : List[Any] = ViTMAEForPreTraining(_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Tuple = model(_snake_case ) __lowercase : int = (self.image_size // self.patch_size) ** 2 __lowercase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __lowercase : List[Any] = 1 __lowercase : List[Any] = ViTMAEForPreTraining(_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : List[str] = model(_snake_case ) __lowercase : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def snake_case_ ( self : str ): __lowercase : str = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : Optional[int] = config_and_inputs __lowercase : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : List[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () A__ : str = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} A__ : Union[str, Any] = False A__ : str = False A__ : str = False A__ : Any = False def snake_case_ ( self : Dict ): __lowercase : Tuple = ViTMAEModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def snake_case_ ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def snake_case_ ( self : Dict ): pass def snake_case_ ( self : Optional[int] ): __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def snake_case_ ( self : List[str] ): __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : int = model_class(_snake_case ) __lowercase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Optional[int] = [*signature.parameters.keys()] __lowercase : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def snake_case_ ( self : List[Any] ): __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def snake_case_ ( self : Tuple ): __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case ) def snake_case_ ( self : Dict , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int] ): # make masks reproducible np.random.seed(2 ) __lowercase : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __lowercase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowercase : Union[str, Any] = torch.from_numpy(_snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowercase : List[str] = pt_noise super().check_pt_tf_models(_snake_case , _snake_case , _snake_case ) def snake_case_ ( self : List[Any] ): __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Union[str, Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase : Tuple = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __lowercase : List[str] = outputs[0].cpu().numpy() __lowercase : Dict = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) __lowercase : Union[str, Any] = model_class.from_pretrained(_snake_case ) model.to(_snake_case ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase : str = model(**self._prepare_for_class(_snake_case , _snake_case ) ) # Make sure we don't have nans __lowercase : List[str] = after_outputs[0].cpu().numpy() __lowercase : Tuple = 0 __lowercase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def snake_case_ ( self : Optional[int] ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def snake_case_ ( self : List[str] ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def snake_case_ ( self : Dict ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def snake_case_ ( self : List[Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case_ ( self : List[str] ): pass @slow def snake_case_ ( self : Any ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = ViTMAEModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase_ ( ) -> Optional[int]: __lowercase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case_ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def snake_case_ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) __lowercase : List[str] = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_snake_case ) __lowercase : Tuple = self.default_image_processor __lowercase : List[str] = prepare_img() __lowercase : Dict = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowercase : Dict = ViTMAEConfig() __lowercase : Dict = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __lowercase : int = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __lowercase : List[str] = model(**_snake_case , noise=torch.from_numpy(_snake_case ).to(device=_snake_case ) ) # verify the logits __lowercase : Dict = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _snake_case ) __lowercase : str = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_snake_case ) , atol=1E-4 ) )
156
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : Any = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" __lowerCAmelCase : Tuple = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" __lowerCAmelCase : str = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return float((preds == labels).mean() ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="binary" ) -> int: __lowercase : Union[str, Any] = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) __lowercase : int = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase , average=__lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: __lowercase : str = {} for id_pred, label in zip(__lowerCAmelCase , __lowerCAmelCase ): __lowercase : Any = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' __lowercase : str = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowercase : Dict = [(pred, label)] __lowercase , __lowercase : Union[str, Any] = [], [] for question, preds_labels in question_map.items(): __lowercase , __lowercase : Optional[int] = zip(*__lowerCAmelCase ) __lowercase : Dict = fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase , average='''macro''' ) fas.append(__lowerCAmelCase ) __lowercase : str = int(sum(pred == label for pred, label in preds_labels ) == len(__lowerCAmelCase ) ) ems.append(__lowerCAmelCase ) __lowercase : str = float(sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) ) __lowercase : List[Any] = sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) __lowercase : str = float(fa_score(y_true=__lowerCAmelCase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case_ ( self : str ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def snake_case_ ( self : List[Any] ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def snake_case_ ( self : Tuple , _snake_case : List[Any] , _snake_case : List[str] ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_snake_case , _snake_case )} elif self.config_name == "cb": return acc_and_fa(_snake_case , _snake_case , fa_avg='''macro''' ) elif self.config_name == "record": __lowercase : Dict = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] __lowercase : Tuple = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_snake_case , _snake_case )[0] elif self.config_name == "multirc": return evaluate_multirc(_snake_case , _snake_case ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_snake_case , _snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
156
1
def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('Input value must be a \'int\' type' ) return bin(lowerCAmelCase__ ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
366
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
0
from __future__ import annotations def a__ ( A_ ): '''simple docstring''' __magic_name__ = len(A_ ) # We need to create solution object to save path. __magic_name__ = [[0 for _ in range(A_ )] for _ in range(A_ )] __magic_name__ = run_maze(A_, 0, 0, A_ ) if solved: print("""\n""".join(str(A_ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = len(A_ ) # Final check point. if i == j == (size - 1): __magic_name__ = 1 return True __magic_name__ = (not i < 0) and (not j < 0) # Check lower bounds __magic_name__ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __magic_name__ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __magic_name__ = 1 # check for directions if ( run_maze(A_, i + 1, A_, A_ ) or run_maze(A_, A_, j + 1, A_ ) or run_maze(A_, i - 1, A_, A_ ) or run_maze(A_, A_, j - 1, A_ ) ): return True __magic_name__ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
88
from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : int ) -> None: """simple docstring""" __magic_name__ = value __magic_name__ = None __magic_name__ = None class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : Node ) -> None: """simple docstring""" __magic_name__ = tree def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
88
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A_ = logging.getLogger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Tuple=3, UpperCAmelCase__ : List[Any]=1_6, UpperCAmelCase__ : int = 1_0, UpperCAmelCase__ : int = 2 ) ->int: def get_dataset(UpperCAmelCase__ : Optional[Any] ): A__ : Dict = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(UpperCAmelCase__, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) A__ : Union[str, Any] = get_dataset(UpperCAmelCase__ ) A__ : Optional[Any] = get_dataset(UpperCAmelCase__ ) A__ : List[Any] = DataLoader(UpperCAmelCase__, shuffle=UpperCAmelCase__, batch_size=UpperCAmelCase__, num_workers=4 ) A__ : Optional[Any] = DataLoader(UpperCAmelCase__, shuffle=UpperCAmelCase__, batch_size=UpperCAmelCase__, num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=None ) ->List[str]: A__ : int = [] for epoch in range(UpperCAmelCase__ ): # Train quickly model.train() for batch in dataloader: A__ , A__ : str = batch A__ : List[str] = model(UpperCAmelCase__ ) A__ : List[Any] = torch.nn.functional.mse_loss(UpperCAmelCase__, UpperCAmelCase__ ) accelerator.backward(UpperCAmelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : Optional[Any] = nn.Parameter(torch.randn(1 ) ) A__ : Dict = nn.Parameter(torch.randn(1 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : int ): '''simple docstring''' return x * self.a + self.b class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] = DummyModel() A__ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Union[str, Any] = dummy_dataloaders() A__ : int = ProjectConfiguration(total_limit=1 , project_dir=snake_case , automatic_checkpoint_naming=snake_case ) # Train baseline A__ : Optional[Any] = Accelerator(project_config=snake_case ) A__ , A__ , A__ , A__ : List[str] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _UpperCamelCase ( self : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Union[str, Any] = DummyModel() A__ : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : str = dummy_dataloaders() # Train baseline A__ : Optional[Any] = Accelerator() A__ , A__ , A__ , A__ : List[Any] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial A__ : Dict = os.path.join(snake_case , """initial""" ) accelerator.save_state(snake_case ) ((A__) , (A__)) : int = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() A__ : Optional[int] = train(3 , snake_case , snake_case , snake_case , snake_case ) ((A__) , (A__)) : Union[str, Any] = model.a.item(), model.b.item() A__ : List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) A__ : Tuple = DummyModel() A__ : Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Any = dummy_dataloaders() A__ : int = Accelerator() A__ , A__ , A__ , A__ : Tuple = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) accelerator.load_state(snake_case ) ((A__) , (A__)) : Optional[Any] = model.a.item(), model.b.item() A__ : Union[str, Any] = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) A__ : Union[str, Any] = train(2 , snake_case , snake_case , snake_case , snake_case ) # Save everything A__ : int = os.path.join(snake_case , """checkpoint""" ) accelerator.save_state(snake_case ) # Load everything back in and make sure all states work accelerator.load_state(snake_case ) test_rands += train(1 , snake_case , snake_case , snake_case , snake_case ) ((A__) , (A__)) : int = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : int = DummyModel() A__ : Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : List[str] = dummy_dataloaders() A__ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline A__ : str = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ , A__ , A__ , A__ : List[str] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() ((A__) , (A__)) : Tuple = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() A__ : Tuple = train(3 , snake_case , snake_case , snake_case , snake_case ) ((A__) , (A__)) : Tuple = model.a.item(), model.b.item() A__ : Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) A__ : str = DummyModel() A__ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : List[Any] = dummy_dataloaders() A__ : str = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case ) A__ : List[Any] = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ , A__ , A__ , A__ : str = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) ((A__) , (A__)) : Any = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) A__ : List[Any] = train(2 , snake_case , snake_case , snake_case , snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , snake_case , snake_case , snake_case , snake_case ) ((A__) , (A__)) : Any = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Dict = torch.tensor([1, 2, 3] ) A__ : Tuple = torch.tensor([2, 3, 4] ) A__ : Union[str, Any] = DummyModel() A__ : Optional[Any] = torch.optim.Adam(net.parameters() ) A__ : str = Accelerator() with self.assertRaises(snake_case ) as ve: accelerator.register_for_checkpointing(snake_case , snake_case , snake_case , snake_case ) A__ : str = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : List[Any] = DummyModel() A__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Optional[Any] = torch.optim.lr_scheduler.StepLR(snake_case , step_size=1 , gamma=0.99 ) A__ , A__ : Optional[int] = dummy_dataloaders() A__ : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline A__ : Dict = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ , A__ , A__ , A__ , A__ : str = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() A__ : int = scheduler.state_dict() train(3 , snake_case , snake_case , snake_case , snake_case , snake_case ) self.assertNotEqual(snake_case , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(snake_case , scheduler.state_dict() ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[int] = DummyModel() A__ : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case , total_limit=2 ) # Train baseline A__ : Optional[Any] = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ : Dict = accelerator.prepare(snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[Any] = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": A_ = '''/tmp/accelerate/state_checkpointing''' A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters(), lr=1e-3) A_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A_ , A_ = dummy_dataloaders() A_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A_ , A_ , A_ , A_ , A_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A_ , A_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert param_device.type == accelerator.device.type A_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
296
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
1
"""simple docstring""" A: Union[str, Any] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def _snake_case ( UpperCamelCase : float ): assert type(UpperCamelCase ) in (int, float) and decimal == int(UpperCamelCase ) UpperCAmelCase : str = int(UpperCamelCase ) UpperCAmelCase : Optional[int] = """""" UpperCAmelCase : List[str] = False if decimal < 0: UpperCAmelCase : Any = True decimal *= -1 while decimal > 0: UpperCAmelCase , UpperCAmelCase : Dict = divmod(UpperCamelCase , 16 ) UpperCAmelCase : Union[str, Any] = values[remainder] + hexadecimal UpperCAmelCase : int = """0x""" + hexadecimal if negative: UpperCAmelCase : Optional[int] = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
109
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''depth_multiplier''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Optional[Any]=13, lowerCamelCase : List[str]=3, lowerCamelCase : List[str]=32, lowerCamelCase : Union[str, Any]=0.25, lowerCamelCase : int=8, lowerCamelCase : Dict=True, lowerCamelCase : Optional[int]=1_024, lowerCamelCase : List[str]=32, lowerCamelCase : Optional[int]="relu6", lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : List[Any]=True, lowerCamelCase : Any=True, lowerCamelCase : Dict=10, lowerCamelCase : Optional[int]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = depth_multiplier lowercase__ = min_depth lowercase__ = tf_padding lowercase__ = int(last_hidden_size * depth_multiplier ) lowercase__ = output_stride lowercase__ = hidden_act lowercase__ = classifier_dropout_prob lowercase__ = use_labels lowercase__ = is_training lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = scope def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : List[str] ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, min_depth=self.min_depth, tf_padding=self.tf_padding, hidden_act=self.hidden_act, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def lowercase__ ( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = MobileNetVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def lowercase__ ( self : str, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : List[Any], lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = MobileNetVaForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = MobileNetVaModelTester(self ) lowercase__ = MobileNetVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : List[str] ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = 26 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = MobileNetVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : str ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
207
0
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) ->str: A__ : str = ArgumentParser("""Diffusers CLI tool""", usage="""diffusers-cli <command> [<args>]""" ) A__ : List[str] = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(UpperCAmelCase__ ) # Let's go A__ : Union[str, Any] = parser.parse_args() if not hasattr(UpperCAmelCase__, """func""" ): parser.print_help() exit(1 ) # Run A__ : int = args.func(UpperCAmelCase__ ) service.run() if __name__ == "__main__": main()
296
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]: if rng is None: A__ : Optional[int] = global_rng A__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ): '''simple docstring''' A__ : Any = parent A__ : str = batch_size A__ : List[str] = min_seq_length A__ : Dict = max_seq_length A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : Dict = padding_value A__ : Optional[Any] = sampling_rate A__ : Any = return_attention_mask A__ : Optional[int] = do_normalize A__ : Tuple = feature_size A__ : Optional[Any] = chunk_length A__ : Union[str, Any] = hop_length def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = WhisperFeatureExtractionTester(self ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case ) A__ : str = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[Any] = feat_extract_first.mel_filters A__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : int = self.feature_extraction_class.from_json_file(snake_case ) A__ : Dict = feat_extract_first.to_dict() A__ : str = feat_extract_second.to_dict() A__ : str = feat_extract_first.mel_filters A__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : str = np.asarray(snake_case ) A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test truncation required A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' import torch A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A__ : Optional[Any] = self._load_datasamples(1 ) A__ : Union[str, Any] = WhisperFeatureExtractor() A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Union[str, Any] = self._load_datasamples(1 )[0] A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
296
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ : Tuple =None def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :int = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase :Dict = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowercase_ ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase :List[Any] = os.path.join(lowercase_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(lowercase_ ) UpperCamelCase :int = self.feature_extraction_class.from_json_file(lowercase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase :Tuple = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) UpperCamelCase :int = self.feature_extraction_class.from_pretrained(lowercase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Tuple = self.feature_extraction_class() self.assertIsNotNone(lowercase_ )
259
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCamelCase : Optional[Any] = '''scheduler_config.json''' class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 lowercase__ = 5 @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = SCHEDULER_CONFIG_NAME lowercase__ = ["dtype"] lowercase__ = [] lowercase__ = True @classmethod def __lowerCAmelCase ( cls : List[Any] ,lowercase_ : Dict[str, Any] = None ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[int]=False ,**lowercase_ : Any ,): lowerCAmelCase__ ,lowerCAmelCase__ : Dict = cls.load_config( pretrained_model_name_or_path=lowercase_ ,subfolder=lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = cls.from_config(lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ) if hasattr(lowercase_ ,'''create_state''' ) and getattr(lowercase_ ,'''has_state''' ,lowercase_ ): lowerCAmelCase__ : List[Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __lowerCAmelCase ( self : Tuple ,lowercase_ : Union[str, os.PathLike] ,lowercase_ : bool = False ,**lowercase_ : str ): self.save_config(save_directory=lowercase_ ,push_to_hub=lowercase_ ,**lowercase_ ) @property def __lowerCAmelCase ( self : List[str] ): return self._get_compatibles() @classmethod def __lowerCAmelCase ( cls : List[Any] ): lowerCAmelCase__ : Tuple = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase__ : Tuple = importlib.import_module(__name__.split('''.''' )[0] ) lowerCAmelCase__ : Union[str, Any] = [ getattr(lowercase_ ,lowercase_ ) for c in compatible_classes_str if hasattr(lowercase_ ,lowercase_ ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( A_ , A_ ): assert len(A_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A_ ) - x.ndim) ) , A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=0.999 , A_=jnp.floataa ): def alpha_bar(A_ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase__ : Optional[Any] = [] for i in range(A_ ): lowerCAmelCase__ : str = i / num_diffusion_timesteps lowerCAmelCase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A_ ) / alpha_bar(A_ ) , A_ ) ) return jnp.array(A_ , dtype=A_ ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : Optional[int] = scheduler.config if config.trained_betas is not None: lowerCAmelCase__ : Any = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase__ : Union[str, Any] = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : int = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : List[Any] = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) lowerCAmelCase__ : str = 1.0 - betas lowerCAmelCase__ : Union[str, Any] = jnp.cumprod(lowercase_ ,axis=0 ) return cls( alphas=lowercase_ ,betas=lowercase_ ,alphas_cumprod=lowercase_ ,) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Any = state.alphas_cumprod lowerCAmelCase__ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase__ : Tuple = sqrt_alpha_prod.flatten() lowerCAmelCase__ : str = broadcast_to_shape_from_left(A_ , original_samples.shape ) lowerCAmelCase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase__ : Optional[Any] = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase__ : Optional[int] = broadcast_to_shape_from_left(A_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : Union[str, Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
106
0
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__:List[Any] = 10 def _lowerCamelCase( a , a , a , a ): for i in range(a , a ): if array[i] == target: return i return -1 def _lowerCamelCase( a , a ): __a = 0 __a = len(a ) while left <= right: if right - left < precision: return lin_search(a , a , a , a ) __a = (left + right) // 3 + 1 __a = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __a = one_third - 1 elif array[two_third] < target: __a = two_third + 1 else: __a = one_third + 1 __a = two_third - 1 else: return -1 def _lowerCamelCase( a , a , a , a ): if left < right: if right - left < precision: return lin_search(a , a , a , a ) __a = (left + right) // 3 + 1 __a = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a , one_third - 1 , a , a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a , a , a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a , a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__:Tuple = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__:Union[str, Any] = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__:Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__:Any = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__:Tuple = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
268
"""simple docstring""" import os def _lowerCamelCase( ): with open(os.path.dirname(a ) + "/grid.txt" ) as f: __a = [] # noqa: E741 for _ in range(2_0 ): l.append([int(a ) for x in f.readline().split()] ) __a = 0 # right for i in range(2_0 ): for j in range(1_7 ): __a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __a = temp # down for i in range(1_7 ): for j in range(2_0 ): __a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __a = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): __a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __a = temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): __a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __a = temp return maximum if __name__ == "__main__": print(solution())
268
1
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
304
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) _A = logging.getLogger(__name__) if __name__ == "__main__": _A = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30522, type=int) _A = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, """rb""") as fp: _A = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") _A = Counter() for tk_ids in data: counter.update(tk_ids) _A = [0] * args.vocab_size for k, v in counter.items(): _A = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
361
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def lowerCamelCase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : List[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case : int = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = object_detector(examples[0] , threshold=0.0 ) snake_case : str = len(UpperCamelCase__ ) self.assertGreater(UpperCamelCase__ , 0 ) self.assertEqual( UpperCamelCase__ , [ { "score": ANY(UpperCamelCase__ ), "label": ANY(UpperCamelCase__ ), "box": {"xmin": ANY(UpperCamelCase__ ), "ymin": ANY(UpperCamelCase__ ), "xmax": ANY(UpperCamelCase__ ), "ymax": ANY(UpperCamelCase__ )}, } for i in range(UpperCamelCase__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @require_torch def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Dict = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) snake_case : Dict = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Optional[int] = pipeline("zero-shot-object-detection" ) snake_case : Tuple = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) snake_case : List[Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass @require_torch @slow def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = 0.2 snake_case : List[str] = pipeline("zero-shot-object-detection" ) snake_case : List[Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = 2 snake_case : Optional[Any] = pipeline("zero-shot-object-detection" ) snake_case : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
112
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __snake_case = 6378137.0 __snake_case = 6356752.314245 __snake_case = 6378137 def a ( __a , __a , __a , __a ) -> float: '''simple docstring''' UpperCamelCase__ :List[str] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCamelCase__ :Any = atan((1 - flattening) * tan(radians(lowercase__ ) ) ) UpperCamelCase__ :Optional[Any] = atan((1 - flattening) * tan(radians(lowercase__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCamelCase__ :Optional[Any] = haversine_distance(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCamelCase__ :str = (b_lata + b_lata) / 2 UpperCamelCase__ :Dict = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCamelCase__ :Tuple = (sin(lowercase__ ) ** 2) * (cos(lowercase__ ) ** 2) UpperCamelCase__ :int = cos(sigma / 2 ) ** 2 UpperCamelCase__ :Optional[int] = (sigma - sin(lowercase__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCamelCase__ :Dict = (cos(lowercase__ ) ** 2) * (sin(lowercase__ ) ** 2) UpperCamelCase__ :Union[str, Any] = sin(sigma / 2 ) ** 2 UpperCamelCase__ :str = (sigma + sin(lowercase__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
97
def _lowerCamelCase( lowercase__ , lowercase__ = " " ) -> list: '''simple docstring''' __lowercase= [] __lowercase= 0 for index, char in enumerate(lowercase__ ): if char == separator: split_words.append(string[last_index:index] ) __lowercase= index + 1 elif index + 1 == len(lowercase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
295
0
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class snake_case : def __init__( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int=9_9 , UpperCamelCase__ : Dict=1_3 , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Optional[int]=9 , UpperCamelCase__ : int=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Any=3_2 , UpperCamelCase__ : str=5 , UpperCamelCase__ : int=4 , UpperCamelCase__ : List[Any]=3_7 , UpperCamelCase__ : Any=8 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Any=0.002 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Tuple=0 , UpperCamelCase__ : Tuple=0 , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=None , )-> str: '''simple docstring''' __lowerCAmelCase: List[Any] = parent __lowerCAmelCase: Optional[Any] = batch_size __lowerCAmelCase: Union[str, Any] = encoder_seq_length __lowerCAmelCase: Union[str, Any] = decoder_seq_length # For common tests __lowerCAmelCase: int = self.decoder_seq_length __lowerCAmelCase: Union[str, Any] = is_training __lowerCAmelCase: Tuple = use_attention_mask __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: List[Any] = vocab_size __lowerCAmelCase: str = hidden_size __lowerCAmelCase: Dict = num_hidden_layers __lowerCAmelCase: List[Any] = num_attention_heads __lowerCAmelCase: Tuple = d_ff __lowerCAmelCase: Union[str, Any] = relative_attention_num_buckets __lowerCAmelCase: Optional[Any] = dropout_rate __lowerCAmelCase: List[str] = initializer_factor __lowerCAmelCase: List[str] = eos_token_id __lowerCAmelCase: List[Any] = pad_token_id __lowerCAmelCase: Union[str, Any] = decoder_start_token_id __lowerCAmelCase: Tuple = None __lowerCAmelCase: int = decoder_layers def lowercase_ ( self : Optional[int])-> Optional[int]: '''simple docstring''' return TaConfig.from_pretrained("google/umt5-base") def lowercase_ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : int=None , )-> Union[str, Any]: '''simple docstring''' if attention_mask is None: __lowerCAmelCase: Dict = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: __lowerCAmelCase: int = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: __lowerCAmelCase: Optional[Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase__) if decoder_head_mask is None: __lowerCAmelCase: Optional[Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase__) if cross_attn_head_mask is None: __lowerCAmelCase: int = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase__) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowercase_ ( self : Any)-> Dict: '''simple docstring''' __lowerCAmelCase: int = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCAmelCase: Tuple = input_ids.clamp(self.pad_token_id + 1) __lowerCAmelCase: Tuple = decoder_input_ids.clamp(self.pad_token_id + 1) __lowerCAmelCase: List[str] = self.get_config() __lowerCAmelCase: Optional[int] = config.num_attention_heads __lowerCAmelCase: List[str] = self.prepare_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) return config, input_dict def lowercase_ ( self : Optional[Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Tuple = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self : Tuple)-> Optional[int]: '''simple docstring''' return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase_ ( self : List[str])-> str: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase_ ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , )-> int: '''simple docstring''' __lowerCAmelCase: List[Any] = UMTaModel(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: Tuple = model( input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , decoder_attention_mask=UpperCamelCase__ , ) __lowerCAmelCase: int = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__) __lowerCAmelCase: List[str] = result.last_hidden_state __lowerCAmelCase: int = result.past_key_values __lowerCAmelCase: Union[str, Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase__) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , )-> Tuple: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = UMTaModel(config=UpperCamelCase__).get_decoder().to(UpperCamelCase__).eval() # first forward pass __lowerCAmelCase: int = model(UpperCamelCase__ , use_cache=UpperCamelCase__) __lowerCAmelCase: List[Any] = model(UpperCamelCase__) __lowerCAmelCase: str = model(UpperCamelCase__ , use_cache=UpperCamelCase__) self.parent.assertTrue(len(UpperCamelCase__) == len(UpperCamelCase__)) self.parent.assertTrue(len(UpperCamelCase__) == len(UpperCamelCase__) + 1) __lowerCAmelCase: Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase: Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and __lowerCAmelCase: Any = torch.cat([input_ids, next_tokens] , dim=-1) __lowerCAmelCase: int = model(UpperCamelCase__)["last_hidden_state"] __lowerCAmelCase: str = model(UpperCamelCase__ , past_key_values=UpperCamelCase__)["last_hidden_state"] # select random slice __lowerCAmelCase: Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() __lowerCAmelCase: int = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCAmelCase: int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3)) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : str , )-> int: '''simple docstring''' __lowerCAmelCase: Optional[Any] = UMTaModel(config=UpperCamelCase__).to(UpperCamelCase__).half().eval() __lowerCAmelCase: Any = model(**UpperCamelCase__)["last_hidden_state"] self.parent.assertFalse(torch.isnan(UpperCamelCase__).any().item()) @require_torch class snake_case ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : str = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE_ : Tuple = [0.8, 0.9] def lowercase_ ( self : List[str])-> str: '''simple docstring''' __lowerCAmelCase: int = UMTaModelTester(self) @unittest.skip("Test has a segmentation fault on torch 1.8.0") def lowercase_ ( self : Union[str, Any])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Tuple = self.model_tester.prepare_config_and_inputs() __lowerCAmelCase: Dict = UMTaModel(config_and_inputs[0]).to(UpperCamelCase__) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=UpperCamelCase__ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def lowercase_ ( self : int)-> List[str]: '''simple docstring''' __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase__) def lowercase_ ( self : List[str])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = ["encoder_attentions", "decoder_attentions", "cross_attentions"] __lowerCAmelCase: Tuple = self.model_tester.prepare_config_and_inputs() __lowerCAmelCase: Dict = config_and_inputs[0] __lowerCAmelCase: Optional[int] = UMTaForConditionalGeneration(UpperCamelCase__).eval() model.to(UpperCamelCase__) __lowerCAmelCase: Dict = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase__), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase__), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase__), } for attn_name, (name, mask) in zip(UpperCamelCase__ , head_masking.items()): __lowerCAmelCase: Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCAmelCase: Optional[int] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase__) __lowerCAmelCase: str = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase__ , return_dict_in_generate=UpperCamelCase__ , **UpperCamelCase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCAmelCase: Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def lowercase_ ( self : List[str])-> int: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged") def lowercase_ ( self : List[str])-> List[str]: '''simple docstring''' __lowerCAmelCase: Optional[int] = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=UpperCamelCase__).to(UpperCamelCase__) __lowerCAmelCase: Any = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=UpperCamelCase__ , legacy=UpperCamelCase__) __lowerCAmelCase: Optional[int] = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] __lowerCAmelCase: Dict = tokenizer(UpperCamelCase__ , return_tensors="pt" , padding=UpperCamelCase__).input_ids # fmt: off __lowerCAmelCase: Any = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ]) # fmt: on torch.testing.assert_allclose(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: Any = model.generate(input_ids.to(UpperCamelCase__)) __lowerCAmelCase: Union[str, Any] = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] __lowerCAmelCase: Union[str, Any] = tokenizer.batch_decode(UpperCamelCase__) self.assertEqual(UpperCamelCase__ , UpperCamelCase__)
358
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1_0**-1_0 ) -> float: __lowerCAmelCase: Union[str, Any] = a while True: __lowerCAmelCase: Optional[int] = Decimal(__SCREAMING_SNAKE_CASE ) - ( Decimal(eval(__SCREAMING_SNAKE_CASE ) ) / Decimal(eval(str(diff(__SCREAMING_SNAKE_CASE ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__SCREAMING_SNAKE_CASE ) ) < precision: # noqa: S307 return float(__SCREAMING_SNAKE_CASE ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
108
0
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list[list]: '''simple docstring''' SCREAMING_SNAKE_CASE = current_set.copy() for row_index, row in enumerate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = row[0] for column_index, column in enumerate(_SCREAMING_SNAKE_CASE ): if magnitude == 0: SCREAMING_SNAKE_CASE = column continue SCREAMING_SNAKE_CASE = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE = current_set[0] SCREAMING_SNAKE_CASE = [first_row] SCREAMING_SNAKE_CASE = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_SCREAMING_SNAKE_CASE ) continue for column_index in range(len(_SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE = final_set[0] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE = simplify(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = resultant return final_set def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) + 1 if any(len(_SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE = data_set.copy() SCREAMING_SNAKE_CASE = [] for row_index, row in enumerate(_SCREAMING_SNAKE_CASE ): if 0 not in row: SCREAMING_SNAKE_CASE = data_set.pop(_SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = data_set.copy() SCREAMING_SNAKE_CASE = simplify(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = simplified[::-1] SCREAMING_SNAKE_CASE = [] for row in simplified: SCREAMING_SNAKE_CASE = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE = row.copy()[: len(_SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE = temp_row[1::] SCREAMING_SNAKE_CASE = temp_row[::-1] for column_index, column in enumerate(_SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [] for item in solutions: final.append(float(round(_SCREAMING_SNAKE_CASE , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
296
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split("""_""" ) SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4] ) SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 1_28 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 1_92 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 2_18_41 else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = """huggingface/label-files""" SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: SCREAMING_SNAKE_CASE = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("""head""" , """classifier""" ) else: SCREAMING_SNAKE_CASE = """swin.""" + name return name def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split(""".""" ) SCREAMING_SNAKE_CASE = int(key_split[1] ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SwinForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) SCREAMING_SNAKE_CASE = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = timm_model(inputs["""pixel_values"""] ) SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
296
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ = '''▁''' A__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : List[Any] = BertGenerationTokenizer __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : str = True def __lowerCamelCase ( self :Tuple ): super().setUp() snake_case__ : Any = BertGenerationTokenizer(__lowercase ,keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = '''<s>''' snake_case__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) ,__lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<unk>''' ) self.assertEqual(vocab_keys[1] ,'''<s>''' ) self.assertEqual(vocab_keys[-1] ,'''<pad>''' ) self.assertEqual(len(__lowercase ) ,1_0_0_2 ) def __lowerCamelCase ( self :Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_0 ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Dict = BertGenerationTokenizer(__lowercase ,keep_accents=__lowercase ) snake_case__ : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) ,[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ,) snake_case__ : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) snake_case__ : List[str] = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase ,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ,) snake_case__ : Any = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) @cached_property def __lowerCamelCase ( self :int ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Any = '''Hello World!''' snake_case__ : Dict = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(__lowercase ,self.big_tokenizer.encode(__lowercase ) ) @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) snake_case__ : int = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(__lowercase ,self.big_tokenizer.encode(__lowercase ) ) @require_torch @slow def __lowerCamelCase ( self :List[Any] ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence snake_case__ : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] snake_case__ : Tuple = ''' '''.join(__lowercase ) snake_case__ : List[Any] = self.big_tokenizer.encode_plus(__lowercase ,return_tensors='''pt''' ,return_token_type_ids=__lowercase ) snake_case__ : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] ,return_tensors='''pt''' ,return_token_type_ids=__lowercase ) snake_case__ : List[Any] = BertGenerationConfig() snake_case__ : Optional[int] = BertGenerationEncoder(__lowercase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase ) model(**__lowercase ) @slow def __lowerCamelCase ( self :int ): # fmt: off snake_case__ : Any = {'''input_ids''': [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase ,model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' ,revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' ,)
44
import math import tensorflow as tf from packaging import version def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : List[str] = tf.convert_to_tensor(__lowerCAmelCase ) snake_case__ : Dict = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : Dict = tf.convert_to_tensor(__lowerCAmelCase ) snake_case__ : Tuple = tf.cast(math.pi , x.dtype ) snake_case__ : str = tf.cast(0.044_715 , x.dtype ) snake_case__ : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__lowerCAmelCase , 3 )) )) return x * cdf def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = tf.convert_to_tensor(__lowerCAmelCase ) return x * tf.tanh(tf.math.softplus(__lowerCAmelCase ) ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] = tf.convert_to_tensor(__lowerCAmelCase ) snake_case__ : str = tf.cast(0.044_715 , x.dtype ) snake_case__ : Optional[Any] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = tf.convert_to_tensor(__lowerCAmelCase ) snake_case__ : Optional[Any] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" return tf.clip_by_value(_gelu(__lowerCAmelCase ) , -10 , 10 ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=-1 ) -> Optional[Any]: """simple docstring""" snake_case__ , snake_case__ : str = tf.split(__lowerCAmelCase , 2 , axis=__lowerCAmelCase ) return a * tf.math.sigmoid(__lowerCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" return tf.keras.activations.gelu(__lowerCAmelCase , approximate=__lowerCAmelCase ) A__ = tf.keras.activations.gelu A__ = approximate_gelu_wrap else: A__ = _gelu A__ = _gelu_new A__ = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
44
1
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = '''▁''' lowerCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = BertGenerationTokenizer __magic_name__ = False __magic_name__ = True def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: super().setUp() UpperCAmelCase_ : List[Any] = BertGenerationTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = "<s>" UpperCAmelCase_ : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase_ ) , 1_002 ) def _SCREAMING_SNAKE_CASE ( self : int ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = BertGenerationTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ : int = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = "Hello World!" UpperCAmelCase_ : int = [18_536, 2_260, 101] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_ : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase_ : int = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @require_torch @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence UpperCAmelCase_ : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ : str = " ".join(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = self.big_tokenizer.encode_plus(lowerCAmelCase_ , return_tensors="pt" , return_token_type_ids=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=lowerCAmelCase_ ) UpperCAmelCase_ : Any = BertGenerationConfig() UpperCAmelCase_ : List[Any] = BertGenerationEncoder(lowerCAmelCase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase_ ) model(**lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : Dict = {"input_ids": [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
268
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class UpperCamelCase_ (__A ): __magic_name__ = '''rwkv''' __magic_name__ = {'''max_position_embeddings''': '''context_length'''} def __init__( self : str , lowerCAmelCase_ : str=50_277 , lowerCAmelCase_ : Optional[int]=1_024 , lowerCAmelCase_ : Optional[int]=4_096 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=1e-5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=True , **lowerCAmelCase_ : List[Any] , ) -> List[str]: UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = context_length UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[Any] = rescale_every UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : List[str] = bos_token_id UpperCAmelCase_ : Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
268
1
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase__ : Tuple = data_utils.TransfoXLTokenizer lowercase__ : Union[str, Any] = data_utils.TransfoXLCorpus lowercase__ : int = data_utils lowercase__ : Any = data_utils def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowerCAmelCase__ , 'rb' ) as fp: lowerCAmelCase_ : Optional[Any] = pickle.load(lowerCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowerCAmelCase_ : Union[str, Any] = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(f"Save vocabulary to {pytorch_vocab_dump_path}" ) lowerCAmelCase_ : Optional[Any] = corpus.vocab.__dict__ torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : int = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , lowerCAmelCase__ ) lowerCAmelCase_ : str = pytorch_dump_folder_path + '/' + CORPUS_NAME print(f"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowerCAmelCase_ : Any = os.path.abspath(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = os.path.abspath(lowerCAmelCase__ ) print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": lowerCAmelCase_ : int = TransfoXLConfig() else: lowerCAmelCase_ : Union[str, Any] = TransfoXLConfig.from_json_file(lowerCAmelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) lowerCAmelCase_ : int = TransfoXLLMHeadModel(lowerCAmelCase__ ) lowerCAmelCase_ : Any = load_tf_weights_in_transfo_xl(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model lowerCAmelCase_ : List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}" ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(f"Save configuration file to {os.path.abspath(lowerCAmelCase__ )}" ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowercase__ : Optional[int] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
289
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ : Dict = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __A: def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' raise NotImplementedError() class __A( lowerCamelCase__ ): def __init__( self , _snake_case , _snake_case = False , **_snake_case ) -> str: '''simple docstring''' __a = tokenizer __a = skip_prompt __a = decode_kwargs # variables used in the streaming process __a = [] __a = 0 __a = True def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Dict: '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: __a = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __a = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __a = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): __a = text[self.print_len :] __a = [] __a = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __a = text[self.print_len :] self.print_len += len(lowerCAmelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __a = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(lowerCAmelCase__ ) self.on_finalized_text(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' if len(self.token_cache ) > 0: __a = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __a = text[self.print_len :] __a = [] __a = 0 else: __a = """""" __a = True self.on_finalized_text(lowerCAmelCase__ , stream_end=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = False ) -> Optional[int]: '''simple docstring''' print(lowerCAmelCase__ , flush=lowerCAmelCase__ , end='''''' if not stream_end else None ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False class __A( lowerCamelCase__ ): def __init__( self , _snake_case , _snake_case = False , _snake_case = None , **_snake_case ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) __a = Queue() __a = None __a = timeout def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = False ) -> Dict: '''simple docstring''' self.text_queue.put(lowerCAmelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Dict: '''simple docstring''' return self def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
6
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCamelCase__ : str = logging.getLogger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''summarization''' _A : Optional[Any] = ['''loss'''] _A : Tuple = ROUGE_KEYS _A : int = '''rouge2''' def __init__( self : int , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: __SCREAMING_SNAKE_CASE : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , mode=self.mode , **lowerCAmelCase__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : int = Path(self.output_dir ) / """metrics.json""" __SCREAMING_SNAKE_CASE : Optional[Any] = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[Any] = defaultdict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.config.model_type __SCREAMING_SNAKE_CASE : List[Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size __SCREAMING_SNAKE_CASE : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __SCREAMING_SNAKE_CASE : List[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } __SCREAMING_SNAKE_CASE : Any = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __SCREAMING_SNAKE_CASE : Any = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __SCREAMING_SNAKE_CASE : Any = get_git_info()["""repo_sha"""] __SCREAMING_SNAKE_CASE : Any = hparams.num_workers __SCREAMING_SNAKE_CASE : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __SCREAMING_SNAKE_CASE : Any = self.decoder_start_token_id __SCREAMING_SNAKE_CASE : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.hparams.eval_max_gen_length else: __SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.max_length __SCREAMING_SNAKE_CASE : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Dict[str, torch.Tensor] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) __SCREAMING_SNAKE_CASE : Optional[int] = True return readable_batch def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return self.model(lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.batch_decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return lmap(str.strip , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.pad_token_id __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""], batch["""attention_mask"""] __SCREAMING_SNAKE_CASE : Tuple = batch["""labels"""] if isinstance(self.model , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = self.model._shift_right(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCAmelCase__ , lowerCAmelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __SCREAMING_SNAKE_CASE : Tuple = decoder_input_ids self.save_readable_batch(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __SCREAMING_SNAKE_CASE : Tuple = nn.CrossEntropyLoss(ignore_index=lowerCAmelCase__ ) assert lm_logits.shape[-1] == self.vocab_size __SCREAMING_SNAKE_CASE : List[Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = label_smoothed_nll_loss( lowerCAmelCase__ , lowerCAmelCase__ , self.hparams.label_smoothing , ignore_index=lowerCAmelCase__ ) return (loss,) @property def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return self.tokenizer.pad_token_id def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = dict(zip(self.loss_names , lowerCAmelCase__ ) ) # tokens per batch __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].eq(self.pad ).sum() __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]="val" ): """simple docstring""" self.step_count += 1 __SCREAMING_SNAKE_CASE : int = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __SCREAMING_SNAKE_CASE : List[Any] = losses["""loss"""] __SCREAMING_SNAKE_CASE : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } __SCREAMING_SNAKE_CASE : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __SCREAMING_SNAKE_CASE : torch.FloatTensor = torch.tensor(lowerCAmelCase__ ).type_as(lowerCAmelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = {F"{prefix}_avg_{k}": x for k, x in losses.items()} __SCREAMING_SNAKE_CASE : Optional[int] = self.step_count self.metrics[prefix].append(lowerCAmelCase__ ) # callback writes this to self.metrics_save_path __SCREAMING_SNAKE_CASE : int = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"{prefix}_loss": loss, F"{prefix}_{self.val_metric}": metric_tensor, } def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ): """simple docstring""" return calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __SCREAMING_SNAKE_CASE : List[str] = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCAmelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (time.time() - ta) / batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(batch["""labels"""] ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = dict(zip(self.loss_names , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = self.calc_generative_metrics(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = np.mean(lmap(lowerCAmelCase__ , lowerCAmelCase__ ) ) base_metrics.update(gen_time=lowerCAmelCase__ , gen_len=lowerCAmelCase__ , preds=lowerCAmelCase__ , target=lowerCAmelCase__ , **lowerCAmelCase__ ) return base_metrics def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int ): """simple docstring""" return self.validation_epoch_end(lowerCAmelCase__ , prefix="""test""" ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.n_obs[type_path] __SCREAMING_SNAKE_CASE : str = self.target_lens[type_path] __SCREAMING_SNAKE_CASE : str = self.dataset_class( self.tokenizer , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , max_target_length=lowerCAmelCase__ , **self.dataset_kwargs , ) return dataset def UpperCamelCase__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataset(lowerCAmelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Optional[int] = dataset.make_sortish_sampler(lowerCAmelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Any = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_sampler=lowerCAmelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCAmelCase__ ) return dataloader def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) add_generic_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument("""--logger_name""" , type=lowerCAmelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCAmelCase__ , default=5_0_0 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCAmelCase__ , default="""summarization""" , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCAmelCase__ , default=0.0 , required=lowerCAmelCase__ ) parser.add_argument("""--src_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--tgt_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--eval_beams""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( """--val_metric""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[Any] = '''translation''' _A : int = ['''loss'''] _A : Union[str, Any] = ['''bleu'''] _A : Dict = '''bleu''' def __init__( self : Any , lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ): """simple docstring""" super().__init__(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = hparams.src_lang __SCREAMING_SNAKE_CASE : Dict = hparams.tgt_lang def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): """simple docstring""" return calculate_bleu(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str=None ): Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: __SCREAMING_SNAKE_CASE : SummarizationModule = SummarizationModule(_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : SummarizationModule = TranslationModule(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): __SCREAMING_SNAKE_CASE : str = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Any = os.environ.get("""WANDB_PROJECT""" , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Optional[int] = WandbLogger(name=model.output_dir.name , project=F"hf_{dataset}" ) if args.early_stopping_patience >= 0: __SCREAMING_SNAKE_CASE : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = args.val_metric == """loss""" __SCREAMING_SNAKE_CASE : pl.Trainer = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model __SCREAMING_SNAKE_CASE : Optional[int] = """""" __SCREAMING_SNAKE_CASE : Any = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_lowerCamelCase ) ) if checkpoints: __SCREAMING_SNAKE_CASE : List[Any] = checkpoints[-1] __SCREAMING_SNAKE_CASE : str = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() UpperCamelCase__ : Dict = pl.Trainer.add_argparse_args(parser) UpperCamelCase__ : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ : List[str] = parser.parse_args() main(args)
112
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCAmelCase_ : Dict = None lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Dict = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ : Optional[int] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowerCAmelCase_ : str = { '''camembert-base''': 512, } lowerCAmelCase_ : List[str] = '''▁''' class __lowerCAmelCase ( __a ): snake_case : Optional[int] = VOCAB_FILES_NAMES snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : Any = ["""input_ids""", """attention_mask"""] snake_case : int = CamembertTokenizer def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCAmelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Optional[int] = vocab_file _UpperCAmelCase : List[str] = False if not self.vocab_file else True def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] _UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase : int = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
170
'''simple docstring''' def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = 0 while len(lowerCAmelCase_ ) > 1: _UpperCAmelCase : List[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _UpperCAmelCase : Optional[Any] = files.index(min(lowerCAmelCase_ ) ) temp += files[min_index] files.pop(lowerCAmelCase_ ) files.append(lowerCAmelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
170
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''T5Config''' def a__ ( SCREAMING_SNAKE_CASE : jnp.array , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = jnp.zeros_like(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCAmelCase : List[str] = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = jnp.where(shifted_input_ids == -1_0_0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return shifted_input_ids class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] ="mt5" a : Tuple =MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="mt5" a : Optional[Any] =MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="mt5" a : Dict =MTaConfig
108
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _A ( __magic_name__ ): return EnvironmentCommand() class lowerCAmelCase ( lowercase_ ): @staticmethod def UpperCAmelCase ( _lowercase :ArgumentParser ): '''simple docstring''' lowercase__ = parser.add_parser("env" ) download_parser.set_defaults(func=_lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = huggingface_hub.__version__ lowercase__ = "not installed" lowercase__ = "NA" if is_torch_available(): import torch lowercase__ = torch.__version__ lowercase__ = torch.cuda.is_available() lowercase__ = "not installed" if is_transformers_available(): import transformers lowercase__ = transformers.__version__ lowercase__ = "not installed" if is_accelerate_available(): import accelerate lowercase__ = accelerate.__version__ lowercase__ = "not installed" if is_xformers_available(): import xformers lowercase__ = xformers.__version__ lowercase__ = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(_lowercase ) ) return info @staticmethod def UpperCAmelCase ( _lowercase :List[str] ): '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
360
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCAmelCase ( lowercase_ ): def __init__( self :str , _lowercase :Optional[NestedDataStructureLike[PathLike]] = None , _lowercase :Optional[NamedSplit] = None , _lowercase :Optional[Features] = None , _lowercase :str = None , _lowercase :bool = False , _lowercase :bool = False , _lowercase :Optional[int] = None , **_lowercase :Tuple , ): '''simple docstring''' lowercase__ = path_or_paths lowercase__ = split if split or isinstance(_lowercase , _lowercase ) else "train" lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def UpperCAmelCase ( self :Any ): '''simple docstring''' pass class lowerCAmelCase ( lowercase_ ): def __init__( self :List[Any] , _lowercase :Optional[Features] = None , _lowercase :str = None , _lowercase :bool = False , _lowercase :bool = False , _lowercase :Optional[int] = None , **_lowercase :Optional[int] , ): '''simple docstring''' lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def UpperCAmelCase ( self :int ): '''simple docstring''' pass
201
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : str = 1 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 ,_lowerCamelCase ): _lowerCAmelCase : str = 0 _lowerCAmelCase : int = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Optional[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Union[str, Any] = counter if counter > pre_counter: _lowerCAmelCase : List[str] = inputa _lowerCAmelCase : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
44
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 50 ) -> int: _lowerCAmelCase : int = [1] * (length + 1) for row_length in range(3 ,length + 1 ): for block_length in range(3 ,row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
44
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=99 , _UpperCAmelCase=0 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=12 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase="last" , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __a : List[Any] = parent __a : List[str] = batch_size __a : List[Any] = seq_length __a : Union[str, Any] = is_training __a : str = use_input_lengths __a : List[Any] = use_token_type_ids __a : Tuple = use_labels __a : Optional[int] = gelu_activation __a : Tuple = sinusoidal_embeddings __a : List[Any] = causal __a : Dict = asm __a : int = n_langs __a : str = vocab_size __a : Any = n_special __a : Optional[Any] = hidden_size __a : Dict = num_hidden_layers __a : str = num_attention_heads __a : str = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : Optional[Any] = max_position_embeddings __a : Tuple = type_vocab_size __a : List[str] = type_sequence_label_size __a : List[Any] = initializer_range __a : List[str] = num_labels __a : Optional[Any] = num_choices __a : Optional[int] = summary_type __a : Union[str, Any] = use_proj __a : List[Any] = scope def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : str = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_input_lengths: __a : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a : int = None if self.use_token_type_ids: __a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a : int = None __a : Any = None __a : Optional[Any] = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __a : Dict = ids_tensor([self.batch_size] , self.num_choices ) __a : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : Tuple = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Any = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) __a : Optional[Any] = model(_UpperCAmelCase , langs=_UpperCAmelCase ) __a : Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : Optional[Any] = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Union[str, Any] = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : int = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase ) __a : List[Any] = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : int = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : str = model(_UpperCAmelCase ) __a : str = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) __a : List[Any] = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((__a) , ) : List[Any] = result_with_labels.to_tuple() __a : Tuple = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((__a) , ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : Union[str, Any] = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : str = model(_UpperCAmelCase ) __a : int = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : Union[str, Any] = self.num_labels __a : Dict = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : List[Any] = self.num_choices __a : Tuple = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): __a : Optional[int] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : str = config_and_inputs __a : str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __lowerCAmelCase = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): __a : str = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __a : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) __a : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _lowerCamelCase ( self ): __a : List[Any] = FlaubertModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : str = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def _lowerCamelCase ( self ): __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __a : Dict = True __a : List[Any] = model_class(config=_UpperCAmelCase ) __a : List[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __a : int = torch.jit.trace( _UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''traced_model.pt''' ) ) __a : Tuple = torch.jit.load(os.path.join(_UpperCAmelCase , '''traced_model.pt''' ) , map_location=_UpperCAmelCase ) loaded(inputs_dict['''input_ids'''].to(_UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(_UpperCAmelCase ) ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : str = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) __a : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): __a : Union[str, Any] = model(_UpperCAmelCase )[0] __a : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) __a : Tuple = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
188
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) A = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __A ( a_ :List[Any]) -> List[Any]: __a : List[Any] = {} state_dict.pop('''pixel_mean''' , a_) state_dict.pop('''pixel_std''' , a_) __a : List[Any] = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __a : int = key.replace(a_ , a_) if re.match(a_ , a_): __a : Optional[Any] = int(re.match(a_ , a_).group(2)) if layer_nb == 0: __a : Any = key.replace('''layers.0''' , '''proj_in''') elif layer_nb == 1: __a : Dict = key.replace('''layers.1''' , '''layers.0''') elif layer_nb == 2: __a : Optional[int] = key.replace('''layers.2''' , '''proj_out''') __a : int = value __a : Union[str, Any] = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __A ( a_ :Optional[int] , a_ :Optional[Any] , a_ :Dict , a_ :Optional[int]="ybelkada/segment-anything") -> Dict: __a : Dict = hf_hub_download(a_ , F"""checkpoints/{model_name}.pth""") if "sam_vit_b" in model_name: __a : List[str] = SamConfig() elif "sam_vit_l" in model_name: __a : List[Any] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __a : List[Any] = SamConfig( vision_config=a_ , ) elif "sam_vit_h" in model_name: __a : List[str] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __a : Optional[int] = SamConfig( vision_config=a_ , ) __a : int = torch.load(a_ , map_location='''cpu''') __a : Tuple = replace_keys(a_) __a : Optional[int] = SamImageProcessor() __a : Any = SamProcessor(image_processor=a_) __a : Any = SamModel(a_) hf_model.load_state_dict(a_) __a : Dict = hf_model.to('''cuda''') __a : Tuple = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __a : str = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') __a : Tuple = [[[4_00, 6_50]]] __a : Tuple = [[1]] __a : Tuple = processor(images=np.array(a_) , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : str = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 __a : Any = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Optional[int] = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 __a : str = ((75, 2_75, 17_25, 8_50),) __a : List[str] = processor(images=np.array(a_) , input_boxes=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Any = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. __a : int = [[[4_00, 6_50], [8_00, 6_50]]] __a : Dict = [[1, 1]] __a : Optional[Any] = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : int = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": A = argparse.ArgumentParser() A = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
188
1
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = len(lowercase ) # No of vertices in graph _UpperCAmelCase = [0] * n _UpperCAmelCase = [False] * n def dfs(lowercase ,lowercase ,lowercase ,lowercase ): _UpperCAmelCase = True _UpperCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowercase ,lowercase ,lowercase ,id_ ) _UpperCAmelCase = min(low[at] ,low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _UpperCAmelCase = min(low[at] ,low[to] ) _UpperCAmelCase = [] for i in range(lowercase ): if not visited[i]: dfs(lowercase ,-1 ,lowercase ,id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class a : def __init__( self : Union[str, Any] ): _UpperCAmelCase = {} def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = {} def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : float ): if nodea not in self.connections: self.add_node(__lowerCAmelCase ) if nodea not in self.connections: self.add_node(__lowerCAmelCase ) _UpperCAmelCase = probability def lowerCAmelCase_ ( self : Optional[Any] ): return list(self.connections ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = 0 _UpperCAmelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = Counter(graph.get_nodes() ) _UpperCAmelCase = start for _ in range(lowercase ): _UpperCAmelCase = graph.transition(lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
289
1
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str=100 , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=30 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Any=10 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : str=3 , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=[0, 1, 2, 3] , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = 100 UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = out_indices UpperCAmelCase_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = BeitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = BeitForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> int: '''simple docstring''' UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = BeitForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = BeitModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase__ ( self : str ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]: continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = BeitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).pixel_values.to(_UpperCAmelCase ) # prepare bool_masked_pos UpperCAmelCase_ = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1e-2 ) ) @slow def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21841) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) UpperCAmelCase_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ = Image.open(ds[0]["file"] ) UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_UpperCAmelCase , ) else: UpperCAmelCase_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) UpperCAmelCase_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ = Image.open(ds[0]["file"] ) UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] ) UpperCAmelCase_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
360
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
241
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase : Any =logging.get_logger(__name__) class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :int = ["input_values", "padding_mask"] def __init__( self , __lowercase = 1 , __lowercase = 2_4_0_0_0 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , **__lowercase , ) -> Optional[Any]: """simple docstring""" super().__init__(feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase ) a__ : Optional[int] = chunk_length_s a__ : List[Any] = overlap @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , __lowercase , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = None , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs a__ : Dict = True a__ : Dict = bool( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : Optional[Any] = [np.asarray(__lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__lowercase , np.ndarray ): a__ : Union[str, Any] = np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): a__ : List[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: a__ : List[Any] = [np.asarray(__lowercase ).T] # verify inputs are valid for idx, example in enumerate(__lowercase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) a__ : Optional[int] = None a__ : Dict = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: a__ : Any = min(array.shape[0] for array in raw_audio ) a__ : List[str] = int(np.floor(max_length / self.chunk_stride ) ) a__ : int = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: a__ : Dict = max(array.shape[0] for array in raw_audio ) a__ : List[str] = int(np.ceil(max_length / self.chunk_stride ) ) a__ : Tuple = (nb_step - 1) * self.chunk_stride + self.chunk_length a__ : Union[str, Any] = """max_length""" else: a__ : Any = input_values # normal padding on batch if padded_inputs is None: a__ : Optional[int] = self.pad( __lowercase , max_length=__lowercase , truncation=__lowercase , padding=__lowercase , return_attention_mask=__lowercase , ) if padding: a__ : Optional[int] = padded_inputs.pop("""attention_mask""" ) a__ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: a__ : Tuple = example[..., None] input_values.append(example.T ) a__ : Tuple = input_values if return_tensors is not None: a__ : Dict = padded_inputs.convert_to_tensors(__lowercase ) return padded_inputs
170
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCAmelCase_ ( _lowercase : Dict , _lowercase : str , _lowercase : str , _lowercase : Optional[Any]=1024) -> List[Any]: """simple docstring""" a__ , a__ : Optional[int] = [], [] a__ : Union[str, Any] = list(zip(_lowercase , _lowercase)) a__ , a__ : List[Any] = sorted_examples[0] def is_too_big(_lowercase : Tuple): return tok(_lowercase , return_tensors="""pt""").input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): a__ : Tuple = new_src + """ """ + src a__ : Any = new_tgt + """ """ + tgt if is_too_big(_lowercase) or is_too_big(_lowercase): # cant fit, finalize example finished_src.append(_lowercase) finished_tgt.append(_lowercase) a__ , a__ : List[Any] = src, tgt else: # can fit, keep adding a__ , a__ : Tuple = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowercase) finished_tgt.append(_lowercase) return finished_src, finished_tgt def lowerCAmelCase_ ( _lowercase : str , _lowercase : Path , _lowercase : Any , _lowercase : str) -> Tuple: """simple docstring""" a__ : Any = Path(_lowercase) save_path.mkdir(exist_ok=_lowercase) for split in ["train"]: a__ , a__ : List[Any] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' a__ : Dict = [x.rstrip() for x in Path(_lowercase).open().readlines()] a__ : Optional[Any] = [x.rstrip() for x in Path(_lowercase).open().readlines()] a__ , a__ : List[Any] = pack_examples(_lowercase , _lowercase , _lowercase , _lowercase) print(F'''packed {split} split from {len(_lowercase)} examples -> {len(_lowercase)}.''') Path(save_path / F'''{split}.source''').open("""w""").write("""\n""".join(_lowercase)) Path(save_path / F'''{split}.target''').open("""w""").write("""\n""".join(_lowercase)) for split in ["val", "test"]: a__ , a__ : Any = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_lowercase , save_path / F'''{split}.source''') shutil.copyfile(_lowercase , save_path / F'''{split}.target''') def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" a__ : Tuple = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=_lowercase , help="""like facebook/bart-large-cnn,t5-base, etc.""") parser.add_argument("""--max_seq_len""" , type=_lowercase , default=128) parser.add_argument("""--data_dir""" , type=_lowercase) parser.add_argument("""--save_path""" , type=_lowercase) a__ : List[Any] = parser.parse_args() a__ : List[Any] = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(_lowercase , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
170
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : Tuple = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Any ='instructblip_vision_model' def __init__( self, lowerCAmelCase=1_408, lowerCAmelCase=6_144, lowerCAmelCase=39, lowerCAmelCase=16, lowerCAmelCase=224, lowerCAmelCase=14, lowerCAmelCase="gelu", lowerCAmelCase=1e-6, lowerCAmelCase=0.0, lowerCAmelCase=1e-10, lowerCAmelCase=True, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =hidden_size lowerCamelCase_ =intermediate_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =patch_size lowerCamelCase_ =image_size lowerCamelCase_ =initializer_range lowerCamelCase_ =attention_dropout lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =hidden_act lowerCamelCase_ =qkv_bias @classmethod def lowercase__ ( cls, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =cls.get_config_dict(lowerCAmelCase, **lowerCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": lowerCamelCase_ =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase, **lowerCAmelCase ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] ='instructblip_qformer' def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=0, lowerCAmelCase="absolute", lowerCAmelCase=2, lowerCAmelCase=1_408, **lowerCAmelCase, ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =position_embedding_type lowerCamelCase_ =cross_attention_frequency lowerCamelCase_ =encoder_hidden_size @classmethod def lowercase__ ( cls, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =cls.get_config_dict(lowerCAmelCase, **lowerCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": lowerCamelCase_ =config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase, **lowerCAmelCase ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Dict ='instructblip' lowercase : Dict =True def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=32, **lowerCAmelCase ): """simple docstring""" super().__init__(**lowerCAmelCase ) if vision_config is None: lowerCamelCase_ ={} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: lowerCamelCase_ ={} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: lowerCamelCase_ ={} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowerCamelCase_ =InstructBlipVisionConfig(**lowerCAmelCase ) lowerCamelCase_ =InstructBlipQFormerConfig(**lowerCAmelCase ) lowerCamelCase_ =text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowerCamelCase_ =CONFIG_MAPPING[text_model_type](**lowerCAmelCase ) lowerCamelCase_ =self.text_config.tie_word_embeddings lowerCamelCase_ =self.text_config.is_encoder_decoder lowerCamelCase_ =num_query_tokens lowerCamelCase_ =self.vision_config.hidden_size lowerCamelCase_ =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase_ =1.0 lowerCamelCase_ =0.0_2 @classmethod def lowercase__ ( cls, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase, ): """simple docstring""" return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =copy.deepcopy(self.__dict__ ) lowerCamelCase_ =self.vision_config.to_dict() lowerCamelCase_ =self.qformer_config.to_dict() lowerCamelCase_ =self.text_config.to_dict() lowerCamelCase_ =self.__class__.model_type return output
366
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _A = logging.get_logger(__name__) def lowerCamelCase__ ( a__ : str , a__ : List[Any] ) -> Optional[Any]: UpperCamelCase_ = nn.functional.normalize(__UpperCAmelCase ) UpperCamelCase_ = nn.functional.normalize(__UpperCAmelCase ) return torch.mm(__UpperCAmelCase , normalized_text_embeds.t() ) class lowercase_ ( __lowerCamelCase ): A__ : List[Any] = CLIPConfig A__ : Tuple = ["CLIPEncoderLayer"] def __init__( self , __UpperCamelCase ): """simple docstring""" super().__init__(__UpperCamelCase ) UpperCamelCase_ = CLIPVisionModel(config.vision_config ) UpperCamelCase_ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__UpperCamelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=__UpperCamelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__UpperCamelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(1_7 ) , requires_grad=__UpperCamelCase ) UpperCamelCase_ = nn.Parameter(torch.ones(3 ) , requires_grad=__UpperCamelCase ) @torch.no_grad() def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.vision_model(__UpperCamelCase )[1] # pooled_output UpperCamelCase_ = self.visual_projection(__UpperCamelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ = cosine_distance(__UpperCamelCase , self.special_care_embeds ).cpu().float().numpy() UpperCamelCase_ = cosine_distance(__UpperCamelCase , self.concept_embeds ).cpu().float().numpy() UpperCamelCase_ = [] UpperCamelCase_ = image_embeds.shape[0] for i in range(__UpperCamelCase ): UpperCamelCase_ = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase_ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase_ = special_cos_dist[i][concept_idx] UpperCamelCase_ = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) UpperCamelCase_ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase_ = cos_dist[i][concept_idx] UpperCamelCase_ = self.concept_embeds_weights[concept_idx].item() UpperCamelCase_ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__UpperCamelCase ) result.append(__UpperCamelCase ) UpperCamelCase_ = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.vision_model(__UpperCamelCase )[1] # pooled_output UpperCamelCase_ = self.visual_projection(__UpperCamelCase ) UpperCamelCase_ = cosine_distance(__UpperCamelCase , self.special_care_embeds ) UpperCamelCase_ = cosine_distance(__UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase_ = 0.0 UpperCamelCase_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase_ = torch.any(special_scores > 0 , dim=1 ) UpperCamelCase_ = special_care * 0.01 UpperCamelCase_ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCamelCase_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase_ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
122
import random def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: Optional[int] ) -> tuple: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: int ) -> List[str]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__UpperCAmelCase ) or index < 0: return None UpperCamelCase__ : List[str] = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )] UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = _partition(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = len(__UpperCAmelCase ) UpperCamelCase__ : Dict = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase , __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase , index - (m + count) )
201
0
"""simple docstring""" from __future__ import annotations import numpy as np def UpperCAmelCase ( UpperCAmelCase ) -> str: return np.maximum(0 , UpperCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
312
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
1
import sys import turtle def UpperCAmelCase__ ( _A : tuple[float, float] , _A : tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase__ ( _A : tuple[float, float] , _A : tuple[float, float] , _A : tuple[float, float] , _A : int , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) lowerCamelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') lowerCamelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
188
def UpperCAmelCase__ ( ): '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_A , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
188
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCAmelCase ( A__ ): A__ : int = "EncodecFeatureExtractor" A__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__(self : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' super().__init__(__snake_case , __snake_case ) snake_case : Union[str, Any] = self.feature_extractor snake_case : int = False def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Any=None , snake_case__ : List[Any]=None , snake_case__ : Dict=True ) -> List[Any]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__(self : Optional[Any] , *snake_case__ : List[Any] , **snake_case__ : List[Any] ) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case : Any = kwargs.pop("audio" , __snake_case ) snake_case : Union[str, Any] = kwargs.pop("sampling_rate" , __snake_case ) snake_case : Optional[int] = kwargs.pop("text" , __snake_case ) if len(__snake_case ) > 0: snake_case : List[str] = args[0] snake_case : str = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: snake_case : Optional[Any] = self.tokenizer(__snake_case , **__snake_case ) if audio is not None: snake_case : Union[str, Any] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: snake_case : List[Any] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: snake_case : Tuple = audio_inputs["padding_mask"] return inputs def _SCREAMING_SNAKE_CASE (self : Optional[Any] , *snake_case__ : List[Any] , **snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : Any = kwargs.pop("audio" , __snake_case ) snake_case : Dict = kwargs.pop("padding_mask" , __snake_case ) if len(__snake_case ) > 0: snake_case : str = args[0] snake_case : Any = args[1:] if audio_values is not None: return self._decode_audio(__snake_case , padding_mask=__snake_case ) else: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _SCREAMING_SNAKE_CASE (self : int , *snake_case__ : Optional[Any] , **snake_case__ : List[str] ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Dict , snake_case__ : Optional = None ) -> List[np.ndarray]: '''simple docstring''' snake_case : str = to_numpy(__snake_case ) snake_case , snake_case , snake_case : Dict = audio_values.shape if padding_mask is None: return list(__snake_case ) snake_case : List[Any] = to_numpy(__snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) snake_case : Optional[int] = seq_len - padding_mask.shape[-1] snake_case : Dict = 1 - self.feature_extractor.padding_value snake_case : Optional[Any] = np.pad(__snake_case , ((0, 0), (0, difference)) , "constant" , constant_values=__snake_case ) snake_case : str = audio_values.tolist() for i in range(__snake_case ): snake_case : Dict = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] snake_case : Optional[int] = sliced_audio.reshape(__snake_case , -1 ) return audio_values
353
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a__ : Optional[Any] = { "n_samples": 6_4, "horizon": 3_2, "num_inference_steps": 2_0, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": a__ : Tuple = "hopper-medium-v2" a__ : Any = gym.make(env_name) a__ : List[str] = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) a__ : Dict = env.reset() a__ : int = 0 a__ : Union[str, Any] = 0 a__ : Optional[Any] = 1_0_0_0 a__ : int = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a__ : Optional[int] = pipeline(obs, planning_horizon=3_2) # execute action in environment a__ , a__ , a__ , a__ : Union[str, Any] = env.step(denorm_actions) a__ : List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) a__ : List[Any] = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
161
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCamelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = IFInpaintingSuperResolutionPipeline a_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} a_ : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) a_ : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCamelCase ( self : Optional[Any] ): return self._get_superresolution_dummy_components() def lowerCamelCase ( self : Optional[Any] , a_ : List[str] , a_ : Union[str, Any]=0 ): if str(a_ ).startswith("mps" ): lowerCAmelCase_ : List[Any] = torch.manual_seed(a_ ) else: lowerCAmelCase_ : str = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCAmelCase_ : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCamelCase ( self : Optional[int] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCamelCase ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCamelCase ( self : Tuple ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCamelCase ( self : List[str] ): self._test_save_load_local() def lowerCamelCase ( self : Optional[int] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
241
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _lowerCamelCase : Dict = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _lowerCamelCase : str = concatenate_datasets _lowerCamelCase : Dict = DownloadConfig _lowerCamelCase : Union[str, Any] = DownloadManager _lowerCamelCase : Dict = DownloadMode _lowerCamelCase : str = DownloadConfig _lowerCamelCase : Any = DownloadMode _lowerCamelCase : Any = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
351
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCamelCase : List[str] = True from torch.cuda.amp import autocast _lowerCamelCase : Any = logging.getLogger(__name__) @dataclass class __UpperCAmelCase : UpperCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) UpperCamelCase = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) UpperCamelCase = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) UpperCamelCase = field( default=0.9_9_9_9_9_5 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def a__ ( UpperCAmelCase : ModelArguments , UpperCAmelCase : TrainingArguments ) -> Any: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase : Any = logging.WARNING if model_args.verbose_logging: UpperCAmelCase : Any = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase : Any = logging.INFO logger.setLevel(UpperCAmelCase ) @dataclass class __UpperCAmelCase : UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) UpperCamelCase = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) UpperCamelCase = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase = field( default=2_0.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class __UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = "longest" UpperCamelCase = None UpperCamelCase = None def __call__( self : int, __A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format UpperCAmelCase : List[Any] = self.feature_extractor.pad( __A, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', ) UpperCAmelCase : int = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) UpperCAmelCase : Tuple = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) UpperCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase : Tuple = 1 UpperCAmelCase : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase : Dict = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__A, min_masks=2, ) return batch class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Union[str, Any], *__A : int, __A : Dict=1, __A : Any=0, __A : Optional[Any]=1.0, **__A : Any ): super().__init__(*__A, **__A ) UpperCAmelCase : Any = 0 UpperCAmelCase : Any = max_gumbel_temp UpperCAmelCase : Optional[Any] = min_gumbel_temp UpperCAmelCase : str = gumbel_temp_decay def __magic_name__ ( self : Dict, __A : nn.Module, __A : Dict[str, Union[torch.Tensor, Any]] ): model.train() UpperCAmelCase : List[Any] = self._prepare_inputs(__A ) if self.use_amp: with autocast(): UpperCAmelCase : Optional[Any] = self.compute_loss(__A, __A ) else: UpperCAmelCase : Optional[int] = self.compute_loss(__A, __A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase : str = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def a__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() configure_logger(UpperCAmelCase , UpperCAmelCase ) # Downloading and loading a dataset from the hub. UpperCAmelCase : int = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase : Union[str, Any] = DatasetDict() UpperCAmelCase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase : Optional[Any] = DatasetDict() UpperCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=UpperCAmelCase ) def prepare_dataset(UpperCAmelCase : Dict ): # check that all files have the correct sampling rate UpperCAmelCase , UpperCAmelCase : Optional[Any] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase : str = datasets.map( UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long UpperCAmelCase : int = vectorized_datasets.filter( lambda UpperCAmelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(UpperCAmelCase : Dict ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase : Any = vectorized_datasets.map( UpperCAmelCase , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase : Optional[int] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) UpperCAmelCase : Any = WavaVecaForPreTraining(UpperCAmelCase ) UpperCAmelCase : int = DataCollatorForWavaVecaPretraining(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) UpperCAmelCase : Any = WavaVecaPreTrainer( model=UpperCAmelCase , data_collator=UpperCAmelCase , args=UpperCAmelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=UpperCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
99
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=4 , ) -> Tuple: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def _UpperCamelCase ( self ) -> Any: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ) -> Dict: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = True lowerCAmelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> Tuple: snake_case_ = FlaxBertModelTester(self ) @slow def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = FlaxBertModel.from_pretrained('bert-base-cased' ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case )
178
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
0
lowerCamelCase_ = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } lowerCamelCase_ = {value: key for key, value in encode_dict.items()} def __magic_name__ ( __a : str ): '''simple docstring''' UpperCamelCase__ = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def __magic_name__ ( __a : str ): '''simple docstring''' if set(lowerCAmelCase__ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only \'A\', \'B\' and spaces""" ) UpperCamelCase__ = """""" for word in coded.split(): while len(lowerCAmelCase__ ) != 0: decoded += decode_dict[word[:5]] UpperCamelCase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
361
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __A: """simple docstring""" @staticmethod def UpperCAmelCase_ (*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): pass def __magic_name__ ( __a : Image ): '''simple docstring''' UpperCamelCase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __magic_name__ ( __a : Image ): '''simple docstring''' UpperCamelCase__ = np.array(__a ) UpperCamelCase__ = npimg.shape return {"hash": hashimage(__a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __A( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def UpperCAmelCase_ (self ): pass @slow @require_torch def UpperCAmelCase_ (self ): UpperCamelCase__ = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) UpperCamelCase__ = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_56 ) # Shortening by hashing UpperCamelCase__ = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_80, 6_40)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_80, 6_40)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_80, 6_40)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_80, 6_40)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (4_80, 6_40)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_80, 6_40)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_80, 6_40)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_80, 6_40)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_80, 6_40)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_80, 6_40)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_80, 6_40)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_80, 6_40)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_80, 6_40)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_80, 6_40)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (4_80, 6_40)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_80, 6_40)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_80, 6_40)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (4_80, 6_40)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_80, 6_40)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_80, 6_40)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_80, 6_40)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_80, 6_40)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_80, 6_40)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = """facebook/sam-vit-huge""" UpperCamelCase__ = pipeline("""mask-generation""" , model=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing UpperCamelCase__ = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053}, ] , )
178
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCAmelCase_ : Tuple = logging.get_logger(__name__) class __lowerCAmelCase ( __a ): def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
170
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): if config_name_or_path is None: _UpperCAmelCase : List[Any] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: _UpperCAmelCase : str = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _UpperCAmelCase : Optional[int] = question_encoder_name_or_path _UpperCAmelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. _UpperCAmelCase : List[Any] = RagConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = AutoConfig.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Dict = gen_config _UpperCAmelCase : int = question_encoder_config _UpperCAmelCase : Optional[Any] = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase_ , lowerCAmelCase_ , config=lowerCAmelCase_ ) rag_model.save_pretrained(lowerCAmelCase_ ) # Sanity check. model_class.from_pretrained(lowerCAmelCase_ ) # Save tokenizers. _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowerCAmelCase_ : List[Any] = parser.parse_args() lowerCAmelCase_ : Tuple = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
170
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=[] ): '''simple docstring''' A : Union[str, Any] = size[0] - overlap_pixels * 2 A : str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels A : str = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 A : Dict = np.pad(snake_case__ , mode='''linear_ramp''' , pad_width=snake_case__ , end_values=0 ) if "l" in remove_borders: A : Any = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: A : Any = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: A : Any = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: A : Union[str, Any] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return max(snake_case__ , min(snake_case__ , snake_case__ ) ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = list(snake_case__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap A : str = clamp_rect(snake_case__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : int = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(snake_case__ , (original_slice, 0) ) return result def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) A : Union[str, Any] = tile.crop(snake_case__ ) return tile def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Union[str, Any] = n % d return n - divisor class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 350 , ) -> List[Any]: """simple docstring""" super().__init__( vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , low_res_scheduler=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , max_noise_level=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) A : List[Any] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) A : List[Any] = add_overlap_rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , image.size ) A : Dict = image.crop(SCREAMING_SNAKE_CASE ) A : Tuple = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] A : Any = translated_slice_x - (original_image_slice / 2) A : Optional[Any] = max(0 , SCREAMING_SNAKE_CASE ) A : List[str] = squeeze_tile(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[str] = to_input.size A : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) A : str = super(SCREAMING_SNAKE_CASE , self ).__call__(image=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).images[0] A : str = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) A : int = unsqueeze_tile(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) A : Optional[int] = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) A : Optional[Any] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=SCREAMING_SNAKE_CASE ) , mode='''L''' , ) final_image.paste( SCREAMING_SNAKE_CASE , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 75 , SCREAMING_SNAKE_CASE = 9.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE = 32 , SCREAMING_SNAKE_CASE = 32 , ) -> Dict: """simple docstring""" A : str = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) A : Tuple = math.ceil(image.size[0] / tile_size ) A : List[Any] = math.ceil(image.size[1] / tile_size ) A : Optional[int] = tcx * tcy A : int = 0 for y in range(SCREAMING_SNAKE_CASE ): for x in range(SCREAMING_SNAKE_CASE ): self._process_tile( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prompt=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , noise_level=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = '''stabilityai/stable-diffusion-x4-upscaler''' A : int = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case__ , revision='''fp16''' , torch_dtype=torch.floataa ) A : Dict = pipe.to('''cuda''' ) A : Tuple = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(snake_case__ ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save('''diffusers_library_progress.jpg''' ) A : Optional[int] = pipe(image=snake_case__ , prompt='''Black font, white background, vector''' , noise_level=40 , callback=snake_case__ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
3
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCAmelCase = 250_004 __lowerCAmelCase = 250_020 @require_sentencepiece @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : List[str] = MBartTokenizer lowerCAmelCase : List[Any] = MBartTokenizerFast lowerCAmelCase : Any = True lowerCAmelCase : Optional[Any] = True def __lowercase ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing _a : Optional[Any] = MBartTokenizer(_UpperCAmelCase ,keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : List[Any] ): _a : Dict = MBartTokenizer(_UpperCAmelCase ,keep_accents=_UpperCAmelCase ) _a : List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _a : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) _a : int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) _a : Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def __lowercase ( self : Optional[int] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _a : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : List[str] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Any = self.tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[str] = tempfile.mkdtemp() _a : Union[str, Any] = tokenizer_r.save_pretrained(_UpperCAmelCase ) _a : List[str] = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _a : str = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(_UpperCAmelCase ,_UpperCAmelCase ) # Checks everything loads correctly in the same way _a : int = tokenizer_r.from_pretrained(_UpperCAmelCase ) _a : Any = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase ,_UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True _a : Optional[int] = tempfile.mkdtemp() _a : Dict = tokenizer_r.save_pretrained(_UpperCAmelCase ,legacy_format=_UpperCAmelCase ) _a : str = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase ,_UpperCAmelCase ) # Checks everything loads correctly in the same way _a : List[Any] = tokenizer_r.from_pretrained(_UpperCAmelCase ) _a : Any = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase ,_UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False _a : str = tempfile.mkdtemp() _a : str = tokenizer_r.save_pretrained(_UpperCAmelCase ,legacy_format=_UpperCAmelCase ) _a : int = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _a : Optional[Any] = tokenizer_r.from_pretrained(_UpperCAmelCase ) _a : Any = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase ,_UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): lowerCAmelCase : str = 'facebook/mbart-large-en-ro' lowerCAmelCase : int = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCAmelCase : Tuple = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCAmelCase : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __lowercase ( cls : List[Any] ): _a : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='en_XX' ,tgt_lang='ro_RO' ) _a : List[str] = 1 return cls def __lowercase ( self : str ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] ,250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] ,250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] ,250020 ) def __lowercase ( self : Any ): _a : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,_UpperCAmelCase ) def __lowercase ( self : Dict ): self.assertIn(_UpperCAmelCase ,self.tokenizer.all_special_ids ) _a : Optional[Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _a : Tuple = self.tokenizer.decode(_UpperCAmelCase ,skip_special_tokens=_UpperCAmelCase ) _a : List[str] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token ,_UpperCAmelCase ) def __lowercase ( self : Optional[int] ): _a : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] ,_UpperCAmelCase ) _a : Union[str, Any] = 10 _a : Union[str, Any] = self.tokenizer(_UpperCAmelCase ,max_length=_UpperCAmelCase ,truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) ,_UpperCAmelCase ) def __lowercase ( self : List[str] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) ,[250026, 250001] ) def __lowercase ( self : Dict ): _a : Optional[Any] = tempfile.mkdtemp() _a : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) _a : Union[str, Any] = MBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,_UpperCAmelCase ) @require_torch def __lowercase ( self : List[str] ): _a : Optional[int] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=_UpperCAmelCase ,return_tensors='pt' ) _a : Any = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __lowercase ( self : Dict ): _a : List[str] = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,max_length=len(self.expected_src_tokens ) ,return_tensors='pt' ,) _a : Dict = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) _a : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,_UpperCAmelCase ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, EN_CODE] ) def __lowercase ( self : List[Any] ): _a : Tuple = self.tokenizer(self.src_text ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,max_length=3 ,return_tensors='pt' ) _a : str = self.tokenizer( text_target=self.tgt_text ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,max_length=10 ,return_tensors='pt' ) _a : Any = targets['input_ids'] _a : List[Any] = shift_tokens_right(_UpperCAmelCase ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def __lowercase ( self : Optional[int] ): _a : str = self.tokenizer._build_translation_inputs( 'A test' ,return_tensors='pt' ,src_lang='en_XX' ,tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) ,{ # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } ,)
107
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class __magic_name__ : def __init__( self : Dict ,_UpperCAmelCase : Any ): _a : Any = data _a : Node | None = None class __magic_name__ : def __init__( self : Any ): _a : int = None _a : Optional[int] = None def __iter__( self : Optional[int] ): _a : List[Any] = self.head while self.head: yield node.data _a : str = node.next if node == self.head: break def __len__( self : Any ): return sum(1 for _ in self ) def __repr__( self : int ): return "->".join(str(_UpperCAmelCase ) for item in iter(self ) ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Any ): self.insert_nth(len(self ) ,_UpperCAmelCase ) def __lowercase ( self : str ,_UpperCAmelCase : Any ): self.insert_nth(0 ,_UpperCAmelCase ) def __lowercase ( self : List[str] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ): if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) _a : List[str] = Node(_UpperCAmelCase ) if self.head is None: _a : Tuple = new_node # first node points itself _a : int = new_node elif index == 0: # insert at head _a : Any = self.head _a : Tuple = new_node else: _a : Any = self.head for _ in range(index - 1 ): _a : int = temp.next _a : Optional[int] = temp.next _a : int = new_node if index == len(self ) - 1: # insert at tail _a : Optional[int] = new_node def __lowercase ( self : List[Any] ): return self.delete_nth(0 ) def __lowercase ( self : Dict ): return self.delete_nth(len(self ) - 1 ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : int = 0 ): if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) _a : Optional[int] = self.head if self.head == self.tail: # just one node _a : Optional[int] = None elif index == 0: # delete head node _a : Dict = self.tail.next.next _a : Dict = self.head.next else: _a : List[Any] = self.head for _ in range(index - 1 ): _a : Union[str, Any] = temp.next _a : Optional[int] = temp.next _a : List[str] = temp.next.next if index == len(self ) - 1: # delete at tail _a : int = temp return delete_node.data def __lowercase ( self : int ): return len(self ) == 0 def __lowerCamelCase ( ) -> None: _a : int = CircularLinkedList() assert len(lowerCAmelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCAmelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCAmelCase_ ) == i circular_linked_list.insert_nth(lowerCAmelCase_ , i + 1 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
107
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : int =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Tuple =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[str] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Union[str, Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Optional[Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[str] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Dict =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Any =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : int =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Dict =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Tuple =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[str] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Any =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Dict =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[str] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Optional[int] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Dict =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : int =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Dict =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Tuple =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Union[str, Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Dict =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Optional[Any] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Optional[int] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : List[str] =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCAmelCase ): """simple docstring""" a : Any =['''sentencepiece'''] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["sentencepiece"] )
108
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): a__ : int = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Tuple = 'sshleifer/tiny-gpt2' a__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase , multi_process=lowercase , ) a__ : List[Any] = TensorFlowBenchmark(lowercase) a__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = 'sgugger/tiny-distilbert-classification' a__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , only_pretrain_model=lowercase , ) a__ : str = TensorFlowBenchmark(lowercase) a__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = 'sshleifer/tiny-gpt2' a__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) a__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : str = 'sshleifer/tiny-gpt2' a__ : str = AutoConfig.from_pretrained(lowercase) a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase , multi_process=lowercase , ) a__ : Optional[Any] = TensorFlowBenchmark(lowercase , [config]) a__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = 'sshleifer/tiny-gpt2' a__ : Union[str, Any] = AutoConfig.from_pretrained(lowercase) a__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : str = TensorFlowBenchmark(lowercase , [config]) a__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Optional[int] = 'sshleifer/tiny-gpt2' a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : Tuple = TensorFlowBenchmark(lowercase) a__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = 'sshleifer/tiny-gpt2' a__ : List[Any] = AutoConfig.from_pretrained(lowercase) a__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : Optional[Any] = TensorFlowBenchmark(lowercase , [config]) a__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[int] = 'patrickvonplaten/t5-tiny-random' a__ : Optional[int] = AutoConfig.from_pretrained(lowercase) a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : List[Any] = TensorFlowBenchmark(lowercase , configs=[config]) a__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU')) == 0 , 'Cannot do xla on CPU.') def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = 'sshleifer/tiny-gpt2' a__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowercase , multi_process=lowercase , ) a__ : int = TensorFlowBenchmark(lowercase) a__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : str = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: a__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase , save_to_csv=lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase , 'inf_time.csv') , inference_memory_csv_file=os.path.join(lowercase , 'inf_mem.csv') , env_info_csv_file=os.path.join(lowercase , 'env.csv') , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) benchmark.run() self.assertTrue(Path(os.path.join(lowercase , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(lowercase , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(lowercase , 'env.csv')).exists()) def __lowercase ( self) -> str: '''simple docstring''' a__ : Union[str, Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase): self.assertTrue(hasattr(lowercase , 'sequential')) self.assertTrue(hasattr(lowercase , 'cumulative')) self.assertTrue(hasattr(lowercase , 'current')) self.assertTrue(hasattr(lowercase , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: a__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase , 'log.txt') , log_print=lowercase , trace_memory_line_by_line=lowercase , eager_mode=lowercase , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) a__ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(lowercase , 'log.txt')).exists())
99
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) _UpperCAmelCase = 'bert-base-cased' _UpperCAmelCase = 'fp16' _UpperCAmelCase = 'bf16' _UpperCAmelCase = [FPaa, BFaa] @require_fsdp @require_cuda class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: str ) -> Optional[Any]: """simple docstring""" super().setUp() UpperCamelCase_ = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a ): UpperCamelCase_ = self.dist_env.copy() UpperCamelCase_ = f'''{i + 1}''' UpperCamelCase_ = strategy with mockenv_context(**__a ): UpperCamelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowercase ( self: List[Any] ) -> Any: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a ): UpperCamelCase_ = self.dist_env.copy() UpperCamelCase_ = prefetch_policy with mockenv_context(**__a ): UpperCamelCase_ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowercase ( self: List[Any] ) -> Optional[Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a ): UpperCamelCase_ = self.dist_env.copy() UpperCamelCase_ = state_dict_type with mockenv_context(**__a ): UpperCamelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = AutoModel.from_pretrained(__a ) for policy in FSDP_AUTO_WRAP_POLICY: UpperCamelCase_ = self.dist_env.copy() UpperCamelCase_ = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCamelCase_ = "BertLayer" elif policy == "SIZE_BASED_WRAP": UpperCamelCase_ = "2000" with mockenv_context(**__a ): UpperCamelCase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) UpperCamelCase_ = self.dist_env.copy() UpperCamelCase_ = "TRANSFORMER_BASED_WRAP" UpperCamelCase_ = "T5Layer" with mockenv_context(**__a ): UpperCamelCase_ = FullyShardedDataParallelPlugin() with self.assertRaises(__a ) as cm: fsdp_plugin.set_auto_wrap_policy(__a ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) UpperCamelCase_ = self.dist_env.copy() UpperCamelCase_ = "SIZE_BASED_WRAP" UpperCamelCase_ = "0" with mockenv_context(**__a ): UpperCamelCase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowercase ( self: List[Any] ) -> Any: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCamelCase_ = self.dist_env.copy() UpperCamelCase_ = mp_dtype with mockenv_context(**__a ): UpperCamelCase_ = Accelerator() if mp_dtype == "fp16": UpperCamelCase_ = torch.floataa elif mp_dtype == "bf16": UpperCamelCase_ = torch.bfloataa UpperCamelCase_ = MixedPrecision(param_dtype=__a , reduce_dtype=__a , buffer_dtype=__a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__a ) def lowercase ( self: Tuple ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCamelCase_ = self.dist_env.copy() UpperCamelCase_ = str(__a ).lower() with mockenv_context(**__a ): UpperCamelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__a ) ) @require_fsdp @require_multi_gpu @slow class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" super().setUp() UpperCamelCase_ = 0.82 UpperCamelCase_ = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] UpperCamelCase_ = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCamelCase_ = 160 UpperCamelCase_ = 160 UpperCamelCase_ = inspect.getfile(accelerate.test_utils ) UpperCamelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def lowercase ( self: Any ) -> Any: """simple docstring""" UpperCamelCase_ = os.path.join(self.test_scripts_folder , "test_performance.py" ) UpperCamelCase_ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: UpperCamelCase_ = cmd.copy() for i, strategy in enumerate(__a ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowercase ( self: int ) -> Tuple: """simple docstring""" UpperCamelCase_ = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) UpperCamelCase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__a ): UpperCamelCase_ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue UpperCamelCase_ = len(__a ) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCamelCase_ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) UpperCamelCase_ = cmd_config[:-1] UpperCamelCase_ = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowercase ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) UpperCamelCase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCamelCase_ = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(__a ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
362
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
0
import random class snake_case_ : '''simple docstring''' @staticmethod def snake_case__( _UpperCamelCase : str ) ->tuple[list[int], list[int]]: snake_case_ = [ord(_UpperCamelCase ) for i in text] snake_case_ = [] snake_case_ = [] for i in plain: snake_case_ = random.randint(1 , 3_0_0 ) snake_case_ = (i + k) * k cipher.append(_UpperCamelCase ) key.append(_UpperCamelCase ) return cipher, key @staticmethod def snake_case__( _UpperCamelCase : list[int] , _UpperCamelCase : list[int] ) ->str: snake_case_ = [] for i in range(len(_UpperCamelCase ) ): snake_case_ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_UpperCamelCase ) ) return "".join(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ , lowerCAmelCase_ = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
8
from __future__ import annotations def __UpperCAmelCase ( a_ , a_ , a_ , a_): # noqa: E741 while r - l > 1: snake_case_ = (l + r) // 2 if v[m] >= key: snake_case_ = m else: snake_case_ = m # noqa: E741 return r def __UpperCAmelCase ( a_): if len(a_) == 0: return 0 snake_case_ = [0] * len(a_) snake_case_ = 1 snake_case_ = v[0] for i in range(1 , len(a_)): if v[i] < tail[0]: snake_case_ = v[i] elif v[i] > tail[length - 1]: snake_case_ = v[i] length += 1 else: snake_case_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
178
0
a__ : Optional[int] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
19
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCAmelCase_ ( ) -> tuple[list[int], int]: """simple docstring""" a__ : List[Any] = [randint(-1000 , 1000) for i in range(10)] a__ : str = randint(-5000 , 5000) return (arr, r) _lowercase : str =make_dataset() def lowerCAmelCase_ ( _lowercase : list[int] , _lowercase : int) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(_lowercase , 3): if sum(_lowercase) == target: return tuple(sorted(_lowercase)) return (0, 0, 0) def lowerCAmelCase_ ( _lowercase : list[int] , _lowercase : int) -> tuple[int, int, int]: """simple docstring""" arr.sort() a__ : str = len(_lowercase) for i in range(n - 1): a__ , a__ : Any = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCAmelCase_ ( ) -> tuple[float, float]: """simple docstring""" a__ : Union[str, Any] = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ a__ : List[Any] = """ triplet_sum1(*dataset) """ a__ : Union[str, Any] = """ triplet_sum2(*dataset) """ a__ : List[Any] = repeat(setup=_lowercase , stmt=_lowercase , repeat=5 , number=1_0000) a__ : List[str] = repeat(setup=_lowercase , stmt=_lowercase , repeat=5 , number=1_0000) return (min(_lowercase), min(_lowercase)) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : Optional[int] =solution_times() print(f'The time for naive implementation is {times[0]}.') print(f'The time for optimized implementation is {times[1]}.')
170
import math import sys def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : str = """""" try: with open(_lowercase , """rb""") as binary_file: a__ : Any = binary_file.read() for dat in data: a__ : Dict = F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""") sys.exit() def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : Optional[Any] = {"""0""": """0""", """1""": """1"""} a__ , a__ : Optional[int] = """""", """""" a__ : int = len(_lowercase) for i in range(len(_lowercase)): curr_string += data_bits[i] if curr_string not in lexicon: continue a__ : List[str] = lexicon[curr_string] result += last_match_id a__ : Any = last_match_id + """0""" if math.loga(_lowercase).is_integer(): a__ : Union[str, Any] = {} for curr_key in list(_lowercase): a__ : Optional[Any] = lexicon.pop(_lowercase) a__ : Union[str, Any] = new_lex a__ : str = last_match_id + """1""" index += 1 a__ : List[Any] = """""" return result def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> None: """simple docstring""" a__ : List[Any] = 8 try: with open(_lowercase , """wb""") as opened_file: a__ : Dict = [ to_write[i : i + byte_length] for i in range(0 , len(_lowercase) , _lowercase) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append("""10000000""") else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowercase , 2).to_bytes(1 , byteorder="""big""")) except OSError: print("""File not accessible""") sys.exit() def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 a__ : Optional[Any] = data_bits[counter:] a__ : Tuple = data_bits[counter + 1 :] return data_bits def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> None: """simple docstring""" a__ : Dict = read_file_binary(_lowercase) a__ : str = remove_prefix(_lowercase) a__ : List[str] = decompress_data(_lowercase) write_file_binary(_lowercase , _lowercase) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
170
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE = VQModel SCREAMING_SNAKE_CASE = 'sample' @property def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : Union[str, Any]=(3_2, 3_2)): A = 4 A = 3 A = floats_tensor((batch_size, num_channels) + sizes).to(__SCREAMING_SNAKE_CASE) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ (self : Optional[int]): return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE__ (self : str): return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE__ (self : Any): A = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } A = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): pass def SCREAMING_SNAKE_CASE__ (self : List[Any]): pass def SCREAMING_SNAKE_CASE__ (self : List[str]): A , A = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(__SCREAMING_SNAKE_CASE) A = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ (self : Any): A = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(__SCREAMING_SNAKE_CASE).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) A = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) A = image.to(__SCREAMING_SNAKE_CASE) with torch.no_grad(): A = model(__SCREAMING_SNAKE_CASE).sample A = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3))
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
57
0
import heapq def __magic_name__ ( A : dict ): '''simple docstring''' a = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A, [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices a = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices a = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: a = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Tuple = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
107
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowerCAmelCase : int = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = """albert""" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any]=3_00_00 , __lowerCamelCase : Union[str, Any]=1_28 , __lowerCamelCase : Any=40_96 , __lowerCamelCase : str=12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Union[str, Any]=64 , __lowerCamelCase : Dict=1_63_84 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]="gelu_new" , __lowerCamelCase : List[str]=0 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Tuple=5_12 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Any="absolute" , __lowerCamelCase : List[str]=0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=3 , **__lowerCamelCase : int , ) -> int: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) a = vocab_size a = embedding_size a = hidden_size a = num_hidden_layers a = num_hidden_groups a = num_attention_heads a = inner_group_num a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = classifier_dropout_prob a = position_embedding_type class snake_case__ (_UpperCamelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a = {0: "batch", 1: "choice", 2: "sequence"} else: a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
107
1
'''simple docstring''' def UpperCamelCase ( a , a ) -> int: '''simple docstring''' return abs(a ) if a == 0 else greatest_common_divisor(b % a , a ) def UpperCamelCase ( a , a ) -> int: '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. __magic_name__ , __magic_name__ = y, x % y return abs(a ) def UpperCamelCase ( ) -> int: '''simple docstring''' try: __magic_name__ = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __magic_name__ = int(nums[0] ) __magic_name__ = int(nums[1] ) print( F'''greatest_common_divisor({num_a}, {num_a}) = ''' F'''{greatest_common_divisor(a , a )}''' ) print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(a , a )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
98
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class _SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] ): __magic_name__ = [] __magic_name__ = 0 __magic_name__ = 0 def snake_case__ ( self : int ): return self.head == self.tail def snake_case__ ( self : int , a__ : Any ): self.data.append(a__ ) __magic_name__ = self.tail + 1 def snake_case__ ( self : Tuple ): __magic_name__ = self.data[self.head] __magic_name__ = self.head + 1 return ret def snake_case__ ( self : Optional[Any] ): return self.tail - self.head def snake_case__ ( self : List[Any] ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , a__ : Any ): __magic_name__ = data __magic_name__ = None __magic_name__ = None __magic_name__ = 1 def snake_case__ ( self : Optional[int] ): return self.data def snake_case__ ( self : List[Any] ): return self.left def snake_case__ ( self : Tuple ): return self.right def snake_case__ ( self : Any ): return self.height def snake_case__ ( self : Optional[Any] , a__ : Any ): __magic_name__ = data def snake_case__ ( self : int , a__ : MyNode | None ): __magic_name__ = node def snake_case__ ( self : Tuple , a__ : MyNode | None ): __magic_name__ = node def snake_case__ ( self : List[str] , a__ : int ): __magic_name__ = height def UpperCamelCase ( a ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def UpperCamelCase ( a , a ) -> int: '''simple docstring''' if a > b: return a return b def UpperCamelCase ( a ) -> MyNode: '''simple docstring''' print('''left rotation node:''' , node.get_data() ) __magic_name__ = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(a ) __magic_name__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a ) __magic_name__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(a ) return ret def UpperCamelCase ( a ) -> MyNode: '''simple docstring''' print('''right rotation node:''' , node.get_data() ) __magic_name__ = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(a ) __magic_name__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a ) __magic_name__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(a ) return ret def UpperCamelCase ( a ) -> MyNode: '''simple docstring''' __magic_name__ = node.get_left() assert left_child is not None node.set_left(left_rotation(a ) ) return right_rotation(a ) def UpperCamelCase ( a ) -> MyNode: '''simple docstring''' __magic_name__ = node.get_right() assert right_child is not None node.set_right(right_rotation(a ) ) return left_rotation(a ) def UpperCamelCase ( a , a ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(a ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , a ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __magic_name__ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __magic_name__ = right_rotation(a ) else: __magic_name__ = lr_rotation(a ) else: node.set_right(insert_node(node.get_right() , a ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __magic_name__ = node.get_right() assert right_child is not None if data < right_child.get_data(): __magic_name__ = rl_rotation(a ) else: __magic_name__ = left_rotation(a ) __magic_name__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a ) return node def UpperCamelCase ( a ) -> Any: '''simple docstring''' while True: __magic_name__ = root.get_right() if right_child is None: break __magic_name__ = right_child return root.get_data() def UpperCamelCase ( a ) -> Any: '''simple docstring''' while True: __magic_name__ = root.get_left() if left_child is None: break __magic_name__ = left_child return root.get_data() def UpperCamelCase ( a , a ) -> MyNode | None: '''simple docstring''' __magic_name__ = root.get_left() __magic_name__ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __magic_name__ = get_left_most(a ) root.set_data(a ) root.set_right(del_node(a , a ) ) elif left_child is not None: __magic_name__ = left_child elif right_child is not None: __magic_name__ = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(a , a ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(a , a ) ) if get_height(a ) - get_height(a ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __magic_name__ = left_rotation(a ) else: __magic_name__ = rl_rotation(a ) elif get_height(a ) - get_height(a ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __magic_name__ = right_rotation(a ) else: __magic_name__ = lr_rotation(a ) __magic_name__ = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(a ) return root class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] ): __magic_name__ = None def snake_case__ ( self : List[Any] ): return get_height(self.root ) def snake_case__ ( self : Optional[int] , a__ : Any ): print('''insert:''' + str(a__ ) ) __magic_name__ = insert_node(self.root , a__ ) def snake_case__ ( self : Dict , a__ : Any ): print('''delete:''' + str(a__ ) ) if self.root is None: print('''Tree is empty!''' ) return __magic_name__ = del_node(self.root , a__ ) def __str__( self : Optional[Any] , ): # a level traversale, gives a more intuitive look on the tree __magic_name__ = '''''' __magic_name__ = MyQueue() q.push(self.root ) __magic_name__ = self.get_height() if layer == 0: return output __magic_name__ = 0 while not q.is_empty(): __magic_name__ = q.pop() __magic_name__ = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(a__ ) q.push(a__ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __magic_name__ = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , a__ ) - 1: __magic_name__ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCamelCase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() _lowerCAmelCase = AVLtree() _lowerCAmelCase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
98
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = KandinskyVaaImgaImgPipeline __lowercase : str = ['''image_embeds''', '''negative_image_embeds''', '''image'''] __lowercase : Dict = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] __lowercase : Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __lowercase : Tuple = False @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return self.time_input_dim @property def snake_case_ ( self): return self.time_input_dim * 4 @property def snake_case_ ( self): return 1_0_0 @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __SCREAMING_SNAKE_CASE = UNetaDConditionModel(**lowerCAmelCase__) return model @property def snake_case_ ( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs) return model def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.dummy_unet __SCREAMING_SNAKE_CASE = self.dummy_movq __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __SCREAMING_SNAKE_CASE = DDIMScheduler(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=0): __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase__) # create init_image __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1)[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("""RGB""").resize((2_5_6, 2_5_6)) if str(lowerCAmelCase__).startswith("""mps"""): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""") __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") __SCREAMING_SNAKE_CASE = """A red cartoon frog, 4k""" __SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) __SCREAMING_SNAKE_CASE = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""").manual_seed(0) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __SCREAMING_SNAKE_CASE = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
100
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
from typing import Dict from .base import GenericTensor, Pipeline class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self , lowercase=None , lowercase=None , lowercase=None , **lowercase ) -> str: if tokenize_kwargs is None: lowerCamelCase_ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) lowerCamelCase_ = truncation lowerCamelCase_ = tokenize_kwargs lowerCamelCase_ = {} if return_tensors is not None: lowerCamelCase_ = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_( self , lowercase , **lowercase ) -> Dict[str, GenericTensor]: lowerCamelCase_ = self.framework lowerCamelCase_ = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) return model_inputs def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: lowerCamelCase_ = self.model(**lowercase ) return model_outputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=False ) -> Optional[Any]: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *lowercase , **lowercase ) -> str: return super().__call__(*lowercase , **lowercase )
19
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class A_ ( __UpperCamelCase ): @staticmethod @abstractmethod def _lowercase ( __lowerCAmelCase: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def _lowercase ( self: str ): '''simple docstring''' raise NotImplementedError()
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a_ ( lowerCamelCase : Namespace ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __snake_case =""" transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class UpperCAmelCase_ ( __lowercase ): @staticmethod def __UpperCAmelCase ( UpperCAmelCase__ : ArgumentParser ) -> Optional[int]: lowerCAmelCase = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=UpperCAmelCase__ , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , *UpperCAmelCase__ : List[str] , ) -> Optional[Any]: lowerCAmelCase = logging.get_logger('transformers-cli/converting' ) self._logger.info(F'''Loading model {model_type}''' ) lowerCAmelCase = model_type lowerCAmelCase = tf_checkpoint lowerCAmelCase = pytorch_dump_output lowerCAmelCase = config lowerCAmelCase = finetuning_task_name def __UpperCAmelCase ( self : List[str] ) -> Dict: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase__ ) if "ckpt" in self._tf_checkpoint.lower(): lowerCAmelCase = self._tf_checkpoint lowerCAmelCase = '' else: lowerCAmelCase = self._tf_checkpoint lowerCAmelCase = '' convert_transfo_xl_checkpoint_to_pytorch( UpperCAmelCase__ , self._config , self._pytorch_dump_output , UpperCAmelCase__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
4
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) A : Tuple = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] A : Optional[Any] = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" ) return sd def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=rename_keys_prefix ): '''simple docstring''' __lowerCAmelCase = OrderedDict() __lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowerCAmelCase = key for name_pair in rename_keys_prefix: __lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) __lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowerCAmelCase = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: __lowerCAmelCase = "pretraining" if "vcr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 512} __lowerCAmelCase = "multichoice" elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} __lowerCAmelCase = "vqa_advanced" elif "vqa" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048, "num_labels": 3129} __lowerCAmelCase = "vqa" elif "nlvr" in checkpoint_path: __lowerCAmelCase = { "visual_embedding_dim": 1024, "num_labels": 2, } __lowerCAmelCase = "nlvr" __lowerCAmelCase = VisualBertConfig(**_UpperCamelCase ) # Load State Dict __lowerCAmelCase = load_state_dict(_UpperCamelCase ) __lowerCAmelCase = get_new_dict(_UpperCamelCase , _UpperCamelCase ) if model_type == "pretraining": __lowerCAmelCase = VisualBertForPreTraining(_UpperCamelCase ) elif model_type == "vqa": __lowerCAmelCase = VisualBertForQuestionAnswering(_UpperCamelCase ) elif model_type == "nlvr": __lowerCAmelCase = VisualBertForVisualReasoning(_UpperCamelCase ) elif model_type == "multichoice": __lowerCAmelCase = VisualBertForMultipleChoice(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # Save Checkpoints Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") A : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
57
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Tuple = CodeGenTokenizer _UpperCamelCase : int = CodeGenTokenizerFast _UpperCamelCase : Any = True _UpperCamelCase : Optional[Any] = {'''add_prefix_space''': True} _UpperCamelCase : Dict = False def lowercase ( self: Dict ) -> Optional[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase_ = {"unk_token": "<unk>"} UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Union[str, Any] , **_SCREAMING_SNAKE_CASE: List[str] ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = "lower newer" UpperCamelCase_ = "lower newer" return input_text, output_text def lowercase ( self: Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase_ = "lower newer" UpperCamelCase_ = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] UpperCamelCase_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokens + [tokenizer.unk_token] UpperCamelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_rust_tokenizer(add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "lower newer" # Testing tokenization UpperCamelCase_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens UpperCamelCase_ = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens UpperCamelCase_ = self.get_rust_tokenizer(add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing the unknown token UpperCamelCase_ = tokens + [rust_tokenizer.unk_token] UpperCamelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Optional[int] ) -> Optional[Any]: """simple docstring""" pass def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any]=15 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Simple input UpperCamelCase_ = "This is a simple input" UpperCamelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCamelCase_ = ("This is a simple input", "This is a pair") UpperCamelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" , ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" , ) def lowercase ( self: List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input UpperCamelCase_ = "This is a simple input" UpperCamelCase_ = ["This is a simple input looooooooong", "This is a simple input"] UpperCamelCase_ = ("This is a simple input", "This is a pair") UpperCamelCase_ = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] UpperCamelCase_ = tokenizer.pad_token_id UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding="max_length" , max_length=30 , return_tensors="np" ) UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncate=_SCREAMING_SNAKE_CASE , return_tensors="np" ) UpperCamelCase_ = tokenizer(*_SCREAMING_SNAKE_CASE , padding="max_length" , max_length=60 , return_tensors="np" ) UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncate=_SCREAMING_SNAKE_CASE , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowercase ( self: Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ = "$$$" UpperCamelCase_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=_SCREAMING_SNAKE_CASE , add_bos_token=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "This is a simple input" UpperCamelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCamelCase_ = tokenizer.bos_token_id UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_s.input_ids[0] , _SCREAMING_SNAKE_CASE ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCamelCase_ = tokenizer.decode(out_s.input_ids ) UpperCamelCase_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _SCREAMING_SNAKE_CASE ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowercase ( self: Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) UpperCamelCase_ = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" UpperCamelCase_ = "\nif len_a > len_b: result = a\nelse: result = b" UpperCamelCase_ = tokenizer.encode(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] UpperCamelCase_ = tokenizer.decode(_SCREAMING_SNAKE_CASE , truncate_before_pattern=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple ) -> List[Any]: """simple docstring""" pass
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ : str = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case : """simple docstring""" @staticmethod def __lowerCAmelCase ( *lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Union[str, Any] ): pass def a_ ( lowerCamelCase ): UpperCAmelCase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def a_ ( lowerCamelCase ): UpperCAmelCase__ = np.array(lowerCamelCase ) UpperCAmelCase__ = npimg.shape return {"hash": hashimage(lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" snake_case__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : str ): UpperCAmelCase__ = MaskGenerationPipeline(model=lowerCamelCase__ ,image_processor=lowerCamelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def __lowerCAmelCase ( self : Optional[Any] ): pass @slow @require_torch def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = pipeline('mask-generation' ,model='facebook/sam-vit-huge' ) UpperCAmelCase__ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase__ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] ,) # fmt: on @require_torch @slow def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = 'facebook/sam-vit-huge' UpperCAmelCase__ = pipeline('mask-generation' ,model=lowerCamelCase__ ) UpperCAmelCase__ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,pred_iou_thresh=1 ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase__ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] ,)
98
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , *__A : List[str] , **__A : Any ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __A , ) super().__init__(*__A , **__A )
286
from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( snake_case_ : int ): for param in module.parameters(): snake_case__ : Tuple = False def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case__ : List[Any] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[str] = plt.imshow(snake_case_ ) fig.axes.get_xaxis().set_visible(snake_case_ ) fig.axes.get_yaxis().set_visible(snake_case_ ) plt.show() def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = datetime.now() snake_case__ : Optional[Any] = current_time.strftime("%H:%M:%S" ) return timestamp
286
1
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __SCREAMING_SNAKE_CASE : str = 'src/transformers' __SCREAMING_SNAKE_CASE : str = 'docs/source/en/tasks' def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ = f.readlines() # Find the start prompt. snake_case_ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 snake_case_ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE : List[str] = direct_transformers_import(TRANSFORMERS_PATH) __SCREAMING_SNAKE_CASE : Dict = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __SCREAMING_SNAKE_CASE : List[str] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = TASK_GUIDE_TO_MODELS[task_guide] snake_case_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) snake_case_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> List[str]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) snake_case_ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
347
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __A : Tuple = logging.get_logger(__name__) __A : List[str] = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class __UpperCamelCase : def __init__(self : List[Any] , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : Tuple): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future.") A = model A = kwargs.get("model_save_dir" , __SCREAMING_SNAKE_CASE) A = kwargs.get("latest_model_name" , __SCREAMING_SNAKE_CASE) def __call__(self : Any , **__SCREAMING_SNAKE_CASE : str): A = {k: np.array(__SCREAMING_SNAKE_CASE) for k, v in kwargs.items()} return self.model.run(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : Union[str, Path] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=None): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider") A = "CPUExecutionProvider" return ort.InferenceSession(__SCREAMING_SNAKE_CASE , providers=[provider] , sess_options=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Path] , __SCREAMING_SNAKE_CASE : Optional[str] = None , **__SCREAMING_SNAKE_CASE : Any): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME A = self.model_save_dir.joinpath(self.latest_model_name) A = Path(__SCREAMING_SNAKE_CASE).joinpath(__SCREAMING_SNAKE_CASE) try: shutil.copyfile(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) except shutil.SameFileError: pass # copy external weights (for models >2GB) A = self.model_save_dir.joinpath(__SCREAMING_SNAKE_CASE) if src_path.exists(): A = Path(__SCREAMING_SNAKE_CASE).joinpath(__SCREAMING_SNAKE_CASE) try: shutil.copyfile(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) except shutil.SameFileError: pass def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : List[Any] , ): if os.path.isfile(__SCREAMING_SNAKE_CASE): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""") return os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) # saving model weights/files self._save_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Path] , __SCREAMING_SNAKE_CASE : Optional[Union[bool, str, None]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, None]] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional["ort.SessionOptions"] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__SCREAMING_SNAKE_CASE): A = OnnxRuntimeModel.load_model( os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , provider=__SCREAMING_SNAKE_CASE , sess_options=__SCREAMING_SNAKE_CASE) A = Path(__SCREAMING_SNAKE_CASE) # load model from hub else: # download model A = hf_hub_download( repo_id=__SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , ) A = Path(__SCREAMING_SNAKE_CASE).parent A = Path(__SCREAMING_SNAKE_CASE).name A = OnnxRuntimeModel.load_model(__SCREAMING_SNAKE_CASE , provider=__SCREAMING_SNAKE_CASE , sess_options=__SCREAMING_SNAKE_CASE) return cls(model=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : int , __SCREAMING_SNAKE_CASE : Union[str, Path] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , **__SCREAMING_SNAKE_CASE : Dict , ): A = None if len(str(__SCREAMING_SNAKE_CASE).split("@")) == 2: A , A = model_id.split("@") return cls._from_pretrained( model_id=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
355
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowercase__ = 600_851_475_143 ): """simple docstring""" try: A = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A = 2 A = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A = i while n % i == 0: A = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
57
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @staticmethod @abstractmethod def A ( UpperCamelCase__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def A ( self : List[str] ): """simple docstring""" raise NotImplementedError()
28
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCamelCase_ = object() # For specifying empty leaf dict `{}` lowerCamelCase_ = object() def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(A__ ) - len(A__ ) + 1 ): UpperCAmelCase_ : Optional[int] = [x.match(A__ ) for x, y in zip(A__ ,ks[i:] )] if matches and all(A__ ): return True return False def snake_case ( A__ ): def replace(A__ ,A__ ): for rule, replacement in rules: if _match(A__ ,A__ ): return replacement return val return replace def snake_case ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" ,A__ )), (("transformer", "wte", "embedding"), P("mp" ,A__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(A__ ,"mp" )), (("attention", "out_proj", "kernel"), P("mp" ,A__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(A__ ,"mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" ,A__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def snake_case ( A__ ): UpperCAmelCase_ : List[Any] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(A__ ) UpperCAmelCase_ : int = {k: _unmatched for k in flatten_dict(A__ )} UpperCAmelCase_ : int = {k: replace(A__ ,A__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(A__ ) )
253
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCamelCase_ (__A ): __magic_name__ = '''M-CLIP''' def __init__( self : Any , lowerCAmelCase_ : str=1_024 , lowerCAmelCase_ : str=768 , **lowerCAmelCase_ : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : Tuple = transformerDimSize UpperCAmelCase_ : List[str] = imageDimSize super().__init__(**lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = MCLIPConfig def __init__( self : str , lowerCAmelCase_ : int , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[Any] ) -> Any: super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = XLMRobertaModel(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : Any = self.transformer(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] UpperCAmelCase_ : Tuple = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCAmelCase_ ), embs
253
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCAmelCase = logging.getLogger(__name__) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : str = np.argmax(lowerCAmelCase_ , axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: with open(lowerCAmelCase_ , encoding='utf_8' ) as f: _a : int = csv.reader(lowerCAmelCase_ ) _a : Any = [] next(lowerCAmelCase_ ) # skip the first line for line in tqdm(lowerCAmelCase_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _a : Optional[Any] = [] for dataset in encoded_datasets: _a : List[str] = len(lowerCAmelCase_ ) _a : int = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _a : Any = np.zeros((n_batch, 2) , dtype=np.intaa ) _a : Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _a : Any = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCAmelCase_ ): _a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _a : Optional[Any] = with_conta _a : Union[str, Any] = with_conta _a : int = len(lowerCAmelCase_ ) - 1 _a : str = len(lowerCAmelCase_ ) - 1 _a : Optional[int] = with_conta _a : Optional[int] = with_conta _a : str = mc_label _a : int = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase_ ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Dict: _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=lowerCAmelCase_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=lowerCAmelCase_ , default='' ) parser.add_argument('--eval_dataset' , type=lowerCAmelCase_ , default='' ) parser.add_argument('--seed' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('--num_train_epochs' , type=lowerCAmelCase_ , default=3 ) parser.add_argument('--train_batch_size' , type=lowerCAmelCase_ , default=8 ) parser.add_argument('--eval_batch_size' , type=lowerCAmelCase_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=lowerCAmelCase_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=lowerCAmelCase_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=lowerCAmelCase_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=lowerCAmelCase_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=lowerCAmelCase_ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=lowerCAmelCase_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=lowerCAmelCase_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=lowerCAmelCase_ , default=0.01 ) parser.add_argument('--lm_coef' , type=lowerCAmelCase_ , default=0.9 ) parser.add_argument('--n_valid' , type=lowerCAmelCase_ , default=374 ) parser.add_argument('--server_ip' , type=lowerCAmelCase_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=lowerCAmelCase_ , default='' , help='Can be used for distant debugging.' ) _a : int = parser.parse_args() print(lowerCAmelCase_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _a : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _a : Tuple = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(lowerCAmelCase_ , lowerCAmelCase_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _a : Optional[Any] = ['_start_', '_delimiter_', '_classify_'] _a : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCAmelCase_ ) _a : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) _a : List[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) model.to(lowerCAmelCase_ ) # Load and encode the datasets def tokenize_and_encode(lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase_ ) ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return obj return [tokenize_and_encode(lowerCAmelCase_ ) for o in obj] logger.info('Encoding dataset...' ) _a : Tuple = load_rocstories_dataset(args.train_dataset ) _a : List[str] = load_rocstories_dataset(args.eval_dataset ) _a : Dict = (train_dataset, eval_dataset) _a : List[str] = tokenize_and_encode(lowerCAmelCase_ ) # Compute the max input length for the Transformer _a : Any = model.config.n_positions // 2 - 2 _a : Dict = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _a : Tuple = min(lowerCAmelCase_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _a : str = pre_process_datasets(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) _a , _a : Dict = tensor_datasets[0], tensor_datasets[1] _a : Optional[Any] = TensorDataset(*lowerCAmelCase_ ) _a : Tuple = RandomSampler(lowerCAmelCase_ ) _a : Tuple = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.train_batch_size ) _a : List[Any] = TensorDataset(*lowerCAmelCase_ ) _a : Optional[int] = SequentialSampler(lowerCAmelCase_ ) _a : str = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _a : Optional[int] = args.max_steps _a : List[Any] = args.max_steps // (len(lowerCAmelCase_ ) // args.gradient_accumulation_steps) + 1 else: _a : Union[str, Any] = len(lowerCAmelCase_ ) // args.gradient_accumulation_steps * args.num_train_epochs _a : Any = list(model.named_parameters() ) _a : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] _a : List[Any] = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] _a : Optional[Any] = AdamW(lowerCAmelCase_ , lr=args.learning_rate , eps=args.adam_epsilon ) _a : Any = get_linear_schedule_with_warmup( lowerCAmelCase_ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase_ ) if args.do_train: _a , _a , _a : Optional[int] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): _a : Optional[Any] = 0 _a : Optional[int] = 0 _a : Any = tqdm(lowerCAmelCase_ , desc='Training' ) for step, batch in enumerate(lowerCAmelCase_ ): _a : Tuple = tuple(t.to(lowerCAmelCase_ ) for t in batch ) _a , _a , _a , _a : Optional[int] = batch _a : Optional[int] = model(lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) _a : List[str] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _a : Union[str, Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _a : Dict = 'Training loss: {:.2e} lr: {:.2e}'.format(lowerCAmelCase_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _a : Tuple = model.module if hasattr(lowerCAmelCase_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _a : Tuple = os.path.join(args.output_dir , lowerCAmelCase_ ) _a : int = os.path.join(args.output_dir , lowerCAmelCase_ ) torch.save(model_to_save.state_dict() , lowerCAmelCase_ ) model_to_save.config.to_json_file(lowerCAmelCase_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCAmelCase_ ) if args.do_eval: model.eval() _a , _a : List[Any] = 0, 0 _a , _a : Any = 0, 0 for batch in tqdm(lowerCAmelCase_ , desc='Evaluating' ): _a : Optional[Any] = tuple(t.to(lowerCAmelCase_ ) for t in batch ) _a , _a , _a , _a : List[str] = batch with torch.no_grad(): _a , _a , _a , _a : Optional[int] = model( lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) _a : Union[str, Any] = mc_logits.detach().cpu().numpy() _a : Tuple = mc_labels.to('cpu' ).numpy() _a : List[Any] = accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _a : Any = eval_loss / nb_eval_steps _a : Tuple = eval_accuracy / nb_eval_examples _a : Any = tr_loss / nb_tr_steps if args.do_train else None _a : Optional[Any] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} _a : Optional[int] = os.path.join(args.output_dir , 'eval_results.txt' ) with open(lowerCAmelCase_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , lowerCAmelCase_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
89
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class UpperCAmelCase ( __snake_case ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : Optional[int] = self._create_example_records() snake_case : Tuple = Dataset.from_list(lowerCamelCase_ ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(lowerCamelCase_ ): self.assertDictEqual(lowerCamelCase_ , example_records[i] ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self._create_example_records() snake_case : Union[str, Any] = Dataset.from_list(lowerCamelCase_ ) snake_case : Optional[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: # checks what happens with missing columns '''simple docstring''' snake_case : str = [{"""col_1""": 1}, {"""col_2""": """x"""}] snake_case : Optional[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: # checks if the type can be inferred from the second record '''simple docstring''' snake_case : List[str] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] snake_case : Optional[Any] = Dataset.from_list(lowerCamelCase_ ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
364
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
0
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
286
"""simple docstring""" import qiskit def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) A_ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator A_ : Optional[Any] = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = half_adder(1, 1) print(F"Half Adder Output Qubit Counts: {counts}")
286
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
367
"""simple docstring""" from collections import deque class lowercase_ : '''simple docstring''' def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = process_name # process name _A = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _A = arrival_time _A = burst_time # remaining burst time _A = 0 # total time of the process wait in ready queue _A = 0 # time from arrival time to completion time class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int , ): # total number of mlfq's queues _A = number_of_queues # time slice of queues that round robin algorithm applied _A = time_slices # unfinished process is in this ready_queue _A = queue # current time _A = current_time # finished process is in this sequence queue _A = deque() def lowerCAmelCase_ ( self : Dict ): _A = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ): _A = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] ): return [q.burst_time for q in queue] def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase_ ( self : int , _UpperCAmelCase : deque[Process] ): _A = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: _A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _A = 0 # set the process's turnaround time because it is finished _A = self.current_time - cp.arrival_time # set the completion time _A = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int ): _A = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): _A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _A = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _A = 0 # set the finish time _A = self.current_time # update the process' turnaround time because it is finished _A = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase_ ( self : str ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): _A , _A = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest a = Process('''P1''', 0, 53) a = Process('''P2''', 0, 17) a = Process('''P3''', 0, 68) a = Process('''P4''', 0, 24) a = 3 a = [17, 25] a = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) a = Process('''P1''', 0, 53) a = Process('''P2''', 0, 17) a = Process('''P3''', 0, 68) a = Process('''P4''', 0, 24) a = 3 a = [17, 25] a = deque([Pa, Pa, Pa, Pa]) a = MLFQ(number_of_queues, time_slices, queue, 0) a = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
271
0
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1.0E4 , __lowerCAmelCase = False , __lowerCAmelCase = 1.0 , ) -> int: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' SCREAMING_SNAKE_CASE__ : Optional[int] = float(embedding_dim // 2 ) SCREAMING_SNAKE_CASE__ : Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) SCREAMING_SNAKE_CASE__ : Dict = min_timescale * jnp.exp(jnp.arange(_UpperCamelCase , dtype=jnp.floataa ) * -log_timescale_increment ) SCREAMING_SNAKE_CASE__ : Tuple = jnp.expand_dims(_UpperCamelCase , 1 ) * jnp.expand_dims(_UpperCamelCase , 0 ) # scale embeddings SCREAMING_SNAKE_CASE__ : Any = scale * emb if flip_sin_to_cos: SCREAMING_SNAKE_CASE__ : str = jnp.concatenate([jnp.cos(_UpperCamelCase ), jnp.sin(_UpperCamelCase )] , axis=1 ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.concatenate([jnp.sin(_UpperCamelCase ), jnp.cos(_UpperCamelCase )] , axis=1 ) SCREAMING_SNAKE_CASE__ : Dict = jnp.reshape(_UpperCamelCase , [jnp.shape(_UpperCamelCase )[0], embedding_dim] ) return signal class __a (nn.Module): '''simple docstring''' _SCREAMING_SNAKE_CASE :int = 32 _SCREAMING_SNAKE_CASE :jnp.dtype = jnp.floataa @nn.compact def __call__( self , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(__a ) SCREAMING_SNAKE_CASE__ : List[str] = nn.silu(__a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(__a ) return temb class __a (nn.Module): '''simple docstring''' _SCREAMING_SNAKE_CASE :int = 32 _SCREAMING_SNAKE_CASE :bool = False _SCREAMING_SNAKE_CASE :float = 1 @nn.compact def __call__( self , _a ) -> Any: """simple docstring""" return get_sinusoidal_embeddings( __a , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
132
"""simple docstring""" import sys from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = [] def snake_case ( self , __a ): return self.node_position[vertex] def snake_case ( self , __a , __a ): __lowerCAmelCase = pos def snake_case ( self , __a , __a , __a , __a ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCAmelCase = 2 * start + 1 else: __lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child] __lowerCAmelCase , __lowerCAmelCase = ( heap[start], positions[start], ) __lowerCAmelCase , __lowerCAmelCase = temp, tempa __lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __a ) self.top_to_bottom(__a , __a , __a , __a ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = position[index] while index != 0: __lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCAmelCase = heap[parent] __lowerCAmelCase = position[parent] self.set_position(position[parent] , __a ) else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , __a ) break __lowerCAmelCase = parent else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , 0 ) def snake_case ( self , __a , __a ): __lowerCAmelCase = len(__a ) // 2 - 1 for i in range(__a , -1 , -1 ): self.top_to_bottom(__a , __a , len(__a ) , __a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = positions[0] __lowerCAmelCase = sys.maxsize self.top_to_bottom(__a , 0 , len(__a ) , __a ) return temp def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = Heap() __lowerCAmelCase = [0] * len(_UpperCamelCase ) __lowerCAmelCase = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCAmelCase = [] for vertex in range(len(_UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCamelCase ) heap.node_position.append(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = 1 __lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCAmelCase = 0 __lowerCAmelCase = distance heap.heapify(_UpperCamelCase , _UpperCamelCase ) for _ in range(1 , len(_UpperCamelCase ) ): __lowerCAmelCase = heap.delete_minimum(_UpperCamelCase , _UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCamelCase )] ): __lowerCAmelCase = distance heap.bottom_to_top( _UpperCamelCase , heap.get_position(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Optional[Any] = int(input("Enter number of edges: ").strip()) A : Dict = defaultdict(list) for _ in range(edges_number): A : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
57
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCAmelCase = datasets.utils.logging.get_logger(__name__) @dataclass class __magic_name__ ( datasets.BuilderConfig ): __A : Optional[datasets.Features] = None __A : str = "utf-8" __A : Optional[str] = None __A : Optional[str] = None __A : bool = True # deprecated __A : Optional[int] = None # deprecated __A : int = 10 << 20 # 10MB __A : Optional[bool] = None class __magic_name__ ( datasets.ArrowBasedBuilder ): __A : int = JsonConfig def __snake_case ( self : Any ): '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) lowercase :Any = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def __snake_case ( self : str , snake_case__ : Any ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase :Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): lowercase :Optional[Any] = data_files if isinstance(snake_case__ , snake_case__ ): lowercase :Any = [files] lowercase :Any = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase :List[str] = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): lowercase :Tuple = [files] lowercase :Union[str, Any] = [dl_manager.iter_files(snake_case__ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={'''files''': files} ) ) return splits def __snake_case ( self : Any , snake_case__ : pa.Table ): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase :List[Any] = self.config.features.arrow_schema.field(snake_case__ ).type lowercase :Dict = pa_table.append_column(snake_case__ , pa.array([None] * len(snake_case__ ) , type=snake_case__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase :Dict = table_cast(snake_case__ , self.config.features.arrow_schema ) return pa_table def __snake_case ( self : Dict , snake_case__ : str ): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase :Any = json.load(snake_case__ ) # We keep only the field we are interested in lowercase :int = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case__ , (list, tuple) ): lowercase :Tuple = set().union(*[row.keys() for row in dataset] ) lowercase :Any = {col: [row.get(snake_case__ ) for row in dataset] for col in keys} else: lowercase :Any = dataset lowercase :Tuple = pa.Table.from_pydict(snake_case__ ) yield file_idx, self._cast_table(snake_case__ ) # If the file has one json object per line else: with open(snake_case__ , '''rb''' ) as f: lowercase :Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase :Optional[Any] = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) lowercase :str = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: lowercase :Union[str, Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase :Tuple = batch.decode(self.config.encoding , errors=snake_case__ ).encode('''utf-8''' ) try: while True: try: lowercase :Tuple = paj.read_json( io.BytesIO(snake_case__ ) , read_options=paj.ReadOptions(block_size=snake_case__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case__ , pa.ArrowInvalid ) and "straddling" not in str(snake_case__ ) or block_size > len(snake_case__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(snake_case__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase :Optional[Any] = json.load(snake_case__ ) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case__ , snake_case__ ): # list is the only sequence type supported in JSON try: lowercase :Union[str, Any] = set().union(*[row.keys() for row in dataset] ) lowercase :Any = {col: [row.get(snake_case__ ) for row in dataset] for col in keys} lowercase :Tuple = pa.Table.from_pydict(snake_case__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise ValueError(f"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(snake_case__ ) break else: logger.error(f"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case__ ) batch_idx += 1
172
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __magic_name__ ( __UpperCAmelCase ): __A : torch.FloatTensor __A : Optional[torch.FloatTensor] = None def lowerCamelCase (a_ :List[Any] , a_ :List[str]=0.9_99 , a_ :List[Any]="cosine" , ) -> str: if alpha_transform_type == "cosine": def alpha_bar_fn(a_ :Union[str, Any]): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ :Tuple): return math.exp(t * -12.0) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""") lowercase :str = [] for i in range(a_): lowercase :Optional[Any] = i / num_diffusion_timesteps lowercase :Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a_) / alpha_bar_fn(a_) , a_)) return torch.tensor(a_ , dtype=torch.floataa) class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ): __A : Tuple = 1 @register_to_config def __init__( self : Union[str, Any] , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.00_01 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : int = 0 , snake_case__ : str = "epsilon" , snake_case__ : float = 1.0 , **snake_case__ : Union[str, Any] , ): '''simple docstring''' if kwargs.get('''set_alpha_to_one''' , snake_case__ ) is not None: lowercase :Any = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) lowercase :str = kwargs['''set_alpha_to_one'''] if trained_betas is not None: lowercase :Any = torch.tensor(snake_case__ , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :Optional[Any] = torch.linspace(snake_case__ , snake_case__ , snake_case__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Dict = betas_for_alpha_bar(snake_case__ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase :int = 1.0 - self.betas lowercase :int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Tuple = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Any = 1.0 # setable values lowercase :Dict = None lowercase :int = torch.from_numpy(np.arange(0 , snake_case__ ).copy().astype(np.intaa ) ) def __snake_case ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __snake_case ( self : Dict , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) lowercase :Any = num_inference_steps lowercase :Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , snake_case__ ) * step_ratio).round().copy().astype(np.intaa ) lowercase :Any = torch.from_numpy(snake_case__ ).to(snake_case__ ) self.timesteps += self.config.steps_offset def __snake_case ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = False , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : bool = True , ): '''simple docstring''' lowercase :Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Any = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :str = model_output elif self.config.prediction_type == "sample": lowercase :List[Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def __len__( self : Tuple ): '''simple docstring''' return self.config.num_train_timesteps
172
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : Dict = use_token_type_ids SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] = scope def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = FalconModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : int = FalconModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Optional[int] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Dict = FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : Optional[int] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )['hidden_states'][0] SCREAMING_SNAKE_CASE_ : int = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _A ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Dict = (FalconForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : str = False def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = FalconModelTester(self ) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE_ : Any = alibi self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : Optional[int] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : int = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'single_label_classification' SCREAMING_SNAKE_CASE_ : List[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : List[str] = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = FalconForCausalLM(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : int = model._convert_to_rw_cache(result.past_key_values ) SCREAMING_SNAKE_CASE_ : int = model._convert_cache_to_standard_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for layer in range(len(_SCREAMING_SNAKE_CASE ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = 3 SCREAMING_SNAKE_CASE_ : List[str] = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : List[str] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : List[Any] = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ): """simple docstring""" for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_SCREAMING_SNAKE_CASE , 'use_cache' ): return SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE_ : int = ( getattr(_SCREAMING_SNAKE_CASE , 'decoder_layers' , _SCREAMING_SNAKE_CASE ) or getattr(_SCREAMING_SNAKE_CASE , 'num_decoder_layers' , _SCREAMING_SNAKE_CASE ) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE_ : Tuple = getattr(_SCREAMING_SNAKE_CASE , 'num_kv_heads' , config.num_attention_heads ) SCREAMING_SNAKE_CASE_ : List[str] = getattr(_SCREAMING_SNAKE_CASE , 'd_model' , config.hidden_size ) SCREAMING_SNAKE_CASE_ : List[str] = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE_ : Any = outputs['past_key_values'] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = inputs['input_ids'].shape for i in range(_SCREAMING_SNAKE_CASE ): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE_ : int = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE_ : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _A ( unittest.TestCase): @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = tokenizer('My favorite food is' , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) SCREAMING_SNAKE_CASE_ : List[str] = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=19 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer('My favorite food is' , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , num_beams=2 , max_new_tokens=4 ) @slow def UpperCAmelCase ( self ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(device=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = tokenizer('My favorite food is' , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # Test results are the same with and without cache SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
253
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} lowerCAmelCase : Dict = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } lowerCAmelCase : Dict = { 'allenai/longformer-base-4096': 40_96, 'allenai/longformer-large-4096': 40_96, 'allenai/longformer-large-4096-finetuned-triviaqa': 40_96, 'allenai/longformer-base-4096-extra.pos.embd.only': 40_96, 'allenai/longformer-large-4096-extra.pos.embd.only': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : List[str] = bs[:] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(a ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : int = [chr(a ) for n in cs] return dict(zip(a , a ) ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = set() SCREAMING_SNAKE_CASE_ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : Any = char return pairs class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="replace" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token SCREAMING_SNAKE_CASE_ : int = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token SCREAMING_SNAKE_CASE_ : Any = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else unk_token SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Any = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE_ : List[str] = json.load(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : int = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE_ : Optional[int] = merges_handle.read().split('\n' )[1:-1] SCREAMING_SNAKE_CASE_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Dict = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : Tuple = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCAmelCase ( self ): """simple docstring""" return len(self.encoder ) def UpperCAmelCase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Optional[int] = tuple(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : int = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = bigram SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : List[Any] = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: SCREAMING_SNAKE_CASE_ : Any = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : Tuple = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : str = tuple(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: SCREAMING_SNAKE_CASE_ : Any = get_pairs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = ' '.join(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = word return word def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] for token in re.findall(self.pat , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_SCREAMING_SNAKE_CASE ).split(' ' ) ) return bpe_tokens def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.decoder.get(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''.join(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + '\n' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) SCREAMING_SNAKE_CASE_ : List[Any] = token_index writer.write(' '.join(_SCREAMING_SNAKE_CASE ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : List[Any] = ' ' + text return (text, kwargs)
253
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __UpperCAmelCase : Dict = get_logger(__name__) __UpperCAmelCase : Optional[Any] = Path(__file__).parent / "model_card_template.md" __UpperCAmelCase : int = uuida().hex __UpperCAmelCase : Optional[Any] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES __UpperCAmelCase : Optional[Any] = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES __UpperCAmelCase : Union[str, Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def A__ ( SCREAMING_SNAKE_CASE__ = None) -> str: __snake_case: int = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""").upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items()) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): ua += "; " + user_agent return ua def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None) -> List[Any]: if token is None: __snake_case: List[Any] = HfFolder.get_token() if organization is None: __snake_case: List[Any] = whoami(SCREAMING_SNAKE_CASE__)["""name"""] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""") if hasattr(SCREAMING_SNAKE_CASE__ , """local_rank""") and args.local_rank not in [-1, 0]: return __snake_case: Tuple = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , """hub_token""") else None __snake_case: Optional[Any] = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__) __snake_case: Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , """dataset_name""") else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , """gradient_accumulation_steps""") else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta1""") else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta2""") else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , """adam_weight_decay""") else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , """adam_epsilon""") else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , """lr_scheduler""") else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , """lr_warmup_steps""") else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , """ema_inv_gamma""") else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , """ema_power""") else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , """ema_max_decay""") else None , mixed_precision=args.mixed_precision , ) __snake_case: str = os.path.join(args.output_dir , """README.md""") model_card.save(SCREAMING_SNAKE_CASE__) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None) -> Optional[int]: if resolved_file is None or commit_hash is not None: return commit_hash __snake_case: List[str] = str(Path(SCREAMING_SNAKE_CASE__).as_posix()) __snake_case: Optional[int] = re.search(r"""snapshots/([^/]+)/""" , SCREAMING_SNAKE_CASE__) if search is None: return None __snake_case: Tuple = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __UpperCAmelCase : Tuple = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) __UpperCAmelCase : int = os.path.join(hf_cache_home, "diffusers") def A__ ( SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None) -> None: if new_cache_dir is None: __snake_case: List[Any] = DIFFUSERS_CACHE if old_cache_dir is None: __snake_case: Dict = old_diffusers_cache __snake_case: str = Path(SCREAMING_SNAKE_CASE__).expanduser() __snake_case: List[str] = Path(SCREAMING_SNAKE_CASE__).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*"""): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __snake_case: Optional[Any] = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""") # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __UpperCAmelCase : Optional[Any] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): __UpperCAmelCase : Tuple = 0 else: with open(cache_version_file) as f: try: __UpperCAmelCase : Optional[int] = int(f.read()) except ValueError: __UpperCAmelCase : Dict = 0 if cache_version < 1: __UpperCAmelCase : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: __UpperCAmelCase : List[Any] = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' "the directory exists and can be written to." ) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None) -> str: if variant is not None: __snake_case: List[Any] = weights_name.split(""".""") __snake_case: str = splits[:-1] + [variant] + splits[-1:] __snake_case: Optional[int] = """.""".join(SCREAMING_SNAKE_CASE__) return weights_name def A__ ( SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ) -> Dict: __snake_case: Union[str, Any] = str(SCREAMING_SNAKE_CASE__) if os.path.isfile(SCREAMING_SNAKE_CASE__): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)): # Load from a PyTorch checkpoint __snake_case: List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)): __snake_case: List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''') else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__).base_version) >= version.parse("""0.20.0""") ): try: __snake_case: str = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual __snake_case: str = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""") except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' """this model name. Check the model page at """ F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''') except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''') except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''') except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""") except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''')
367
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( __lowerCamelCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A , """num_attention_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self : int , A : str , A : Dict=13 , A : str=32 , A : Any=2 , A : Optional[Any]=3 , A : str=640 , A : Tuple=4 , A : Dict="silu" , A : List[Any]=3 , A : Any=32 , A : Any=0.1 , A : int=0.1 , A : Dict=0.1 , A : Optional[Any]=0.02 , A : List[Any]=True , A : Tuple=True , A : Any=10 , A : Optional[int]=None , ): __snake_case: List[Any] = parent __snake_case: Dict = batch_size __snake_case: int = image_size __snake_case: Tuple = patch_size __snake_case: Tuple = num_channels __snake_case: str = last_hidden_size __snake_case: Dict = num_attention_heads __snake_case: Dict = hidden_act __snake_case: Tuple = conv_kernel_size __snake_case: List[str] = output_stride __snake_case: List[str] = hidden_dropout_prob __snake_case: Optional[Any] = attention_probs_dropout_prob __snake_case: int = classifier_dropout_prob __snake_case: List[Any] = use_labels __snake_case: Union[str, Any] = is_training __snake_case: Union[str, Any] = num_labels __snake_case: str = initializer_range __snake_case: List[Any] = scope def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case: Tuple = None __snake_case: Any = None if self.use_labels: __snake_case: Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case: str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case: Any = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self : int ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : str , A : Optional[Any] , A : Any , A : Any , A : Union[str, Any] ): __snake_case: List[Any] = MobileViTModel(config=A ) model.to(A ) model.eval() __snake_case: int = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : str , A : List[Any] , A : Any , A : Any , A : int ): __snake_case: str = self.num_labels __snake_case: Optional[int] = MobileViTForImageClassification(A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] , A : str , A : Optional[Any] , A : int , A : str ): __snake_case: List[Any] = self.num_labels __snake_case: Dict = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case: Tuple = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Tuple = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case: Any = config_and_inputs __snake_case: Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[Any] = MobileViTModelTester(self ) __snake_case: str = MobileViTConfigTester(self , config_class=A , has_text_modality=A ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[Any] ): pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Dict ): pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def UpperCAmelCase__ ( self : Optional[Any] ): pass def UpperCAmelCase__ ( self : str ): __snake_case , __snake_case: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[Any] = model_class(A ) __snake_case: int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case: Optional[int] = [*signature.parameters.keys()] __snake_case: List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : Optional[int] ): pass def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ ( self : Dict ): def check_hidden_states_output(A : List[Any] , A : int , A : Tuple ): __snake_case: List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __snake_case: str = model(**self._prepare_for_class(A , A ) ) __snake_case: Optional[int] = outputs.hidden_states __snake_case: Any = 5 self.assertEqual(len(A ) , A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case: Union[str, Any] = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case: Dict = True check_hidden_states_output(A , A , A ) def UpperCAmelCase__ ( self : int ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case: List[Any] = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def A__ ( ) -> Optional[int]: __snake_case: Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase__ ( self : Dict ): return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Tuple = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(A ) __snake_case: str = self.default_image_processor __snake_case: Optional[Any] = prepare_img() __snake_case: List[Any] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Dict = model(**A ) # verify the logits __snake_case: List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A ) __snake_case: Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Tuple ): __snake_case: Tuple = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[str] = model.to(A ) __snake_case: Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[Any] = prepare_img() __snake_case: List[str] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: List[Any] = model(**A ) __snake_case: Optional[int] = outputs.logits # verify the logits __snake_case: Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A ) __snake_case: Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: int = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: str = model.to(A ) __snake_case: Optional[Any] = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[str] = prepare_img() __snake_case: Optional[int] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Dict = model(**A ) __snake_case: List[Any] = outputs.logits.detach().cpu() __snake_case: List[str] = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(50, 60)] ) __snake_case: str = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A ) __snake_case: int = image_processor.post_process_semantic_segmentation(outputs=A ) __snake_case: Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A )
293
0
from sklearn.metrics import matthews_corrcoef import datasets __lowerCamelCase = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ __lowerCamelCase = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ __lowerCamelCase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str]=None ) -> Optional[int]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(snake_case__ , snake_case__ , sample_weight=snake_case__ ) ), }
59
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=36 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )->Optional[Any]: '''simple docstring''' A_ : Union[str, Any] = parent A_ : Dict = batch_size A_ : Union[str, Any] = seq_length A_ : Optional[Any] = is_training A_ : Tuple = use_input_mask A_ : List[str] = use_token_type_ids A_ : List[Any] = use_labels A_ : Optional[int] = vocab_size A_ : Tuple = hidden_size A_ : Dict = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Any = intermediate_size A_ : int = hidden_act A_ : Dict = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : int = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : Optional[Any] = num_labels A_ : Optional[Any] = num_choices A_ : Union[str, Any] = scope def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Optional[int] = None if self.use_input_mask: A_ : str = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Tuple = None if self.use_token_type_ids: A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Optional[int] = None A_ : int = None A_ : Optional[int] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self )->Tuple: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Any = self.get_config() A_ : List[Any] = 300 return config def _snake_case ( self )->Any: '''simple docstring''' ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : List[Any] = self.prepare_config_and_inputs() A_ : List[str] = True A_ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : Optional[int] = MraModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A_ : str = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) A_ : str = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) A_ : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )->Tuple: '''simple docstring''' A_ : Optional[Any] = True A_ : Optional[int] = MraModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A_ : Optional[int] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) A_ : Optional[int] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) A_ : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : List[Any] = MraForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A_ : Any = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' A_ : List[str] = MraForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A_ : List[Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : List[str] = self.num_labels A_ : Optional[Any] = MraForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A_ : List[str] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : str = self.num_labels A_ : str = MraForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A_ : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : Optional[int] = self.num_choices A_ : Dict = MraForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : int = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Dict = config_and_inputs A_ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case = False snake_case = False snake_case = False snake_case = False snake_case = () def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Optional[Any] = MraModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def _snake_case ( self )->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Dict = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _snake_case ( self )->str: '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def _snake_case ( self )->Optional[Any]: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = MraModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason='''MRA does not output attentions''' ) def _snake_case ( self )->Tuple: '''simple docstring''' return @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[int] = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) A_ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A_ : Tuple = model(UpperCAmelCase__ )[0] A_ : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , UpperCAmelCase__ ) A_ : int = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) @slow def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) A_ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A_ : Tuple = model(UpperCAmelCase__ )[0] A_ : str = 5_0265 A_ : Tuple = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) A_ : Union[str, Any] = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) @slow def _snake_case ( self )->Any: '''simple docstring''' A_ : Dict = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) A_ : Optional[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A_ : Optional[int] = model(UpperCAmelCase__ )[0] A_ : Tuple = 5_0265 A_ : Optional[int] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) A_ : int = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) )
361
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if num <= 0: A_ : Optional[int] = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [True] * (num + 1) A_ : Tuple = [] A_ : Union[str, Any] = 2 A_ : Any = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
65
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Union[str, Any]: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowerCAmelCase_ : Dict = sorted(string.lower() ) return len(__a ) == len(set(__a ) ) if __name__ == "__main__": lowercase__ : Tuple = input("""Enter a string """).strip() lowercase__ : List[str] = is_isogram(input_str) print(f'{input_str} is {"an" if isogram else "not an"} isogram.')
224
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : Any ,_a : Optional[int]=2 ,_a : Optional[Any]=True ,_a : Dict=False ,_a : Dict=10 ,_a : Any=3 ,_a : str=32 * 8 ,_a : Optional[int]=32 * 8 ,_a : int=4 ,_a : str=64 ,): '''simple docstring''' _a : Dict = parent _a : Union[str, Any] = batch_size _a : Tuple = is_training _a : List[str] = use_auxiliary_loss _a : Optional[Any] = num_queries _a : str = num_channels _a : List[str] = min_size _a : int = max_size _a : Optional[int] = num_labels _a : List[str] = hidden_dim _a : int = hidden_dim def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) _a : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_a ) _a : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_a ) > 0.5 ).float() _a : Tuple = (torch.rand((self.batch_size, self.num_labels) ,device=_a ) > 0.5).long() _a : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = MaskaFormerConfig( hidden_size=self.hidden_dim ,) _a : str = self.num_queries _a : Union[str, Any] = self.num_labels _a : Tuple = [1, 1, 1, 1] _a : Dict = self.num_channels _a : str = 64 _a : Tuple = 128 _a : Optional[Any] = self.hidden_dim _a : Union[str, Any] = self.hidden_dim _a : List[Any] = self.hidden_dim return config def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a, _a, _a, _a, _a : Optional[Any] = self.prepare_config_and_inputs() _a : str = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __lowercase ( self : List[str] ,_a : Optional[Any] ,_a : str ): '''simple docstring''' _a : str = output.encoder_hidden_states _a : Any = output.pixel_decoder_hidden_states _a : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,config.decoder_layers ) def __lowercase ( self : List[str] ,_a : str ,_a : List[Any] ,_a : Any ,_a : Union[str, Any]=False ): '''simple docstring''' with torch.no_grad(): _a : str = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() _a : Any = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[Any] = model(_a ,output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a ,_a ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Union[str, Any] ,_a : Tuple ,_a : List[str] ,_a : Any ): '''simple docstring''' _a : int = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _a : Any = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[int] = model(_a ) comm_check_on_output(_a ) _a : List[str] = model( pixel_values=_a ,pixel_mask=_a ,mask_labels=_a ,class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __UpperCAmelCase : Dict = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __UpperCAmelCase : Dict = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = MaskaFormerModelTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : str ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def __lowercase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass def __lowercase ( self : int ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Union[str, Any] = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[Any] = [*signature.parameters.keys()] _a : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _a : Dict = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : int = (self.model_tester.min_size,) * 2 _a : Any = { 'pixel_values': torch.randn((2, 3, *size) ,device=_a ), 'mask_labels': torch.randn((2, 10, *size) ,device=_a ), 'class_labels': torch.zeros(2 ,10 ,device=_a ).long(), } _a : List[Any] = self.model_tester.get_config() _a : int = MaskaFormerForUniversalSegmentation(_a ).to(_a ) _a : str = model(**_a ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : int ): '''simple docstring''' _a, _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ).to(_a ) _a : Optional[int] = model(**_a ,output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return _a : List[str] = self.all_model_classes[1] _a, _a, _a, _a, _a : List[str] = self.model_tester.prepare_config_and_inputs() _a : Any = model_class(_a ) model.to(_a ) model.train() _a : Union[str, Any] = model(_a ,mask_labels=_a ,class_labels=_a ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' _a : int = self.all_model_classes[1] _a, _a, _a, _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs() _a : str = True _a : str = True _a : List[str] = model_class(_a ).to(_a ) model.train() _a : Optional[int] = model(_a ,mask_labels=_a ,class_labels=_a ) _a : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _a : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _a : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _a : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1e-4 def UpperCAmelCase_ (): """simple docstring""" _a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __lowercase ( self : Any ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __lowercase ( self : Any ): '''simple docstring''' _a : List[str] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) _a : int = self.default_image_processor _a : Tuple = prepare_img() _a : Any = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Optional[Any] = model(**_a ) _a : List[Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : str = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : Any = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Optional[Any] = self.default_image_processor _a : List[Any] = prepare_img() _a : str = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Any = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Optional[int] = model(**_a ) # masks_queries_logits _a : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _a : Dict = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _a : Optional[Any] = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_a ,atol=_a ) ) # class_queries_logits _a : str = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) _a : str = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Tuple = self.default_image_processor _a : Tuple = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) _a : str = inputs['pixel_values'].to(_a ) _a : str = [el.to(_a ) for el in inputs['mask_labels']] _a : Dict = [el.to(_a ) for el in inputs['class_labels']] with torch.no_grad(): _a : List[str] = model(**_a ) self.assertTrue(outputs.loss is not None )
271
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : str = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
371
UpperCAmelCase : Tuple = "Tobias Carryer" from time import time class __lowercase : """simple docstring""" def __init__( self , A , A , A , A=int(time() ) ) -> Optional[int]: # noqa: B008 '''simple docstring''' lowerCamelCase = multiplier lowerCamelCase = increment lowerCamelCase = modulo lowerCamelCase = seed def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCAmelCase : List[Any] = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
66
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _a : Optional[Any]= 8 def __UpperCAmelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=BITS ) -> List[str]: '''simple docstring''' __snake_case : List[Any] = x.device __snake_case : Dict = (x * 2_55).int().clamp(0 , 2_55 ) __snake_case : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCAmelCase_ ) __snake_case : Dict = rearrange(UpperCAmelCase_ , 'd -> d 1 1' ) __snake_case : Union[str, Any] = rearrange(UpperCAmelCase_ , 'b c h w -> b c 1 h w' ) __snake_case : int = ((x & mask) != 0).float() __snake_case : Dict = rearrange(UpperCAmelCase_ , 'b c d h w -> b (c d) h w' ) __snake_case : Dict = bits * 2 - 1 return bits def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=BITS ) -> Dict: '''simple docstring''' __snake_case : int = x.device __snake_case : int = (x > 0).int() __snake_case : int = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCAmelCase_ , dtype=torch.intaa ) __snake_case : Any = rearrange(UpperCAmelCase_ , 'd -> d 1 1' ) __snake_case : List[Any] = rearrange(UpperCAmelCase_ , 'b (c d) h w -> b c d h w' , d=8 ) __snake_case : List[str] = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __snake_case : str = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __snake_case : Optional[Any] = self.alphas_cumprod[timestep] __snake_case : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __snake_case : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __snake_case : List[str] = self.bit_scale if self.config.clip_sample: __snake_case : Optional[Any] = torch.clamp(UpperCAmelCase_ , -scale , UpperCAmelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __snake_case : Any = self._get_variance(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : str = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __snake_case : List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : str = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __snake_case : Any = model_output.device if torch.is_tensor(UpperCAmelCase_ ) else 'cpu' __snake_case : List[Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase_ ).to(UpperCAmelCase_ ) __snake_case : int = self._get_variance(UpperCAmelCase_ , UpperCAmelCase_ ) ** 0.5 * eta * noise __snake_case : List[str] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Dict="epsilon" , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' __snake_case : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __snake_case , __snake_case : Any = torch.split(UpperCAmelCase_ , sample.shape[1] , dim=1 ) else: __snake_case : Dict = None # 1. compute alphas, betas __snake_case : Optional[Any] = self.alphas_cumprod[t] __snake_case : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one __snake_case : List[str] = 1 - alpha_prod_t __snake_case : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __snake_case : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __snake_case : Union[str, Any] = model_output else: raise ValueError(F"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" __snake_case : Union[str, Any] = self.bit_scale if self.config.clip_sample: __snake_case : List[str] = torch.clamp(UpperCAmelCase_ , -scale , UpperCAmelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __snake_case : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case : Union[str, Any] = 0 if t > 0: __snake_case : Union[str, Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCAmelCase_ ).to(model_output.device ) __snake_case : str = (self._get_variance(UpperCAmelCase_ , predicted_variance=UpperCAmelCase_ ) ** 0.5) * noise __snake_case : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): def __init__(self : Any , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, DDPMScheduler] , _A : Optional[float] = 1.0 , ) -> Optional[Any]: super().__init__() __snake_case : Any = bit_scale __snake_case : Optional[int] = ( ddim_bit_scheduler_step if isinstance(_A , _A) else ddpm_bit_scheduler_step ) self.register_modules(unet=_A , scheduler=_A) @torch.no_grad() def __call__(self : List[Any] , _A : Optional[int] = 2_56 , _A : Optional[int] = 2_56 , _A : Optional[int] = 50 , _A : Optional[torch.Generator] = None , _A : Optional[int] = 1 , _A : Optional[str] = "pil" , _A : bool = True , **_A : Tuple , ) -> Union[Tuple, ImagePipelineOutput]: __snake_case : str = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_A , ) __snake_case : List[str] = decimal_to_bits(_A) * self.bit_scale __snake_case : Dict = latents.to(self.device) self.scheduler.set_timesteps(_A) for t in self.progress_bar(self.scheduler.timesteps): # predict the noise residual __snake_case : str = self.unet(_A , _A).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case : Tuple = self.scheduler.step(_A , _A , _A).prev_sample __snake_case : Dict = bits_to_decimal(_A) if output_type == "pil": __snake_case : List[Any] = self.numpy_to_pil(_A) if not return_dict: return (image,) return ImagePipelineOutput(images=_A)
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str]= logging.get_logger(__name__) _a : Optional[int]= { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = """roc_bert""" def __init__(self : Dict , _A : str=3_05_22 , _A : List[str]=7_68 , _A : int=12 , _A : int=12 , _A : Any=30_72 , _A : List[Any]="gelu" , _A : str=0.1 , _A : Tuple=0.1 , _A : Optional[Any]=5_12 , _A : Optional[Any]=2 , _A : Dict=0.02 , _A : Tuple=1E-12 , _A : Any=True , _A : List[str]=0 , _A : Tuple="absolute" , _A : List[str]=None , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=7_68 , _A : str=9_10 , _A : List[str]=5_12 , _A : str=2_48_58 , _A : Tuple=True , **_A : Dict , ) -> List[Any]: __snake_case : Tuple = vocab_size __snake_case : List[Any] = max_position_embeddings __snake_case : Tuple = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Any = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = type_vocab_size __snake_case : str = layer_norm_eps __snake_case : Dict = use_cache __snake_case : int = enable_pronunciation __snake_case : Dict = enable_shape __snake_case : Any = pronunciation_embed_dim __snake_case : Union[str, Any] = pronunciation_vocab_size __snake_case : List[Any] = shape_embed_dim __snake_case : List[Any] = shape_vocab_size __snake_case : List[Any] = concat_input __snake_case : str = position_embedding_type __snake_case : List[Any] = classifier_dropout super().__init__(pad_token_id=_A , **_A)
172
1
'''simple docstring''' def _lowerCAmelCase ( lowercase = 50 ) -> Union[str, Any]: __lowerCAmelCase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
366
'''simple docstring''' import warnings from .generation import TFGenerationMixin class _UpperCAmelCase ( lowerCAmelCase_ ): # warning at import time warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , lowerCAmelCase_ , )
46
0
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: print(f'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(_SCREAMING_SNAKE_CASE ): print(f'{i}\t\t{d}' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: for j in range(_SCREAMING_SNAKE_CASE ): a = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list[float]: a = [float("""inf""" )] * vertex_count a = 0.0 for _ in range(vertex_count - 1 ): for j in range(_SCREAMING_SNAKE_CASE ): a = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: a = distance[u] + w a = check_negative_cycle(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Union[str, Any] = int(input("Enter number of vertices: ").strip()) __UpperCamelCase : Tuple = int(input("Enter number of edges: ").strip()) __UpperCamelCase : List[Any] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __UpperCamelCase : Tuple = {"src": src, "dst": dest, "weight": weight} __UpperCamelCase : Optional[int] = int(input("\nEnter shortest path source:").strip()) __UpperCamelCase : Optional[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
228
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" lowerCAmelCase__ :List[str] = np.max(_outputs , axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Any = """sigmoid""" __magic_name__ :Optional[Any] = """softmax""" __magic_name__ :Optional[Any] = """none""" @add_end_docstrings( a , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = False __magic_name__ :Dict = ClassificationFunction.NONE def __init__( self , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = tokenizer_kwargs lowerCAmelCase__ :List[Any] = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: lowerCAmelCase__ :List[Any] = self.model.config.return_all_scores if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or top_k is None: lowerCAmelCase__ :int = top_k lowerCAmelCase__ :Dict = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , __UpperCAmelCase , ) if return_all_scores: lowerCAmelCase__ :List[Any] = None else: lowerCAmelCase__ :Union[str, Any] = 1 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowerCAmelCase__ :List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowerCAmelCase__ :Optional[Any] = 'top_k' not in kwargs if isinstance(args[0] , __UpperCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = self.framework if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.tokenizer(**__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1 and isinstance(inputs[0] , __UpperCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.model(**__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowerCAmelCase__ :str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowerCAmelCase__ :int = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: lowerCAmelCase__ :Optional[Any] = self.model.config.function_to_apply else: lowerCAmelCase__ :Dict = ClassificationFunction.NONE lowerCAmelCase__ :int = model_outputs['logits'][0] lowerCAmelCase__ :Union[str, Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowerCAmelCase__ :Dict = sigmoid(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowerCAmelCase__ :int = softmax(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: lowerCAmelCase__ :Tuple = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowerCAmelCase__ :Any = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(__UpperCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase ) if top_k is not None: lowerCAmelCase__ :List[str] = dict_scores[:top_k] return dict_scores
293
0
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ ( a_ ): def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , """embed_dim""" ) ) self.parent.assertTrue(hasattr(snake_case__ , """num_heads""" ) ) class UpperCamelCase_ : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=64 , snake_case__=3 , snake_case__=[16, 48, 96] , snake_case__=[1, 3, 6] , snake_case__=[1, 2, 10] , snake_case__=[7, 3, 3] , snake_case__=[4, 2, 2] , snake_case__=[2, 1, 1] , snake_case__=[2, 2, 2] , snake_case__=[False, False, True] , snake_case__=[0.0, 0.0, 0.0] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=True , snake_case__=2 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_sizes UpperCAmelCase = patch_stride UpperCAmelCase = patch_padding UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = num_labels UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = num_heads UpperCAmelCase = stride_kv UpperCAmelCase = depth UpperCAmelCase = cls_token UpperCAmelCase = attention_drop_rate UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = CvtModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ ) UpperCAmelCase = (self.image_size, self.image_size) UpperCAmelCase , UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = CvtForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( a_ , a_ , unittest.TestCase ): _A : Optional[int] = (CvtModel, CvtForImageClassification) if is_torch_available() else () _A : Dict = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) _A : int = False _A : Dict = False _A : Optional[int] = False _A : List[str] = False _A : str = False def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = CvtModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ) -> int: """simple docstring""" return @unittest.skip(reason="""Cvt does not output attentions""" ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(snake_case__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): UpperCAmelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = CvtModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**snake_case__ ) # verify the logits UpperCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
354
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class UpperCamelCase_ ( a_ ): _A : List[Any] = 'layoutlmv3' def __init__( self , snake_case__=5_02_65 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=5_12 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=10_24 , snake_case__=1_28 , snake_case__=1_28 , snake_case__=True , snake_case__=32 , snake_case__=1_28 , snake_case__=64 , snake_case__=2_56 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=2_24 , snake_case__=3 , snake_case__=16 , snake_case__=None , **snake_case__ , ) -> Tuple: """simple docstring""" super().__init__( vocab_size=snake_case__ , hidden_size=snake_case__ , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , intermediate_size=snake_case__ , hidden_act=snake_case__ , hidden_dropout_prob=snake_case__ , attention_probs_dropout_prob=snake_case__ , max_position_embeddings=snake_case__ , type_vocab_size=snake_case__ , initializer_range=snake_case__ , layer_norm_eps=snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) UpperCAmelCase = max_ad_position_embeddings UpperCAmelCase = coordinate_size UpperCAmelCase = shape_size UpperCAmelCase = has_relative_attention_bias UpperCAmelCase = rel_pos_bins UpperCAmelCase = max_rel_pos UpperCAmelCase = has_spatial_attention_bias UpperCAmelCase = rel_ad_pos_bins UpperCAmelCase = max_rel_ad_pos UpperCAmelCase = text_embed UpperCAmelCase = visual_embed UpperCAmelCase = input_size UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = classifier_dropout class UpperCamelCase_ ( a_ ): _A : str = version.parse('1.12' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1e-5 @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 12 def UpperCamelCase_ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 40 , snake_case__ = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , snake_case__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(snake_case__ ) UpperCAmelCase = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase = dict( processor( snake_case__ , text=snake_case__ , boxes=snake_case__ , return_tensors=snake_case__ , ) ) return inputs
248
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase = tokenizer('Hello there' , return_tensors='tf' ).input_ids __UpperCamelCase = tokenizer('Hi I am' , return_tensors='tf' ).input_ids __UpperCamelCase = model(__A , labels=__A ).loss __UpperCamelCase = -tf.math.reduce_mean(__A ).numpy() __UpperCamelCase = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
53
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor class A ( nn.Module ): def __init__(self : Union[str, Any] , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , __UpperCAmelCase : int=(6_4,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=3_2 , __UpperCAmelCase : str="silu" , __UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = torch.nn.Convad( __UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) # down UpperCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_down_block( __UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) self.down_blocks.append(__UpperCAmelCase ) # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # out UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = 2 * out_channels if double_z else out_channels UpperCAmelCase__ = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = x UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : int ): def custom_forward(*__UpperCAmelCase : Optional[Any] ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase ) else: # down for down_block in self.down_blocks: UpperCAmelCase__ = down_block(__UpperCAmelCase ) # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase ) # post-process UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : List[Any] , __UpperCAmelCase : str=3 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : str=(6_4,) , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Any="group" , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = nn.Convad( __UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) UpperCAmelCase__ = in_channels if norm_type == "spatial" else None # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # up UpperCAmelCase__ = list(reversed(__UpperCAmelCase ) ) UpperCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = reversed_block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_up_block( __UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , ) self.up_blocks.append(__UpperCAmelCase ) UpperCAmelCase__ = output_channel # out if norm_type == "spatial": UpperCAmelCase__ = SpatialNorm(block_out_channels[0] , __UpperCAmelCase ) else: UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=None ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = z UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) UpperCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : str ): def custom_forward(*__UpperCAmelCase : List[str] ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) else: # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = up_block(__UpperCAmelCase , __UpperCAmelCase ) # post-process if latent_embeds is None: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) else: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="random" , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Union[str, Any]=True ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = n_e UpperCAmelCase__ = vq_embed_dim UpperCAmelCase__ = beta UpperCAmelCase__ = legacy UpperCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase__ = self.used.shape[0] UpperCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase__ = self.re_embed UpperCAmelCase__ = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCAmelCase__ = n_e UpperCAmelCase__ = sane_index_shape def lowercase_ (self : str , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) UpperCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase__ = match.argmax(-1 ) UpperCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase__ = self.unknown_index return new.reshape(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase__ = 0 # simply set to zero UpperCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase__ = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 ) UpperCAmelCase__ = self.embedding(__UpperCAmelCase ).view(z.shape ) UpperCAmelCase__ = None UpperCAmelCase__ = None # compute loss for embedding if not self.legacy: UpperCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.remap_to_used(__UpperCAmelCase ) UpperCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if self.remap is not None: UpperCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.unmap_to_all(__UpperCAmelCase ) UpperCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase__ = self.embedding(__UpperCAmelCase ) if shape is not None: UpperCAmelCase__ = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A ( UpperCAmelCase_ ): def __init__(self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str=False ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parameters UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__UpperCAmelCase , 2 , dim=1 ) UpperCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase__ = deterministic UpperCAmelCase__ = torch.exp(0.5 * self.logvar ) UpperCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase__ = UpperCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = randn_tensor( self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase__ = self.mean + self.std * sample return x def lowercase_ (self : str , __UpperCAmelCase : int=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=[1, 2, 3] ) -> Dict: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Optional[Any]: """simple docstring""" return self.mean
65
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np lowercase__ = re.compile(r'\b(a|an|the)\b', re.UNICODE) lowercase__ = None def __a ( ) ->List[Any]: a__: Dict = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_SCREAMING_SNAKE_CASE , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_SCREAMING_SNAKE_CASE , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__: Optional[Any] = bool(qa['answers']['text'] ) return qid_to_has_ans def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE ): return ARTICLES_REGEX.sub(' ' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE ): a__: Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[int]: if not s: return [] return normalize_answer(_SCREAMING_SNAKE_CASE ).split() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: a__: Any = get_tokens(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = get_tokens(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = collections.Counter(_SCREAMING_SNAKE_CASE ) & collections.Counter(_SCREAMING_SNAKE_CASE ) a__: Tuple = sum(common.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__: Any = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) a__: Dict = (2 * precision * recall) / (precision + recall) return fa def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: a__: Union[str, Any] = {} a__: Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__: Optional[int] = qa['id'] a__: List[Any] = [t for t in qa['answers']['text'] if normalize_answer(_SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__: str = [''] if qid not in preds: print(F'Missing prediction for {qid}' ) continue a__: Any = preds[qid] # Take max over all gold answers a__: List[str] = max(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) a__: Optional[int] = max(compute_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: List[str] = {} for qid, s in scores.items(): a__: List[Any] = na_probs[qid] > na_prob_thresh if pred_na: a__: Optional[int] = float(not qid_to_has_ans[qid] ) else: a__: Optional[Any] = s return new_scores def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Tuple: if not qid_list: a__: str = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: a__: Optional[Any] = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: for k in new_eval: a__: List[Any] = new_eval[k] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: plt.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_SCREAMING_SNAKE_CASE ) plt.savefig(_SCREAMING_SNAKE_CASE ) plt.clf() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[str]: a__: Optional[int] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) a__: Dict = 0.0 a__: Optional[int] = 1.0 a__: Tuple = 0.0 a__: Tuple = [1.0] a__: Optional[Any] = [0.0] a__: Optional[Any] = 0.0 for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__: Optional[Any] = true_pos / float(i + 1 ) a__: int = true_pos / float(_SCREAMING_SNAKE_CASE ) if i == len(_SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_SCREAMING_SNAKE_CASE ) recalls.append(_SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ap": 100.0 * avg_prec} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: if out_image_dir and not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) a__: Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__: Optional[Any] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) a__: List[str] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) a__: Optional[Any] = {k: float(_SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} a__: List[Any] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_exact' ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_f1' ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_oracle' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: if not qid_list: return a__: Any = [na_probs[k] for k in qid_list] a__: List[str] = np.ones_like(_SCREAMING_SNAKE_CASE ) / float(len(_SCREAMING_SNAKE_CASE ) ) plt.hist(_SCREAMING_SNAKE_CASE , weights=_SCREAMING_SNAKE_CASE , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(_SCREAMING_SNAKE_CASE , F'na_prob_hist_{name}.png' ) ) plt.clf() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__: str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__: List[Any] = num_no_ans a__: Union[str, Any] = cur_score a__: Optional[Any] = 0.0 a__: str = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: a__: Tuple = scores[qid] else: if preds[qid]: a__: Optional[Any] = -1 else: a__: Optional[int] = 0 cur_score += diff if cur_score > best_score: a__: Dict = cur_score a__: Optional[int] = na_probs[qid] return 100.0 * best_score / len(_SCREAMING_SNAKE_CASE ), best_thresh def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__ , a__: str = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__ , a__: Optional[int] = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: List[Any] = best_exact a__: Dict = exact_thresh a__: Optional[int] = best_fa a__: str = fa_thresh def __a ( ) ->int: with open(OPTS.data_file ) as f: a__: Tuple = json.load(_SCREAMING_SNAKE_CASE ) a__: Union[str, Any] = dataset_json['data'] with open(OPTS.pred_file ) as f: a__: Dict = json.load(_SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__: Dict = json.load(_SCREAMING_SNAKE_CASE ) else: a__: Optional[Any] = {k: 0.0 for k in preds} a__: List[Any] = make_qid_to_has_ans(_SCREAMING_SNAKE_CASE ) # maps qid to True/False a__: Optional[int] = [k for k, v in qid_to_has_ans.items() if v] a__: Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a__ , a__: Optional[Any] = get_raw_scores(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) a__: Dict = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) a__: str = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if has_ans_qids: a__: List[str] = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'HasAns' ) if no_ans_qids: a__: Optional[Any] = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: print(json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": lowercase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
203
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowercase): a__: Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__: Any = FlaxAutoModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowercase): a__: str = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__: Any = FlaxAutoModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: a__: Dict = AutoTokenizer.from_pretrained(lowercase) a__: Union[str, Any] = FlaxBertModel.from_pretrained(lowercase) a__: List[str] = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**lowercase): return model(**lowercase) eval(**lowercase).block_until_ready() @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: a__: Optional[Any] = AutoTokenizer.from_pretrained(lowercase) a__: Any = FlaxRobertaModel.from_pretrained(lowercase) a__: int = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**lowercase): return model(**lowercase) eval(**lowercase).block_until_ready() def lowerCamelCase_ ( self) -> Any: '''simple docstring''' with self.assertRaisesRegex( lowercase , 'bert-base is not a local folder and is not a valid model identifier'): a__: str = FlaxAutoModel.from_pretrained('bert-base') def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): a__: List[str] = FlaxAutoModel.from_pretrained(lowercase , revision='aaaaaa') def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): a__: List[str] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model') def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' with self.assertRaisesRegex(lowercase , 'Use `from_pt=True` to load this model'): a__: List[str] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only')
203
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _UpperCAmelCase : Optional[Any] ="""\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n""" _UpperCAmelCase : List[Any] ="""\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n""" _UpperCAmelCase : List[str] ="""\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n""" def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: return float((preds == labels).mean() ) def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: lowerCAmelCase_ : Any = simple_accuracy(_lowercase , _lowercase ) lowerCAmelCase_ : List[str] = float(fa_score(y_true=_lowercase , y_pred=_lowercase ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: lowerCAmelCase_ : Union[str, Any] = np.array(_lowercase ) lowerCAmelCase_ : Tuple = np.array(_lowercase ) lowerCAmelCase_ : Dict = en_sentvecs.shape[0] # mean centering lowerCAmelCase_ : int = en_sentvecs - np.mean(_lowercase , axis=0 ) lowerCAmelCase_ : Dict = in_sentvecs - np.mean(_lowercase , axis=0 ) lowerCAmelCase_ : int = cdist(_lowercase , _lowercase , '''cosine''' ) lowerCAmelCase_ : Tuple = np.array(range(_lowercase ) ) lowerCAmelCase_ : Optional[Any] = sim.argsort(axis=1 )[:, :10] lowerCAmelCase_ : List[str] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class snake_case__( datasets.Metric ): '''simple docstring''' def lowercase_ ( self ) -> Union[str, Any]: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", ''' '''\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", ''' '''\"wiki-ner\"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def lowercase_ ( self , __lowercase , __lowercase ) -> Tuple: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__lowercase , __lowercase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__lowercase , __lowercase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", ''' '''\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", ''' '''\"wiki-ner\"]''' )
262
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: List[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self: Tuple ) -> Any: snake_case_, snake_case_ :List[str] = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_, snake_case_ :Union[str, Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ :Union[str, Any] = controlnet_params snake_case_ :Union[str, Any] = """bird""" snake_case_ :List[Any] = jax.device_count() snake_case_ :List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case_ :List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) snake_case_ :List[str] = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case_ :Any = jax.random.PRNGKey(0 ) snake_case_ :List[str] = jax.random.split(snake_case , jax.device_count() ) snake_case_ :List[Any] = replicate(snake_case ) snake_case_ :List[str] = shard(snake_case ) snake_case_ :str = shard(snake_case ) snake_case_ :Dict = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case_ :str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ :Union[str, Any] = images[0, 253:256, 253:256, -1] snake_case_ :str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ :Dict = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self: int ) -> Dict: snake_case_, snake_case_ :List[Any] = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_, snake_case_ :int = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) snake_case_ :str = controlnet_params snake_case_ :Optional[int] = """Chef in the kitchen""" snake_case_ :Union[str, Any] = jax.device_count() snake_case_ :Any = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case_ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) snake_case_ :Optional[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case_ :str = jax.random.PRNGKey(0 ) snake_case_ :str = jax.random.split(snake_case , jax.device_count() ) snake_case_ :Tuple = replicate(snake_case ) snake_case_ :str = shard(snake_case ) snake_case_ :int = shard(snake_case ) snake_case_ :List[str] = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case_ :str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ :int = images[0, 253:256, 253:256, -1] snake_case_ :Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ :Optional[int] = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
66
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
366
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : int=1_3 ,lowercase__ : Optional[int]=7 ,lowercase__ : List[Any]=True ,lowercase__ : Tuple=True ,lowercase__ : List[Any]=False ,lowercase__ : Dict=True ,lowercase__ : List[str]=9_9 ,lowercase__ : List[str]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : int=4 ,lowercase__ : Tuple=3_7 ,lowercase__ : List[str]="gelu" ,lowercase__ : Dict=0.1 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Any=5_1_2 ,lowercase__ : Tuple=1_6 ,lowercase__ : Optional[Any]=2 ,lowercase__ : str=0.0_2 ,lowercase__ : List[Any]=3 ,lowercase__ : Any=4 ,lowercase__ : List[Any]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : str ): return DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,lowercase__ : int ): __lowercase = DistilBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Tuple ): __lowercase = DistilBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Dict ,lowercase__ : Union[str, Any] ): __lowercase = DistilBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Tuple ): __lowercase = self.num_labels __lowercase = DistilBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ): __lowercase = self.num_labels __lowercase = DistilBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any ): __lowercase = self.num_choices __lowercase = DistilBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE : Dict = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : int = True def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = DistilBertModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,dim=3_7 ) def SCREAMING_SNAKE_CASE ( self : Any ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DistilBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''traced_model.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''traced_model.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
104
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
0
import argparse import json import subprocess def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Optional[Any]: """simple docstring""" snake_case_ = [] snake_case_ = ( f'''curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"''' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) snake_case_ = subprocess.run(__A , shell=__A , stdout=subprocess.PIPE ) snake_case_ = output.stdout.decode('''utf-8''' ) snake_case_ = json.loads(__A ) snake_case_ = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__A ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__A ) ) if len(__A ) > 0: snake_case_ = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" return values.split(''',''' ) UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) UpperCAmelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
357
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' __snake_case = "convnextv2" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2_24 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) snake_case_ = num_channels snake_case_ = patch_size snake_case_ = num_stages snake_case_ = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes snake_case_ = [3, 3, 9, 3] if depths is None else depths snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = drop_path_rate snake_case_ = image_size snake_case_ = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
267
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) _lowercase : Union[str, Any] = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _lowercase : List[str] = model(_lowercase )["""last_hidden_state"""] _lowercase : Union[str, Any] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. _lowercase : Optional[Any] = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
250
# Algorithm for the pigeonhole sorting def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[Any] = min(a__) # min() finds the minimum value a_ : List[str] = max(a__) # max() finds the maximum value a_ : str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size a_ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(a__ , a__), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. a_ : Tuple = 0 for count in range(a__): while holes[count] > 0: holes[count] -= 1 a_ : Optional[Any] = count + min_val i += 1 def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a__) print("""Sorted order is:""" , """ """.join(a__)) if __name__ == "__main__": main()
248
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =None __a =None lowerCAmelCase_ : str = namedtuple('CoinsDistribResult', 'moves excess') def _lowerCamelCase ( lowercase : Optional[Any] ) -> int: if root is None: return 0 # Validation def count_nodes(lowercase : Dict ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : Optional[int] ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a__ ) != count_coins(a__ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(lowercase : Union[str, Any] ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _a , _a = get_distrib(node.left ) _a , _a = get_distrib(node.right ) _a = 1 - left_distrib_excess _a = 1 - right_distrib_excess _a = ( left_distrib_moves + right_distrib_moves + abs(a__ ) + abs(a__ ) ) _a = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a__ , a__ ) return get_distrib(a__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : str = '▁' lowerCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =BertGenerationTokenizer __a =False __a =True def UpperCamelCase__ ( self : Optional[Any] ): super().setUp() _a = BertGenerationTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Tuple ): _a = "<s>" _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ ( self : List[str] ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(__a ) , 10_02 ) def UpperCamelCase__ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def UpperCamelCase__ ( self : Tuple ): _a = BertGenerationTokenizer(__a , keep_accents=__a ) _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_85, 46, 10, 1_70, 3_82] , ) _a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _a = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase__ ( self : Any ): return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def UpperCamelCase__ ( self : List[str] ): _a = "Hello World!" _a = [1_85_36, 22_60, 1_01] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ ( self : Optional[int] ): _a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _a = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def UpperCamelCase__ ( self : Tuple ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _a = list(self.big_tokenizer.get_vocab().keys() )[:10] _a = " ".join(__a ) _a = self.big_tokenizer.encode_plus(__a , return_tensors="pt" , return_token_type_ids=__a ) _a = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__a ) _a = BertGenerationConfig() _a = BertGenerationEncoder(__a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def UpperCamelCase__ ( self : Optional[int] ): # fmt: off _a = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
346
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Optional[Any] = ['''pixel_values'''] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PIL.Image.BICUBIC , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : Tuple = size if size is not None else {"height": 256, "width": 256} snake_case : Union[str, Any] = get_size_dict(UpperCamelCase__ ) snake_case : str = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case : int = get_size_dict(UpperCamelCase__ , param_name="crop_size" ) snake_case : Dict = do_resize snake_case : int = size snake_case : Dict = resample snake_case : Optional[int] = do_center_crop snake_case : List[str] = crop_size snake_case : Dict = do_rescale snake_case : Union[str, Any] = rescale_factor snake_case : Tuple = do_normalize snake_case : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PIL.Image.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' snake_case : Dict = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( UpperCamelCase__ , size=(size["height"], size["width"]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' snake_case : int = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__=None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> PIL.Image.Image: '''simple docstring''' snake_case : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case : Optional[Any] = resample if resample is not None else self.resample snake_case : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : int = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : List[str] = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : int = get_size_dict(UpperCamelCase__ ) snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size snake_case : int = get_size_dict(UpperCamelCase__ , param_name="crop_size" ) snake_case : Optional[Any] = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case : Dict = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: snake_case : List[Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: snake_case : str = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: snake_case : Optional[Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: snake_case : Dict = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] snake_case : Optional[int] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] snake_case : int = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
203
"""simple docstring""" def __lowerCAmelCase ( lowercase : List[str] , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Tuple , lowercase : List[Any] , lowercase : int ) -> List[Any]: """simple docstring""" if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCAmelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[int] ) -> List[Any]: """simple docstring""" snake_case : Any = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
203
1
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)]) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained('''gpt2''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = GenerationConfig.from_model_config(lowercase_) SCREAMING_SNAKE_CASE_ : str = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig() SCREAMING_SNAKE_CASE_ : Tuple = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } SCREAMING_SNAKE_CASE_ : List[Any] = copy.deepcopy(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = generation_config.update(**lowercase_) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {'''foo''': '''bar'''}) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = GenerationConfig() SCREAMING_SNAKE_CASE_ : Optional[int] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir: generation_config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''') SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig.from_model_config(lowercase_) assert not hasattr(lowercase_ , '''foo''') # no new kwargs should be initialized if from config def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , lowercase_) self.assertEqual(default_config.num_beams , 1) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , lowercase_) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''test-generation-config''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
369
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _A (__a , __a , __a=1e-12 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T return jnp.matmul(__a , norm_emb_a.T ) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config) SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype) SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,)) def __call__( self : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE_ : Tuple = 0.0 SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01 SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = CLIPConfig __UpperCamelCase = "clip_input" __UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ): '''simple docstring''' if input_shape is None: SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_) super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng} SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params'''] return random_params def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1)) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
318
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Any = "▁" a__ : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} a__ : Optional[Any] = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } a__ : str = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } a__ : Union[str, Any] = { "ernie-m-base": 5_1_4, "ernie-m-large": 5_1_4, } a__ : Union[str, Any] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : Union[str, Any] = ['input_ids'] UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Dict = RESOURCE_FILES_NAMES def __init__( self :Union[str, Any] , _A :Tuple , _A :Union[str, Any]=None , _A :Any=False , _A :int="utf8" , _A :List[str]="[UNK]" , _A :int="[SEP]" , _A :Optional[int]="[PAD]" , _A :Tuple="[CLS]" , _A :List[Any]="[MASK]" , _A :Union[str, Any] = None , **_A :Union[str, Any] , ) -> None: '''simple docstring''' __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , vocab_file=_SCREAMING_SNAKE_CASE , encoding=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) __A = do_lower_case __A = sentencepiece_model_ckpt __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __A = self.load_vocab(filepath=_SCREAMING_SNAKE_CASE ) else: __A = {self.sp_model.id_to_piece(_SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} __A = {v: k for k, v in self.vocab.items()} def lowercase_ ( self :int , _A :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if text is None: return None __A = self.tokenize(_SCREAMING_SNAKE_CASE ) __A , __A = '', [] for i, ch in enumerate(_SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: __A = self.SP_CHAR_MAPPING.get(_SCREAMING_SNAKE_CASE ) else: __A = unicodedata.normalize('NFKC' , _SCREAMING_SNAKE_CASE ) if self.is_whitespace(_SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(_SCREAMING_SNAKE_CASE ) ) __A , __A , __A = normalized_text, [], 0 if self.do_lower_case: __A = text.lower() for token in split_tokens: if token[:1] == "▁": __A = token[1:] __A = text[offset:].index(_SCREAMING_SNAKE_CASE ) + offset __A = start + len(_SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __A = end return token_mapping @property def lowercase_ ( self :List[str] ) -> Optional[int]: '''simple docstring''' return len(self.vocab ) def lowercase_ ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __A = self.__dict__.copy() __A = None return state def __setstate__( self :List[Any] , _A :int ) -> str: '''simple docstring''' __A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowercase_ ( self :Optional[Any] , _A :Tuple ) -> Union[str, Any]: '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c in text) ) def lowercase_ ( self :int , _A :int , _A :Any=False , _A :str=64 , _A :str=0.1 ) -> List[Any]: '''simple docstring''' if self.sp_model_kwargs.get('enable_sampling' ) is True: __A = True if self.sp_model_kwargs.get('alpha' ) is not None: __A = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: __A = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: __A = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE ) else: __A = self.sp_model.SampleEncodeAsPieces(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A = [] for pi, piece in enumerate(_SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(_SCREAMING_SNAKE_CASE ) continue else: continue __A = 0 for i, chunk in enumerate(_SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_SCREAMING_SNAKE_CASE ) or self.is_punct(_SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_SCREAMING_SNAKE_CASE ) __A = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __A = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __A = i if len(_SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowercase_ ( self :Union[str, Any] , _A :Optional[Any] ) -> int: '''simple docstring''' __A = ''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ' ' ).strip() return out_string def lowercase_ ( self :Union[str, Any] , _A :Union[str, Any] ) -> Any: '''simple docstring''' __A = self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) __A = ''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ' ' ).strip() return out_string def lowercase_ ( self :Optional[Any] , _A :List[Any] ) -> str: '''simple docstring''' return self.vocab.get(_SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def lowercase_ ( self :Optional[Any] , _A :List[str] ) -> Union[str, Any]: '''simple docstring''' return self.reverse_vocab.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def lowercase_ ( self :List[Any] , _A :Optional[Any] , _A :Dict=None ) -> List[str]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowercase_ ( self :List[Any] , _A :Tuple , _A :Tuple=None ) -> List[Any]: '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowercase_ ( self :Any , _A :Tuple , _A :Optional[int]=None , _A :Union[str, Any]=False ) -> List[Any]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def lowercase_ ( self :List[str] , _A :Optional[Any] , _A :Optional[int] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(_SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(_SCREAMING_SNAKE_CASE ) + 3) def lowercase_ ( self :Union[str, Any] , _A :List[str] ) -> Dict: '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def lowercase_ ( self :Optional[int] , _A :Optional[int] ) -> Any: '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowercase_ ( self :Dict , _A :Union[str, Any] ) -> Any: '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def lowercase_ ( self :int , _A :str ) -> Optional[int]: '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_SCREAMING_SNAKE_CASE ) == 1: __A = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def lowercase_ ( self :str , _A :str ) -> List[str]: '''simple docstring''' __A = {} with io.open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_SCREAMING_SNAKE_CASE ): __A = line.rstrip('\n' ) __A = int(_SCREAMING_SNAKE_CASE ) return token_to_idx def lowercase_ ( self :Optional[Any] , _A :List[str] , _A :Optional[int] = None ) -> Tuple[str]: '''simple docstring''' __A = 0 if os.path.isdir(_SCREAMING_SNAKE_CASE ): __A = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __A = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __A = token_index writer.write(token + '\n' ) index += 1 __A = os.path.join(_SCREAMING_SNAKE_CASE , 'sentencepiece.bpe.model' ) with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (vocab_file,)
161
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCamelCase = 1 UpperCamelCase = 1 while repunit: UpperCamelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase__ ( __UpperCamelCase = 1000000 )-> int: UpperCamelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__UpperCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
321
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCamelCase__ = 10 def lowerCAmelCase__ ( a__ , a__ , a__ , a__ ) ->int: '''simple docstring''' for i in range(a__ , a__ ): if array[i] == target: return i return -1 def lowerCAmelCase__ ( a__ , a__ ) ->int: '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) while left <= right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) _UpperCamelCase = (left + right) // 3 + 1 _UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _UpperCamelCase = one_third - 1 elif array[two_third] < target: _UpperCamelCase = two_third + 1 else: _UpperCamelCase = one_third + 1 _UpperCamelCase = two_third - 1 else: return -1 def lowerCAmelCase__ ( a__ , a__ , a__ , a__ ) ->int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) _UpperCamelCase = (left + right) // 3 + 1 _UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a__ , one_third - 1 , a__ , a__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a__ , a__ , a__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a__ , a__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = input('''Enter numbers separated by comma:\n''').strip() lowerCamelCase__ = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCamelCase__ = int(input('''Enter the number to be found in the list:\n''').strip()) lowerCamelCase__ = ite_ternary_search(collection, target) lowerCamelCase__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print('''Not found''')
63
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Any=13 , lowercase_ : Optional[int]=7 , lowercase_ : Optional[Any]=True , lowercase_ : str=True , lowercase_ : Tuple=True , lowercase_ : List[Any]=True , lowercase_ : str=99 , lowercase_ : Any=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : List[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : List[Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : int=16 , lowercase_ : str=2 , lowercase_ : Tuple=0.02 , lowercase_ : Dict=4 , ) -> List[str]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def __UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = True __A = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCamelCase = FlaxRoFormerModelTester(self) @slow def __UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowercase_) _UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowercase_) @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCamelCase = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") _UpperCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]]) _UpperCamelCase = model(lowercase_)[0] _UpperCamelCase = 50000 _UpperCamelCase = (1, 6, vocab_size) self.assertEqual(output.shape , lowercase_) _UpperCamelCase = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4))
63
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( a :Union[str, Any] ) -> List[str]: a = os.path.join(args.tf_model_dir , '''parameters.json''' ) a = json.loads(open(a ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): a = args.output + '''.pt''' a = OrderedDict() with tf.device('''/CPU:0''' ): a = tf.train.load_checkpoint(args.tf_model_dir ) a = reader.get_variable_to_shape_map() for key_name in shapes.keys(): a = reader.get_tensor(a ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): a = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): a = 8 a = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix a = torch.tensor(a ) elif key_name.startswith('''model/moe''' ): a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): a = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix a = torch.tensor(a ) elif key_name.endswith('''/softmlp/kernel''' ): a = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix a = torch.tensor(a ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): a = key_name[-9:-7] for i in range(16 ): a = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) a = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided a = torch.tensor(a ) elif key_name.startswith('''model/mlp''' ): a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): a = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix a = torch.tensor(a ) elif key_name.endswith('''/p1/bias''' ): a = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player a = vnp.copy() # same because it is one dimensional a = torch.tensor(a ) elif key_name.endswith('''/p2/kernel''' ): a = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix a = torch.tensor(a ) elif key_name.endswith('''/p2/bias''' ): a = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player a = vnp.copy() # same because it is one dimensional a = torch.tensor(a ) elif key_name.startswith('''model/ln''' ): a = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): a = '''model.blocks.%d.feed_forward.norm.bias''' % player a = vnp.copy() # same because it is one dimensional a = torch.tensor(a ) elif key_name.endswith('''/g''' ): a = '''model.blocks.%d.feed_forward.norm.weight''' % player a = vnp.copy() # same because it is one dimensional a = torch.tensor(a ) elif key_name.startswith('''model/att''' ): a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): a = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum a = state[:, 0, :, :] a = state[:, 1, :, :] a = state[:, 2, :, :] a = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix a = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix a = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix a = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player a = torch.tensor(a ) a = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player a = torch.tensor(a ) a = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player a = torch.tensor(a ) elif key_name.endswith('''/o/kernel''' ): a = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player a = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix a = torch.tensor(a ) elif key_name.startswith('''model/an''' ): a = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): a = '''model.blocks.%d.self_attn.norm.bias''' % player a = vnp.copy() # same because it is one dimensional a = torch.tensor(a ) elif key_name.endswith('''/g''' ): a = '''model.blocks.%d.self_attn.norm.weight''' % player a = vnp.copy() # same because it is one dimensional a = torch.tensor(a ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): a = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] a = '''model.%s.weight''' % nlayer a = vnp.copy() # same in embedded a = torch.tensor(a ) if key_name.startswith('''model/wte''' ): a = '''lm_head.weight''' a = vnp.copy() # same in embedded a = torch.tensor(a ) elif key_name.startswith('''model/wob''' ): a = '''final_logits_bias''' a = vnp.copy() # same in embedded a = state.reshape((1, -1) ) a = torch.tensor(a ) elif key_name == "model/dense/kernel": a = '''model.last_project.weight''' a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix a = torch.tensor(a ) elif key_name == "model/dense_1/bias": a = '''model.last_project.bias''' a = vnp.copy() # same because it is one dimensional a = torch.tensor(a ) torch.save(a , args.output ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") UpperCAmelCase__ = parser.parse_args() convert_tf_gptsan_to_pt(args)
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionInpaintPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=0 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((64, 64) ) __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe(**__SCREAMING_SNAKE_CASE ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained(__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained( __SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , safety_checker=__SCREAMING_SNAKE_CASE , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-2-inpainting""" __SCREAMING_SNAKE_CASE = PNDMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline.from_pretrained( __SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE = """Face of a yellow cat, high resolution, sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
267
0
import argparse a_ = """docs/source/_static/js/custom.js""" def __lowercase ( snake_case_ : Tuple ) ->Union[str, Any]: '''simple docstring''' with open(snake_case_ ,encoding='''utf-8''' ,newline='''\n''' ) as f: __A : Any = f.readlines() __A : str = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 __A : Any = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(snake_case_ ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(snake_case_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") a_ = parser.parse_args() update_custom_js(args.version)
357
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = XLMTokenizer _lowerCamelCase = False def UpperCamelCase__( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __A : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = '''lower newer''' __A : int = '''lower newer''' return input_text, output_text def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = XLMTokenizer(self.vocab_file , self.merges_file ) __A : Optional[Any] = '''lower''' __A : Any = ['''low''', '''er</w>'''] __A : Tuple = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = tokens + ['''<unk>'''] __A : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __A : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCamelCase ) __A : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCamelCase ) __A : int = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __A : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
291
0
"""simple docstring""" import math import sys import cva import numpy as np def lowercase ( __snake_case : np.ndarray , __snake_case : float ): # For applying gaussian function for each element in matrix. lowercase_ : Union[str, Any] = math.sqrt(__snake_case ) lowercase_ : Any = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowercase ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int , __snake_case : int ): lowercase_ : List[str] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowercase ( __snake_case : int , __snake_case : float ): # Creates a gaussian kernel of given dimension. lowercase_ : Tuple = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __snake_case ): for j in range(0 , __snake_case ): lowercase_ : List[str] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__snake_case , __snake_case ) def lowercase ( __snake_case : np.ndarray , __snake_case : float , __snake_case : float , __snake_case : int , ): lowercase_ : Tuple = np.zeros(img.shape ) lowercase_ : Union[str, Any] = get_gauss_kernel(__snake_case , __snake_case ) lowercase_ , lowercase_ : List[Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowercase_ : str = get_slice(__snake_case , __snake_case , __snake_case , __snake_case ) lowercase_ : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowercase_ : List[Any] = vec_gaussian(__snake_case , __snake_case ) lowercase_ : List[Any] = np.multiply(__snake_case , __snake_case ) lowercase_ : Union[str, Any] = np.multiply(__snake_case , __snake_case ) lowercase_ : Any = np.sum(__snake_case ) / np.sum(__snake_case ) lowercase_ : Optional[Any] = val return imga def lowercase ( __snake_case : list ): lowercase_ : Optional[Any] = args[1] if args[1:] else '''../image_data/lena.jpg''' lowercase_ : Dict = float(args[2] ) if args[2:] else 1.0 lowercase_ : int = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowercase_ : str = int(args[4] ) lowercase_ : Optional[int] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowercase_ : Dict = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __A , __A , __A , __A : List[str] = parse_args(sys.argv) __A : str = cva.imread(filename, 0) cva.imshow('''input image''', img) __A : str = img / 255 __A : Any = out.astype('''float32''') __A : List[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __A : Any = out * 255 __A : Optional[int] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
33
'''simple docstring''' from timeit import timeit UpperCAmelCase_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 500000 UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
346
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
1
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] = 13 , _UpperCAmelCase : Optional[int] = 64 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : List[str] = 3 , _UpperCAmelCase : Any = 3 , _UpperCAmelCase : Union[str, Any] = True , _UpperCAmelCase : str = True , _UpperCAmelCase : Tuple = 128 , _UpperCAmelCase : Union[str, Any]=[16, 32, 64, 128] , _UpperCAmelCase : Any = 7 , _UpperCAmelCase : int = 4 , _UpperCAmelCase : str = 37 , _UpperCAmelCase : Tuple = "gelu" , _UpperCAmelCase : Dict = 0.1 , _UpperCAmelCase : Any = 0.1 , _UpperCAmelCase : Optional[Any] = 10 , _UpperCAmelCase : Dict = 0.02 , _UpperCAmelCase : Dict = 2 , _UpperCAmelCase : str = 1 , _UpperCAmelCase : Optional[Any] = 128 , _UpperCAmelCase : Union[str, Any] = [2, 2, 2, 2] , _UpperCAmelCase : int = 2 , _UpperCAmelCase : List[str] = 2 , ): _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = encoder_stride _A = num_attention_outputs _A = embed_dim _A = embed_dim + 1 _A = resolution _A = depths _A = hidden_sizes _A = dim _A = mlp_expansion_ratio def lowerCAmelCase_ ( self : str ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : str ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] ): _A = TFEfficientFormerModel(config=_UpperCAmelCase ) _A = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): _A = self.type_sequence_label_size _A = TFEfficientFormerForImageClassification(_UpperCAmelCase ) _A = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A = 1 _A = TFEfficientFormerForImageClassification(_UpperCAmelCase ) _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : int ): _A = self.prepare_config_and_inputs() _A = config_and_inputs _A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase : Tuple = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase : List[str] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : str = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Tuple = False def lowerCAmelCase_ ( self : List[Any] ): _A = TFEfficientFormerModelTester(self ) _A = ConfigTester( self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase_ ( self : List[str] ): pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : Optional[int] ): _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): def check_hidden_states_output(_UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ): _A = model_class(_UpperCAmelCase ) _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) , training=_UpperCAmelCase ) _A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) if hasattr(self.model_tester , 'encoder_seq_length' ): _A = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _A = seq_length * self.model_tester.chunk_length else: _A = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _A = outputs.decoder_hidden_states self.asseretIsInstance(_UpperCAmelCase , (list, tuple) ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _A = getattr(self.model_tester , 'seq_length' , _UpperCAmelCase ) _A = getattr(self.model_tester , 'decoder_seq_length' , _UpperCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str=False ): _A = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase_ ( self : str ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase_ ( self : List[str] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Any ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEfficientFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True _A = getattr(self.model_tester , 'seq_length' , _UpperCAmelCase ) _A = getattr(self.model_tester , 'encoder_seq_length' , _UpperCAmelCase ) _A = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) _A = getattr(self.model_tester , 'chunk_length' , _UpperCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _A = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _A = True _A = False _A = True _A = model_class(_UpperCAmelCase ) _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) , training=_UpperCAmelCase ) _A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A = True _A = model_class(_UpperCAmelCase ) _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) , training=_UpperCAmelCase ) _A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase_ ( self : List[str] ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _A = model_class(_UpperCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _A = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_UpperCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _A = model(_UpperCAmelCase ) self.assertTrue(outputs_dict is not None ) def _snake_case ( ) -> List[Any]: '''simple docstring''' _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : List[str] ): return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : List[Any] ): _A = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors='tf' ) # forward pass _A = model(**_UpperCAmelCase , training=_UpperCAmelCase ) # verify the logits _A = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _A = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : Tuple ): _A = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors='tf' ) # forward pass _A = model(**_UpperCAmelCase , training=_UpperCAmelCase ) # verify the logits _A = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _A = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
315
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase () -> Any: lowercase :List[str] = 9 lowercase :List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowercase :int = kruskal(a_ , a_) lowercase :List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(a_) == sorted(a_)
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "swin2sr" __A : Dict = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , snake_case__ : List[str]=6_4 , snake_case__ : Union[str, Any]=1 , snake_case__ : Tuple=3 , snake_case__ : int=1_8_0 , snake_case__ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , snake_case__ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case__ : Tuple=8 , snake_case__ : List[Any]=2.0 , snake_case__ : Any=True , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.1 , snake_case__ : Dict="gelu" , snake_case__ : Optional[int]=False , snake_case__ : Any=0.02 , snake_case__ : Any=1e-5 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=1.0 , snake_case__ : Optional[Any]="1conv" , snake_case__ : List[str]="pixelshuffle" , **snake_case__ : Tuple , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Dict = image_size lowercase :List[str] = patch_size lowercase :Tuple = num_channels lowercase :int = embed_dim lowercase :Any = depths lowercase :Union[str, Any] = len(snake_case__ ) lowercase :List[str] = num_heads lowercase :int = window_size lowercase :Tuple = mlp_ratio lowercase :List[Any] = qkv_bias lowercase :Optional[int] = hidden_dropout_prob lowercase :Tuple = attention_probs_dropout_prob lowercase :Tuple = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Union[str, Any] = use_absolute_embeddings lowercase :Dict = layer_norm_eps lowercase :Optional[Any] = initializer_range lowercase :Optional[Any] = upscale lowercase :Any = img_range lowercase :Optional[int] = resi_connection lowercase :Union[str, Any] = upsampler
172
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ : Any = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
63
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='LayoutLMv3ImageProcessor' __a =('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Tuple , __a : int=None , __a : Union[str, Any]=None , **__a : Optional[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Any , __a : List[str] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Dict , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _a = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def UpperCamelCase__ ( self : int , *__a : str , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : List[Any] , **__a : List[str] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : Tuple ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCamelCase__ ( self : int ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
63
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef A: List[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): warnings.warn(__lowerCamelCase , __lowerCamelCase ) requires_backends(__lowerCamelCase , """sklearn""" ) return (preds == labels).mean() def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Any ): warnings.warn(__lowerCamelCase , __lowerCamelCase ) requires_backends(__lowerCamelCase , """sklearn""" ) UpperCAmelCase : Optional[Any] = simple_accuracy(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase : List[Any] = fa_score(y_true=__lowerCamelCase , y_pred=__lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _snake_case ( UpperCamelCase : Any , UpperCamelCase : List[Any] ): warnings.warn(__lowerCamelCase , __lowerCamelCase ) requires_backends(__lowerCamelCase , """sklearn""" ) UpperCAmelCase : Any = pearsonr(__lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase : Optional[Any] = spearmanr(__lowerCamelCase , __lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ): warnings.warn(__lowerCamelCase , __lowerCamelCase ) requires_backends(__lowerCamelCase , """sklearn""" ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), F"Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCamelCase , __lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCamelCase , __lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCamelCase , __lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCamelCase , __lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} else: raise KeyError(__lowerCamelCase ) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : int ): warnings.warn(__lowerCamelCase , __lowerCamelCase ) requires_backends(__lowerCamelCase , """sklearn""" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__lowerCamelCase )} and {len(__lowerCamelCase )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} else: raise KeyError(__lowerCamelCase )
351
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A: str = None A: List[Any] = logging.get_logger(__name__) A: Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A: Union[str, Any] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } A: Tuple = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off A: Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Tuple = ['input_ids', 'attention_mask'] __lowerCAmelCase : str = MBartTokenizer __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = vocab_file UpperCAmelCase : Optional[int] = False if not self.vocab_file else True UpperCAmelCase : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCAmelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase : int = src_lang if src_lang is not None else """en_XX""" UpperCAmelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase : List[str] = src_lang UpperCAmelCase : Union[str, Any] = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "en_XX" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "ro_RO" , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : int = src_lang UpperCAmelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = [] UpperCAmelCase : Tuple = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Tuple = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = [] UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : str = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return UpperCAmelCase : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
76
0
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' if len(snake_case__ ) <= 1 or n <= 1: return insert_next(snake_case__ , n - 1 ) rec_insertion_sort(snake_case__ , n - 1 ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' if index >= len(snake_case__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _lowerCAmelCase , _lowerCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case__ , index + 1 ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter integers separated by spaces: ") _SCREAMING_SNAKE_CASE = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
158
"""simple docstring""" from typing import Any def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> list: _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCamelCase = {} lowerCamelCase = {} for state in states_space: lowerCamelCase = observations_space[0] lowerCamelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__ ) ): lowerCamelCase = observations_space[o] lowerCamelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase = """""" lowerCamelCase = -1 for k_state in states_space: lowerCamelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase = probability lowerCamelCase = k_state # Update probabilities and pointers dicts lowerCamelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase = arg_max # The final observation lowerCamelCase = observations_space[len(snake_case__ ) - 1] # argmax for given final observation lowerCamelCase = """""" lowerCamelCase = -1 for k_state in states_space: lowerCamelCase = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase = probability lowerCamelCase = k_state lowerCamelCase = arg_max # Process pointers backwards lowerCamelCase = last_state lowerCamelCase = [] for o in range(len(snake_case__ ) - 1 , -1 , -1 ): result.append(snake_case__ ) lowerCamelCase = pointers[previous, observations_space[o]] result.reverse() return result def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__ ) _validate_dicts( snake_case__ , snake_case__ , snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def a__ ( snake_case__ , snake_case__ ) -> None: _validate_list(snake_case__ , """observations_space""" ) _validate_list(snake_case__ , """states_space""" ) def a__ ( snake_case__ , snake_case__ ) -> None: if not isinstance(_object , snake_case__ ): lowerCamelCase = F'{var_name} must be a list' raise ValueError(snake_case__ ) else: for x in _object: if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'{var_name} must be a list of strings' raise ValueError(snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , ) -> None: _validate_dict(snake_case__ , """initial_probabilities""" , snake_case__ ) _validate_nested_dict(snake_case__ , """transition_probabilities""" ) _validate_nested_dict(snake_case__ , """emission_probabilities""" ) def a__ ( snake_case__ , snake_case__ ) -> None: _validate_dict(_object , snake_case__ , snake_case__ ) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False ) -> None: if not isinstance(_object , snake_case__ ): lowerCamelCase = F'{var_name} must be a dict' raise ValueError(snake_case__ ) if not all(isinstance(snake_case__ , snake_case__ ) for x in _object ): lowerCamelCase = F'{var_name} all keys must be strings' raise ValueError(snake_case__ ) if not all(isinstance(snake_case__ , snake_case__ ) for x in _object.values() ): lowerCamelCase = """nested dictionary """ if nested else """""" lowerCamelCase = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
291
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') A__ = '''xvjiarui/stable-diffusion-2-inpainting''' A__ , A__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__) A__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' A__ = jax.random.PRNGKey(0) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = num_samples * [init_image] A__ = num_samples * [mask_image] A__ , A__ , A__ = pipeline.prepare_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # shard inputs and rng A__ = replicate(UpperCAmelCase__) A__ = jax.random.split(UpperCAmelCase__ , jax.device_count()) A__ = shard(UpperCAmelCase__) A__ = shard(UpperCAmelCase__) A__ = shard(UpperCAmelCase__) A__ = pipeline( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__) A__ = output.images.reshape(UpperCAmelCase__ , 512 , 512 , 3) A__ = images[0, 253:256, 253:256, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten())) A__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
231
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if "cls_token" in name: A__ = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: A__ = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: A__ = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: A__ = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: A__ = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A__ = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: A__ = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: A__ = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: A__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: A__ = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: A__ = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: A__ = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: A__ = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: A__ = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split('''.''' ) A__ = int(key_split[1] ) if "decoder_blocks" in key: A__ = config.decoder_hidden_size A__ = '''decoder.decoder_layers.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = config.hidden_size A__ = '''vit.encoder.layer.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = ViTMAEConfig() if "large" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 elif "huge" in checkpoint_url: A__ = 14 A__ = 1_280 A__ = 5_120 A__ = 32 A__ = 16 A__ = ViTMAEForPreTraining(lowercase_ ) A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' )['''model'''] A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = image_processor(images=lowercase_ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) A__ = model(**lowercase_ ) A__ = outputs.logits if "large" in checkpoint_url: A__ = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: A__ = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: A__ = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase_ , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
231
1