code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 60_08_51_47_51_43 ): """simple docstring""" try: SCREAMING_SNAKE_CASE : int = int(__UpperCamelCase ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Optional[Any] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE : Optional[Any] = i while n % i == 0: SCREAMING_SNAKE_CASE : int = n // i i += 1 return int(__UpperCamelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
246
'''simple docstring''' def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): SCREAMING_SNAKE_CASE : List[str] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def lowercase__( __UpperCamelCase: int ): """simple docstring""" return binomial_coefficient(2 * node_count ,__UpperCamelCase ) // (node_count + 1) def lowercase__( __UpperCamelCase: int ): """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) SCREAMING_SNAKE_CASE : Optional[Any] = 1 for i in range(1 ,n + 1 ): result *= i return result def lowercase__( __UpperCamelCase: int ): """simple docstring""" return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
246
1
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Optional[Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Optional[Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 0, a __snake_case , __snake_case , __snake_case : int = 0, 1, m while va != 0: __snake_case : Union[str, Any] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase ( lowercase ): UpperCAmelCase : Any = """Wav2Vec2FeatureExtractor""" UpperCAmelCase : List[str] = """AutoTokenizer""" def __init__(self : int , _A : List[str] , _A : str) -> str: super().__init__(_A , _A) __snake_case : Tuple = self.feature_extractor __snake_case : str = False @classmethod def _lowercase (cls : Union[str, Any] , _A : Optional[Any] , **_A : str) -> List[Any]: try: return super().from_pretrained(_A , **_A) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , _A , ) __snake_case : List[str] = WavaVecaFeatureExtractor.from_pretrained(_A , **_A) __snake_case : Any = WavaVecaCTCTokenizer.from_pretrained(_A , **_A) return cls(feature_extractor=_A , tokenizer=_A) def __call__(self : int , *_A : List[Any] , **_A : str) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') __snake_case : int = kwargs.pop('raw_speech') else: __snake_case : Optional[Any] = kwargs.pop('audio' , _A) __snake_case : Tuple = kwargs.pop('sampling_rate' , _A) __snake_case : Any = kwargs.pop('text' , _A) if len(_A) > 0: __snake_case : Any = args[0] __snake_case : Dict = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: __snake_case : str = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A) if text is not None: __snake_case : List[str] = self.tokenizer(_A , **_A) if text is None: return inputs elif audio is None: return encodings else: __snake_case : List[str] = encodings['input_ids'] return inputs def _lowercase (self : str , *_A : Optional[Any] , **_A : int) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A) __snake_case : Optional[int] = kwargs.pop('input_features' , _A) __snake_case : List[Any] = kwargs.pop('labels' , _A) if len(_A) > 0: __snake_case : Tuple = args[0] __snake_case : Union[str, Any] = args[1:] if input_features is not None: __snake_case : Optional[Any] = self.feature_extractor.pad(_A , *_A , **_A) if labels is not None: __snake_case : Tuple = self.tokenizer.pad(_A , **_A) if labels is None: return input_features elif input_features is None: return labels else: __snake_case : str = labels['input_ids'] return input_features def _lowercase (self : Union[str, Any] , *_A : Any , **_A : List[Any]) -> List[Any]: return self.tokenizer.batch_decode(*_A , **_A) def _lowercase (self : Union[str, Any] , *_A : Dict , **_A : Union[str, Any]) -> Any: return self.tokenizer.decode(*_A , **_A) @contextmanager def _lowercase (self : List[str]) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') __snake_case : Dict = True __snake_case : Union[str, Any] = self.tokenizer yield __snake_case : Optional[Any] = self.feature_extractor __snake_case : int = False
172
1
def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [0] * len(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: SCREAMING_SNAKE_CASE_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph A : Any = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
305
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : str = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_text_model''' def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=30_522 , __magic_name__ : Tuple=768 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=1e-12 , __magic_name__ : str=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : Optional[Any]=True , **__magic_name__ : Tuple , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id @classmethod def __A ( cls : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_vision_model''' def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 600 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_560 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(__magic_name__ ) * 4 @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=640 , __magic_name__ : Any=1.0 , __magic_name__ : Dict=0.02 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = AlignTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = AlignVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = temperature_init_value SCREAMING_SNAKE_CASE_ = initializer_range @classmethod def __A ( cls : List[str] , __magic_name__ : AlignTextConfig , __magic_name__ : AlignVisionConfig , **__magic_name__ : Tuple ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : Any = StableUnCLIPImgaImgPipeline lowercase_ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : Dict = frozenset([] ) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = 32 _lowercase : Tuple = embedder_hidden_size # image encoding components _lowercase : Dict = CLIPImageProcessor(crop_size=32, size=32) torch.manual_seed(0) _lowercase : Optional[Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase, projection_dim=lowerCamelCase, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, )) # regular denoising components torch.manual_seed(0) _lowercase : int = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase) _lowercase : str = DDPMScheduler(beta_schedule='squaredcos_cap_v2') torch.manual_seed(0) _lowercase : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) _lowercase : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=lowerCamelCase, projection_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, )) torch.manual_seed(0) _lowercase : Optional[Any] = UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D'), up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D'), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type='projection', projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=lowerCamelCase, layers_per_block=1, upcast_attention=lowerCamelCase, use_linear_projection=lowerCamelCase, ) torch.manual_seed(0) _lowercase : int = DDIMScheduler( beta_schedule='scaled_linear', beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, prediction_type='v_prediction', set_alpha_to_one=lowerCamelCase, steps_offset=1, ) torch.manual_seed(0) _lowercase : Dict = AutoencoderKL() _lowercase : Any = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0, lowerCamelCase=True) -> str: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[int] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Optional[Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) if pil_image: _lowercase : Optional[Any] = input_image * 0.5 + 0.5 _lowercase : Any = input_image.clamp(0, 1) _lowercase : Optional[int] = input_image.cpu().permute(0, 2, 3, 1).float().numpy() _lowercase : List[str] = DiffusionPipeline.numpy_to_pil(lowerCamelCase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Tuple = self.get_dummy_components() _lowercase : List[Any] = StableUnCLIPImgaImgPipeline(**lowerCamelCase) _lowercase : Optional[int] = sd_pipe.to(lowerCamelCase) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs(lowerCamelCase) inputs.update({'image_embeds': None}) _lowercase : int = sd_pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : str = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase) @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') _lowercase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy') _lowercase : int = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img', torch_dtype=torch.floataa) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Optional[int] = torch.Generator(device='cpu').manual_seed(0) _lowercase : Optional[int] = pipe(lowerCamelCase, 'anime turle', generator=lowerCamelCase, output_type='np') _lowercase : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') _lowercase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy') _lowercase : str = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img', torch_dtype=torch.floataa) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Optional[int] = torch.Generator(device='cpu').manual_seed(0) _lowercase : str = pipe(lowerCamelCase, 'anime turle', generator=lowerCamelCase, output_type='np') _lowercase : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowercase : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img', torch_dtype=torch.floataa) _lowercase : Optional[int] = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Any = pipe( lowerCamelCase, 'anime turtle', num_inference_steps=2, output_type='np', ) _lowercase : str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
21
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Any = tokenizer(example["content"] , truncation=_a)["input_ids"] SCREAMING_SNAKE_CASE : Dict = len(example["content"]) / len(output["input_ids"]) return output a_ = HfArgumentParser(PretokenizationArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) a_ = time.time() a_ = load_dataset(args.dataset_name, split='train') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') a_ = time.time() a_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') a_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
76
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowerCAmelCase ( lowercase : Dict ) -> Any: """simple docstring""" if not is_accelerate_available(): return method snake_case : int = version.parse(accelerate.__version__ ).base_version if version.parse(a__ ) < version.parse("0.17.0" ): return method def wrapper(self : Optional[Any] , *lowercase : Optional[Any] , **lowercase : List[str] ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *a__ , **a__ ) return wrapper
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
112
0
def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowerCAmelCase_ = len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(__lowerCAmelCase ) , "Postfix".center(__lowerCAmelCase ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , ("".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=" | " , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=" | " , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] ): """simple docstring""" lowerCAmelCase_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": lowerCAmelCase_ = ")" # change "(" to ")" elif infix[i] == ")": lowerCAmelCase_ = "(" # change ")" to "(" return (infix_2_postfix("".join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _A = input("\nEnter an Infix Equation = ") # Input an Infix equation _A = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
231
import math def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 while num > 0: lowerCAmelCase_ = num % 8 lowerCAmelCase_ = octal + (remainder * math.floor(math.pow(10 , __lowerCAmelCase ) )) counter += 1 lowerCAmelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__lowerCAmelCase )}""" def lowerCamelCase__ ( ): """simple docstring""" print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
231
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a : Tuple = 4 a : Tuple = 3 class UpperCamelCase_ ( __magic_name__ ): pass def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: for shard in shards: for i in range(_lowercase ): yield {"i": i, "shard": shard} def __lowerCamelCase ( ) -> int: UpperCAmelCase : Tuple = int(os.environ["""RANK"""] ) UpperCAmelCase : List[str] = int(os.environ["""WORLD_SIZE"""] ) UpperCAmelCase : List[str] = ArgumentParser() parser.add_argument("""--streaming""" , type=_lowercase ) parser.add_argument("""--local_rank""" , type=_lowercase ) parser.add_argument("""--num_workers""" , type=_lowercase , default=0 ) UpperCAmelCase : Optional[int] = parser.parse_args() UpperCAmelCase : Optional[Any] = args.streaming UpperCAmelCase : Union[str, Any] = args.num_workers UpperCAmelCase : Dict = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(_lowercase )]} UpperCAmelCase : Union[str, Any] = IterableDataset.from_generator(_lowercase , gen_kwargs=_lowercase ) if not streaming: UpperCAmelCase : Optional[Any] = Dataset.from_list(list(_lowercase ) ) UpperCAmelCase : int = split_dataset_by_node(_lowercase , rank=_lowercase , world_size=_lowercase ) UpperCAmelCase : Optional[Any] = torch.utils.data.DataLoader(_lowercase , num_workers=_lowercase ) UpperCAmelCase : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : Union[str, Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : Any = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self , _A , _A=13 , _A=32 , _A=3 , _A=4 , _A=[10, 20, 30, 40] , _A=[2, 2, 3, 2] , _A=True , _A=True , _A=37 , _A="gelu" , _A=10 , _A=0.02 , _A=["stage2", "stage3", "stage4"] , _A=[2, 3, 4] , _A=None , ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : Tuple = image_size _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : List[Any] = num_stages _UpperCAmelCase : List[Any] = hidden_sizes _UpperCAmelCase : Tuple = depths _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : str = num_labels _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : str = out_features _UpperCAmelCase : Any = out_indices _UpperCAmelCase : Any = scope def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __snake_case ( self ) -> List[str]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self , _A , _A , _A ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ConvNextModel(config=_A ) model.to(_A ) model.eval() _UpperCAmelCase : Union[str, Any] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self , _A , _A , _A ) -> Any: '''simple docstring''' _UpperCAmelCase : List[str] = ConvNextForImageClassification(_A ) model.to(_A ) model.eval() _UpperCAmelCase : Tuple = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , _A , _A , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() _UpperCAmelCase : Optional[Any] = model(_A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase : Dict = None _UpperCAmelCase : str = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() _UpperCAmelCase : List[Any] = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( __a , __a , unittest.TestCase): __a : Union[str, Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __a : Optional[Any] = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) __a : Optional[int] = True __a : Tuple = False __a : List[str] = False __a : Tuple = False __a : Any = False def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = ConvNextModelTester(self ) _UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def __snake_case ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' pass def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(_A ) _UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : List[str] = [*signature.parameters.keys()] _UpperCAmelCase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) def __snake_case ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(_A , _A , _A ): _UpperCAmelCase : List[Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _UpperCAmelCase : List[str] = model(**self._prepare_for_class(_A , _A ) ) _UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : Dict = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __snake_case ( self ) -> Optional[int]: '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = ConvNextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase ( ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase): @cached_property def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def __snake_case ( self ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_A ) _UpperCAmelCase : List[str] = self.default_image_processor _UpperCAmelCase : Union[str, Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=_A , return_tensors="""pt""" ).to(_A ) # forward pass with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(**_A ) # verify the logits _UpperCAmelCase : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) _UpperCAmelCase : int = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase , __a): __a : str = (ConvNextBackbone,) if is_torch_available() else () __a : int = ConvNextConfig __a : Optional[int] = False def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = ConvNextModelTester(self )
246
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def UpperCamelCase ( _lowerCAmelCase : Dict, _lowerCAmelCase : int=(), _lowerCAmelCase : Union[str, Any]=None, _lowerCAmelCase : Union[str, Any]="no", _lowerCAmelCase : Optional[int]="29500" ) -> Any: _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): _UpperCAmelCase : Union[str, Any] = True elif "IPython" in sys.modules: _UpperCAmelCase : Dict = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: _UpperCAmelCase : int = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""", _lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: _UpperCAmelCase : List[Any] = 8 _UpperCAmelCase : int = PrepareForLaunch(_lowerCAmelCase, distributed_type="""TPU""" ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*_lowerCAmelCase ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase, master_addr="""127.0.01""", master_port=_lowerCAmelCase, mixed_precision=_lowerCAmelCase ): _UpperCAmelCase : Any = PrepareForLaunch(_lowerCAmelCase, distributed_type="""MULTI_GPU""" ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _UpperCAmelCase : Union[str, Any] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : List[str]=(), _lowerCAmelCase : Optional[int]=2 ) -> Tuple: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase, master_addr="""127.0.01""", master_port="""29500""", accelerate_mixed_precision="""no""", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="""yes""", ): _UpperCAmelCase : Tuple = PrepareForLaunch(_lowerCAmelCase, debug=_lowerCAmelCase ) start_processes(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" )
246
1
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Dict=8 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Dict=9_9 , _lowerCAmelCase : List[Any]=1_6 , _lowerCAmelCase : Union[str, Any]=5 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Union[str, Any]=3_6 , _lowerCAmelCase : Union[str, Any]="gelu" , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : Dict=5_1_2 , _lowerCAmelCase : Union[str, Any]=1_6 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : str=4 , _lowerCAmelCase : List[Any]=None , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =seq_length __lowercase =is_training __lowercase =use_input_mask __lowercase =use_token_type_ids __lowercase =use_labels __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =type_sequence_label_size __lowercase =initializer_range __lowercase =num_labels __lowercase =num_choices __lowercase =scope def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowercase =None if self.use_input_mask: __lowercase =random_attention_mask([self.batch_size, self.seq_length]) __lowercase =None if self.use_token_type_ids: __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __lowercase =None __lowercase =None __lowercase =None if self.use_labels: __lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowercase =ids_tensor([self.batch_size] , self.num_choices) __lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : Any): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.get_config() __lowercase =3_0_0 return config def __lowerCamelCase ( self : List[str]): '''simple docstring''' ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) =self.prepare_config_and_inputs() __lowercase =True __lowercase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __lowercase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =MraModel(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase) __lowercase =model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase) __lowercase =model(_lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowerCamelCase ( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , ): '''simple docstring''' __lowercase =True __lowercase =MraModel(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) __lowercase =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) __lowercase =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' __lowercase =MraForMaskedLM(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]): '''simple docstring''' __lowercase =MraForQuestionAnswering(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]): '''simple docstring''' __lowercase =self.num_labels __lowercase =MraForSequenceClassification(_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' __lowercase =self.num_labels __lowercase =MraForTokenClassification(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __lowerCamelCase ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =self.num_choices __lowercase =MraForMultipleChoice(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() __lowercase =input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowercase =token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowercase =input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowercase =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) =config_and_inputs __lowercase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =MraModelTester(self) __lowercase =ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7) def __lowerCamelCase ( self : Tuple): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase =type self.model_tester.create_and_check_model(*_lowerCAmelCase) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase) @slow def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase =MraModel.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) @unittest.skip(reason='MRA does not output attentions') def __lowerCamelCase ( self : Dict): '''simple docstring''' return @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =MraModel.from_pretrained('uw-madison/mra-base-512-4') __lowercase =torch.arange(2_5_6).unsqueeze(0) with torch.no_grad(): __lowercase =model(_lowerCAmelCase)[0] __lowercase =torch.Size((1, 2_5_6, 7_6_8)) self.assertEqual(output.shape , _lowerCAmelCase) __lowercase =torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4)) @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4') __lowercase =torch.arange(2_5_6).unsqueeze(0) with torch.no_grad(): __lowercase =model(_lowerCAmelCase)[0] __lowercase =5_0_2_6_5 __lowercase =torch.Size((1, 2_5_6, vocab_size)) self.assertEqual(output.shape , _lowerCAmelCase) __lowercase =torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4)) @slow def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3') __lowercase =torch.arange(4_0_9_6).unsqueeze(0) with torch.no_grad(): __lowercase =model(_lowerCAmelCase)[0] __lowercase =5_0_2_6_5 __lowercase =torch.Size((1, 4_0_9_6, vocab_size)) self.assertEqual(output.shape , _lowerCAmelCase) __lowercase =torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4))
48
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any]): '''simple docstring''' __lowercase =[] __lowercase =0 __lowercase =0 def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.head == self.tail def __lowerCamelCase ( self : str , _lowerCAmelCase : Any): '''simple docstring''' self.data.append(_lowerCAmelCase) __lowercase =self.tail + 1 def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =self.data[self.head] __lowercase =self.head + 1 return ret def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.tail - self.head def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' print(self.data) print('**************') print(self.data[self.head : self.tail]) class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any): '''simple docstring''' __lowercase =data __lowercase =None __lowercase =None __lowercase =1 def __lowerCamelCase ( self : Any): '''simple docstring''' return self.data def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.left def __lowerCamelCase ( self : Tuple): '''simple docstring''' return self.right def __lowerCamelCase ( self : Dict): '''simple docstring''' return self.height def __lowerCamelCase ( self : int , _lowerCAmelCase : Any): '''simple docstring''' __lowercase =data def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : MyNode | None): '''simple docstring''' __lowercase =node def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : MyNode | None): '''simple docstring''' __lowercase =node def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : int): '''simple docstring''' __lowercase =height def _A ( _lowerCAmelCase ): """simple docstring""" if node is None: return 0 return node.get_height() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if a > b: return a return b def _A ( _lowerCAmelCase ): """simple docstring""" print('left rotation node:' , node.get_data() ) __lowercase =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCAmelCase ) __lowercase =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) __lowercase =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def _A ( _lowerCAmelCase ): """simple docstring""" print('right rotation node:' , node.get_data() ) __lowercase =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCAmelCase ) __lowercase =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) __lowercase =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCAmelCase ) ) return right_rotation(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCAmelCase ) ) return left_rotation(_lowerCAmelCase ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if node is None: return MyNode(_lowerCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __lowercase =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __lowercase =right_rotation(_lowerCAmelCase ) else: __lowercase =lr_rotation(_lowerCAmelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __lowercase =node.get_right() assert right_child is not None if data < right_child.get_data(): __lowercase =rl_rotation(_lowerCAmelCase ) else: __lowercase =left_rotation(_lowerCAmelCase ) __lowercase =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) return node def _A ( _lowerCAmelCase ): """simple docstring""" while True: __lowercase =root.get_right() if right_child is None: break __lowercase =right_child return root.get_data() def _A ( _lowerCAmelCase ): """simple docstring""" while True: __lowercase =root.get_left() if left_child is None: break __lowercase =left_child return root.get_data() def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =root.get_left() __lowercase =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __lowercase =get_left_most(_lowerCAmelCase ) root.set_data(_lowerCAmelCase ) root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) elif left_child is not None: __lowercase =left_child elif right_child is not None: __lowercase =right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) if get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __lowercase =left_rotation(_lowerCAmelCase ) else: __lowercase =rl_rotation(_lowerCAmelCase ) elif get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __lowercase =right_rotation(_lowerCAmelCase ) else: __lowercase =lr_rotation(_lowerCAmelCase ) __lowercase =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCAmelCase ) return root class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple): '''simple docstring''' __lowercase =None def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return get_height(self.root) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : Any): '''simple docstring''' print('insert:' + str(_lowerCAmelCase)) __lowercase =insert_node(self.root , _lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Any): '''simple docstring''' print('delete:' + str(_lowerCAmelCase)) if self.root is None: print('Tree is empty!') return __lowercase =del_node(self.root , _lowerCAmelCase) def __str__( self : int , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' __lowercase ='' __lowercase =MyQueue() q.push(self.root) __lowercase =self.get_height() if layer == 0: return output __lowercase =0 while not q.is_empty(): __lowercase =q.pop() __lowercase =' ' * int(math.pow(2 , layer - 1)) output += space if node is None: output += "*" q.push(_lowerCAmelCase) q.push(_lowerCAmelCase) else: output += str(node.get_data()) q.push(node.get_left()) q.push(node.get_right()) output += space __lowercase =cnt + 1 for i in range(1_0_0): if cnt == math.pow(2 , _lowerCAmelCase) - 1: __lowercase =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _A ( ): """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCamelCase = AVLtree() lowerCamelCase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
48
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Any ) -> List[Any]: """simple docstring""" lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val def UpperCamelCase ( __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) lowercase__ = value else: lowercase__ = value return new_state_dict def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int=False ) -> Optional[Any]: """simple docstring""" lowercase__ = """""" if is_panoptic: lowercase__ = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] def UpperCamelCase ( ) -> Tuple: """simple docstring""" lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase__ = """resnet101""" if "dc5" in model_name: lowercase__ = True lowercase__ = """panoptic""" in model_name if is_panoptic: lowercase__ = 250 else: lowercase__ = 91 lowercase__ = """huggingface/label-files""" lowercase__ = """coco-detection-id2label.json""" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # load image processor lowercase__ = """coco_panoptic""" if is_panoptic else """coco_detection""" lowercase__ = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=__magic_name__ , return_tensors="""pt""" ) lowercase__ = encoding["""pixel_values"""] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub lowercase__ = torch.hub.load("""DeppMeng/ConditionalDETR""" , __magic_name__ , pretrained=__magic_name__ ).eval() lowercase__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase__ = """conditional_detr.""" + src rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ , is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val # finally, create HuggingFace model and load state dict lowercase__ = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion lowercase__ = conditional_detr(__magic_name__ ) lowercase__ = model(__magic_name__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) A : str = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
305
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''falcon''' A__ = ['''past_key_values'''] def __init__(self : str , _UpperCAmelCase : Dict=6_5024 , _UpperCAmelCase : Optional[Any]=4544 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Optional[Any]=71 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : Optional[Any]=11 , **_UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size # Backward compatibility with n_embed kwarg lowercase__ = kwargs.pop("""n_embed""" , _UpperCAmelCase ) lowercase__ = hidden_size if n_embed is None else n_embed lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase__ = alibi lowercase__ = new_decoder_architecture lowercase__ = multi_query # Ignored when new_decoder_architecture is True lowercase__ = parallel_attn lowercase__ = bias super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" return not self.alibi
305
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def lowerCamelCase ( self : str , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : int=False ): snake_case__ : List[str] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): snake_case__ : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Any , snake_case_ : Dict , snake_case_ : Tuple=13 , snake_case_ : Dict=7 , snake_case_ : List[str]=True , snake_case_ : Dict=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]=True , snake_case_ : Tuple=99 , snake_case_ : Dict=32 , snake_case_ : Union[str, Any]=32 , snake_case_ : Any=2 , snake_case_ : str=4 , snake_case_ : Any=37 , snake_case_ : int="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Optional[Any]=512 , snake_case_ : Optional[Any]=16 , snake_case_ : Optional[Any]=2 , snake_case_ : str=0.02 , snake_case_ : str=3 , snake_case_ : str=4 , snake_case_ : int=None , ): snake_case__ : List[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : List[str] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : int = use_token_type_ids snake_case__ : Tuple = use_labels snake_case__ : Dict = vocab_size snake_case__ : List[str] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : Tuple = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : Optional[Any] = type_vocab_size snake_case__ : List[str] = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : int = num_labels snake_case__ : Dict = num_choices snake_case__ : Optional[Any] = scope snake_case__ : Any = embedding_size def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Dict = None if self.use_input_mask: snake_case__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Dict = None if self.use_token_type_ids: snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Union[str, Any] = None snake_case__ : int = None snake_case__ : str = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Any ): snake_case__ : str = TFMobileBertModel(config=snake_case_ ) snake_case__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Tuple = model(snake_case_ ) snake_case__ : Optional[Any] = [input_ids, input_mask] snake_case__ : Any = model(snake_case_ ) snake_case__ : Dict = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase ( self : Dict , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[str] ): snake_case__ : List[str] = TFMobileBertForMaskedLM(config=snake_case_ ) snake_case__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] ): snake_case__ : Optional[int] = TFMobileBertForNextSentencePrediction(config=snake_case_ ) snake_case__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : str ): snake_case__ : Dict = TFMobileBertForPreTraining(config=snake_case_ ) snake_case__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Any = model(snake_case_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : int ): snake_case__ : Tuple = self.num_labels snake_case__ : Optional[int] = TFMobileBertForSequenceClassification(config=snake_case_ ) snake_case__ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Tuple = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Any ): snake_case__ : Optional[Any] = self.num_choices snake_case__ : Tuple = TFMobileBertForMultipleChoice(config=snake_case_ ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Union[str, Any] = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Any = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) snake_case__ : int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case__ : Any = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : int ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : Tuple = TFMobileBertForTokenClassification(config=snake_case_ ) snake_case__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : str , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : str , snake_case_ : int ): snake_case__ : Optional[Any] = TFMobileBertForQuestionAnswering(config=snake_case_ ) snake_case__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self : int ): snake_case__ : int = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Dict = config_and_inputs snake_case__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCamelCase ( self : int ): snake_case__ : Any = TFMobileBertModelTest.TFMobileBertModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCamelCase ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case_ ) def lowerCamelCase ( self : List[str] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case_ ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case_ ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case_ ) def lowerCamelCase ( self : Dict ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case_ ) def lowerCamelCase ( self : Dict ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case_ ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: snake_case__ : str = TFMobileBertModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase ( self : Tuple ): snake_case__ : Any = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) snake_case__ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : Union[str, Any] = model(snake_case_ )[0] snake_case__ : List[str] = [1, 6, 30_522] self.assertEqual(output.shape , snake_case_ ) snake_case__ : Optional[int] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
43
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Tuple=0 ): snake_case__ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case_ ) ) snake_case__ : List[str] = np.random.RandomState(snake_case_ ) snake_case__ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : Optional[Any] ): snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Union[str, Any] = pipe(**snake_case_ ).images snake_case__ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case__ : int = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Dict ): snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = self.get_dummy_inputs() snake_case__ : int = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Tuple = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Optional[int] ): snake_case__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations snake_case__ : List[Any] = pipe(**self.get_dummy_inputs() ) snake_case__ : List[str] = self.get_dummy_inputs() snake_case__ : Optional[int] = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Any = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : str ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = self.get_dummy_inputs() snake_case__ : List[Any] = pipe(**snake_case_ ).images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Optional[Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : str ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Tuple = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : int = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[str] = self.get_dummy_inputs() snake_case__ : List[str] = pipe(**snake_case_ ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : List[str] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self : Dict ): snake_case__ : Tuple = ort.SessionOptions() snake_case__ : Optional[Any] = False return options def lowerCamelCase ( self : List[str] ): snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = """A fantasy landscape, trending on artstation""" snake_case__ : str = np.random.RandomState(0 ) snake_case__ : Union[str, Any] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : str = output.images snake_case__ : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case__ : Optional[Any] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCamelCase ( self : int ): snake_case__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : List[Any] = init_image.resize((768, 512) ) snake_case__ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = """A fantasy landscape, trending on artstation""" snake_case__ : Optional[int] = np.random.RandomState(0 ) snake_case__ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Any = output.images snake_case__ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case__ : Tuple = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
43
1
"""simple docstring""" from math import factorial __UpperCAmelCase = {str(d): factorial(d) for d in range(10)} def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(lowercase__ ) ) def _snake_case ( ) -> int: '''simple docstring''' lowerCAmelCase_ :List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowercase__ ) if sum_of_digit_factorial(lowercase__ ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
84
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list ): if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(_lowerCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowerCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
112
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowercase__ : List[Any] = 4 lowercase__ : Dict = 3 class lowercase_ ( UpperCamelCase_ ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: for shard in shards: for i in range(snake_case__ ): yield {"i": i, "shard": shard} def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: lowerCAmelCase = int(os.environ['''RANK'''] ) lowerCAmelCase = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase = ArgumentParser() parser.add_argument('''--streaming''' , type=snake_case__ ) parser.add_argument('''--local_rank''' , type=snake_case__ ) parser.add_argument('''--num_workers''' , type=snake_case__ , default=0 ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.streaming lowerCAmelCase = args.num_workers lowerCAmelCase = {'''shards''': [f"shard_{shard_idx}" for shard_idx in range(snake_case__ )]} lowerCAmelCase = IterableDataset.from_generator(snake_case__ , gen_kwargs=snake_case__ ) if not streaming: lowerCAmelCase = Dataset.from_list(list(snake_case__ ) ) lowerCAmelCase = split_dataset_by_node(snake_case__ , rank=snake_case__ , world_size=snake_case__ ) lowerCAmelCase = torch.utils.data.DataLoader(snake_case__ , num_workers=snake_case__ ) lowerCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCAmelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCAmelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
338
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowercase__ : Dict = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowercase__ : Optional[int] = [0, 2_5, 5_0] lowercase__ : Union[str, Any] = [2_5, 5_0, 7_5] lowercase__ : int = fuzz.membership.trimf(X, abca) lowercase__ : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowercase__ : List[str] = np.ones(7_5) lowercase__ : Any = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) lowercase__ : Union[str, Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowercase__ : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowercase__ : Union[str, Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowercase__ : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowercase__ : Any = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowercase__ : str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowercase__ : Tuple = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowercase__ : Tuple = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
338
1
'''simple docstring''' import datasets from .evaluate import evaluate UpperCAmelCase = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' UpperCAmelCase = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' UpperCAmelCase = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case( datasets.Metric ): '''simple docstring''' def __snake_case ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def __snake_case ( self , A_ , A_ ) -> str: lowerCAmelCase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowerCAmelCase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowerCAmelCase = evaluate(dataset=A_ , predictions=A_ ) return score
187
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = "time_series_transformer" UpperCAmelCase : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = "mean" , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 32 , A_ = 32 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = True , A_ = "gelu" , A_ = 64 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.0_2 , A_=True , **A_ , ) -> Optional[Any]: # time series specific configuration lowerCAmelCase = prediction_length lowerCAmelCase = context_length or prediction_length lowerCAmelCase = distribution_output lowerCAmelCase = loss lowerCAmelCase = input_size lowerCAmelCase = num_time_features lowerCAmelCase = lags_sequence lowerCAmelCase = scaling lowerCAmelCase = num_dynamic_real_features lowerCAmelCase = num_static_real_features lowerCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase = cardinality else: lowerCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase = embedding_dimension else: lowerCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase = num_parallel_samples # Transformer architecture configuration lowerCAmelCase = input_size * len(A_ ) + self._number_of_features lowerCAmelCase = d_model lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_attention_heads lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = decoder_layers lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = use_cache super().__init__(is_encoder_decoder=A_ , **A_ ) @property def __snake_case ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
187
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def A ( _SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=1026 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE="data/tokenized_stories_train_wikitext103.jbl" ,_SCREAMING_SNAKE_CASE="igf_context_pairs.jbl" ,) -> List[str]: set_seed(3 ) # generate train_data and objective_set lowerCamelCase , lowerCamelCase : List[Any] = generate_datasets( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,number=_SCREAMING_SNAKE_CASE ,min_len=1026 ,trim=_SCREAMING_SNAKE_CASE ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase : Optional[int] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model lowerCamelCase : Any = load_gpta("gpt2" ).to(_SCREAMING_SNAKE_CASE ) print("computing perplexity on objective set" ) lowerCamelCase : str = compute_perplexity(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).item() print("perplexity on objective set:" ,_SCREAMING_SNAKE_CASE ) # collect igf pairs and save to file demo.jbl collect_objective_set(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=15 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE="igf_model.pt" ,) -> List[Any]: set_seed(42 ) # Load pre-trained model lowerCamelCase : str = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model lowerCamelCase : Union[str, Any] = SecondaryLearner(_SCREAMING_SNAKE_CASE ) # Train secondary learner lowerCamelCase : Dict = train_secondary_learner( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,max_epochs=_SCREAMING_SNAKE_CASE ,batch_size=_SCREAMING_SNAKE_CASE ,eval_freq=100 ,igf_model_path=_SCREAMING_SNAKE_CASE ,) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=1000 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=1.0 ,_SCREAMING_SNAKE_CASE=recopy_gpta ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE="gpt2_finetuned.pt" ,) -> str: lowerCamelCase : Optional[int] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) lowerCamelCase : Optional[Any] = RandomSampler(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = DataLoader(_SCREAMING_SNAKE_CASE ,sampler=_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = max_steps // (len(_SCREAMING_SNAKE_CASE )) + 1 lowerCamelCase : List[Any] = 0 lowerCamelCase : str = torch.zeros((1, context_len) ,dtype=torch.long ,device=_SCREAMING_SNAKE_CASE ) lowerCamelCase , lowerCamelCase , lowerCamelCase : int = recopy_model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) model.train() if secondary_learner is not None: secondary_learner.to(_SCREAMING_SNAKE_CASE ) secondary_learner.eval() lowerCamelCase : Union[str, Any] = [] lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Union[str, Any] = [] lowerCamelCase : Union[str, Any] = [] # Compute the performance of the transformer model at the beginning lowerCamelCase : Union[str, Any] = compute_perplexity(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) test_perps.append(_SCREAMING_SNAKE_CASE ) print("Test perplexity, step" ,_SCREAMING_SNAKE_CASE ,":" ,_SCREAMING_SNAKE_CASE ) for epoch in range(int(_SCREAMING_SNAKE_CASE ) ): for step, example in enumerate(_SCREAMING_SNAKE_CASE ): torch.cuda.empty_cache() lowerCamelCase : Dict = random.randint(0 ,example.size(2 ) - context_len - 1 ) lowerCamelCase : Union[str, Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase : Any = model(_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[Any] = True if secondary_learner is not None: lowerCamelCase : Dict = secondary_learner.forward( torch.tensor(_SCREAMING_SNAKE_CASE ,dtype=torch.long ,device=_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_SCREAMING_SNAKE_CASE ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase : Tuple = -1 if predicted_q < threshold: lowerCamelCase : List[str] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCamelCase : int = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase : List[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() ,3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase : List[str] = compute_perplexity(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) test_perps.append(_SCREAMING_SNAKE_CASE ) print("Test perplexity, step" ,_SCREAMING_SNAKE_CASE ,":" ,_SCREAMING_SNAKE_CASE ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() ,_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def A ( ) -> Optional[Any]: lowerCamelCase : List[str] = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" ,default=_SCREAMING_SNAKE_CASE ,type=_SCREAMING_SNAKE_CASE ,required=_SCREAMING_SNAKE_CASE ,help="The input data dir. Should contain data files for WikiText." ,) parser.add_argument( "--model_name_or_path" ,default=_SCREAMING_SNAKE_CASE ,type=_SCREAMING_SNAKE_CASE ,required=_SCREAMING_SNAKE_CASE ,help="Path to pretrained model or model identifier from huggingface.co/models" ,) parser.add_argument( "--data_file" ,type=_SCREAMING_SNAKE_CASE ,default=_SCREAMING_SNAKE_CASE ,help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) ,) parser.add_argument( "--igf_data_file" ,type=_SCREAMING_SNAKE_CASE ,default=_SCREAMING_SNAKE_CASE ,help="A jbl file containing the context and information gain pairs to train secondary learner." ,) parser.add_argument( "--output_dir" ,default=_SCREAMING_SNAKE_CASE ,type=_SCREAMING_SNAKE_CASE ,required=_SCREAMING_SNAKE_CASE ,help="The output directory where the final fine-tuned model is stored." ,) parser.add_argument( "--tokenizer_name" ,default=_SCREAMING_SNAKE_CASE ,type=_SCREAMING_SNAKE_CASE ,help="Pretrained tokenizer name or path if not the same as model_name" ,) parser.add_argument("--seed" ,type=_SCREAMING_SNAKE_CASE ,default=_SCREAMING_SNAKE_CASE ,help="A seed for reproducible training." ) parser.add_argument( "--context_len" ,default=32 ,type=_SCREAMING_SNAKE_CASE ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument( "--size_objective_set" ,default=100 ,type=_SCREAMING_SNAKE_CASE ,help="number of articles that are long enough to be used as our objective set" ,) parser.add_argument( "--eval_freq" ,default=100 ,type=_SCREAMING_SNAKE_CASE ,help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" ,default=1000 ,type=_SCREAMING_SNAKE_CASE ,help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" ,default=128 ,type=_SCREAMING_SNAKE_CASE ,help="batch size of training data for secondary learner" ,) parser.add_argument( "--batch_size" ,default=16 ,type=_SCREAMING_SNAKE_CASE ,help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" ,default=10 ,type=_SCREAMING_SNAKE_CASE ,help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) ,) parser.add_argument( "--number" ,default=100 ,type=_SCREAMING_SNAKE_CASE ,help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" ,default=1026 ,type=_SCREAMING_SNAKE_CASE ,help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" ,default=15 ,type=_SCREAMING_SNAKE_CASE ,help="number of epochs to train secondary learner" ) parser.add_argument("--trim" ,default=_SCREAMING_SNAKE_CASE ,type=_SCREAMING_SNAKE_CASE ,help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" ,default=1.0 ,type=_SCREAMING_SNAKE_CASE ,help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) ,) parser.add_argument("--finetuned_model_name" ,default="gpt2_finetuned.pt" ,type=_SCREAMING_SNAKE_CASE ,help="finetuned_model_name" ) parser.add_argument( "--recopy_model" ,default=_SCREAMING_SNAKE_CASE ,type=_SCREAMING_SNAKE_CASE ,help="Reset the model to the original pretrained GPT-2 weights after each iteration" ,) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 ,max_steps=10 ,size_objective_set=100 ,min_len=1026 ,trim=_SCREAMING_SNAKE_CASE ,data_file="data/tokenized_stories_train_wikitext103.jbl" ,igf_data_file="igf_context_pairs.jbl" ,) # Load train data for secondary learner lowerCamelCase : str = joblib.load("data/IGF_values.jbl" ) # Train secondary learner lowerCamelCase : Tuple = training_secondary_learner( _SCREAMING_SNAKE_CASE ,secondary_learner_max_epochs=15 ,secondary_learner_batch_size=128 ,eval_freq=100 ,igf_model_path="igf_model.pt" ,) # load pretrained gpt2 model lowerCamelCase : Union[str, Any] = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase , lowerCamelCase : int = generate_datasets( context_len=32 ,file="data/tokenized_stories_train_wikitext103.jbl" ,number=100 ,min_len=1026 ,trim=_SCREAMING_SNAKE_CASE ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,context_len=32 ,max_steps=1000 ,batch_size=16 ,threshold=1.0 ,recopy_model=_SCREAMING_SNAKE_CASE ,secondary_learner=_SCREAMING_SNAKE_CASE ,eval_interval=10 ,finetuned_model_name="gpt2_finetuned.pt" ,) if __name__ == "__main__": main()
48
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) , """Tatoeba directory does not exist.""" ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> int: lowerCamelCase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase__ ) @slow def _lowercase ( self ) -> List[Any]: self.resolver.convert_models(["heb-eng"] ) @slow def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Dict = self.resolver.write_model_card("opus-mt-he-en" , dry_run=UpperCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
48
1
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : str ) -> List[Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowercase_ ): __lowerCAmelCase = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) __lowerCAmelCase = FlaxAutoModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def lowercase ( self : Union[str, Any] ) -> Any: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowercase_ ): __lowerCAmelCase = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) __lowerCAmelCase = FlaxAutoModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def lowercase ( self : Optional[int] ) -> List[Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: __lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) __lowerCAmelCase = FlaxBertModel.from_pretrained(lowercase_ ) __lowerCAmelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase_ : List[Any] ): return model(**lowercase_ ) eval(**lowercase_ ).block_until_ready() @slow def lowercase ( self : List[str] ) -> str: for model_name in ["roberta-base", "roberta-large"]: __lowerCAmelCase = AutoTokenizer.from_pretrained(lowercase_ ) __lowerCAmelCase = FlaxRobertaModel.from_pretrained(lowercase_ ) __lowerCAmelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase_ : Optional[Any] ): return model(**lowercase_ ) eval(**lowercase_ ).block_until_ready() def lowercase ( self : Optional[int] ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('bert-base' ) def lowercase ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained(lowercase_ , revision='aaaaaa' ) def lowercase ( self : int ) -> str: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase ( self : str ) -> List[str]: with self.assertRaisesRegex(lowercase_ , 'Use `from_pt=True` to load this model' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
369
_snake_case : List[str] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) _snake_case : List[Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = from_type.lower().strip('s' ) __lowerCAmelCase = to_type.lower().strip('s' ) __lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = UNIT_SYMBOL.get(lowerCAmelCase_, lowerCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) __lowerCAmelCase = METRIC_CONVERSION[from_sanitized] __lowerCAmelCase = METRIC_CONVERSION[to_sanitized] __lowerCAmelCase = 1 if from_exponent > to_exponent: __lowerCAmelCase = from_exponent - to_exponent else: __lowerCAmelCase = -(to_exponent - from_exponent) return value * pow(10, lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
207
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowercase = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''LayoutLMv2FeatureExtractor'''] __lowercase = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase = logging.get_logger(__name__) __lowercase = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = """deformable_detr""" a__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __lowercase=True , __lowercase=None , __lowercase=3 , __lowercase=300 , __lowercase=1_024 , __lowercase=6 , __lowercase=1_024 , __lowercase=8 , __lowercase=6 , __lowercase=1_024 , __lowercase=8 , __lowercase=0.0 , __lowercase=True , __lowercase="relu" , __lowercase=256 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1.0 , __lowercase=True , __lowercase=False , __lowercase="sine" , __lowercase="resnet50" , __lowercase=True , __lowercase=False , __lowercase=4 , __lowercase=4 , __lowercase=4 , __lowercase=False , __lowercase=300 , __lowercase=False , __lowercase=1 , __lowercase=5 , __lowercase=2 , __lowercase=1 , __lowercase=1 , __lowercase=5 , __lowercase=2 , __lowercase=0.1 , __lowercase=0.25 , __lowercase=False , **__lowercase , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __UpperCamelCase :str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__lowercase , __lowercase): __UpperCamelCase :str = backbone_config.get('''model_type''') __UpperCamelCase :Tuple = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase :Any = config_class.from_dict(__lowercase) __UpperCamelCase :int = use_timm_backbone __UpperCamelCase :Dict = backbone_config __UpperCamelCase :Any = num_channels __UpperCamelCase :Optional[int] = num_queries __UpperCamelCase :Any = max_position_embeddings __UpperCamelCase :str = d_model __UpperCamelCase :Tuple = encoder_ffn_dim __UpperCamelCase :Union[str, Any] = encoder_layers __UpperCamelCase :List[Any] = encoder_attention_heads __UpperCamelCase :Any = decoder_ffn_dim __UpperCamelCase :List[str] = decoder_layers __UpperCamelCase :int = decoder_attention_heads __UpperCamelCase :str = dropout __UpperCamelCase :Any = attention_dropout __UpperCamelCase :int = activation_dropout __UpperCamelCase :List[Any] = activation_function __UpperCamelCase :List[Any] = init_std __UpperCamelCase :List[Any] = init_xavier_std __UpperCamelCase :int = encoder_layerdrop __UpperCamelCase :str = auxiliary_loss __UpperCamelCase :Optional[Any] = position_embedding_type __UpperCamelCase :Union[str, Any] = backbone __UpperCamelCase :Any = use_pretrained_backbone __UpperCamelCase :str = dilation # deformable attributes __UpperCamelCase :Optional[Any] = num_feature_levels __UpperCamelCase :str = encoder_n_points __UpperCamelCase :int = decoder_n_points __UpperCamelCase :Union[str, Any] = two_stage __UpperCamelCase :Optional[Any] = two_stage_num_proposals __UpperCamelCase :Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher __UpperCamelCase :Optional[int] = class_cost __UpperCamelCase :List[Any] = bbox_cost __UpperCamelCase :str = giou_cost # Loss coefficients __UpperCamelCase :Tuple = mask_loss_coefficient __UpperCamelCase :Tuple = dice_loss_coefficient __UpperCamelCase :int = bbox_loss_coefficient __UpperCamelCase :Any = giou_loss_coefficient __UpperCamelCase :Dict = eos_coefficient __UpperCamelCase :Optional[Any] = focal_alpha __UpperCamelCase :Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=__lowercase , **__lowercase) @property def UpperCamelCase__ ( self) -> int: return self.encoder_attention_heads @property def UpperCamelCase__ ( self) -> int: return self.d_model def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Dict = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __UpperCamelCase :Tuple = self.backbone_config.to_dict() __UpperCamelCase :List[Any] = self.__class__.model_type return output
43
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCAmelCase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
'''simple docstring''' from math import sqrt def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Dict = 0 for i in range(1 , int(sqrt(lowerCAmelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCAmelCase_ ): total += i + n // i elif i == sqrt(lowerCAmelCase_ ): total += i return total - n def __lowerCamelCase ( lowerCAmelCase_ = 10000 ) -> int: _a : Union[str, Any] = sum( i for i in range(1 , lowerCAmelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCAmelCase_ ) ) == i and sum_of_divisors(lowerCAmelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
107
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : List[Any] , __lowercase : Tuple ) -> Any: '''simple docstring''' _UpperCAmelCase = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
22
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class A (SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = ReformerTokenizer __lowerCamelCase : Tuple = ReformerTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = True def a_ ( self : str ) -> List[str]: """simple docstring""" super().setUp() A__ = ReformerTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" A__ = """<s>""" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def a_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__lowerCAmelCase ) , 10_00 ) def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def a_ ( self : Any ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = """I was born in 92000, and this is falsé.""" A__ = tokenizer.tokenize(__lowerCAmelCase ) A__ = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) A__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) A__ = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(__lowerCAmelCase ) A__ = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int]=15 ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input A__ = """This is a simple input""" A__ = ["""This is a simple input 1""", """This is a simple input 2"""] A__ = ("""This is a simple input""", """This is a pair""") A__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" , ) def a_ ( self : Any ) -> Any: """simple docstring""" pass def a_ ( self : str ) -> Any: """simple docstring""" A__ = ReformerTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) A__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) A__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A__ = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def a_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def a_ ( self : List[str] ) -> str: """simple docstring""" A__ = """Hello World!""" A__ = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def a_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" A__ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A__ = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @require_torch @slow def a_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:10] A__ = """ """.join(__lowerCAmelCase ) A__ = self.big_tokenizer.encode_plus(__lowerCAmelCase , return_tensors="""pt""" ) A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) A__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A__ = encoded_sequence["""input_ids"""].shape A__ = ReformerModel(__lowerCAmelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowerCAmelCase ) model(**__lowerCAmelCase ) @slow def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = {"""input_ids""": [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A__ = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=__lowerCAmelCase , sequences=__lowerCAmelCase , )
276
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Dict = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Tuple = '''pegasus''' __lowerCamelCase : Any = ['''past_key_values'''] __lowerCamelCase : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[Any] , __lowerCAmelCase : str=5_02_65 , __lowerCAmelCase : Dict=10_24 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Any=40_96 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : Optional[int]=40_96 , __lowerCAmelCase : Dict=16 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Union[str, Any]=10_24 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Union[str, Any]=0.0_2 , __lowerCAmelCase : List[Any]=0 , __lowerCAmelCase : str=False , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[Any]=1 , __lowerCAmelCase : Optional[int]=1 , **__lowerCAmelCase : Dict , ) -> Dict: """simple docstring""" A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , forced_eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) @property def a_ ( self : Dict ) -> int: """simple docstring""" return self.encoder_attention_heads @property def a_ ( self : Optional[Any] ) -> int: """simple docstring""" return self.d_model
276
1
from __future__ import annotations lowercase__ : str = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase__ ( _A , _A , _A , _A , _A , ): '''simple docstring''' snake_case_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_A ) ) ] # the reference grid snake_case_ = 1 snake_case_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_A ) ) ] # the action grid snake_case_ = init[0] snake_case_ = init[1] snake_case_ = 0 snake_case_ = g + heuristic[x][y] # cost from starting cell to destination cell snake_case_ = [[f, g, x, y]] snake_case_ = False # flag that is set when search is complete snake_case_ = False # flag set if we can't find expand while not found and not resign: if len(_A ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case_ = cell.pop() snake_case_ = next_cell[2] snake_case_ = next_cell[3] snake_case_ = next_cell[1] if x == goal[0] and y == goal[1]: snake_case_ = True else: for i in range(len(_A ) ): # to try out different valid actions snake_case_ = x + DIRECTIONS[i][0] snake_case_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_A ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case_ = g + cost snake_case_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case_ = 1 snake_case_ = i snake_case_ = [] snake_case_ = goal[0] snake_case_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case_ = x - DIRECTIONS[action[x][y]][0] snake_case_ = y - DIRECTIONS[action[x][y]][1] snake_case_ = xa snake_case_ = ya invpath.append([x, y] ) snake_case_ = [] for i in range(len(_A ) ): path.append(invpath[len(_A ) - 1 - i] ) return path, action if __name__ == "__main__": lowercase__ : Union[str, Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowercase__ : Optional[Any] = [0, 0] # all coordinates are given in format [y,x] lowercase__ : Tuple = [len(grid) - 1, len(grid[0]) - 1] lowercase__ : Dict = 1 # the cost map which pushes the path closer to the goal lowercase__ : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowercase__ : Union[str, Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowercase__ : int = 99 lowercase__ , lowercase__ : Tuple = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
187
def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [] snake_case_ = 1 while len(_A ) < 1E6: constant.append(str(_A ) ) i += 1 snake_case_ = "".join(_A ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
187
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> Tuple: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" A__ = nn.Parameter(lowercase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" A__ = nn.Parameter(lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: # set torch weights for 1-to-1 comparison A__ = np.asarray(weights[0] ) A__ = np.asarray(weights[1] ) A__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowercase_ ).view(-1 , lowercase_ ).contiguous().transpose(0 , 1 ) , ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: # set torch weights for 1-to-1 comparison A__ = np.asarray(weights[0] ) A__ = np.asarray(weights[1] ) A__ = np.asarray(weights[2] ) A__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowercase_ ).view(-1 , lowercase_ ).contiguous().transpose(0 , 1 ) , ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: # layernorm 1 A__ = weights[0][0][0] A__ = np.asarray(layer_norm_a[0] ) A__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # lsh weights + output A__ = weights[0][1] if len(lowercase_ ) < 4: set_layer_weights_in_torch_lsh(lowercase_ , torch_block.attention , lowercase_ ) else: set_layer_weights_in_torch_local(lowercase_ , torch_block.attention , lowercase_ ) # intermediate weighs A__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowercase_ ) == 4: A__ = intermediate_weights[2] # layernorm 2 A__ = np.asarray(intermediate_weights[0][0] ) A__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # intermediate dense A__ = np.asarray(intermediate_weights[1][0] ) A__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) # intermediate out A__ = np.asarray(intermediate_weights[4][0] ) A__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: # reformer model A__ = torch_model.reformer # word embeds A__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowercase_ ) , ) if isinstance(weights[3] , lowercase_ ): A__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): A__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" A__ = nn.Parameter(torch.tensor(lowercase_ ) ) A__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowercase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): A__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowercase_ , lowercase_ , lowercase_ ) # output layer norm A__ = np.asarray(weights[7][0] ) A__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # output embeddings A__ = np.asarray(weights[9][0] ) A__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: # Initialise PyTorch model A__ = ReformerConfig.from_json_file(lowercase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) A__ = ReformerModelWithLMHead(lowercase_ ) with open(lowercase_ , "rb" ) as f: A__ = pickle.load(lowercase_ )["weights"] set_model_weights_in_torch(lowercase_ , lowercase_ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
368
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = model.config A__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: if "encoder.model" in name: A__ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: A__ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: A__ = "encoder." + name if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = "encoder.layernorm.weight" if name == "encoder.norm.bias": A__ = "encoder.layernorm.bias" return name def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[3] ) A__ = int(key_split[5] ) A__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: # load original model A__ = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model A__, A__ = get_configs(lowercase_ ) A__ = DonutSwinModel(lowercase_ ) A__ = MBartForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() A__ = original_model.state_dict() A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document A__ = load_dataset("hf-internal-testing/example-documents" ) A__ = dataset["test"][0]["image"].convert("RGB" ) A__ = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) A__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ = DonutProcessor(lowercase_ , lowercase_ ) A__ = processor(lowercase_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" A__ = "When is the coffee break?" A__ = task_prompt.replace("{user_input}" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ = "hello world" else: raise ValueError("Model name not supported" ) A__ = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="pt" )[ "input_ids" ] A__ = original_model.encoder.model.patch_embed(lowercase_ ) A__, A__ = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states A__ = original_model.encoder(lowercase_ ) A__ = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states A__ = original_model(lowercase_ , lowercase_ , lowercase_ ).logits A__ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
230
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) ->List[Any]: _SCREAMING_SNAKE_CASE = original_name.split(""".""" )[0] _SCREAMING_SNAKE_CASE = key.split(""".""" ) _SCREAMING_SNAKE_CASE = int(key_list[key_list.index(__lowerCamelCase ) - 2] ) _SCREAMING_SNAKE_CASE = int(key_list[key_list.index(__lowerCamelCase ) - 1] ) _SCREAMING_SNAKE_CASE = orig_block_num - offset _SCREAMING_SNAKE_CASE = key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def lowerCamelCase ( __lowerCamelCase : Optional[Any] ) ->Any: _SCREAMING_SNAKE_CASE = OrderedDict() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): _SCREAMING_SNAKE_CASE = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 _SCREAMING_SNAKE_CASE = key[: key.find("""proj""" )] _SCREAMING_SNAKE_CASE = key.replace(__lowerCamelCase , F'patch_embeddings.{total_embed_found}.' ) _SCREAMING_SNAKE_CASE = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: _SCREAMING_SNAKE_CASE = """poolformer.encoder.""" + key if "mlp.fc1" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """norm1""" , """before_norm""" ) if "norm2" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: _SCREAMING_SNAKE_CASE = key.replace("""head""" , """classifier""" ) _SCREAMING_SNAKE_CASE = value return new_state_dict def lowerCamelCase ( ) ->int: _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : int ) ->Optional[Any]: _SCREAMING_SNAKE_CASE = PoolFormerConfig() # set attributes based on model_name _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = model_name[-3:] _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = (1, 1000) # set config attributes _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if size == "s12": _SCREAMING_SNAKE_CASE = [2, 2, 6, 2] _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 0.9 elif size == "s24": _SCREAMING_SNAKE_CASE = [4, 4, 12, 4] _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 0.9 elif size == "s36": _SCREAMING_SNAKE_CASE = [6, 6, 18, 6] _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 1e-6 _SCREAMING_SNAKE_CASE = 0.9 elif size == "m36": _SCREAMING_SNAKE_CASE = [6, 6, 18, 6] _SCREAMING_SNAKE_CASE = [96, 192, 384, 768] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 1e-6 _SCREAMING_SNAKE_CASE = 0.95 elif size == "m48": _SCREAMING_SNAKE_CASE = [8, 8, 24, 8] _SCREAMING_SNAKE_CASE = [96, 192, 384, 768] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 1e-6 _SCREAMING_SNAKE_CASE = 0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor _SCREAMING_SNAKE_CASE = PoolFormerImageProcessor(crop_pct=__lowerCamelCase ) # Prepare image _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) # rename keys _SCREAMING_SNAKE_CASE = rename_keys(__lowerCamelCase ) # create HuggingFace model and load state dict _SCREAMING_SNAKE_CASE = PoolFormerForImageClassification(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Define image processor _SCREAMING_SNAKE_CASE = PoolFormerImageProcessor(crop_pct=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.logits # define expected logit slices for different models if size == "s12": _SCREAMING_SNAKE_CASE = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _SCREAMING_SNAKE_CASE = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _SCREAMING_SNAKE_CASE = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _SCREAMING_SNAKE_CASE = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _SCREAMING_SNAKE_CASE = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowercase_ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
58
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A__ : Dict = logging.get_logger(__name__) @add_end_docstrings( A__ ,r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ ,) class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Optional[int], lowerCamelCase : GenericTensor ): '''simple docstring''' if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=lowerCamelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def lowercase__ ( self : List[str], lowerCamelCase : GenericTensor ): '''simple docstring''' lowercase__ = self.get_masked_index(lowerCamelCase ) lowercase__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''', self.model.base_model_prefix, F"""No mask_token ({self.tokenizer.mask_token}) found on the input""", ) def lowercase__ ( self : Optional[Any], lowerCamelCase : GenericTensor ): '''simple docstring''' if isinstance(lowerCamelCase, lowerCamelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int]=None, **lowerCamelCase : Dict ): '''simple docstring''' if return_tensors is None: lowercase__ = self.framework lowercase__ = self.tokenizer(lowerCamelCase, return_tensors=lowerCamelCase ) self.ensure_exactly_one_mask_token(lowerCamelCase ) return model_inputs def lowercase__ ( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.model(**lowerCamelCase ) lowercase__ = model_inputs['''input_ids'''] return model_outputs def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Tuple=5, lowerCamelCase : List[Any]=None ): '''simple docstring''' # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowercase__ = target_ids.shape[0] lowercase__ = model_outputs['''input_ids'''][0] lowercase__ = model_outputs['''logits'''] if self.framework == "tf": lowercase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase__ = outputs.numpy() lowercase__ = outputs[0, masked_index, :] lowercase__ = stable_softmax(lowerCamelCase, axis=-1 ) if target_ids is not None: lowercase__ = tf.gather_nd(tf.squeeze(lowerCamelCase, 0 ), target_ids.reshape(-1, 1 ) ) lowercase__ = tf.expand_dims(lowerCamelCase, 0 ) lowercase__ = tf.math.top_k(lowerCamelCase, k=lowerCamelCase ) lowercase__ , lowercase__ = topk.values.numpy(), topk.indices.numpy() else: lowercase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=lowerCamelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase__ = outputs[0, masked_index, :] lowercase__ = logits.softmax(dim=-1 ) if target_ids is not None: lowercase__ = probs[..., target_ids] lowercase__ , lowercase__ = probs.topk(lowerCamelCase ) lowercase__ = [] lowercase__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist() ) ): lowercase__ = [] for v, p in zip(_values, _predictions ): # Copy is important since we're going to modify this array in place lowercase__ = input_ids.numpy().copy() if target_ids is not None: lowercase__ = target_ids[p].tolist() lowercase__ = p # Filter padding out: lowercase__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase__ = self.tokenizer.decode(lowerCamelCase, skip_special_tokens=lowerCamelCase ) lowercase__ = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(lowerCamelCase ) result.append(lowerCamelCase ) if single_mask: return result[0] return result def lowercase__ ( self : int, lowerCamelCase : Optional[int], lowerCamelCase : Dict=None ): '''simple docstring''' if isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = [targets] try: lowercase__ = self.tokenizer.get_vocab() except Exception: lowercase__ = {} lowercase__ = [] for target in targets: lowercase__ = vocab.get(lowerCamelCase, lowerCamelCase ) if id_ is None: lowercase__ = self.tokenizer( lowerCamelCase, add_special_tokens=lowerCamelCase, return_attention_mask=lowerCamelCase, return_token_type_ids=lowerCamelCase, max_length=1, truncation=lowerCamelCase, )['''input_ids'''] if len(lowerCamelCase ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowercase__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) lowercase__ = list(set(lowerCamelCase ) ) if len(lowerCamelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowercase__ = np.array(lowerCamelCase ) return target_ids def lowercase__ ( self : List[str], lowerCamelCase : int=None, lowerCamelCase : Any=None ): '''simple docstring''' lowercase__ = {} if targets is not None: lowercase__ = self.get_target_ids(lowerCamelCase, lowerCamelCase ) lowercase__ = target_ids if top_k is not None: lowercase__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''', self.model.base_model_prefix, '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : List[Any], lowerCamelCase : Optional[Any], *lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = super().__call__(lowerCamelCase, **lowerCamelCase ) if isinstance(lowerCamelCase, lowerCamelCase ) and len(lowerCamelCase ) == 1: return outputs[0] return outputs
207
0
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[Any] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowercase__ : Optional[int] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowercase ( _a , _a ): snake_case_ : Tuple = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case_ : int = int(re.match(r'''.*layer_(\d*).*''' , _a )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def __lowercase ( _a ): if dtype == torch.bool: return 1 / 8 snake_case_ : Dict = re.search(r'''[^\d](\d+)$''' , str(_a ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) snake_case_ : Dict = int(bit_search.groups()[0] ) return bit_size // 8 def __lowercase ( _a , _a , _a , _a , _a ): # Construct model if bloom_config_file == "": snake_case_ : Tuple = BloomConfig() else: snake_case_ : Dict = BloomConfig.from_json_file(_a ) if shard_model: snake_case_ : Dict = os.listdir(_a ) snake_case_ : Any = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : Optional[int] = {'''weight_map''': {}, '''metadata''': {}} snake_case_ : Union[str, Any] = 0 snake_case_ : List[str] = None snake_case_ : Optional[Any] = BloomConfig() for j, file in enumerate(_a ): print('''Processing file: {}'''.format(_a ) ) snake_case_ : Optional[Any] = None for i in range(_a ): # load all TP files snake_case_ : Any = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : Optional[Any] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : Optional[int] = list(temp.keys() ) for key in keys: snake_case_ : Optional[Any] = temp.pop(_a ) if tensors is None: snake_case_ : List[Any] = temp else: for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Optional[int] = tensors[key] / pretraining_tp torch.save( _a , os.path.join( _a , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case_ : Optional[int] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case_ : Optional[int] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) snake_case_ : Dict = BloomConfig() snake_case_ : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME snake_case_ : str = total_size with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_a , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: snake_case_ : Tuple = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' f.write(_a ) else: snake_case_ : Any = BloomModel(_a ) snake_case_ : int = os.listdir(_a ) snake_case_ : Dict = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : Union[str, Any] = None for i, file in enumerate(_a ): snake_case_ : int = None for i in range(_a ): # load all TP files snake_case_ : str = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : List[str] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : Dict = list(temp.keys() ) for key in keys: snake_case_ : str = temp.pop(_a ) if tensors is None: snake_case_ : str = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Union[str, Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : List[Any] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : str = tensors[key] / pretraining_tp snake_case_ : Optional[Any] = model.load_state_dict(_a , strict=_a ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: snake_case_ : int = set(other_keys.missing_keys ) else: snake_case_ : Union[str, Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(_a , exist_ok=_a ) snake_case_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: snake_case_ : List[str] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowercase__ : Optional[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
155
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : List[Any] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[Any] , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} snake_case_ : str = Text( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , **lowercase_ , ) def _snake_case ( self : Any ): # Build iterable dataset if self.streaming: snake_case_ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ : List[Any] = None snake_case_ : Optional[Any] = None snake_case_ : str = None snake_case_ : Optional[int] = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) snake_case_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset
155
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class snake_case__ : """simple docstring""" @staticmethod def __UpperCAmelCase ( *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[Any] ) -> int: pass def __magic_name__ ( A : Image ): '''simple docstring''' a = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class snake_case__ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __UpperCAmelCase ( self : int , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> List[str]: a = DepthEstimationPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ) -> Optional[int]: a = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __lowerCamelCase ) import datasets a = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) a = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , __lowerCamelCase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: pass @slow @require_torch def __UpperCAmelCase ( self : List[Any] ) -> int: a = "Intel/dpt-large" a = pipeline("depth-estimation" , model=__lowerCamelCase ) a = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) a = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
107
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : int=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=32 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Tuple=[0, 1, 2, 3] , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=[1, 3_84, 24, 24] , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , ) -> Optional[int]: a = parent a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = backbone_out_indices a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = num_labels a = backbone_featmap_shape a = scope a = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def __UpperCAmelCase ( self : Union[str, Any] ) -> str: a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: a = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 1_92, 3_84, 7_68], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: a = DPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> str: a = self.num_labels a = DPTForDepthEstimation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple ) -> Any: a = self.num_labels a = DPTForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCAmelCase ( self : str ) -> str: a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : str = False def __UpperCAmelCase ( self : int ) -> List[str]: a = DPTModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def __UpperCAmelCase ( self : int ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Dict: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True if model_class in get_values(__lowerCamelCase ): continue a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() a = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) a = model(**__lowerCamelCase ).loss loss.backward() def __UpperCAmelCase ( self : Dict ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = False a = True if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() a = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) a = model(**__lowerCamelCase ).loss loss.backward() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: a = model_class(config=__lowerCamelCase ) # Skip the check for the backbone a = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase ( self : int ) -> Any: pass @slow def __UpperCAmelCase ( self : str ) -> Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a = DPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Dict: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type a , a = self.model_tester.prepare_config_and_inputs_for_common() a = "add" with self.assertRaises(__lowerCamelCase ): a = DPTForDepthEstimation(__lowerCamelCase ) def __magic_name__ ( ): '''simple docstring''' a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: a = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) a = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(__lowerCamelCase ) a = prepare_img() a = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) a = outputs.predicted_depth # verify the predicted depth a = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , __lowerCamelCase ) a = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __lowerCamelCase , atol=1e-4 ) )
107
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case_ : def __init__( self :int ,__snake_case :Optional[int] ,__snake_case :Any=13 ,__snake_case :Union[str, Any]=10 ,__snake_case :Dict=3 ,__snake_case :int=2 ,__snake_case :Optional[int]=2 ,__snake_case :Any=2 ,__snake_case :Optional[int]=True ,__snake_case :Optional[Any]=True ,__snake_case :List[str]=32 ,__snake_case :int=5 ,__snake_case :List[Any]=4 ,__snake_case :Tuple=37 ,__snake_case :Dict="gelu" ,__snake_case :Any=0.1 ,__snake_case :Optional[Any]=0.1 ,__snake_case :int=10 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Optional[Any]=0.9 ,__snake_case :Dict=None ,) -> Dict: a__ = parent a__ = batch_size a__ = image_size a__ = num_channels a__ = patch_size a__ = tubelet_size a__ = num_frames a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = mask_ratio a__ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame a__ = (image_size // patch_size) ** 2 a__ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos a__ = int(mask_ratio * self.seq_length ) def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: a__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__snake_case ,initializer_range=self.initializer_range ,) def lowerCamelCase__( self :List[str] ,__snake_case :List[str] ,__snake_case :List[str] ,__snake_case :Optional[Any] ) -> Union[str, Any]: a__ = VideoMAEModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> Union[str, Any]: a__ = VideoMAEForPreTraining(__snake_case ) model.to(__snake_case ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__ = torch.ones((self.num_masks,) ) a__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) a__ = mask.expand(self.batch_size ,-1 ).bool() a__ = model(__snake_case ,__snake_case ) # model only returns predictions for masked patches a__ = mask.sum().item() a__ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCamelCase__( self :Union[str, Any] ) -> Union[str, Any]: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCAmelCase__ : int = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : str = False UpperCAmelCase__ : str = False def lowerCamelCase__( self :int ) -> int: a__ = VideoMAEModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case ,hidden_size=37 ) def lowerCamelCase__( self :List[str] ,__snake_case :Dict ,__snake_case :Optional[Any] ,__snake_case :Optional[Any]=False ) -> List[str]: a__ = copy.deepcopy(__snake_case ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__ = torch.ones((self.model_tester.num_masks,) ) a__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) a__ = mask.expand(self.model_tester.batch_size ,-1 ).bool() a__ = bool_masked_pos.to(__snake_case ) if return_labels: if model_class in [ *get_values(__snake_case ), ]: a__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__snake_case ) return inputs_dict def lowerCamelCase__( self :Any ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def lowerCamelCase__( self :int ) -> Dict: pass def lowerCamelCase__( self :Union[str, Any] ) -> Dict: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case ,nn.Linear ) ) def lowerCamelCase__( self :Union[str, Any] ) -> int: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__( self :Dict ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) @slow def lowerCamelCase__( self :int ) -> Tuple: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = VideoMAEModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Any: if not self.has_attentions: pass else: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = True for model_class in self.all_model_classes: a__ = self.model_tester.seq_length - self.model_tester.num_masks a__ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) a__ = True a__ = False a__ = True a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.attentions self.assertEqual(len(__snake_case ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ = True a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.attentions self.assertEqual(len(__snake_case ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) a__ = len(__snake_case ) # Check attention is always last and order is fine a__ = True a__ = True a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) self.assertEqual(out_len + 1 ,len(__snake_case ) ) a__ = outputs.attentions self.assertEqual(len(__snake_case ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: def check_hidden_states_output(__snake_case :Dict ,__snake_case :Optional[int] ,__snake_case :Union[str, Any] ): a__ = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.hidden_states a__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__snake_case ) ,__snake_case ) a__ = self.model_tester.seq_length - self.model_tester.num_masks a__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Tuple ) -> Dict: pass def __lowercase ( ): a__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) a__ = np.load(__lowerCAmelCase ) return list(__lowerCAmelCase ) @require_torch @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :Optional[Any] ) -> List[str]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase__( self :Optional[int] ) -> Tuple: a__ = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( __snake_case ) a__ = self.default_image_processor a__ = prepare_video() a__ = image_processor(__snake_case ,return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a__ = model(**__snake_case ) # verify the logits a__ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape ,__snake_case ) a__ = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__snake_case ,atol=1E-4 ) ) @slow def lowerCamelCase__( self :List[Any] ) -> str: a__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(__snake_case ) a__ = self.default_image_processor a__ = prepare_video() a__ = image_processor(__snake_case ,return_tensors='pt' ).to(__snake_case ) # add boolean mask, indicating which patches to mask a__ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' ) a__ = torch.load(__snake_case ) # forward pass with torch.no_grad(): a__ = model(**__snake_case ) # verify the logits a__ = torch.Size([1, 14_08, 15_36] ) a__ = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ,device=__snake_case ) self.assertEqual(outputs.logits.shape ,__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,__snake_case ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) a__ = torch.tensor([0.51_42] ,device=__snake_case ) self.assertTrue(torch.allclose(outputs.loss ,__snake_case ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) a__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ,norm_pix_loss=__snake_case ).to( __snake_case ) with torch.no_grad(): a__ = model(**__snake_case ) a__ = torch.tensor(torch.tensor([0.64_69] ) ,device=__snake_case ) self.assertTrue(torch.allclose(outputs.loss ,__snake_case ,atol=1E-4 ) )
109
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case : Dict = get_logger(__name__) snake_case : str = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class snake_case_ : @add_start_docstrings(__snake_case ) def __call__( self :Dict ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case_ : @add_start_docstrings(__snake_case ) def __call__( self :List[str] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case_ (lowerCamelCase_ ): @add_start_docstrings(__snake_case ) def __call__( self :Dict ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ,**__snake_case :Any ) -> jnp.ndarray: for processor in self: a__ = inspect.signature(processor.__call__ ).parameters if len(__snake_case ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) a__ = processor(__snake_case ,__snake_case ,__snake_case ,**__snake_case ) else: a__ = processor(__snake_case ,__snake_case ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :float ) -> Tuple: if not isinstance(__snake_case ,__snake_case ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) a__ = temperature def __call__( self :Optional[int] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ = scores / self.temperature return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Any ,__snake_case :float ,__snake_case :float = -float('Inf' ) ,__snake_case :int = 1 ) -> Dict: if not isinstance(__snake_case ,__snake_case ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(__snake_case ,__snake_case ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) a__ = top_p a__ = filter_value a__ = min_tokens_to_keep def __call__( self :Optional[int] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ , a__ = lax.top_k(__snake_case ,scores.shape[-1] ) a__ = jnp.full_like(__snake_case ,self.filter_value ) a__ = jax.nn.softmax(__snake_case ,axis=-1 ).cumsum(axis=-1 ) a__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well a__ = jnp.roll(__snake_case ,1 ) score_mask |= score_mask.at[:, 0].set(__snake_case ) # min tokens to keep a__ = score_mask.at[:, : self.min_tokens_to_keep].set(__snake_case ) a__ = jnp.where(__snake_case ,__snake_case ,__snake_case ) a__ = jax.lax.sort_key_val(__snake_case ,__snake_case )[-1] return next_scores class snake_case_ (lowerCamelCase_ ): def __init__( self :List[str] ,__snake_case :int ,__snake_case :float = -float('Inf' ) ,__snake_case :int = 1 ) -> Any: if not isinstance(__snake_case ,__snake_case ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) a__ = max(__snake_case ,__snake_case ) a__ = filter_value def __call__( self :int ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ , a__ = scores.shape a__ = jnp.full(batch_size * vocab_size ,self.filter_value ) a__ = min(self.top_k ,scores.shape[-1] ) # Safety check a__ , a__ = lax.top_k(__snake_case ,__snake_case ) a__ = jnp.broadcast_to((jnp.arange(__snake_case ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() a__ = topk_scores.flatten() a__ = topk_indices.flatten() + shift a__ = next_scores_flat.at[topk_indices_flat].set(__snake_case ) a__ = next_scores_flat.reshape(__snake_case ,__snake_case ) return next_scores class snake_case_ (lowerCamelCase_ ): def __init__( self :int ,__snake_case :int ) -> str: a__ = bos_token_id def __call__( self :List[Any] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ = jnp.full(scores.shape ,-float('inf' ) ) a__ = 1 - jnp.bool_(cur_len - 1 ) a__ = jnp.where(__snake_case ,new_scores.at[:, self.bos_token_id].set(0 ) ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Union[str, Any] ,__snake_case :int ,__snake_case :int ) -> List[Any]: a__ = max_length a__ = eos_token_id def __call__( self :int ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ = jnp.full(scores.shape ,-float('inf' ) ) a__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) a__ = jnp.where(__snake_case ,new_scores.at[:, self.eos_token_id].set(0 ) ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :str ,__snake_case :int ,__snake_case :int ) -> List[str]: if not isinstance(__snake_case ,__snake_case ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(__snake_case ,__snake_case ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) a__ = min_length a__ = eos_token_id def __call__( self :Any ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied a__ = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) a__ = jnp.where(__snake_case ,scores.at[:, self.eos_token_id].set(-float('inf' ) ) ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Optional[int] ) -> Tuple: a__ = list(__snake_case ) a__ = begin_index def __call__( self :str ,__snake_case :List[str] ,__snake_case :str ,__snake_case :int ) -> str: a__ = 1 - jnp.bool_(cur_len - self.begin_index ) a__ = jnp.where(__snake_case ,scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) ,__snake_case ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :List[str] ,__snake_case :list ) -> List[Any]: a__ = list(__snake_case ) def __call__( self :Dict ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: a__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Dict ,__snake_case :Optional[int] ) -> Union[str, Any]: a__ = dict(__snake_case ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. a__ = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: a__ = force_token_array.at[index].set(__snake_case ) a__ = jnp.intaa(__snake_case ) def __call__( self :Optional[int] ,__snake_case :jnp.ndarray ,__snake_case :jnp.ndarray ,__snake_case :int ) -> jnp.ndarray: def _force_token(__snake_case :Optional[Any] ): a__ = scores.shape[0] a__ = self.force_token_array[generation_idx] a__ = jnp.ones_like(__snake_case ,dtype=scores.dtype ) * -float('inf' ) a__ = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) a__ = lax.dynamic_update_slice(__snake_case ,__snake_case ,(0, current_token) ) return new_scores a__ = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(__snake_case ) ,lambda: scores ,) ,) return scores class snake_case_ (lowerCamelCase_ ): def __init__( self :Any ,__snake_case :List[str] ,__snake_case :str ,__snake_case :List[Any] ) -> Optional[int]: a__ = generate_config.eos_token_id a__ = generate_config.no_timestamps_token_id a__ = generate_config.no_timestamps_token_id + 1 a__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__snake_case ,'max_initial_timestamp_index' ): a__ = generate_config.max_initial_timestamp_index else: a__ = model_config.vocab_size if self.max_initial_timestamp_index is None: a__ = model_config.vocab_size def __call__( self :Any ,__snake_case :List[Any] ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ) -> Tuple: # suppress <|notimestamps|> which is handled by without_timestamps a__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(__snake_case :List[str] ,__snake_case :Union[str, Any] ): a__ = jnp.where((cur_len - self.begin_index) >= 1 ,__snake_case ,__snake_case ) a__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,__snake_case ,) a__ = jnp.where((cur_len - self.begin_index) < 2 ,__snake_case ,__snake_case ) a__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,__snake_case ,__snake_case ,) return jnp.where( __snake_case ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) ,scores_k.at[: self.eos_token_id].set(-float('inf' ) ) ,) ,__snake_case ,) a__ = jax.vmap(__snake_case )(__snake_case ,__snake_case ) a__ = jnp.where(cur_len == self.begin_index ,__snake_case ,__snake_case ) a__ = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,__snake_case ,) a__ = self.timestamp_begin + self.max_initial_timestamp_index a__ = jnp.where( __snake_case ,scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) ,__snake_case ,) # if sum of probability over timestamps is above any other token, sample timestamp a__ = jax.nn.log_softmax(__snake_case ,axis=-1 ) def handle_cumulative_probs(__snake_case :Dict ,__snake_case :List[Any] ): a__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) a__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) ,__snake_case ,) a__ = jax.vmap(__snake_case )(__snake_case ,__snake_case ) return scores
109
1
'''simple docstring''' from maths.prime_check import is_prime def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : int =F"Input value of [number={number}] must be an integer" raise TypeError(_UpperCAmelCase ) if is_prime(_UpperCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
276
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
276
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : Union[str, Any] = "T5Config" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : str = jnp.zeros_like(__lowerCamelCase ) __snake_case : int = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __snake_case : Optional[Any] = shifted_input_ids.at[:, 0].set(__lowerCamelCase ) __snake_case : Optional[int] = jnp.where(shifted_input_ids == -1_0_0 , __lowerCamelCase , __lowerCamelCase ) return shifted_input_ids class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Any = "mt5" __UpperCAmelCase : Tuple = MTaConfig class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = "mt5" __UpperCAmelCase : List[str] = MTaConfig class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = "mt5" __UpperCAmelCase : Any = MTaConfig
134
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case : Union[str, Any] = ["small", "medium", "large"] _snake_case : List[Any] = "lm_head.decoder.weight" _snake_case : Optional[Any] = "lm_head.weight" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Tuple = torch.load(__lowerCamelCase ) __snake_case : Dict = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) _snake_case : Any = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') _snake_case : List[str] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
134
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'vocab.txt'} _snake_case = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } _snake_case = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } _snake_case = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCamelCase ( __lowerCamelCase ): UpperCamelCase : int = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Any = ConvBertTokenizer def __init__( self : Any , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : int="[UNK]" , UpperCAmelCase__ : Any="[SEP]" , UpperCAmelCase__ : List[Any]="[PAD]" , UpperCAmelCase__ : List[Any]="[CLS]" , UpperCAmelCase__ : List[str]="[MASK]" , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : int , ) -> str: super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) _a : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __lowercase ) != tokenize_chinese_chars ): _a : Dict = getattr(__lowercase , normalizer_state.pop("""type""" ) ) _a : Any = do_lower_case _a : Optional[int] = strip_accents _a : str = tokenize_chinese_chars _a : Tuple = normalizer_class(**__lowercase ) _a : Tuple = do_lower_case def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any]=None ) -> str: _a : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Optional[int]: _a : Union[str, Any] = [self.sep_token_id] _a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> List[Any]: _a : Any = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
294
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = [] for part_id in partition_order: snake_case__ : Any = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__lowerCAmelCase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Optional[Any] = spark.range(100 ).repartition(1 ) snake_case__ : Optional[int] = Spark(__lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(10 ).repartition(2 ) snake_case__ : Any = [1, 0] snake_case__ : Tuple = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions. snake_case__ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__ , snake_case__ : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Any: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : List[Any] = spark.range(10 ).repartition(1 ) snake_case__ : int = SparkExamplesIterable(__lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Tuple = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: snake_case__ : Union[str, Any] = lambda __lowerCAmelCase : x.reverse() snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] ) snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(100 ).repartition(1 ) snake_case__ : Tuple = Spark(__lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
230
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = TextaTextGenerationPipeline(model=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) return generator, ["Something to write", "Something else"] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = generator('Something there' ) self.assertEqual(__SCREAMING_SNAKE_CASE , [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) SCREAMING_SNAKE_CASE_ : str = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=__SCREAMING_SNAKE_CASE ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}, {'generated_text': ANY(__SCREAMING_SNAKE_CASE )}], [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}, {'generated_text': ANY(__SCREAMING_SNAKE_CASE )}], ] , ) SCREAMING_SNAKE_CASE_ : List[Any] = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=__SCREAMING_SNAKE_CASE ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}, {'generated_text': ANY(__SCREAMING_SNAKE_CASE )}], [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}, {'generated_text': ANY(__SCREAMING_SNAKE_CASE )}], ] , ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): generator(4 ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_ : Tuple = generator('Something there' , do_sample=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , [{'generated_text': ''}] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 3 SCREAMING_SNAKE_CASE_ : str = generator( 'Something there' , num_return_sequences=__SCREAMING_SNAKE_CASE , num_beams=__SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = generator('This is a test' , do_sample=__SCREAMING_SNAKE_CASE , num_return_sequences=2 , return_tensors=__SCREAMING_SNAKE_CASE ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_ : Any = '<pad>' SCREAMING_SNAKE_CASE_ : Tuple = generator( ['This is a test', 'This is a second test'] , do_sample=__SCREAMING_SNAKE_CASE , num_return_sequences=2 , batch_size=2 , return_tensors=__SCREAMING_SNAKE_CASE , ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_ : Any = generator('Something there' , do_sample=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , [{'generated_text': ''}] )
363
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a__ ( ): raise RuntimeError('CUDA out of memory.' ) class __lowercase (nn.Module ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : int = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE_ : Tuple = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE_ : str = nn.Linear(4 , 5 ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = mock_training_loop_function('hello' ) self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ ): pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function(1_2_8 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE_ : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = release_memory(lowerCAmelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , lowerCAmelCase__ )
162
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor a = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase (snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if isinstance(snake_case__ , torch.Tensor ): return image elif isinstance(snake_case__ , PIL.Image.Image ): lowerCAmelCase = [image] lowerCAmelCase = [trans(img.convert("""RGB""" ) ) for img in image] lowerCAmelCase = torch.stack(snake_case__ ) return image class SCREAMING_SNAKE_CASE__ ( _a ): def __init__( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) def __lowercase ( self : int , lowerCAmelCase : Optional[int] ): if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def __lowercase ( self : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any ): # get the original timestep using init_timestep lowerCAmelCase = min(int(num_inference_steps * strength ) , lowerCAmelCase ) lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowercase ( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Any=None ): if not isinstance(lowerCAmelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase )}''' ) lowerCAmelCase = image.to(device=lowerCAmelCase , dtype=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase = init_latents.shape lowerCAmelCase = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) # get latents print("""add noise to latents at timestep""" , lowerCAmelCase ) lowerCAmelCase = self.scheduler.add_noise(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCAmelCase : float = 0.8 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 50 , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , ): self.check_inputs(lowerCAmelCase ) # 2. Preprocess image lowerCAmelCase = preprocess(lowerCAmelCase ) # 3. set timesteps self.scheduler.set_timesteps(lowerCAmelCase , device=self.device ) lowerCAmelCase , lowerCAmelCase = self.get_timesteps(lowerCAmelCase , lowerCAmelCase , self.device ) lowerCAmelCase = timesteps[:1].repeat(lowerCAmelCase ) # 4. Prepare latent variables lowerCAmelCase = self.prepare_latents(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.unet.dtype , self.device , lowerCAmelCase ) lowerCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(lowerCAmelCase ): # 1. predict noise model_output lowerCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase = self.scheduler.step( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , eta=lowerCAmelCase , use_clipped_model_output=lowerCAmelCase , generator=lowerCAmelCase , ).prev_sample lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCAmelCase )
155
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a = logging.get_logger(__name__) a = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'dpt' def __init__( self : int , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : str=0.02 , lowerCAmelCase : str=1e-12 , lowerCAmelCase : Optional[Any]=384 , lowerCAmelCase : str=16 , lowerCAmelCase : int=3 , lowerCAmelCase : Tuple=False , lowerCAmelCase : Any=True , lowerCAmelCase : Tuple=[2, 5, 8, 11] , lowerCAmelCase : Tuple="project" , lowerCAmelCase : Optional[int]=[4, 2, 1, 0.5] , lowerCAmelCase : Any=[96, 192, 384, 768] , lowerCAmelCase : int=256 , lowerCAmelCase : List[Any]=-1 , lowerCAmelCase : Any=False , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=0.4 , lowerCAmelCase : Dict=255 , lowerCAmelCase : int=0.1 , lowerCAmelCase : List[Any]=[1, 1024, 24, 24] , lowerCAmelCase : str=[0, 1] , lowerCAmelCase : str=None , **lowerCAmelCase : Optional[Any] , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_size lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } lowerCAmelCase = BitConfig(**lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase = BitConfig(**lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowerCAmelCase = backbone_featmap_shape lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = [] lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) lowerCAmelCase = readout_type lowerCAmelCase = reassemble_factors lowerCAmelCase = neck_hidden_sizes lowerCAmelCase = fusion_hidden_size lowerCAmelCase = head_in_index lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = semantic_loss_ignore_index lowerCAmelCase = semantic_classifier_dropout def __lowercase ( self : Any ): lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
155
1
from __future__ import annotations def A ( a_ ) -> bool: __UpperCamelCase : Tuple =len(a_ ) # We need to create solution object to save path. __UpperCamelCase : Optional[int] =[[0 for _ in range(a_ )] for _ in range(a_ )] __UpperCamelCase : List[str] =run_maze(a_ ,0 ,0 ,a_ ) if solved: print('\n'.join(str(a_ ) for row in solutions ) ) else: print('No solution exists!' ) return solved def A ( a_ ,a_ ,a_ ,a_ ) -> bool: __UpperCamelCase : Optional[Any] =len(a_ ) # Final check point. if i == j == (size - 1): __UpperCamelCase : int =1 return True __UpperCamelCase : Tuple =(not i < 0) and (not j < 0) # Check lower bounds __UpperCamelCase : List[Any] =(i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __UpperCamelCase : Tuple =(not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __UpperCamelCase : int =1 # check for directions if ( run_maze(a_ ,i + 1 ,a_ ,a_ ) or run_maze(a_ ,a_ ,j + 1 ,a_ ) or run_maze(a_ ,i - 1 ,a_ ,a_ ) or run_maze(a_ ,a_ ,j - 1 ,a_ ) ): return True __UpperCamelCase : Optional[Any] =0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
365
from math import pow, sqrt def A ( *a_ ) -> bool: __UpperCamelCase : Union[str, Any] =len(a_ ) > 0 and all(value > 0.0 for value in values ) return result def A ( a_ ,a_ ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
245
0
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , ) -> List[str]: '''simple docstring''' UpperCAmelCase : str = parent UpperCAmelCase : str = batch_size UpperCAmelCase : int = image_size UpperCAmelCase : str = patch_size UpperCAmelCase : Any = num_channels UpperCAmelCase : Dict = embed_dim UpperCAmelCase : Any = depths UpperCAmelCase : str = num_heads UpperCAmelCase : Optional[Any] = window_size UpperCAmelCase : int = mlp_ratio UpperCAmelCase : Any = qkv_bias UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = drop_path_rate UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Tuple = use_absolute_embeddings UpperCAmelCase : Optional[Any] = patch_norm UpperCAmelCase : Tuple = layer_norm_eps UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Any = scope UpperCAmelCase : List[str] = use_labels UpperCAmelCase : Union[str, Any] = type_sequence_label_size UpperCAmelCase : Any = encoder_stride def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Optional[Any] = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' UpperCAmelCase : int = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Tuple = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase : str = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Tuple = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = config_and_inputs UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __lowerCAmelCase : Union[str, Any] = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : str = False def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str = SwinvaModelTester(self ) UpperCAmelCase : Tuple = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : List[str] = [*signature.parameters.keys()] UpperCAmelCase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = True for model_class in self.all_model_classes: UpperCAmelCase : str = True UpperCAmelCase : str = False UpperCAmelCase : Dict = True UpperCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Any = outputs.attentions UpperCAmelCase : Tuple = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase : Any = True UpperCAmelCase : Optional[int] = config.window_size**2 UpperCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase : Any = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine UpperCAmelCase : int = True UpperCAmelCase : int = True UpperCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): UpperCAmelCase : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase : List[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Optional[int] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : List[Any] = outputs.hidden_states UpperCAmelCase : Optional[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length UpperCAmelCase : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = reshaped_hidden_states[0].shape UpperCAmelCase : List[str] = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase : List[str] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Any = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase : Tuple = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase : Dict = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
109
"""simple docstring""" from math import pi, sqrt, tan def _snake_case ( UpperCamelCase : float ): if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _snake_case ( UpperCamelCase : float ): if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def _snake_case ( UpperCamelCase : float ): if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) UpperCAmelCase : Tuple = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(UpperCamelCase , 2 ) * torus_radius * tube_radius def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def _snake_case ( UpperCamelCase : float ): if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) UpperCAmelCase : Union[str, Any] = (sidea + sidea + sidea) / 2 UpperCAmelCase : Union[str, Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def _snake_case ( UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def _snake_case ( UpperCamelCase : float ): if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def _snake_case ( UpperCamelCase : int , UpperCamelCase : float ): if not isinstance(UpperCamelCase , UpperCamelCase ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"""Rectangle: {area_rectangle(1_0, 2_0) = }""") print(f"""Square: {area_square(1_0) = }""") print(f"""Triangle: {area_triangle(1_0, 1_0) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""") print(f"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""") print(f"""Rhombus: {area_rhombus(1_0, 2_0) = }""") print(f"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""") print(f"""Circle: {area_circle(2_0) = }""") print(f"""Ellipse: {area_ellipse(1_0, 2_0) = }""") print("\nSurface Areas of various geometric shapes: \n") print(f"""Cube: {surface_area_cube(2_0) = }""") print(f"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""") print(f"""Sphere: {surface_area_sphere(2_0) = }""") print(f"""Hemisphere: {surface_area_hemisphere(2_0) = }""") print(f"""Cone: {surface_area_cone(1_0, 2_0) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""") print(f"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""") print(f"""Torus: {surface_area_torus(2_0, 1_0) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""") print(f"""Square: {area_reg_polygon(4, 1_0) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
109
1
"""simple docstring""" from __future__ import annotations import time SCREAMING_SNAKE_CASE__:Union[str, Any] = list[tuple[int, int]] SCREAMING_SNAKE_CASE__:str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE__:List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = parent class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase ) __a = [self.start] __a = False def a__ ( self ): while self.node_queue: __a = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(lowerCamelCase ) __a = self.get_successors(lowerCamelCase ) for node in successors: self.node_queue.append(lowerCamelCase ) if not self.reached: return [self.start.pos] return None def a__ ( self , lowerCamelCase ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCamelCase , lowerCamelCase , self.target.pos_y , self.target.pos_x , lowerCamelCase ) ) return successors def a__ ( self , lowerCamelCase ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase ): __a = BreadthFirstSearch(lowerCamelCase , lowerCamelCase ) __a = BreadthFirstSearch(lowerCamelCase , lowerCamelCase ) __a = False def a__ ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __a = self.fwd_bfs.node_queue.pop(0 ) __a = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __a = True return self.retrace_bidirectional_path( lowerCamelCase , lowerCamelCase ) __a = current_bwd_node __a = current_fwd_node __a = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCamelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.fwd_bfs.retrace_path(lowerCamelCase ) __a = self.bwd_bfs.retrace_path(lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __a = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() SCREAMING_SNAKE_CASE__:Dict = (0, 0) SCREAMING_SNAKE_CASE__:Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE__:List[str] = time.time() SCREAMING_SNAKE_CASE__:Dict = BreadthFirstSearch(init, goal) SCREAMING_SNAKE_CASE__:int = bfs.search() SCREAMING_SNAKE_CASE__:Tuple = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) SCREAMING_SNAKE_CASE__:Tuple = time.time() SCREAMING_SNAKE_CASE__:Dict = BidirectionalBreadthFirstSearch(init, goal) SCREAMING_SNAKE_CASE__:List[Any] = bd_bfs.search() SCREAMING_SNAKE_CASE__:Tuple = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
364
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller SCREAMING_SNAKE_CASE__:List[str] = 3 def _lowerCamelCase( a ): print("Generating primitive root of p" ) while True: __a = random.randrange(3 , a ) if pow(a , 2 , a ) == 1: continue if pow(a , a , a ) == 1: continue return g def _lowerCamelCase( a ): print("Generating prime p..." ) __a = rabin_miller.generate_large_prime(a ) # select large prime number. __a = primitive_root(a ) # one primitive root on modulo p. __a = random.randrange(3 , a ) # private_key -> have to be greater than 2 for safety. __a = cryptomath.find_mod_inverse(pow(a , a , a ) , a ) __a = (key_size, e_a, e_a, p) __a = (key_size, d) return public_key, private_key def _lowerCamelCase( a , a ): if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("\nWARNING:" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() __a , __a = generate_key(a ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , "w" ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , "w" ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def _lowerCamelCase( ): print("Making key files..." ) make_key_files("elgamal" , 2_0_4_8 ) print("Key files generation successful" ) if __name__ == "__main__": main()
268
0
'''simple docstring''' import os from math import logaa def __lowerCamelCase ( __snake_case : str = "base_exp.txt" ) -> int: """simple docstring""" A__ : float =0 A__ : Optional[int] =0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ), __snake_case ) ) ): A__ , A__ : Union[str, Any] =list(map(__snake_case, line.split(""",""" ) ) ) if x * logaa(__snake_case ) > largest: A__ : List[str] =x * logaa(__snake_case ) A__ : Any =i + 1 return result if __name__ == "__main__": print(solution())
134
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[Any] = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
134
1
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __A : Any = logging.get_logger(__name__) @add_end_docstrings(_A ) class __UpperCamelCase ( _A ): def __init__(self : int , **__SCREAMING_SNAKE_CASE : Union[str, Any]): super().__init__(**__SCREAMING_SNAKE_CASE) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") # No specific FOR_XXX available yet def __call__(self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[np.ndarray, bytes, str] , **__SCREAMING_SNAKE_CASE : Dict): return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : Any): A = {} if "candidate_labels" in kwargs: A = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: A = kwargs["hypothesis_template"] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a sound of {}."): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): if audio.startswith("http://") or audio.startswith("https://"): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A = requests.get(__SCREAMING_SNAKE_CASE).content else: with open(__SCREAMING_SNAKE_CASE , "rb") as f: A = f.read() if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): A = ffmpeg_read(__SCREAMING_SNAKE_CASE , self.feature_extractor.sampling_rate) if not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray): raise ValueError("We expect a numpy ndarray as input") if len(audio.shape) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline") A = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt") A = candidate_labels A = [hypothesis_template.format(__SCREAMING_SNAKE_CASE) for x in candidate_labels] A = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE) A = [text_inputs] return inputs def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : List[str]): A = model_inputs.pop("candidate_labels") A = model_inputs.pop("text_inputs") if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE): A = text_inputs[0] else: # Batching case. A = text_inputs[0][0] A = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) A = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]): A = model_outputs.pop("candidate_labels") A = model_outputs["logits"][0] if self.framework == "pt": A = logits.softmax(dim=0) A = probs.tolist() else: raise ValueError("`tf` framework not supported.") A = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , key=lambda __SCREAMING_SNAKE_CASE: -x[0]) ] return result
57
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Dict): A = tempfile.mkdtemp() A = BlipImageProcessor() A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") A = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Dict , **__SCREAMING_SNAKE_CASE : Any): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).tokenizer def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : int): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).image_processor def SCREAMING_SNAKE_CASE__ (self : Optional[int]): shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Any): A = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] A = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ (self : Any): A = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) A = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") A = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) A = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = self.prepare_image_inputs() A = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="np") A = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = processor(text=__SCREAMING_SNAKE_CASE) A = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"])
57
1
"""simple docstring""" from __future__ import annotations from collections import deque class UpperCamelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase__ : list[str] ) -> Any: __SCREAMING_SNAKE_CASE = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase__ ) self.set_fail_transitions() def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : str ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str ) -> None: __SCREAMING_SNAKE_CASE = 0 for character in keyword: __SCREAMING_SNAKE_CASE = self.find_next_state(UpperCAmelCase__ , UpperCAmelCase__ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __SCREAMING_SNAKE_CASE = len(self.adlist ) - 1 else: __SCREAMING_SNAKE_CASE = next_state self.adlist[current_state]["output"].append(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> None: __SCREAMING_SNAKE_CASE = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 0 while q: __SCREAMING_SNAKE_CASE = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.adlist[r]["fail_state"] while ( self.find_next_state(UpperCAmelCase__ , self.adlist[child]["value"] ) is None and state != 0 ): __SCREAMING_SNAKE_CASE = self.adlist[state]["fail_state"] __SCREAMING_SNAKE_CASE = self.find_next_state( UpperCAmelCase__ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : str ) -> dict[str, list[int]]: __SCREAMING_SNAKE_CASE = {} # returns a dict with keywords and list of its occurrences __SCREAMING_SNAKE_CASE = 0 for i in range(len(UpperCAmelCase__ ) ): while ( self.find_next_state(UpperCAmelCase__ , string[i] ) is None and current_state != 0 ): __SCREAMING_SNAKE_CASE = self.adlist[current_state]["fail_state"] __SCREAMING_SNAKE_CASE = self.find_next_state(UpperCAmelCase__ , string[i] ) if next_state is None: __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = next_state for key in self.adlist[current_state]["output"]: if key not in result: __SCREAMING_SNAKE_CASE = [] result[key].append(i - len(UpperCAmelCase__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
54
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: A_ = len(UpperCAmelCase__ ) # We need to create solution object to save path. A_ = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] A_ = run_maze(UpperCAmelCase__, 0, 0, UpperCAmelCase__ ) if solved: print("""\n""".join(str(UpperCAmelCase__ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> bool: A_ = len(UpperCAmelCase__ ) # Final check point. if i == j == (size - 1): A_ = 1 return True A_ = (not i < 0) and (not j < 0) # Check lower bounds A_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A_ = 1 # check for directions if ( run_maze(UpperCAmelCase__, i + 1, UpperCAmelCase__, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, UpperCAmelCase__, j + 1, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, i - 1, UpperCAmelCase__, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, UpperCAmelCase__, j - 1, UpperCAmelCase__ ) ): return True A_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
162
0
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : List[str] = False return options def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) SCREAMING_SNAKE_CASE : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=A, feature_extractor=A, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[int] = 'A red cat sitting on a park bench' SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe( prompt=A, image=A, mask_image=A, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=A, output_type='np', ) SCREAMING_SNAKE_CASE : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
351
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : Optional[int] = 1 while repunit: SCREAMING_SNAKE_CASE : List[str] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__UpperCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
246
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : str = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = """mra""" def __init__( self , UpperCamelCase=5_0265 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=1 , UpperCamelCase=0.02 , UpperCamelCase=1e-5 , UpperCamelCase="absolute" , UpperCamelCase=4 , UpperCamelCase="full" , UpperCamelCase=0 , UpperCamelCase=0 , UpperCamelCase=1 , UpperCamelCase=0 , UpperCamelCase=2 , **UpperCamelCase , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = type_vocab_size lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = block_per_row lowerCamelCase_ = approx_mode lowerCamelCase_ = initial_prior_first_n_blocks lowerCamelCase_ = initial_prior_diagonal_n_blocks
55
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class a__ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Dict ) ->List[str]: """simple docstring""" super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type(UpperCAmelCase__ ) def __call__( self : Any , UpperCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase__ : List[str] ) ->Any: """simple docstring""" return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Dict , **UpperCAmelCase__ : Optional[int] ) ->Any: """simple docstring""" return {}, {}, {} def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = load_image(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = image.size SCREAMING_SNAKE_CASE : Tuple = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework ) return model_inputs def _lowercase ( self : int , UpperCAmelCase__ : Any ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model(**UpperCAmelCase__ ) return model_outputs def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, Any] ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = model_outputs.predicted_depth SCREAMING_SNAKE_CASE : Any = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE : str = (output * 2_5_5 / np.max(UpperCAmelCase__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE : Tuple = Image.fromarray(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Dict = predicted_depth SCREAMING_SNAKE_CASE : Optional[int] = depth return output_dict
245
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A__ ( __lowerCamelCase ): if isinstance(__lowerCamelCase, collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCamelCase__ : """simple docstring""" def _UpperCamelCase ( self , _A , _A ) -> int: pass def _UpperCamelCase ( self ) -> str: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> List[str]: SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ = {'''vision_model''': vision_model, '''text_model''': text_model} SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) SCREAMING_SNAKE_CASE_ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) SCREAMING_SNAKE_CASE_ = after_output[0].numpy() SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) SCREAMING_SNAKE_CASE_ = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) SCREAMING_SNAKE_CASE_ = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE_ = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = np.abs((a - b) ).max() self.assertLessEqual(_A , _A , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_A ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_save_load(**_A ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_A ) @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE_ = model_a(**_A ) SCREAMING_SNAKE_CASE_ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = model_a(**_A ) SCREAMING_SNAKE_CASE_ = after_outputs[0].numpy() SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) @require_tf class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = TFViTModel(_A , name='''vision_model''' ) SCREAMING_SNAKE_CASE_ = TFBertModel(_A , name='''text_model''' ) return vision_model, text_model def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = TFViTModelTester(self ) SCREAMING_SNAKE_CASE_ = TFBertModelTester(self ) SCREAMING_SNAKE_CASE_ = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> str: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) SCREAMING_SNAKE_CASE_ = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) SCREAMING_SNAKE_CASE_ = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE_ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE_ = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _UpperCamelCase ( self , _A , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = TFDeiTModel(_A , name='''vision_model''' ) SCREAMING_SNAKE_CASE_ = TFRobertaModel(_A , name='''text_model''' ) return vision_model, text_model def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = TFDeiTModelTester(self ) SCREAMING_SNAKE_CASE_ = TFRobertaModelTester(self ) SCREAMING_SNAKE_CASE_ = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = TFCLIPVisionModel(_A , name='''vision_model''' ) SCREAMING_SNAKE_CASE_ = TFBertModel(_A , name='''text_model''' ) return vision_model, text_model def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE_ = TFBertModelTester(self ) SCREAMING_SNAKE_CASE_ = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=_A ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE_ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=_A , padding=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE_ = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _A , atol=1E-3 ) )
257
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __UpperCAmelCase = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" __UpperCAmelCase = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" __UpperCAmelCase = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCamelCase ( self , _A , _A , _A=4 , _A=False ) -> List[str]: SCREAMING_SNAKE_CASE_ = compute_bleu( reference_corpus=_A , translation_corpus=_A , max_order=_A , smooth=_A ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
257
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCAmelCase : def __init__( self: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str]=2 , UpperCAmelCase_: int=3 , UpperCAmelCase_: List[Any]=4 , UpperCAmelCase_: Any=2 , UpperCAmelCase_: str=7 , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[int]=99 , UpperCAmelCase_: List[Any]=36 , UpperCAmelCase_: Optional[Any]=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Dict="gelu" , UpperCAmelCase_: Optional[int]=0.1 , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: Any=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: List[Any]=0.02 , UpperCAmelCase_: List[Any]=6 , UpperCAmelCase_: Optional[Any]=6 , UpperCAmelCase_: Union[str, Any]=3 , UpperCAmelCase_: List[str]=4 , UpperCAmelCase_: Dict=None , UpperCAmelCase_: Optional[int]=1_000 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = text_seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = coordinate_size _SCREAMING_SNAKE_CASE = shape_size _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _SCREAMING_SNAKE_CASE = text_seq_length _SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 + 1 _SCREAMING_SNAKE_CASE = self.text_seq_length + self.image_seq_length def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _SCREAMING_SNAKE_CASE = bbox[i, j, 3] _SCREAMING_SNAKE_CASE = bbox[i, j, 1] _SCREAMING_SNAKE_CASE = t if bbox[i, j, 2] < bbox[i, j, 0]: _SCREAMING_SNAKE_CASE = bbox[i, j, 2] _SCREAMING_SNAKE_CASE = bbox[i, j, 0] _SCREAMING_SNAKE_CASE = t _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.text_seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase ( self: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = LayoutLMvaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # text + image _SCREAMING_SNAKE_CASE = model(lowerCAmelCase_ , pixel_values=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _SCREAMING_SNAKE_CASE = model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _SCREAMING_SNAKE_CASE = model(pixel_values=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = LayoutLMvaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Any , UpperCAmelCase_: str , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Dict , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = LayoutLMvaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = LayoutLMvaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( _SCREAMING_SNAKE_CASE ) = config_and_inputs _SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase (__A ,__A ,unittest.TestCase ): __snake_case : Tuple = False __snake_case : int = False __snake_case : Optional[Any] = False __snake_case : Dict = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __snake_case : Union[str, Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Dict , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' return True def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = LayoutLMvaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: int=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE = copy.deepcopy(lowerCAmelCase_ ) if model_class in get_values(lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCAmelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in get_values(lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in [ *get_values(lowerCAmelCase_ ), ]: _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in [ *get_values(lowerCAmelCase_ ), ]: _SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) return inputs_dict def UpperCamelCase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCamelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __UpperCAmelCase (unittest.TestCase ): @cached_property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) if is_vision_available() else None @slow def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values.to(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([[1, 2]] ) _SCREAMING_SNAKE_CASE = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _SCREAMING_SNAKE_CASE = model( input_ids=input_ids.to(lowerCAmelCase_ ) , bbox=bbox.to(lowerCAmelCase_ ) , pixel_values=pixel_values.to(lowerCAmelCase_ ) , ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) )
306
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCamelCase_ : def __init__( self : str ) -> Dict: UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : int = "" UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = 256 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = 0 def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[Any]: UpperCAmelCase_ : Dict = cva.imread(lowerCAmelCase_ , 0 ) UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.img ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCAmelCase_ : List[Any] = np.sum(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : List[Any] = x[i] / self.k self.sk += prk UpperCAmelCase_ : Optional[Any] = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase_ : Any = int(last % last ) UpperCAmelCase_ : List[str] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase_ : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase_ : Any = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase_ : Tuple = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCamelCase_ = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowerCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
268
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCAmelCase__ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] UpperCAmelCase__ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = " Hello world! cécé herlolip" UpperCAmelCase__ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def _a ( a :Tuple ) -> str: a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def _a ( a :Optional[int] , a :Any , a :Dict ) -> Optional[Any]: a = dct.pop(lowerCamelCase__ ) a = val def _a ( a :Dict ) -> int: a = torch.load(lowerCamelCase__ , map_location='''cpu''' ) a = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def _a ( a :Optional[Any] ) -> Any: a , a = emb.weight.shape a = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) a = emb.weight.data return lin_layer @torch.no_grad() def _a ( a :Any , a :Dict , a :Union[str, Any]=None ) -> Optional[Any]: if not os.path.exists(lowerCamelCase__ ): a = torch.hub.load('''pytorch/fairseq''' , lowerCamelCase__ ).eval() else: a = load_xsum_checkpoint(lowerCamelCase__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: a = checkpoint_path.replace('''.''' , '''-''' ) a = BartConfig.from_pretrained(lowerCamelCase__ ) a = bart.encode(lowerCamelCase__ ).unsqueeze(0 ) a = BartTokenizer.from_pretrained(lowerCamelCase__ ).encode(lowerCamelCase__ , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(lowerCamelCase__ , lowerCamelCase__ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": a = bart.state_dict() remove_ignore_keys_(lowerCamelCase__ ) a = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) a = BartForSequenceClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) a = bart.predict('''mnli''' , lowerCamelCase__ , return_logits=lowerCamelCase__ ) a = model(lowerCamelCase__ )[0] # logits else: # no classification heads to worry about a = bart.model.state_dict() remove_ignore_keys_(lowerCamelCase__ ) a = state_dict['''decoder.embed_tokens.weight'''] a = bart.extract_features(lowerCamelCase__ ) if hf_checkpoint_name == "facebook/bart-large": a = BartModel(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) a = model(lowerCamelCase__ ).model[0] else: a = BartForConditionalGeneration(lowerCamelCase__ ).eval() # an existing summarization ckpt model.model.load_state_dict(lowerCamelCase__ ) if hasattr(lowerCamelCase__ , '''lm_head''' ): a = make_linear_from_emb(model.model.shared ) a = model.model(lowerCamelCase__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) UpperCAmelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
371
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Union[str, Any] = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A : Dict = logging.getLogger(__name__) @dataclass class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[float] =field( default=0.0 ,metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) __UpperCAmelCase : bool =field(default=lowerCAmelCase__ ,metadata={"""help""": """Whether to SortishSamler or not."""} ) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __UpperCAmelCase : bool =field(default=lowerCAmelCase__ ,metadata={"""help""": """whether to use adafactor"""} ) __UpperCAmelCase : Optional[float] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) __UpperCAmelCase : Optional[float] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) __UpperCAmelCase : Optional[float] =field(default=lowerCAmelCase__ ,metadata={"""help""": """Dropout probability. Goes into model.config."""} ) __UpperCAmelCase : Optional[float] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) __UpperCAmelCase : Optional[str] =field( default="""linear""" ,metadata={"""help""": F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} ,)
57
1
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCamelCase__ = datasets.logging.get_logger(__name__) UpperCamelCase__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' UpperCamelCase__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' UpperCamelCase__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="dummy_doc" ) -> Optional[int]: UpperCAmelCase__ : Any = {doc: key_lines} UpperCAmelCase__ : Dict = {doc: sys_lines} UpperCAmelCase__ : Tuple = {} UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : Union[str, Any] = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : str = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : str = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: UpperCAmelCase__ : Optional[int] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase__ : Dict = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase__ : Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Dict = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( '''Number of resulting singleton clusters in the key ''' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ '''files, respectively''' ) return doc_coref_infos def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : Optional[int] = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Tuple = 0 for name, metric in metrics: UpperCAmelCase__ : str = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: UpperCAmelCase__ : Union[str, Any] = (conll / 3) * 1_00 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'''conll_score''': conll} ) return output_scores def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Tuple = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: UpperCAmelCase__ : Optional[int] = line.split()[5] if not parse_col == "-": UpperCAmelCase__ : str = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase_ ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def lowercase_ ( self : str , _A : Union[str, Any] , _A : Dict , _A : str=True , _A : int=False , _A : str=False , _A : Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: UpperCAmelCase__ : List[Any] = util.check_gold_parse_annotation(_A ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase__ : str = evaluate( key_lines=_A , sys_lines=_A , metrics=_A , NP_only=_A , remove_nested=_A , keep_singletons=_A , min_span=_A , ) return score
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
0
def __A ( __lowerCAmelCase = 100 )-> int: """simple docstring""" _UpperCAmelCase = (n * (n + 1) // 2) ** 2 _UpperCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
39
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase__ : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int, _lowerCAmelCase : Optional[int] ) -> Dict: _UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = val def UpperCamelCase ( _lowerCAmelCase : List[Any] ) -> List[str]: _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCAmelCase : Tuple = key.replace("""backbone.0.body""", """backbone.conv_encoder.model""" ) _UpperCAmelCase : Any = value else: _UpperCAmelCase : List[Any] = value return new_state_dict def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Tuple=False ) -> Optional[Any]: _UpperCAmelCase : int = """""" if is_panoptic: _UpperCAmelCase : str = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[:256, :] _UpperCAmelCase : Tuple = in_proj_bias[:256] _UpperCAmelCase : Optional[int] = in_proj_weight[256:512, :] _UpperCAmelCase : str = in_proj_bias[256:512] _UpperCAmelCase : int = in_proj_weight[-256:, :] _UpperCAmelCase : List[Any] = in_proj_bias[-256:] def UpperCamelCase ( ) -> Any: _UpperCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Dict = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ) -> List[Any]: _UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _UpperCAmelCase : Dict = """resnet101""" if "dc5" in model_name: _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Optional[Any] = """panoptic""" in model_name if is_panoptic: _UpperCAmelCase : Optional[int] = 250 else: _UpperCAmelCase : str = 91 _UpperCAmelCase : Optional[int] = """huggingface/label-files""" _UpperCAmelCase : str = """coco-detection-id2label.json""" _UpperCAmelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase, _lowerCAmelCase, repo_type="""dataset""" ), """r""" ) ) _UpperCAmelCase : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} # load image processor _UpperCAmelCase : Optional[int] = """coco_panoptic""" if is_panoptic else """coco_detection""" _UpperCAmelCase : int = ConditionalDetrImageProcessor(format=_lowerCAmelCase ) # prepare image _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : Any = image_processor(images=_lowerCAmelCase, return_tensors="""pt""" ) _UpperCAmelCase : Any = encoding["""pixel_values"""] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub _UpperCAmelCase : Tuple = torch.hub.load("""DeppMeng/ConditionalDETR""", _lowerCAmelCase, pretrained=_lowerCAmelCase ).eval() _UpperCAmelCase : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _UpperCAmelCase : Optional[int] = """conditional_detr.""" + src rename_key(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = rename_backbone_keys(_lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCAmelCase, is_panoptic=_lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Any = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase : Optional[Any] = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Any = val # finally, create HuggingFace model and load state dict _UpperCAmelCase : Union[str, Any] = ConditionalDetrForSegmentation(_lowerCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() model.push_to_hub(repo_id=_lowerCAmelCase, organization="""DepuMeng""", commit_message="""Add model""" ) # verify our conversion _UpperCAmelCase : Any = conditional_detr(_lowerCAmelCase ) _UpperCAmelCase : int = model(_lowerCAmelCase ) assert torch.allclose(outputs.logits, original_outputs["""pred_logits"""], atol=1E-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs["""pred_boxes"""], atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs["""pred_masks"""], atol=1E-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCamelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
246
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Dict = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def _A ( cls , *_A , **_A ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def _A ( cls , *_A , **_A ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
257
from heapq import heappop, heappush import numpy as np def __lowercase ( a__ , a__ , a__ , a__ , ) -> tuple[float | int, list[tuple[int, int]]]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = grid.shape __SCREAMING_SNAKE_CASE = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [(0, source)], set() __SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=a__ ) __SCREAMING_SNAKE_CASE = None while queue: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heappop(a__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = predecessors[x, y] path.append(a__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a__ ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a__ , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE = dist + 1 __SCREAMING_SNAKE_CASE = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
257
1
"""simple docstring""" from collections.abc import Generator def __lowercase ( ) -> Generator[int, None, None]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 1 while True: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = b, a + b yield b def __lowercase ( a__ = 10_00 ) -> int: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
359
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''speech'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['speech'] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''speech'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['speech'] )
118
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class A ( unittest.TestCase ): def lowercase_ (self : List[str] ) -> Optional[int]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=__UpperCAmelCase , ) assert hasattr(self , "env" ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings UpperCAmelCase__ = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__UpperCAmelCase , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__UpperCAmelCase , py_version="py36" , ) def lowercase_ (self : str , __UpperCAmelCase : Tuple ) -> Any: """simple docstring""" TrainingJobAnalytics(__UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.create_estimator(__UpperCAmelCase ) # run training estimator.fit() # result dataframe UpperCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __UpperCAmelCase )
65
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int): '''simple docstring''' __lowercase =jnp.ones((batch_size, length)) / length return scores def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =None __lowercase =2_0 __lowercase =self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase) # tweak scores to not be uniform anymore __lowercase =scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch __lowercase =scores.at[1, 1_0].set((1 / length) - 0.4) # valley, 1st batch # compute softmax __lowercase =jax.nn.softmax(_lowerCAmelCase , axis=-1) __lowercase =FlaxTemperatureLogitsWarper(temperature=0.5) __lowercase =FlaxTemperatureLogitsWarper(temperature=1.3) __lowercase =jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase) , axis=-1) __lowercase =jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =None __lowercase =1_0 __lowercase =2 # create ramp distribution __lowercase =np.broadcast_to(np.arange(_lowerCAmelCase)[None, :] , (batch_size, vocab_size)).copy() __lowercase =ramp_logits[1:, : vocab_size // 2] + vocab_size __lowercase =FlaxTopKLogitsWarper(3) __lowercase =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case __lowercase =5 __lowercase =FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) __lowercase =np.broadcast_to(np.arange(_lowerCAmelCase)[None, :] , (batch_size, length)).copy() __lowercase =top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =None __lowercase =1_0 __lowercase =2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __lowercase =np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) __lowercase =FlaxTopPLogitsWarper(0.8) __lowercase =np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __lowercase =np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3)) # check edge cases with negative and extreme logits __lowercase =np.broadcast_to(np.arange(_lowerCAmelCase)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __lowercase =ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __lowercase =FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) __lowercase =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =2_0 __lowercase =4 __lowercase =0 __lowercase =FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase) # check that min length is applied at length 5 __lowercase =ids_tensor((batch_size, 2_0) , vocab_size=2_0) __lowercase =5 __lowercase =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase) __lowercase =min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf')]) # check that min length is not applied anymore at length 15 __lowercase =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase) __lowercase =1_5 __lowercase =min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) self.assertFalse(jnp.isinf(_lowerCAmelCase).any()) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =2_0 __lowercase =4 __lowercase =0 __lowercase =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase) # check that all scores are -inf except the bos_token_id score __lowercase =ids_tensor((batch_size, 1) , vocab_size=2_0) __lowercase =1 __lowercase =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase) __lowercase =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __lowercase =3 __lowercase =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase) __lowercase =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) self.assertFalse(jnp.isinf(_lowerCAmelCase).any()) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =2_0 __lowercase =4 __lowercase =0 __lowercase =5 __lowercase =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) # check that all scores are -inf except the eos_token_id when max_length is reached __lowercase =ids_tensor((batch_size, 4) , vocab_size=2_0) __lowercase =4 __lowercase =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase) __lowercase =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __lowercase =3 __lowercase =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase) __lowercase =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) self.assertFalse(jnp.isinf(_lowerCAmelCase).any()) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =4 __lowercase =1_0 __lowercase =1_5 __lowercase =2 __lowercase =1 __lowercase =1_5 # dummy input_ids and scores __lowercase =ids_tensor((batch_size, sequence_length) , _lowerCAmelCase) __lowercase =input_ids.copy() __lowercase =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase) __lowercase =scores.copy() # instantiate all dist processors __lowercase =FlaxTemperatureLogitsWarper(temperature=0.5) __lowercase =FlaxTopKLogitsWarper(3) __lowercase =FlaxTopPLogitsWarper(0.8) # instantiate all logits processors __lowercase =FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase) __lowercase =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase) __lowercase =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) __lowercase =1_0 # no processor list __lowercase =temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) # with processor list __lowercase =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) __lowercase =processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =4 __lowercase =1_0 __lowercase =1_5 __lowercase =2 __lowercase =1 __lowercase =1_5 # dummy input_ids and scores __lowercase =ids_tensor((batch_size, sequence_length) , _lowerCAmelCase) __lowercase =input_ids.copy() __lowercase =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase) __lowercase =scores.copy() # instantiate all dist processors __lowercase =FlaxTemperatureLogitsWarper(temperature=0.5) __lowercase =FlaxTopKLogitsWarper(3) __lowercase =FlaxTopPLogitsWarper(0.8) # instantiate all logits processors __lowercase =FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase) __lowercase =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase) __lowercase =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) __lowercase =1_0 # no processor list def run_no_processor_list(_lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict): __lowercase =temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) __lowercase =eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) return scores # with processor list def run_processor_list(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str]): __lowercase =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) __lowercase =processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase) return scores __lowercase =jax.jit(_lowerCAmelCase) __lowercase =jax.jit(_lowerCAmelCase) __lowercase =jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) __lowercase =jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
48
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowerCamelCase = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =EfficientNetConfig() __lowercase =CONFIG_MAP[model_name]['hidden_dim'] __lowercase =CONFIG_MAP[model_name]['width_coef'] __lowercase =CONFIG_MAP[model_name]['depth_coef'] __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =CONFIG_MAP[model_name]['dropout_rate'] __lowercase =CONFIG_MAP[model_name]['dw_padding'] __lowercase ='huggingface/label-files' __lowercase ='imagenet-1k-id2label.json' __lowercase =1_000 __lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} return config def _A ( ): """simple docstring""" __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=_lowerCAmelCase , ) return preprocessor def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] __lowercase =sorted(set(_lowerCAmelCase ) ) __lowercase =len(_lowerCAmelCase ) __lowercase ={b: str(_lowerCAmelCase ) for b, i in zip(_lowerCAmelCase , range(_lowerCAmelCase ) )} __lowercase =[] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: __lowercase =block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) __lowercase ={} for item in rename_keys: if item[0] in original_param_names: __lowercase ='efficientnet.' + item[1] __lowercase ='classifier.weight' __lowercase ='classifier.bias' return key_mapping def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue __lowercase =key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase =torch.from_numpy(_lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase =torch.from_numpy(_lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase =torch.from_numpy(np.transpose(_lowerCAmelCase ) ) else: __lowercase =torch.from_numpy(_lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_lowerCAmelCase ) @torch.no_grad() def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =model_classes[model_name]( include_top=_lowerCAmelCase , weights='imagenet' , input_tensor=_lowerCAmelCase , input_shape=_lowerCAmelCase , pooling=_lowerCAmelCase , classes=1_000 , classifier_activation='softmax' , ) __lowercase =original_model.trainable_variables __lowercase =original_model.non_trainable_variables __lowercase ={param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase =param.numpy() __lowercase =list(tf_params.keys() ) # Load HuggingFace model __lowercase =get_efficientnet_config(_lowerCAmelCase ) __lowercase =EfficientNetForImageClassification(_lowerCAmelCase ).eval() __lowercase =hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) __lowercase =rename_keys(_lowerCAmelCase ) replace_params(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Initialize preprocessor and preprocess input image __lowercase =convert_image_processor(_lowerCAmelCase ) __lowercase =preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase =hf_model(**_lowerCAmelCase ) __lowercase =outputs.logits.detach().numpy() # Original model inference __lowercase =False __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase =image.img_to_array(_lowerCAmelCase ) __lowercase =np.expand_dims(_lowerCAmelCase , axis=0 ) __lowercase =original_model.predict(_lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_lowerCAmelCase ): os.mkdir(_lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_lowerCAmelCase ) preprocessor.save_pretrained(_lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) __lowercase =f"""efficientnet-{model_name}""" preprocessor.push_to_hub(_lowerCAmelCase ) hf_model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowerCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
48
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
205
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowercase__ =threading.Lock() lowercase__ =None lowercase__ ={ 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } lowercase__ =logging.WARNING lowercase__ =True def __UpperCamelCase ( ): __a : Dict = os.getenv('''TRANSFORMERS_VERBOSITY''' , lowerCAmelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def __UpperCamelCase ( ): return __name__.split('''.''' )[0] def __UpperCamelCase ( ): return logging.getLogger(_get_library_name() ) def __UpperCamelCase ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __a : str = logging.StreamHandler() # Set sys.stderr as stream. __a : Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. __a : Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __a : Union[str, Any] = False def __UpperCamelCase ( ): global _default_handler with _lock: if not _default_handler: return __a : Optional[Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __a : str = None def __UpperCamelCase ( ): return log_levels def __UpperCamelCase ( lowerCAmelCase__ : Optional[str] = None ): if name is None: __a : str = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowerCAmelCase__ ) def __UpperCamelCase ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __UpperCamelCase ( lowerCAmelCase__ : int ): _configure_library_root_logger() _get_library_root_logger().setLevel(lowerCAmelCase__ ) def __UpperCamelCase ( ): return set_verbosity(lowerCAmelCase__ ) def __UpperCamelCase ( ): return set_verbosity(lowerCAmelCase__ ) def __UpperCamelCase ( ): return set_verbosity(lowerCAmelCase__ ) def __UpperCamelCase ( ): return set_verbosity(lowerCAmelCase__ ) def __UpperCamelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __UpperCamelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __UpperCamelCase ( lowerCAmelCase__ : logging.Handler ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : logging.Handler ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowerCAmelCase__ ) def __UpperCamelCase ( ): _configure_library_root_logger() __a : Tuple = False def __UpperCamelCase ( ): _configure_library_root_logger() __a : Dict = True def __UpperCamelCase ( ): __a : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: __a : Optional[int] = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Tuple = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowerCAmelCase__ ) def __UpperCamelCase ( self : List[Any] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Optional[int] ): __a : Union[str, Any] = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , lowerCAmelCase__ ) if no_advisory_warnings: return self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__ =warning_advice @functools.lru_cache(lowerCAmelCase__ ) def __UpperCamelCase ( self : Any , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Any ): self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__ =warning_once class UpperCamelCase__ : def __init__(self : List[Any] , *snake_case_ : Any , **snake_case_ : List[Any] ): # pylint: disable=unused-argument __a : Optional[int] = args[0] if args else None def __iter__(self : Dict ): return iter(self._iterator ) def __getattr__(self : List[str] , snake_case_ : List[Any] ): def empty_fn(*snake_case_ : Tuple , **snake_case_ : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__(self : Union[str, Any] ): return self def __exit__(self : Tuple , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : List[str] ): return class UpperCamelCase__ : def __call__(self : List[Any] , *snake_case_ : List[str] , **snake_case_ : List[Any] ): if _tqdm_active: return tqdm_lib.tqdm(*snake_case_ , **snake_case_ ) else: return EmptyTqdm(*snake_case_ , **snake_case_ ) def lowerCAmelCase (self : str , *snake_case_ : Any , **snake_case_ : List[Any] ): __a : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case_ , **snake_case_ ) def lowerCAmelCase (self : str ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase__ =_tqdm_cls() def __UpperCamelCase ( ): global _tqdm_active return bool(_tqdm_active ) def __UpperCamelCase ( ): global _tqdm_active __a : str = True hf_hub_utils.enable_progress_bars() def __UpperCamelCase ( ): global _tqdm_active __a : Optional[int] = False hf_hub_utils.disable_progress_bars()
90
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase__ =50000 lowercase__ =5000 lowercase__ , lowercase__ =os.path.split(__file__) lowercase__ =os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __UpperCamelCase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : List[str] ): for i in range(lowerCAmelCase__ ): __a : str = dataset[i] @get_duration def __UpperCamelCase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ): for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): __a : Optional[int] = dataset[i : i + batch_size] @get_duration def __UpperCamelCase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): __a : Dict = dataset[i] @get_duration def __UpperCamelCase ( lowerCAmelCase__ : datasets.Dataset , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): __a : int = dataset[i : i + batch_size] def __UpperCamelCase ( ): __a : Any = {'''num examples''': SPEED_TEST_N_EXAMPLES} __a : List[Any] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0_0}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0_0_0}), ] __a : Union[str, Any] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0_0}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) __a : Optional[Any] = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) __a : Optional[int] = generate_example_dataset( os.path.join(lowerCAmelCase__ , '''dataset.arrow''' ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={'''list''': (1_0_0,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase__ ) ) __a : str = func(lowerCAmelCase__ , **lowerCAmelCase__ ) print('''shuffling dataset''' ) __a : int = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(lowerCAmelCase__ ) ) __a : List[Any] = func( lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''wb''' ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
90
1
'''simple docstring''' from functools import lru_cache @lru_cache def _A ( A__ ): """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
104
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCamelCase__ = logging.get_logger(__name__) class A__ ( _lowerCamelCase): A_ : str = ['input_features', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=1_60_00 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=25 , _SCREAMING_SNAKE_CASE="hamming_window" , _SCREAMING_SNAKE_CASE=3_2768.0 , _SCREAMING_SNAKE_CASE=0.97 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = feature_size __lowerCAmelCase : List[Any] = sampling_rate __lowerCAmelCase : Dict = padding_value __lowerCAmelCase : int = hop_length __lowerCAmelCase : Optional[Any] = win_length __lowerCAmelCase : Optional[Any] = frame_signal_scale __lowerCAmelCase : Union[str, Any] = preemphasis_coeff __lowerCAmelCase : Optional[int] = mel_floor __lowerCAmelCase : Optional[Any] = normalize_means __lowerCAmelCase : Union[str, Any] = normalize_vars __lowerCAmelCase : List[Any] = win_function __lowerCAmelCase : Tuple = return_attention_mask __lowerCAmelCase : Dict = win_length * sampling_rate // 10_00 __lowerCAmelCase : str = hop_length * sampling_rate // 10_00 __lowerCAmelCase : Union[str, Any] = optimal_fft_length(self.sample_size ) __lowerCAmelCase : List[str] = (self.n_fft // 2) + 1 def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if self.win_function == "hamming_window": __lowerCAmelCase : Optional[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) __lowerCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __lowerCAmelCase : int = spectrogram( one_waveform * self.frame_signal_scale , window=_SCREAMING_SNAKE_CASE , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_SCREAMING_SNAKE_CASE , preemphasis=self.preemphasis_coeff , mel_filters=_SCREAMING_SNAKE_CASE , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # make sure we normalize float32 arrays if self.normalize_means: __lowerCAmelCase : Tuple = x[:input_length].mean(axis=0 ) __lowerCAmelCase : str = np.subtract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.normalize_vars: __lowerCAmelCase : Optional[int] = x[:input_length].std(axis=0 ) __lowerCAmelCase : List[str] = np.divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: __lowerCAmelCase : Dict = padding_value # make sure array is in float32 __lowerCAmelCase : Dict = x.astype(np.floataa ) return x def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.padding_value ) for x, n in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowerCAmelCase : Tuple = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) __lowerCAmelCase : Tuple = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase : int = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): __lowerCAmelCase : List[Any] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase : Union[str, Any] = [raw_speech] # extract fbank features __lowerCAmelCase : Tuple = [self._extract_mfsc_features(_SCREAMING_SNAKE_CASE ) for one_waveform in raw_speech] # convert into correct format for padding __lowerCAmelCase : str = BatchFeature({'input_features': features} ) __lowerCAmelCase : str = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # make sure list is in array format __lowerCAmelCase : Tuple = padded_inputs.get('input_features' ) if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] __lowerCAmelCase : Any = padded_inputs.get('attention_mask' ) if attention_mask is not None: __lowerCAmelCase : List[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __lowerCAmelCase : List[Any] = ( np.array(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __lowerCAmelCase : Dict = self.normalize( padded_inputs['input_features'] , attention_mask=_SCREAMING_SNAKE_CASE ) if return_tensors is not None: __lowerCAmelCase : Union[str, Any] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
182
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
182
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowercase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _snake_case = AutoencoderKL _snake_case = """sample""" _snake_case = 1E-2 @property def UpperCAmelCase ( self ) -> int: snake_case : Union[str, Any] = 4 snake_case : List[str] = 3 snake_case : Tuple = (3_2, 3_2) snake_case : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(A ) return {"sample": image} @property def UpperCAmelCase ( self ) -> List[str]: return (3, 3_2, 3_2) @property def UpperCAmelCase ( self ) -> List[str]: return (3, 3_2, 3_2) def UpperCAmelCase ( self ) -> int: snake_case : Optional[Any] = { """block_out_channels""": [3_2, 6_4], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } snake_case : str = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> str: pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def UpperCAmelCase ( self ) -> List[str]: # enable deterministic behavior for gradient checkpointing snake_case , snake_case : List[str] = self.prepare_init_args_and_inputs_for_common() snake_case : List[Any] = self.model_class(**A ) model.to(A ) assert not model.is_gradient_checkpointing and model.training snake_case : Optional[Any] = model(**A ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case : int = torch.randn_like(A ) snake_case : str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case : Dict = self.model_class(**A ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(A ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case : int = model_a(**A ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case : List[str] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) snake_case : int = dict(model.named_parameters() ) snake_case : Any = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def UpperCAmelCase ( self ) -> int: snake_case , snake_case : str = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) snake_case : List[str] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase ( self ) -> List[Any]: snake_case : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) snake_case : Union[str, Any] = model.to(A ) model.eval() if torch_device == "mps": snake_case : List[Any] = torch.manual_seed(0 ) else: snake_case : List[str] = torch.Generator(device=A ).manual_seed(0 ) snake_case : List[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case : List[str] = image.to(A ) with torch.no_grad(): snake_case : List[Any] = model(A , sample_posterior=A , generator=A ).sample snake_case : str = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case : Optional[Any] = torch.tensor( [ -4.0_0_7_8e-0_1, -3.8_3_2_3e-0_4, -1.2_6_8_1e-0_1, -1.1_4_6_2e-0_1, 2.0_0_9_5e-0_1, 1.0_8_9_3e-0_1, -8.8_2_4_7e-0_2, -3.0_3_6_1e-0_1, -9.8_6_4_4e-0_3, ] ) elif torch_device == "cpu": snake_case : Tuple = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] ) else: snake_case : Any = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] ) self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) @slow class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self , A , A ) -> Union[str, Any]: return f"""gaussian_noise_s={seed}_shape={"_".join([str(A ) for s in shape] )}.npy""" def UpperCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , A=0 , A=(4, 3, 5_1_2, 5_1_2) , A=False ) -> Tuple: snake_case : Optional[int] = torch.floataa if fpaa else torch.floataa snake_case : Union[str, Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(A , A ) ) ).to(A ).to(A ) return image def UpperCAmelCase ( self , A="CompVis/stable-diffusion-v1-4" , A=False ) -> int: snake_case : List[str] = """fp16""" if fpaa else None snake_case : Union[str, Any] = torch.floataa if fpaa else torch.floataa snake_case : List[Any] = AutoencoderKL.from_pretrained( A , subfolder="""vae""" , torch_dtype=A , revision=A , ) model.to(A ).eval() return model def UpperCAmelCase ( self , A=0 ) -> Optional[Any]: if torch_device == "mps": return torch.manual_seed(A ) return torch.Generator(device=A ).manual_seed(A ) @parameterized.expand( [ # fmt: off [3_3, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Any = self.get_sd_vae_model() snake_case : Tuple = self.get_sd_image(A ) snake_case : List[Any] = self.get_generator(A ) with torch.no_grad(): snake_case : str = model(A , generator=A , sample_posterior=A ).sample assert sample.shape == image.shape snake_case : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case : int = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(A , A , atol=3e-3 ) @parameterized.expand( [ # fmt: off [3_3, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [4_7, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase ( self , A , A ) -> Optional[Any]: snake_case : List[str] = self.get_sd_vae_model(fpaa=A ) snake_case : Tuple = self.get_sd_image(A , fpaa=A ) snake_case : Tuple = self.get_generator(A ) with torch.no_grad(): snake_case : Dict = model(A , generator=A , sample_posterior=A ).sample assert sample.shape == image.shape snake_case : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case : Optional[int] = torch.tensor(A ) assert torch_all_close(A , A , atol=1e-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def UpperCAmelCase ( self , A , A , A ) -> str: snake_case : Any = self.get_sd_vae_model() snake_case : List[Any] = self.get_sd_image(A ) with torch.no_grad(): snake_case : List[str] = model(A ).sample assert sample.shape == image.shape snake_case : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case : List[str] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(A , A , atol=3e-3 ) @parameterized.expand( [ # fmt: off [1_3, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [3_7, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase ( self , A , A ) -> Dict: snake_case : Any = self.get_sd_vae_model() snake_case : Tuple = self.get_sd_image(A , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): snake_case : Any = model.decode(A ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] snake_case : List[str] = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case : List[Any] = torch.tensor(A ) assert torch_all_close(A , A , atol=1e-3 ) @parameterized.expand( [ # fmt: off [2_7, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [1_6, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase ( self , A , A ) -> Optional[int]: snake_case : List[str] = self.get_sd_vae_model(fpaa=A ) snake_case : List[Any] = self.get_sd_image(A , shape=(3, 4, 6_4, 6_4) , fpaa=A ) with torch.no_grad(): snake_case : Union[str, Any] = model.decode(A ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] snake_case : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case : Optional[int] = torch.tensor(A ) assert torch_all_close(A , A , atol=5e-3 ) @parameterized.expand([(1_3,), (1_6,), (2_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCAmelCase ( self , A ) -> str: snake_case : Tuple = self.get_sd_vae_model(fpaa=A ) snake_case : Tuple = self.get_sd_image(A , shape=(3, 4, 6_4, 6_4) , fpaa=A ) with torch.no_grad(): snake_case : Any = model.decode(A ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case : Dict = model.decode(A ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(A , A , atol=1e-1 ) @parameterized.expand([(1_3,), (1_6,), (3_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : List[str] = self.get_sd_vae_model() snake_case : int = self.get_sd_image(A , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): snake_case : Union[str, Any] = model.decode(A ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case : Any = model.decode(A ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(A , A , atol=1e-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [4_7, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ] ) def UpperCAmelCase ( self , A , A ) -> int: snake_case : str = self.get_sd_vae_model() snake_case : List[Any] = self.get_sd_image(A ) snake_case : Optional[Any] = self.get_generator(A ) with torch.no_grad(): snake_case : List[str] = model.encode(A ).latent_dist snake_case : List[Any] = dist.sample(generator=A ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case : Union[str, Any] = sample[0, -1, -3:, -3:].flatten().cpu() snake_case : Tuple = torch.tensor(A ) snake_case : Tuple = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(A , A , atol=A )
124
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = CpmAntTokenizer lowerCamelCase__ = False def __A ( self : List[str] ) -> str: super().setUp() SCREAMING_SNAKE_CASE_ = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) SCREAMING_SNAKE_CASE_ = "今天天气真好!" SCREAMING_SNAKE_CASE_ = ["今天", "天气", "真", "好", "!"] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = "今天天气真好!" SCREAMING_SNAKE_CASE_ = [tokenizer.bos_token] + tokens SCREAMING_SNAKE_CASE_ = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ )
118
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ = 1_00_00_00 ): lowerCAmelCase__ : Dict = limit + 1 lowerCAmelCase__ : Optional[int] = [0] * limit for first_term in range(1 , lowerCAmelCase__ ): for n in range(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCAmelCase__ : Dict = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
0
import os import pytest from transformers.dynamic_module_utils import get_imports SCREAMING_SNAKE_CASE__ : str = '\nimport os\n' SCREAMING_SNAKE_CASE__ : str = '\ndef foo():\n import os\n return False\n' SCREAMING_SNAKE_CASE__ : Any = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' SCREAMING_SNAKE_CASE__ : Optional[int] = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' SCREAMING_SNAKE_CASE__ : List[str] = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' SCREAMING_SNAKE_CASE__ : Any = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' SCREAMING_SNAKE_CASE__ : str = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' SCREAMING_SNAKE_CASE__ : Optional[Any] = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' SCREAMING_SNAKE_CASE__ : Tuple = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' SCREAMING_SNAKE_CASE__ : Optional[Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" ,_SCREAMING_SNAKE_CASE ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCamelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE ,"test_file.py" ) with open(_SCREAMING_SNAKE_CASE ,"w" ) as _tmp_file: _tmp_file.write(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Any = get_imports(_SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
48
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE__ : int = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE__ : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : List[str] = 3 SCREAMING_SNAKE_CASE__ : Optional[int] = 4 class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = VOCAB_FILES_NAMES lowerCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[str] = """left""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<sep>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<cls>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<eop>", "<eod>"] , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) lowerCamelCase : Any = 3 lowerCamelCase : Optional[Any] = do_lower_case lowerCamelCase : List[Any] = remove_space lowerCamelCase : str = keep_accents lowerCamelCase : List[Any] = vocab_file lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def _lowercase ( self ) -> Optional[Any]: return len(self.sp_model ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : int = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: lowerCamelCase : Optional[int] = self.__dict__.copy() lowerCamelCase : Union[str, Any] = None return state def __setstate__( self , UpperCamelCase__ ) -> int: lowerCamelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase : Any = {} lowerCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , UpperCamelCase__ ) -> Any: if self.remove_space: lowerCamelCase : Dict = " ".join(inputs.strip().split() ) else: lowerCamelCase : Union[str, Any] = inputs lowerCamelCase : Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase : Optional[int] = unicodedata.normalize("NFKD" , UpperCamelCase__ ) lowerCamelCase : List[Any] = "".join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: lowerCamelCase : List[str] = outputs.lower() return outputs def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Optional[Any] = self.preprocess_text(UpperCamelCase__ ) lowerCamelCase : Dict = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) lowerCamelCase : Dict = [] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase : Union[str, Any] = cur_pieces[1:] else: lowerCamelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def _lowercase ( self , UpperCamelCase__ ) -> int: return self.sp_model.PieceToId(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Tuple: return self.sp_model.IdToPiece(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Union[str, Any] = "".join(UpperCamelCase__ ).replace(UpperCamelCase__ , " " ).strip() return out_string def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> str: lowerCamelCase : Optional[int] = kwargs.pop("use_source_tokenizer" , UpperCamelCase__ ) lowerCamelCase : Optional[int] = self.convert_ids_to_tokens(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase : Any = [] lowerCamelCase : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) ) lowerCamelCase : int = [] sub_texts.append(UpperCamelCase__ ) else: current_sub_text.append(UpperCamelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase : Union[str, Any] = "".join(UpperCamelCase__ ) lowerCamelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase : int = self.clean_up_tokenization(UpperCamelCase__ ) return clean_text else: return text def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : str = [self.sep_token_id] lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] return ([0] * len(UpperCamelCase__ )) + [1, 1] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase : Union[str, Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase ( A_ , A_=False )-> List[Any]: '''simple docstring''' try: a : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. a : Dict = default else: # KEY is set, convert it to True or False. try: a : int = strtobool(A_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value __lowercase = parse_flag_from_env("""RUN_SLOW""", default=False) __lowercase = parse_flag_from_env("""RUN_REMOTE""", default=False) __lowercase = parse_flag_from_env("""RUN_LOCAL""", default=True) __lowercase = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression __lowercase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") __lowercase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") __lowercase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio __lowercase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam __lowercase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility __lowercase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows __lowercase = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def lowercase ( A_ )-> List[Any]: '''simple docstring''' try: import faiss # noqa except ImportError: a : int = unittest.skip("test requires faiss" )(A_ ) return test_case def lowercase ( A_ )-> Union[str, Any]: '''simple docstring''' try: import regex # noqa except ImportError: a : List[Any] = unittest.skip("test requires regex" )(A_ ) return test_case def lowercase ( A_ )-> str: '''simple docstring''' try: import elasticsearch # noqa except ImportError: a : Tuple = unittest.skip("test requires elasticsearch" )(A_ ) return test_case def lowercase ( A_ )-> Optional[int]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: a : Any = unittest.skip("test requires sqlalchemy" )(A_ ) return test_case def lowercase ( A_ )-> Any: '''simple docstring''' if not config.TORCH_AVAILABLE: a : Optional[Any] = unittest.skip("test requires PyTorch" )(A_ ) return test_case def lowercase ( A_ )-> Union[str, Any]: '''simple docstring''' if not config.TF_AVAILABLE: a : Optional[int] = unittest.skip("test requires TensorFlow" )(A_ ) return test_case def lowercase ( A_ )-> int: '''simple docstring''' if not config.JAX_AVAILABLE: a : Optional[int] = unittest.skip("test requires JAX" )(A_ ) return test_case def lowercase ( A_ )-> List[Any]: '''simple docstring''' if not config.PIL_AVAILABLE: a : Tuple = unittest.skip("test requires Pillow" )(A_ ) return test_case def lowercase ( A_ )-> Any: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(A_ ) else: return test_case def lowercase ( A_ )-> str: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(A_ ) else: return test_case def lowercase ( A_ )-> List[Any]: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(A_ ) else: return test_case def lowercase ( A_ )-> List[Any]: '''simple docstring''' def _require_spacy_model(A_ ): try: import spacy # noqa F401 spacy.load(A_ ) except ImportError: return unittest.skip("test requires spacy" )(A_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(A_ ) )(A_ ) else: return test_case return _require_spacy_model def lowercase ( A_ )-> List[Any]: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(A_ ) else: return test_case def lowercase ( A_ )-> str: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(A_ ) else: return test_case def lowercase ( A_ )-> Any: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: a : Optional[Any] = unittest.skip("test is slow" )(A_ ) return test_case def lowercase ( A_ )-> int: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: a : List[Any] = unittest.skip("test is local" )(A_ ) return test_case def lowercase ( A_ )-> Dict: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: a : List[str] = unittest.skip("test is packaged" )(A_ ) return test_case def lowercase ( A_ )-> int: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: a : int = unittest.skip("test requires remote" )(A_ ) return test_case def lowercase ( *A_ )-> Any: '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(A_ ) and name.startswith("test" ): for decorator in decorators: a : List[Any] = decorator(A_ ) setattr(cls , A_ , A_ ) return cls return decorate class _A ( _a ): """simple docstring""" pass class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Dict = 2 @contextmanager def lowercase ( A_=OfflineSimulationMode.CONNECTION_FAILS , A_=1e-16 )-> Dict: '''simple docstring''' a : Union[str, Any] = requests.Session().request def timeout_request(A_ , A_ , A_ , **A_ ): # Change the url to an invalid url so that the connection hangs a : Optional[Any] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) a : Any = timeout try: return online_request(A_ , A_ , **A_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier a : int = url a : Dict = e.args[0] a : int = (max_retry_error.args[0].replace("10.255.255.1" , F'''OfflineMock[{url}]''' ),) a : Tuple = (max_retry_error,) raise def raise_connection_error(A_ , A_ , **A_ ): raise requests.ConnectionError("Offline mode is enabled." , request=A_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , A_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , A_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , A_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def lowercase ( *A_ , **A_ )-> List[str]: '''simple docstring''' a : Union[str, Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*A_ , **A_ ) as tmp_dir: try: os.chdir(A_ ) yield finally: os.chdir(A_ ) @contextmanager def lowercase ( )-> str: '''simple docstring''' import gc gc.collect() a : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase ( )-> Optional[Any]: '''simple docstring''' import gc gc.collect() a : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase ( A_ , A_ )-> List[str]: '''simple docstring''' return deepcopy(A_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(A_ ).integers(0 , 100 , 10 ).tolist() def lowercase ( A_ )-> List[Any]: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(A_ , *A_ , **A_ ): try: return func(*A_ , **A_ ) except HTTPError as err: if str(A_ ).startswith("500" ) or str(A_ ).startswith("502" ): pytest.xfail(str(A_ ) ) raise err return decorator.decorator(_wrapper , A_ ) class _A : """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any): a : Optional[int] = returncode a : Dict = stdout a : int = stderr async def lowercase ( A_ , A_ )-> Union[str, Any]: '''simple docstring''' while True: a : int = await stream.readline() if line: callback(A_ ) else: break async def lowercase ( A_ , A_=None , A_=None , A_=None , A_=False , A_=False )-> _RunOutput: '''simple docstring''' if echo: print("\nRunning: " , " ".join(A_ ) ) a : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) a : str = [] a : Optional[Any] = [] def tee(A_ , A_ , A_ , A_="" ): a : Optional[Any] = line.decode("utf-8" ).rstrip() sink.append(A_ ) if not quiet: print(A_ , A_ , file=A_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda A_ : tee(A_ , A_ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda A_ : tee(A_ , A_ , sys.stderr , label="stderr:" ) ), ] , timeout=A_ , ) return _RunOutput(await p.wait() , A_ , A_ ) def lowercase ( A_ , A_=None , A_=None , A_=180 , A_=False , A_=True )-> _RunOutput: '''simple docstring''' a : Union[str, Any] = asyncio.get_event_loop() a : List[str] = loop.run_until_complete( _stream_subprocess(A_ , env=A_ , stdin=A_ , timeout=A_ , quiet=A_ , echo=A_ ) ) a : int = " ".join(A_ ) if result.returncode > 0: a : int = "\n".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def lowercase ( )-> Optional[int]: '''simple docstring''' a : Optional[Any] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) a : Union[str, Any] = re.sub(R"^gw" , "" , A_ , 0 , re.M ) return int(A_ ) def lowercase ( )-> Any: '''simple docstring''' a : List[Any] = 29_500 a : List[str] = pytest_xdist_worker_id() return port + uniq_delta
367
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
226
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = "Hello, World!" __A = "en_XX" def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : bool ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = Path('data_bin' ) __lowerCamelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(UpperCamelCase__ ).parent ) , checkpoint_file=Path(UpperCamelCase__ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(UpperCamelCase__ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(UpperCamelCase__ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(UpperCamelCase__ ) __lowerCamelCase = xmod.model.encoder.sentence_encoder __lowerCamelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCamelCase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , UpperCamelCase__ ) __lowerCamelCase = XmodForSequenceClassification(UpperCamelCase__ ) if classification_head else XmodForMaskedLM(UpperCamelCase__ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase = xmod_sent_encoder.embed_tokens.weight __lowerCamelCase = xmod_sent_encoder.embed_positions.weight __lowerCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.weight __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase = model.roberta.encoder.layer[i] __lowerCamelCase = xmod_sent_encoder.layers[i] # self attention __lowerCamelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowerCamelCase = xmod_layer.self_attn.q_proj.weight __lowerCamelCase = xmod_layer.self_attn.q_proj.bias __lowerCamelCase = xmod_layer.self_attn.k_proj.weight __lowerCamelCase = xmod_layer.self_attn.k_proj.bias __lowerCamelCase = xmod_layer.self_attn.v_proj.weight __lowerCamelCase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowerCamelCase = xmod_layer.self_attn.out_proj.weight __lowerCamelCase = xmod_layer.self_attn.out_proj.bias __lowerCamelCase = xmod_layer.self_attn_layer_norm.weight __lowerCamelCase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCamelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias # output __lowerCamelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias __lowerCamelCase = xmod_layer.final_layer_norm.weight __lowerCamelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCamelCase = xmod_layer.adapter_layer_norm.weight __lowerCamelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCamelCase = bert_output.adapter_modules[lang_code] __lowerCamelCase = xmod_layer.adapter_modules[lang_code] __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCamelCase = xmod_sent_encoder.layer_norm.weight __lowerCamelCase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCamelCase = xmod.model.classification_heads['mnli'].dense.weight __lowerCamelCase = xmod.model.classification_heads['mnli'].dense.bias __lowerCamelCase = xmod.model.classification_heads['mnli'].out_proj.weight __lowerCamelCase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowerCamelCase = xmod.model.encoder.lm_head.dense.weight __lowerCamelCase = xmod.model.encoder.lm_head.dense.bias __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.weight __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.bias __lowerCamelCase = xmod.model.encoder.lm_head.weight __lowerCamelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase = xmod.encode(UpperCamelCase__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(UpperCamelCase__ ) __lowerCamelCase = model(UpperCamelCase__ )[0] if classification_head: __lowerCamelCase = xmod.model.classification_heads['mnli'](xmod.extract_features(UpperCamelCase__ ) ) else: __lowerCamelCase = xmod.model(UpperCamelCase__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowerCamelCase = torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(UpperCamelCase__ ).mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __A = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
90
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __A = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int = 50 ): """simple docstring""" __UpperCAmelCase : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
367
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCamelCase : Optional[Any] = ['gpt2'] __UpperCamelCase : str = 'gpt2' if is_tf_available(): class lowercase__ ( tf.Module): def __init__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = tokenizer SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = TFGPTaLMHeadModel.from_config(UpperCamelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def __A ( self : str , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenized['''input_ids'''].to_tensor() SCREAMING_SNAKE_CASE : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) SCREAMING_SNAKE_CASE : List[Any] = self.model(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ )['''logits'''] return outputs @require_tf @require_keras_nlp class lowercase__ ( unittest.TestCase): def __A ( self : int ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = [GPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] SCREAMING_SNAKE_CASE : List[str] = [TFGPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE : Tuple = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] SCREAMING_SNAKE_CASE : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __A ( self : str ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Dict = tokenizer([test_inputs] , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors SCREAMING_SNAKE_CASE : int = python_outputs[key].numpy() SCREAMING_SNAKE_CASE : int = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def __A ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : Optional[int] = tf.function(UpperCamelCase__ ) for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = compiled_tokenizer(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf_tokenizer(UpperCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : str = ModelToSave(tokenizer=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.serving(UpperCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE : List[str] = Path(UpperCamelCase__ ) / '''saved.model''' tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={'''serving_default''': model.serving} ) SCREAMING_SNAKE_CASE : str = tf.saved_model.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = loaded_model.signatures['''serving_default'''](UpperCamelCase__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __A ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(UpperCamelCase__ ) # Build model with some sample inputs SCREAMING_SNAKE_CASE : Union[str, Any] = tf_tokenizer.get_config() SCREAMING_SNAKE_CASE : Optional[Any] = TFGPTaTokenizer.from_config(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = model_from_config(UpperCamelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run SCREAMING_SNAKE_CASE : Tuple = 12_3123 for max_length in [3, 5, 1024]: SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
182
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase__ ( unittest.TestCase): def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : str = Path(UpperCamelCase__ ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE : Dict = Path(UpperCamelCase__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCamelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCamelCase__ , '''w''' ) ) SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Tuple = Path(UpperCamelCase__ ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE : Dict = Path(UpperCamelCase__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCamelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCamelCase__ , '''w''' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE : Dict = Path(UpperCamelCase__ ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE : List[str] = Path(UpperCamelCase__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCamelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCamelCase__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase__ ).to_dict() config_dict.pop('''image_processor_type''' ) SCREAMING_SNAKE_CASE : str = CLIPImageProcessor(**UpperCamelCase__ ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) config.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE : List[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Tuple ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[int] = Path(UpperCamelCase__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCamelCase__ , '''w''' ) , ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : int ): '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , '''clip-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''clip-base''' ) def __A ( self : List[str] ): '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained(UpperCamelCase__ , revision='''aaaaaa''' ) def __A ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __A ( self : List[Any] ): '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __A ( self : Optional[Any] ): '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Union[str, Any] = Path(UpperCamelCase__ ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE : Any = Path(UpperCamelCase__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCamelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCamelCase__ , '''w''' ) ) SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __A ( self : Any ): '''simple docstring''' class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCamelCase__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
182
1
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Dict=0 ): lowercase_ : Optional[Any] = np.random.RandomState(lowercase_ ) lowercase_ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : int = self.get_dummy_inputs() lowercase_ : Dict = pipe(**lowercase_ ).images lowercase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[str] = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : List[Any] = self.get_dummy_inputs() lowercase_ : Optional[Any] = pipe(**lowercase_ ).images lowercase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Dict = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Tuple = self.get_dummy_inputs() lowercase_ : Optional[int] = pipe(**lowercase_ ).images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Any = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Optional[int] = self.get_dummy_inputs() lowercase_ : str = pipe(**lowercase_ ).images lowercase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Any = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Tuple = self.get_dummy_inputs() lowercase_ : Optional[Any] = pipe(**lowercase_ ).images lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[Any] = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Optional[Any] = self.get_dummy_inputs() lowercase_ : Dict = pipe(**lowercase_ ).images lowercase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Union[str, Any] = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Tuple = self.get_dummy_inputs() lowercase_ : Optional[int] = 3 * [inputs["""prompt"""]] # forward lowercase_ : Optional[int] = pipe(**lowercase_ ) lowercase_ : List[Any] = output.images[0, -3:, -3:, -1] lowercase_ : Union[str, Any] = self.get_dummy_inputs() lowercase_ : str = 3 * [inputs.pop("""prompt""" )] lowercase_ : Optional[Any] = pipe.tokenizer( lowercase_ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=lowercase_ , return_tensors="""np""" , ) lowercase_ : Optional[int] = text_inputs["""input_ids"""] lowercase_ : Any = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowercase_ : int = prompt_embeds # forward lowercase_ : Union[str, Any] = pipe(**lowercase_ ) lowercase_ : List[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : Dict = 3 * ["""this is a negative prompt"""] lowercase_ : Optional[int] = negative_prompt lowercase_ : str = 3 * [inputs["""prompt"""]] # forward lowercase_ : int = pipe(**lowercase_ ) lowercase_ : Union[str, Any] = output.images[0, -3:, -3:, -1] lowercase_ : Optional[int] = self.get_dummy_inputs() lowercase_ : Any = 3 * [inputs.pop("""prompt""" )] lowercase_ : Any = [] for p in [prompt, negative_prompt]: lowercase_ : str = pipe.tokenizer( lowercase_ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=lowercase_ , return_tensors="""np""" , ) lowercase_ : Optional[Any] = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowercase_ : Optional[Any] = embeds # forward lowercase_ : Union[str, Any] = pipe(**lowercase_ ) lowercase_ : Optional[int] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Dict = ort.SessionOptions() lowercase_ : List[str] = False return options def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): # using the PNDM scheduler by default lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Optional[Any] = """A painting of a squirrel eating a burger""" np.random.seed(0 ) lowercase_ : Optional[int] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) lowercase_ : List[Any] = output.images lowercase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Tuple = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Any = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase_ : int = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : List[Any] = """open neural network exchange""" lowercase_ : Any = np.random.RandomState(0 ) lowercase_ : Dict = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type="""np""" ) lowercase_ : int = output.images lowercase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : List[Any] = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : List[str] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Union[str, Any] = """open neural network exchange""" lowercase_ : Dict = np.random.RandomState(0 ) lowercase_ : Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type="""np""" ) lowercase_ : Union[str, Any] = output.images lowercase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Tuple = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Tuple = 0 def test_callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : np.ndarray ) -> None: lowercase_ : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowercase_ : Tuple = latents[0, -3:, -3:, -1] lowercase_ : str = np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowercase_ : Optional[Any] = latents[0, -3:, -3:, -1] lowercase_ : str = np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 lowercase_ : Dict = False lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Tuple = """Andromeda galaxy in a bottle""" lowercase_ : List[Any] = np.random.RandomState(0 ) pipe( prompt=lowercase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowercase_ , callback=lowercase_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Any = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowercase_ , lowercase_ ) assert pipe.safety_checker is None lowercase_ : str = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) lowercase_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(lowercase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase_ : Optional[int] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __a = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __a = { 'vinai/phobert-base': 2_5_6, 'vinai/phobert-large': 2_5_6, } def a ( snake_case__: List[str] ): '''simple docstring''' lowercase_ = set() lowercase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ = char lowercase_ = set(snake_case__ ) return pairs class lowercase__( UpperCAmelCase ): """simple docstring""" a :Optional[Any] = VOCAB_FILES_NAMES a :List[str] = PRETRAINED_VOCAB_FILES_MAP a :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE_ : List[str]="<unk>" , SCREAMING_SNAKE_CASE_ : List[Any]="<pad>" , SCREAMING_SNAKE_CASE_ : List[Any]="<mask>" , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase_ = vocab_file lowercase_ = merges_file lowercase_ = {} lowercase_ = 0 lowercase_ = 1 lowercase_ = 2 lowercase_ = 3 self.add_from_file(SCREAMING_SNAKE_CASE_ ) lowercase_ = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: lowercase_ = merges_handle.read().split('''\n''' )[:-1] lowercase_ = [tuple(merge.split()[:-1] ) for merge in merges] lowercase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowercase_ = {} def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase ( self : Any ) -> Any: return len(self.encoder ) def _lowercase ( self : Any ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> Any: if token in self.cache: return self.cache[token] lowercase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowercase_ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowercase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ = bigram lowercase_ = [] lowercase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowercase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowercase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowercase_ = '''@@ '''.join(SCREAMING_SNAKE_CASE_ ) lowercase_ = word[:-4] lowercase_ = word return word def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> int: lowercase_ = [] lowercase_ = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Tuple: lowercase_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ).replace('''@@ ''' , '''''' ).strip() return out_string def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.merges_file , SCREAMING_SNAKE_CASE_ ) return out_vocab_file, out_merge_file def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): try: with open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return lowercase_ = f.readlines() for lineTmp in lines: lowercase_ = lineTmp.strip() lowercase_ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) lowercase_ = line[:idx] lowercase_ = len(self.encoder )
30
"""simple docstring""" import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _lowercase = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _lowercase = '''sshleifer/student_marian_en_ro_6_1''' _lowercase = '''sshleifer/tiny-mbart''' @require_torch class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any]=False ,A_ : Optional[int]=None ,A_ : List[str]=True ,A_ : Tuple=True ,A_ : Union[str, Any]=True ,A_ : List[str]=True ,) -> Tuple: A = self.run_trainer( eval_steps=1 ,max_len=12 ,model_name=A_ ,num_train_epochs=1 ,distributed=A_ ,extra_args_str=A_ ,predict_with_generate=A_ ,do_train=A_ ,do_eval=A_ ,do_predict=A_ ,) A = TrainerState.load_from_json(os.path.join(A_ ,'trainer_state.json' ) ).log_history if not do_eval: return A = [log for log in logs if 'eval_loss' in log.keys()] A = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats A = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] ,A_ ) assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: self.run_seqaseq_quick() @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : int ) -> int: self.run_seqaseq_quick(distributed=A_ ) @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: self.run_seqaseq_quick(distributed=A_ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--sharded_ddp simple' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--sharded_ddp simple --fp16' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--sharded_ddp zero_dp_2' ,predict_with_generate=A_ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.run_seqaseq_quick( distributed=A_ ,extra_args_str='--sharded_ddp zero_dp_2 --fp16' ,predict_with_generate=A_ ) @require_apex @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--fp16 --fp16_backend=apex' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A_ ,extra_args_str='--fp16 --fp16_backend=apex' ) @parameterized.expand(['base', 'low', 'high', 'mixed'] ) @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Dict ) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout A = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } A = experiments[experiment_id] A = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} A = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**A_ ,extra_args_str=data['extra_args_str'] ) A = len(re.findall(A_ ,cl.err ) ) self.assertEqual(A_ ,data['n_matches'] ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: A = self.run_trainer( eval_steps=2 ,max_len=128 ,model_name=A_ ,learning_rate=3e-4 ,num_train_epochs=10 ,distributed=A_ ,) # Check metrics A = TrainerState.load_from_json(os.path.join(A_ ,'trainer_state.json' ) ).log_history A = [log for log in logs if 'eval_loss' in log.keys()] A = eval_metrics[0] A = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] ,A_ ) # test if do_predict saves generations and metrics A = os.listdir(A_ ) A = {os.path.basename(A_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: from transformers.training_args import OptimizerNames def train_and_return_metrics(A_ : str ) -> Tuple[int, float]: A = '--skip_memory_metrics 0' A = self.run_trainer( max_len=128 ,model_name=A_ ,learning_rate=3e-4 ,num_train_epochs=1 ,optim=A_ ,distributed=A_ ,extra_args_str=A_ ,do_eval=A_ ,do_predict=A_ ,n_gpus_to_use=1 ,) # Check metrics A = TrainerState.load_from_json(Path(A_ ,'trainer_state.json' ) ).log_history A = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20 ) A = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20 ) A = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss A , A , A = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) A , A , A = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) A = gpu_alloc_mem_orig - gpu_alloc_mem_bnb A = gpu_peak_mem_orig + gpu_alloc_mem_orig A = gpu_peak_mem_bnb + gpu_alloc_mem_bnb A = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings A = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A_ ,A_ ,'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' F' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB' ,) self.assertGreater( A_ ,A_ ,'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' F' gpu_total_mem_bnb={gpu_total_mem_bnb}MB' ,) self.assertEqual( A_ ,A_ ,F'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : int ,A_ : str ,A_ : int ,A_ : float = 3e-3 ,A_ : str = "adafactor" ,A_ : bool = False ,A_ : str = None ,A_ : int = 0 ,A_ : bool = True ,A_ : bool = True ,A_ : bool = True ,A_ : bool = True ,A_ : int = None ,) -> Dict: A = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' A = self.get_auto_remove_tmp_dir() A = F'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() A = F'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A_ )}\n '.split() A = '\n --do_predict\n '.split() A = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: A = get_gpu_count() A = get_torch_dist_unique_port() A = F'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() A = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A_ ,env=self.get_env() ) else: A = ['run_translation.py'] + args with patch.object(A_ ,'argv' ,A_ ): main() return output_dir
74
0
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( __lowerCamelCase ): for param in module.parameters(): __snake_case : Union[str, Any] = False def lowerCAmelCase_ ( ): __snake_case : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __snake_case : Union[str, Any] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = plt.imshow(__lowerCamelCase ) fig.axes.get_xaxis().set_visible(__lowerCamelCase ) fig.axes.get_yaxis().set_visible(__lowerCamelCase ) plt.show() def lowerCAmelCase_ ( ): __snake_case : Optional[int] = datetime.now() __snake_case : Any = current_time.strftime("%H:%M:%S" ) return timestamp
134
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _snake_case : Optional[Any] = "Create a default config file for Accelerate with only a few flags set." def lowerCAmelCase_ ( __lowerCamelCase="no" , __lowerCamelCase = default_json_config_file , __lowerCamelCase = False ): __snake_case : int = Path(__lowerCamelCase ) path.parent.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __snake_case : Any = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __snake_case : Optional[int] = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): __snake_case : Dict = torch.cuda.device_count() __snake_case : Tuple = num_gpus __snake_case : List[str] = False if num_gpus > 1: __snake_case : Optional[int] = "MULTI_GPU" else: __snake_case : Dict = "NO" elif is_xpu_available() and use_xpu: __snake_case : List[str] = torch.xpu.device_count() __snake_case : str = num_xpus __snake_case : int = False if num_xpus > 1: __snake_case : Optional[int] = "MULTI_XPU" else: __snake_case : str = "NO" elif is_npu_available(): __snake_case : Any = torch.npu.device_count() __snake_case : str = num_npus __snake_case : str = False if num_npus > 1: __snake_case : Optional[int] = "MULTI_NPU" else: __snake_case : int = "NO" else: __snake_case : List[Any] = 0 __snake_case : Dict = True __snake_case : Tuple = 1 __snake_case : Tuple = "NO" __snake_case : str = ClusterConfig(**__lowerCamelCase ) config.to_json_file(__lowerCamelCase ) return path def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = parser.add_parser("default" , parents=__lowerCamelCase , help=__lowerCamelCase , formatter_class=__lowerCamelCase ) parser.add_argument( "--config_file" , default=__lowerCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=__lowerCamelCase , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=__lowerCamelCase ) return parser def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
134
1
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __lowercase ( _a , _a=False ): snake_case_ : Union[str, Any] = OmegaConf.load(_UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(_UpperCAmelCase ) ) ) return config def __lowercase ( _a , _a=None , _a=None ): if conf_path is None: snake_case_ : int = '''./model_checkpoints/vqgan_only.yaml''' snake_case_ : List[str] = load_config(_UpperCAmelCase , display=_UpperCAmelCase ) snake_case_ : int = VQModel(**config.model.params ) if ckpt_path is None: snake_case_ : str = '''./model_checkpoints/vqgan_only.pt''' snake_case_ : Union[str, Any] = torch.load(_UpperCAmelCase , map_location=_UpperCAmelCase ) if ".ckpt" in ckpt_path: snake_case_ : Tuple = sd['''state_dict'''] model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.to(_UpperCAmelCase ) del sd return model def __lowercase ( _a , _a ): snake_case_ : List[Any] = model.encode(_UpperCAmelCase ) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) snake_case_ : Optional[Any] = model.decode(_UpperCAmelCase ) return xrec def __lowercase ( _a , _a=False ): snake_case_ : Tuple = string.rsplit('''.''' , 1 ) if reload: snake_case_ : Any = importlib.import_module(_UpperCAmelCase ) importlib.reload(_UpperCAmelCase ) return getattr(importlib.import_module(_UpperCAmelCase , package=_UpperCAmelCase ) , cls ) def __lowercase ( _a ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def __lowercase ( _a , _a , _a=True , _a=True ): snake_case_ : Dict = instantiate_from_config(_UpperCAmelCase ) if sd is not None: model.load_state_dict(_UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __lowercase ( _a , _a , _a , _a ): if ckpt: snake_case_ : Union[str, Any] = torch.load(_UpperCAmelCase , map_location='''cpu''' ) snake_case_ : Any = pl_sd['''global_step'''] print(f"loaded model from global step {global_step}." ) else: snake_case_ : Optional[int] = {'''state_dict''': None} snake_case_ : Dict = None snake_case_ : Tuple = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_UpperCAmelCase , eval_mode=_UpperCAmelCase )['''model'''] return model, global_step
264
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , a_ : Dict , a_ : Union[str, Any]=7 , a_ : Optional[Any]=3 , a_ : List[str]=18 , a_ : Union[str, Any]=30 , a_ : Union[str, Any]=4_00 , a_ : Union[str, Any]=True , a_ : Tuple=None , a_ : Optional[int]=True , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} __UpperCAmelCase : Dict = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Optional[int] = min_resolution __UpperCAmelCase : Union[str, Any] = max_resolution __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : List[Any] = apply_ocr def snake_case__ ( self : Optional[int] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = LayoutLMvaImageProcessingTester(self ) @property def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''apply_ocr''' ) ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def snake_case__ ( self : int ): '''simple docstring''' pass def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCAmelCase : Any = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __UpperCAmelCase : Optional[int] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __UpperCAmelCase : Any = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCAmelCase : Any = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __UpperCAmelCase : Tuple = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False __UpperCAmelCase : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ ) __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
226
0
"""simple docstring""" import string def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: for key in range(len(string.ascii_uppercase ) ): A__ = "" for symbol in message: if symbol in string.ascii_uppercase: A__ = string.ascii_uppercase.find(lowercase_ ) A__ = num - key if num < 0: A__ = num + len(string.ascii_uppercase ) A__ = translated + string.ascii_uppercase[num] else: A__ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def _SCREAMING_SNAKE_CASE ( ) -> None: A__ = input("Encrypted message: " ) A__ = message.upper() decrypt(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
230
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: A__ = model.config A__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: if "encoder.model" in name: A__ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: A__ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: A__ = "encoder." + name if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = "encoder.layernorm.weight" if name == "encoder.norm.bias": A__ = "encoder.layernorm.bias" return name def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[3] ) A__ = int(key_split[5] ) A__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: # load original model A__ = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model A__, A__ = get_configs(lowercase_ ) A__ = DonutSwinModel(lowercase_ ) A__ = MBartForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() A__ = original_model.state_dict() A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document A__ = load_dataset("hf-internal-testing/example-documents" ) A__ = dataset["test"][0]["image"].convert("RGB" ) A__ = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) A__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ = DonutProcessor(lowercase_ , lowercase_ ) A__ = processor(lowercase_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" A__ = "When is the coffee break?" A__ = task_prompt.replace("{user_input}" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ = "hello world" else: raise ValueError("Model name not supported" ) A__ = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="pt" )[ "input_ids" ] A__ = original_model.encoder.model.patch_embed(lowercase_ ) A__, A__ = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states A__ = original_model.encoder(lowercase_ ) A__ = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states A__ = original_model(lowercase_ , lowercase_ , lowercase_ ).logits A__ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
230
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self , __a , __a=3 , __a=32 , __a=3 , __a=10 , __a=[8, 16, 32, 64] , __a=[1, 1, 2, 1] , __a=True , __a=True , __a="relu" , __a=3 , __a=None , __a=["stage2", "stage3", "stage4"] , __a=[2, 3, 4] , __a=1 , ): '''simple docstring''' __a : Any = parent __a : Dict = batch_size __a : Any = image_size __a : Dict = num_channels __a : int = embeddings_size __a : str = hidden_sizes __a : Tuple = depths __a : Tuple = is_training __a : str = use_labels __a : int = hidden_act __a : List[Any] = num_labels __a : Dict = scope __a : Dict = len(_snake_case ) __a : Optional[int] = out_features __a : List[str] = out_indices __a : Any = num_groups def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[int] = None if self.use_labels: __a : str = ids_tensor([self.batch_size] , self.num_labels ) __a : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Tuple = BitModel(config=_snake_case ) model.to(_snake_case ) model.eval() __a : Union[str, Any] = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Optional[int] = self.num_labels __a : List[str] = BitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() __a : int = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : int = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() __a : str = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __a : Tuple = None __a : Optional[int] = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() __a : int = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.prepare_config_and_inputs() __a : Optional[Any] = config_and_inputs __a : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( A_ , A_ , unittest.TestCase ): A_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () A_ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = BitModelTester(self ) __a : Tuple = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def __UpperCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ): '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(_snake_case ) __a : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : List[str] = [*signature.parameters.keys()] __a : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[Any] = model_class(config=_snake_case ) for name, module in model.named_modules(): if isinstance(_snake_case , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def __UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__a , __a , __a ): __a : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a : Tuple = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a : int = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __a : str = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __a : Dict = layer_type __a : Tuple = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : List[Any] = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = BitModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowerCamelCase (): __a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_snake_case ) __a : List[Any] = self.default_image_processor __a : str = prepare_img() __a : str = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): __a : Optional[int] = model(**_snake_case ) # verify the logits __a : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) __a : List[str] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @require_torch class __UpperCamelCase ( A_ , unittest.TestCase ): A_ = (BitBackbone,) if is_torch_available() else () A_ = BitConfig A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = BitModelTester(self )
27
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = XLNetTokenizer A: Tuple = XLNetTokenizerFast A: Optional[int] = True A: str = True def UpperCAmelCase__ ( self : Tuple ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ : List[str] = XLNetTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Any = '''<s>''' UpperCamelCase__ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(lowerCamelCase__ ) , 1006 ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = XLNetTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCamelCase__ : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [285, 46, 10, 170, 382] ) UpperCamelCase__ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCamelCase__ : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCamelCase__ : str = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : str = XLNetTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def UpperCAmelCase__ ( self : int ) -> int: '''simple docstring''' UpperCamelCase__ : List[Any] = XLNetTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) UpperCamelCase__ : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def UpperCAmelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) UpperCamelCase__ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCamelCase__ : int = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCAmelCase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCamelCase__ : List[Any] = {'''input_ids''': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
51
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _a ( SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class __magic_name__ : A: str = field( metadata={"help": "The csv file to plot."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Disable logarithmic scale when plotting"} , ) A: bool = field( default=__lowerCAmelCase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) A: Optional[str] = field( default=__lowerCAmelCase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) A: Optional[List[str]] = list_field( default=__lowerCAmelCase , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" try: int(SCREAMING_SNAKE_CASE ) return True except ValueError: return False def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" try: float(SCREAMING_SNAKE_CASE ) return True except ValueError: return False class __magic_name__ : def __init__( self : Any , lowerCamelCase__ : Dict ) -> Dict: '''simple docstring''' UpperCamelCase__ : int = args UpperCamelCase__ : Any = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCamelCase__ : Union[str, Any] = csv.DictReader(lowerCamelCase__ ) for row in reader: UpperCamelCase__ : Union[str, Any] = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCamelCase__ : Any = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCamelCase__ : Any = float(row['''result'''] ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = plt.subplots() UpperCamelCase__ : Dict = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCamelCase__ : int = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCamelCase__ : Tuple = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCamelCase__ : Tuple = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCamelCase__ : Dict = self.result_dict[model_name]['''result'''] ((UpperCamelCase__) , (UpperCamelCase__)) : int = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCamelCase__ : Optional[int] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCamelCase__ : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCamelCase__ , ) else: UpperCamelCase__ : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCamelCase__) , (UpperCamelCase__)) : str = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCamelCase__ : Optional[Any] = np.asarray(lowerCamelCase__ , lowerCamelCase__ )[: len(lowerCamelCase__ )] plt.scatter( lowerCamelCase__ , lowerCamelCase__ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(lowerCamelCase__ , lowerCamelCase__ , '''--''' ) title_str += F" {label_model_name} vs." UpperCamelCase__ : Optional[Any] = title_str[:-4] UpperCamelCase__ : List[Any] = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(lowerCamelCase__ ) plt.xlabel(lowerCamelCase__ ) plt.ylabel(lowerCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = HfArgumentParser(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = parser.parse_args_into_dataclasses()[0] UpperCamelCase__ : Dict = Plot(args=SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
51
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : int = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class UpperCAmelCase ( _a ): '''simple docstring''' lowerCAmelCase_ = """efficientformer""" def __init__( self : Any , __lowercase : Any = [3, 2, 6, 4] , __lowercase : Tuple = [48, 96, 2_24, 4_48] , __lowercase : str = [True, True, True, True] , __lowercase : Tuple = 4_48 , __lowercase : str = 32 , __lowercase : List[str] = 4 , __lowercase : List[str] = 7 , __lowercase : List[Any] = 5 , __lowercase : Tuple = 8 , __lowercase : Optional[Any] = 4 , __lowercase : Optional[Any] = 0.0 , __lowercase : Any = 16 , __lowercase : Dict = 3 , __lowercase : Any = 3 , __lowercase : Union[str, Any] = 3 , __lowercase : str = 2 , __lowercase : Tuple = 1 , __lowercase : Dict = 0.0 , __lowercase : int = 1 , __lowercase : Any = True , __lowercase : str = True , __lowercase : List[Any] = 1E-5 , __lowercase : Tuple = "gelu" , __lowercase : Union[str, Any] = 0.02 , __lowercase : Union[str, Any] = 1E-12 , __lowercase : List[Any] = 2_24 , __lowercase : Optional[Any] = 1E-05 , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase ) snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = hidden_sizes snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = patch_size snake_case_ = num_channels snake_case_ = depths snake_case_ = mlp_expansion_ratio snake_case_ = downsamples snake_case_ = dim snake_case_ = key_dim snake_case_ = attention_ratio snake_case_ = resolution snake_case_ = pool_size snake_case_ = downsample_patch_size snake_case_ = downsample_stride snake_case_ = downsample_pad snake_case_ = drop_path_rate snake_case_ = num_metaad_blocks snake_case_ = distillation snake_case_ = use_layer_scale snake_case_ = layer_scale_init_value snake_case_ = image_size snake_case_ = batch_norm_eps
187
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCAmelCase ) ,"""Tatoeba directory does not exist.""" ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def snake_case__ ( self : Optional[int] ): __magic_name__ = tempfile.mkdtemp() return TatoebaConverter(save_dir=SCREAMING_SNAKE_CASE_ ) @slow def snake_case__ ( self : Optional[int] ): self.resolver.convert_models(['''heb-eng'''] ) @slow def snake_case__ ( self : List[str] ): __magic_name__ = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=SCREAMING_SNAKE_CASE_ ) assert mmeta["long_pair"] == "heb-eng"
366
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self : str , a__ : Union[str, Any] , a__ : Dict=13 , a__ : List[str]=32 , a__ : List[Any]=2 , a__ : List[str]=3 , a__ : Union[str, Any]=16 , a__ : Dict=[1, 2, 1] , a__ : Optional[Any]=[2, 2, 4] , a__ : List[str]=2 , a__ : Optional[Any]=2.0 , a__ : Union[str, Any]=True , a__ : int=0.0 , a__ : int=0.0 , a__ : Tuple=0.1 , a__ : List[str]="gelu" , a__ : str=False , a__ : Optional[int]=True , a__ : List[Any]=0.02 , a__ : Any=1E-5 , a__ : int=True , a__ : List[Any]=None , a__ : Dict=True , a__ : Optional[int]=10 , a__ : Any=8 , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads __magic_name__ = window_size __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = use_absolute_embeddings __magic_name__ = patch_norm __magic_name__ = layer_norm_eps __magic_name__ = initializer_range __magic_name__ = is_training __magic_name__ = scope __magic_name__ = use_labels __magic_name__ = type_sequence_label_size __magic_name__ = encoder_stride def snake_case__ ( self : List[Any] ): __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Optional[int] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case__ ( self : Optional[int] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Optional[int] ): __magic_name__ = SwinvaModel(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ ) __magic_name__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case__ ( self : Optional[Any] , a__ : Optional[Any] , a__ : str , a__ : int ): __magic_name__ = SwinvaForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = SwinvaForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case__ ( self : List[str] , a__ : List[str] , a__ : List[Any] , a__ : Any ): __magic_name__ = self.type_sequence_label_size __magic_name__ = SwinvaForImageClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :int = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE :Tuple = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE :Union[str, Any] = False __SCREAMING_SNAKE_CASE :List[Any] = False __SCREAMING_SNAKE_CASE :Dict = False __SCREAMING_SNAKE_CASE :Union[str, Any] = False def snake_case__ ( self : str ): __magic_name__ = SwinvaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=a__ , embed_dim=37 ) def snake_case__ ( self : Tuple ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : List[Any] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def snake_case__ ( self : str ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def snake_case__ ( self : Union[str, Any] ): pass def snake_case__ ( self : Optional[int] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def snake_case__ ( self : Union[str, Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def snake_case__ ( self : int ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = True for model_class in self.all_model_classes: __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.attentions __magic_name__ = len(self.model_tester.depths ) self.assertEqual(len(a__ ) , a__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ = True __magic_name__ = config.window_size**2 __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __magic_name__ = len(a__ ) # Check attention is always last and order is fine __magic_name__ = True __magic_name__ = True __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): __magic_name__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __magic_name__ = 2 self.assertEqual(out_len + added_hidden_states , len(a__ ) ) __magic_name__ = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def snake_case__ ( self : Any , a__ : Dict , a__ : str , a__ : str , a__ : List[Any] ): __magic_name__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.hidden_states __magic_name__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # Swinv2 has a different seq_length __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ = outputs.reshaped_hidden_states self.assertEqual(len(a__ ) , a__ ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = reshaped_hidden_states[0].shape __magic_name__ = ( reshaped_hidden_states[0].view(a__ , a__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case__ ( self : List[Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = 3 __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) def snake_case__ ( self : str ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def snake_case__ ( self : Dict ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def snake_case__ ( self : Any ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = SwinvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def snake_case__ ( self : List[str] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = _config_zero_init(a__ ) for model_class in self.all_model_classes: __magic_name__ = model_class(config=a__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def snake_case__ ( self : Optional[Any] ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def snake_case__ ( self : Optional[int] ): __magic_name__ = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( a__ ) __magic_name__ = self.default_image_processor __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __magic_name__ = model(**a__ ) # verify the logits __magic_name__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __magic_name__ = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
98
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> int: """simple docstring""" if len(__snake_case ) != len(__snake_case ): raise ValueError("""String lengths must match!""" ) A__ : Any =0 for chara, chara in zip(__snake_case, __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
134
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCamelCase ( unittest.TestCase , lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Any: '''simple docstring''' A__ : int =load_tool("""text-to-speech""" ) self.tool.setup() def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) A__ : List[str] =self.tool("""hey""" ) A__ : Dict =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) A__ : Optional[int] =self.tool("""hey""" ) A__ : Tuple =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
134
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase: List[Any] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Tuple = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCamelCase: Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class a__ : def __init__( self : Union[str, Any], lowerCAmelCase : Any, lowerCAmelCase : Tuple=13, lowerCAmelCase : List[Any]=2, lowerCAmelCase : Tuple=24, lowerCAmelCase : Any=16, lowerCAmelCase : Optional[Any]=True, lowerCAmelCase : Tuple=True, lowerCAmelCase : Optional[int]=32, lowerCAmelCase : Optional[int]=5, lowerCAmelCase : Optional[int]=4, lowerCAmelCase : Optional[int]=37, lowerCAmelCase : Tuple="gelu", lowerCAmelCase : str=0.1, lowerCAmelCase : Tuple=0.1, lowerCAmelCase : List[Any]=10, lowerCAmelCase : List[Any]=0.02, lowerCAmelCase : List[str]=None, lowerCAmelCase : Any=2, lowerCAmelCase : str=2, ) -> Union[str, Any]: lowercase : str = parent lowercase : Optional[int] = batch_size lowercase : str = patch_size lowercase : List[Any] = max_length lowercase : Optional[Any] = num_mel_bins lowercase : int = is_training lowercase : Dict = use_labels lowercase : List[str] = hidden_size lowercase : str = num_hidden_layers lowercase : Any = num_attention_heads lowercase : List[str] = intermediate_size lowercase : int = hidden_act lowercase : Optional[Any] = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : int = type_sequence_label_size lowercase : Optional[int] = initializer_range lowercase : int = scope lowercase : int = frequency_stride lowercase : Dict = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase : Tuple = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase : Dict = (self.max_length - self.patch_size) // self.time_stride + 1 lowercase : Any = frequency_out_dimension * time_out_dimension lowercase : List[str] = num_patches + 2 def lowercase ( self : int ) -> Optional[int]: lowercase : List[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowercase : List[Any] = None if self.use_labels: lowercase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase : str = self.get_config() return config, input_values, labels def lowercase ( self : List[str] ) -> Any: return ASTConfig( patch_size=self.patch_size, max_length=self.max_length, num_mel_bins=self.num_mel_bins, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, frequency_stride=self.frequency_stride, time_stride=self.time_stride, ) def lowercase ( self : str, lowerCAmelCase : List[Any], lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any] ) -> Optional[int]: lowercase : Any = ASTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Any = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Any ) -> Tuple: lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict = config_and_inputs lowercase : Union[str, Any] = {'input_values': input_values} return config, inputs_dict @require_torch class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowercase ( self : Any, lowerCAmelCase : Any, lowerCAmelCase : Tuple, lowerCAmelCase : Dict, lowerCAmelCase : List[str], lowerCAmelCase : int ) -> Tuple: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowercase ( self : Optional[Any] ) -> Dict: lowercase : List[Any] = ASTModelTester(self ) lowercase : Any = ConfigTester(self, config_class=lowerCAmelCase, has_text_modality=lowerCAmelCase, hidden_size=37 ) def lowercase ( self : Tuple ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> List[str]: lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase, nn.Linear ) ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] = model_class(lowerCAmelCase ) lowercase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[Any] = [*signature.parameters.keys()] lowercase : str = ['input_values'] self.assertListEqual(arg_names[:1], lowerCAmelCase ) def lowercase ( self : Optional[int] ) -> Tuple: lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @slow def lowercase ( self : List[str] ) -> Optional[Any]: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = ASTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( ) -> Any: '''simple docstring''' lowercase : Tuple = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) lowercase , lowercase : List[str] = torchaudio.load(_UpperCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class a__ ( unittest.TestCase ): @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[int]: return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def lowercase ( self : Any ) -> Optional[Any]: lowercase : List[str] = self.default_feature_extractor lowercase : Tuple = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(lowerCAmelCase ) lowercase : List[str] = self.default_feature_extractor lowercase , lowercase : Optional[int] = prepare_audio() lowercase : List[str] = audio.squeeze().numpy() lowercase : List[Any] = feature_extractor(lowerCAmelCase, sampling_rate=lowerCAmelCase, return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase : List[Any] = model(**lowerCAmelCase ) # verify the logits lowercase : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape, lowerCAmelCase ) lowercase : Any = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCAmelCase, atol=1e-4 ) )
53
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
230
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = [] for part_id in partition_order: snake_case__ : Any = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__lowerCAmelCase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Optional[Any] = spark.range(100 ).repartition(1 ) snake_case__ : Optional[int] = Spark(__lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(10 ).repartition(2 ) snake_case__ : Any = [1, 0] snake_case__ : Tuple = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions. snake_case__ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__ , snake_case__ : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Any: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : List[Any] = spark.range(10 ).repartition(1 ) snake_case__ : int = SparkExamplesIterable(__lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Tuple = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: snake_case__ : Union[str, Any] = lambda __lowerCAmelCase : x.reverse() snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] ) snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(100 ).repartition(1 ) snake_case__ : Tuple = Spark(__lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
230
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = ["""image_processor""", """tokenizer"""] A__ : int = """AutoImageProcessor""" A__ : List[Any] = """AutoTokenizer""" def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCamelCase , ) UpperCamelCase_ = kwargs.pop("""feature_extractor""" ) UpperCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = self.image_processor UpperCamelCase_ = False def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""images""" , __UpperCamelCase ) UpperCamelCase_ = kwargs.pop("""text""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: UpperCamelCase_ = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if text is not None: UpperCamelCase_ = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase_ = encodings["""input_ids"""] return inputs def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @contextmanager def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) UpperCamelCase_ = True UpperCamelCase_ = self.tokenizer yield UpperCamelCase_ = self.image_processor UpperCamelCase_ = False def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=None ): """simple docstring""" if added_vocab is None: UpperCamelCase_ = self.tokenizer.get_added_vocab() UpperCamelCase_ = {} while tokens: UpperCamelCase_ = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE ) if start_token is None: break UpperCamelCase_ = start_token.group(1 ) UpperCamelCase_ = re.search(rf'''</s_{key}>''' , __UpperCamelCase , re.IGNORECASE ) UpperCamelCase_ = start_token.group() if end_token is None: UpperCamelCase_ = tokens.replace(__UpperCamelCase , """""" ) else: UpperCamelCase_ = end_token.group() UpperCamelCase_ = re.escape(__UpperCamelCase ) UpperCamelCase_ = re.escape(__UpperCamelCase ) UpperCamelCase_ = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , __UpperCamelCase , re.IGNORECASE ) if content is not None: UpperCamelCase_ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node UpperCamelCase_ = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase ) if value: if len(__UpperCamelCase ) == 1: UpperCamelCase_ = value[0] UpperCamelCase_ = value else: # leaf nodes UpperCamelCase_ = [] for leaf in content.split(r"""<sep/>""" ): UpperCamelCase_ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": UpperCamelCase_ = leaf[1:-2] # for categorical special tokens output[key].append(__UpperCamelCase ) if len(output[key] ) == 1: UpperCamelCase_ = output[key][0] UpperCamelCase_ = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase ) if len(__UpperCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , ) return self.image_processor_class @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , ) return self.image_processor
261
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( a__ : Dict , a__ : Dict=None ) -> Union[str, Any]: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} UpperCamelCase_ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' UpperCamelCase_ = requests.get(a__ , headers=a__ ).json() UpperCamelCase_ = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) UpperCamelCase_ = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(a__ ): UpperCamelCase_ = requests.get(url + f'''&page={i + 2}''' , headers=a__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : Any=None ) -> Optional[int]: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} UpperCamelCase_ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' UpperCamelCase_ = requests.get(a__ , headers=a__ ).json() UpperCamelCase_ = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) UpperCamelCase_ = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(a__ ): UpperCamelCase_ = requests.get(url + f'''&page={i + 2}''' , headers=a__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase__ ( a__ : Dict , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any] ) -> List[Any]: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} UpperCamelCase_ = requests.get(a__ , headers=a__ , allow_redirects=a__ ) UpperCamelCase_ = result.headers["""Location"""] UpperCamelCase_ = requests.get(a__ , allow_redirects=a__ ) UpperCamelCase_ = os.path.join(a__ , f'''{artifact_name}.zip''' ) with open(a__ , """wb""" ) as fp: fp.write(response.content ) def lowerCamelCase__ ( a__ : Dict , a__ : Tuple=None ) -> Optional[int]: UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = None with zipfile.ZipFile(a__ ) as z: for filename in z.namelist(): if not os.path.isdir(a__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(a__ ) as f: for line in f: UpperCamelCase_ = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCamelCase_ = line[: line.index(""": """ )] UpperCamelCase_ = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed UpperCamelCase_ = line[len("""FAILED """ ) :] failed_tests.append(a__ ) elif filename == "job_name.txt": UpperCamelCase_ = line if len(a__ ) != len(a__ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(a__ )} for `errors` ''' f'''and {len(a__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) UpperCamelCase_ = None if job_name and job_links: UpperCamelCase_ = job_links.get(a__ , a__ ) # A list with elements of the form (line of error, error, failed test) UpperCamelCase_ = [x + [y] + [job_link] for x, y in zip(a__ , a__ )] return result def lowerCamelCase__ ( a__ : Any , a__ : Union[str, Any]=None ) -> Dict: UpperCamelCase_ = [] UpperCamelCase_ = [os.path.join(a__ , a__ ) for p in os.listdir(a__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(a__ , job_links=a__ ) ) return errors def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : Tuple=None ) -> List[Any]: UpperCamelCase_ = Counter() counter.update([x[1] for x in logs] ) UpperCamelCase_ = counter.most_common() UpperCamelCase_ = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCamelCase_ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} UpperCamelCase_ = dict(sorted(r.items() , key=lambda a__ : item[1]["count"] , reverse=a__ ) ) return r def lowerCamelCase__ ( a__ : Optional[int] ) -> Optional[Any]: UpperCamelCase_ = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): UpperCamelCase_ = test.split("""/""" )[2] else: UpperCamelCase_ = None return test def lowerCamelCase__ ( a__ : List[str] , a__ : Optional[int]=None ) -> Dict: UpperCamelCase_ = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCamelCase_ = [x for x in logs if x[2] is not None] UpperCamelCase_ = {x[2] for x in logs} UpperCamelCase_ = {} for test in tests: UpperCamelCase_ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCamelCase_ = counter.most_common() UpperCamelCase_ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCamelCase_ = sum(error_counts.values() ) if n_errors > 0: UpperCamelCase_ = {"""count""": n_errors, """errors""": error_counts} UpperCamelCase_ = dict(sorted(r.items() , key=lambda a__ : item[1]["count"] , reverse=a__ ) ) return r def lowerCamelCase__ ( a__ : Any ) -> List[Any]: UpperCamelCase_ = """| no. | error | status |""" UpperCamelCase_ = """|-:|:-|:-|""" UpperCamelCase_ = [header, sep] for error in reduced_by_error: UpperCamelCase_ = reduced_by_error[error]["""count"""] UpperCamelCase_ = f'''| {count} | {error[:100]} | |''' lines.append(a__ ) return "\n".join(a__ ) def lowerCamelCase__ ( a__ : Optional[int] ) -> str: UpperCamelCase_ = """| model | no. of errors | major error | count |""" UpperCamelCase_ = """|-:|-:|-:|-:|""" UpperCamelCase_ = [header, sep] for model in reduced_by_model: UpperCamelCase_ = reduced_by_model[model]["""count"""] UpperCamelCase_ , UpperCamelCase_ = list(reduced_by_model[model]["""errors"""].items() )[0] UpperCamelCase_ = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(a__ ) return "\n".join(a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') _A = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _A = get_job_links(args.workflow_run_id, token=args.token) _A = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _A = k.find(''' / ''') _A = k[index + len(''' / ''') :] _A = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _A = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _A = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _A = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _A = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _A = reduce_by_error(errors) _A = reduce_by_model(errors) _A = make_github_table(reduced_by_error) _A = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
261
1
def A (__A : int = 1000000 ) -> int: """simple docstring""" UpperCAmelCase_ = set(range(3 , __A , 2 ) ) primes.add(2 ) for p in range(3 , __A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __A , __A ) ) ) UpperCAmelCase_ = [float(__A ) for n in range(limit + 1 )] for p in primes: for n in range(__A , limit + 1 , __A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
51
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = {} class __snake_case ( a ): UpperCAmelCase__ : str = '''llama''' UpperCAmelCase__ : Dict = ['''past_key_values'''] def __init__( self : str , _snake_case : List[str]=32000 , _snake_case : int=4096 , _snake_case : List[str]=11008 , _snake_case : Optional[int]=32 , _snake_case : List[Any]=32 , _snake_case : Tuple=None , _snake_case : int="silu" , _snake_case : List[Any]=2048 , _snake_case : List[str]=0.0_2 , _snake_case : Any=1e-6 , _snake_case : List[str]=True , _snake_case : Optional[Any]=0 , _snake_case : Dict=1 , _snake_case : List[Any]=2 , _snake_case : str=1 , _snake_case : Union[str, Any]=False , _snake_case : str=None , **_snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _snake_case) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _snake_case) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
51
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract A : Tuple = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : str ) -> Any: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : List[Any] = None ) -> Tuple: """simple docstring""" lowercase__ = tesseract_config if tesseract_config is not None else "" # apply OCR lowercase__ = to_pil_image(__snake_case ) lowercase__ = pil_image.size lowercase__ = pytesseract.image_to_data(__snake_case , lang=__snake_case , output_type="""dict""" , config=__snake_case ) lowercase__ = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates lowercase__ = [idx for idx, word in enumerate(__snake_case ) if not word.strip()] lowercase__ = [word for idx, word in enumerate(__snake_case ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase__ = [] for x, y, w, h in zip(__snake_case , __snake_case , __snake_case , __snake_case ): lowercase__ = [x, y, x + w, y + h] actual_boxes.append(__snake_case ) # finally, normalize the bounding boxes lowercase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__snake_case , __snake_case , __snake_case ) ) assert len(__snake_case ) == len(__snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = "" , **_UpperCAmelCase : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) lowercase__ = size if size is not None else {"height": 224, "width": 224} lowercase__ = get_size_dict(_SCREAMING_SNAKE_CASE ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = apply_ocr lowercase__ = ocr_lang lowercase__ = tesseract_config def lowerCamelCase__ (self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase__ = (size["height"], size["width"]) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : List[str] , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_SCREAMING_SNAKE_CASE ) lowercase__ = resample if resample is not None else self.resample lowercase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase__ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) lowercase__ = [] lowercase__ = [] for image in images: lowercase__ = apply_tesseract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) words_batch.append(_SCREAMING_SNAKE_CASE ) boxes_batch.append(_SCREAMING_SNAKE_CASE ) if do_resize: lowercase__ = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase__ = [flip_channel_order(_SCREAMING_SNAKE_CASE ) for image in images] lowercase__ = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowercase__ = BatchFeature(data={"""pixel_values""": images} , tensor_type=_SCREAMING_SNAKE_CASE ) if apply_ocr: lowercase__ = words_batch lowercase__ = boxes_batch return data
364
from functools import lru_cache def UpperCamelCase ( __magic_name__ : int ) -> set: """simple docstring""" lowercase__ = 2 lowercase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return len(unique_prime_factors(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : list ) -> bool: """simple docstring""" return len(set(__magic_name__ ) ) in (0, 1) def UpperCamelCase ( __magic_name__ : int ) -> list: """simple docstring""" lowercase__ = 2 while True: # Increment each value of a generated range lowercase__ = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def UpperCamelCase ( __magic_name__ : int = 4 ) -> int: """simple docstring""" lowercase__ = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
146
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _UpperCamelCase ( __A ) -> List[str]: '''simple docstring''' UpperCamelCase__ = os.path.join(args.tf_model_dir , "parameters.json" ) UpperCamelCase__ = json.loads(open(__A ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(".pt" ): UpperCamelCase__ = args.output + ".pt" UpperCamelCase__ = OrderedDict() with tf.device("/CPU:0" ): UpperCamelCase__ = tf.train.load_checkpoint(args.tf_model_dir ) UpperCamelCase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCamelCase__ = reader.get_tensor(__A ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): UpperCamelCase__ = int(key_name[9] ) elif key_name.startswith("pasts/out" ): UpperCamelCase__ = 8 UpperCamelCase__ = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(__A ) elif key_name.startswith("model/moe" ): UpperCamelCase__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(__A ) elif key_name.endswith("/softmlp/kernel" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(__A ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): UpperCamelCase__ = key_name[-9:-7] for i in range(16 ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) UpperCamelCase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCamelCase__ = torch.tensor(__A ) elif key_name.startswith("model/mlp" ): UpperCamelCase__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.wi.weight" % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(__A ) elif key_name.endswith("/p1/bias" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.wi.bias" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(__A ) elif key_name.endswith("/p2/kernel" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.wo.weight" % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(__A ) elif key_name.endswith("/p2/bias" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.wo.bias" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(__A ) elif key_name.startswith("model/ln" ): UpperCamelCase__ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.norm.bias" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(__A ) elif key_name.endswith("/g" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.norm.weight" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(__A ) elif key_name.startswith("model/att" ): UpperCamelCase__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): UpperCamelCase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCamelCase__ = state[:, 0, :, :] UpperCamelCase__ = state[:, 1, :, :] UpperCamelCase__ = state[:, 2, :, :] UpperCamelCase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player UpperCamelCase__ = torch.tensor(__A ) UpperCamelCase__ = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player UpperCamelCase__ = torch.tensor(__A ) UpperCamelCase__ = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player UpperCamelCase__ = torch.tensor(__A ) elif key_name.endswith("/o/kernel" ): UpperCamelCase__ = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player UpperCamelCase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(__A ) elif key_name.startswith("model/an" ): UpperCamelCase__ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCamelCase__ = "model.blocks.%d.self_attn.norm.bias" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(__A ) elif key_name.endswith("/g" ): UpperCamelCase__ = "model.blocks.%d.self_attn.norm.weight" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(__A ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): UpperCamelCase__ = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] UpperCamelCase__ = "model.%s.weight" % nlayer UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = torch.tensor(__A ) if key_name.startswith("model/wte" ): UpperCamelCase__ = "lm_head.weight" UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = torch.tensor(__A ) elif key_name.startswith("model/wob" ): UpperCamelCase__ = "final_logits_bias" UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = state.reshape((1, -1) ) UpperCamelCase__ = torch.tensor(__A ) elif key_name == "model/dense/kernel": UpperCamelCase__ = "model.last_project.weight" UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(__A ) elif key_name == "model/dense_1/bias": UpperCamelCase__ = "model.last_project.bias" UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(__A ) torch.save(__A , args.output ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') a__ : int = parser.parse_args() convert_tf_gptsan_to_pt(args)
80
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , _A : Optional[Any] , _A : Optional[int]=13 , _A : Dict=7 , _A : List[Any]=True , _A : List[Any]=True , _A : str=True , _A : int=True , _A : str=99 , _A : List[Any]=64 , _A : List[str]=32 , _A : List[str]=5 , _A : Dict=4 , _A : List[Any]=37 , _A : int="gelu" , _A : Dict=0.1 , _A : Tuple=0.1 , _A : Any=512 , _A : List[Any]=16 , _A : Optional[int]=2 , _A : Tuple=0.02 , _A : Union[str, Any]=3 , _A : Optional[int]=4 , _A : Any=None , ) -> Tuple: __magic_name__ : Optional[int] = parent __magic_name__ : List[str] = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : str = is_training __magic_name__ : Optional[int] = use_input_mask __magic_name__ : Optional[int] = use_token_type_ids __magic_name__ : Any = use_labels __magic_name__ : Any = vocab_size __magic_name__ : Any = hidden_size __magic_name__ : Optional[Any] = embedding_size __magic_name__ : Any = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : int = hidden_act __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : List[Any] = attention_probs_dropout_prob __magic_name__ : Optional[Any] = max_position_embeddings __magic_name__ : Dict = type_vocab_size __magic_name__ : Tuple = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : int = num_choices __magic_name__ : List[Any] = scope def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Dict , _A : str , _A : List[Any] , _A : int , _A : Optional[int] , _A : Any ) -> str: __magic_name__ : Any = MegatronBertModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __magic_name__ : Optional[int] = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __magic_name__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : str , _A : int , _A : List[Any] , _A : str , _A : Union[str, Any] , _A : Optional[int] , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Union[str, Any] = MegatronBertForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : str , _A : Optional[Any] , _A : Any , _A : Optional[int] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = MegatronBertForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Tuple , _A : int , _A : List[str] , _A : Tuple , _A : List[str] , _A : int , _A : Dict , _A : Dict ) -> str: __magic_name__ : int = MegatronBertForNextSentencePrediction(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : Any = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : str , _A : str , _A : Optional[Any] , _A : Optional[Any] , _A : Tuple , _A : List[str] ) -> Dict: __magic_name__ : Optional[int] = MegatronBertForPreTraining(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : Tuple = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , next_sentence_label=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : List[Any] , _A : Optional[int] , _A : List[str] , _A : Tuple , _A : List[str] , _A : str ) -> str: __magic_name__ : Dict = MegatronBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : Tuple = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any , _A : Dict , _A : Dict , _A : Any , _A : Union[str, Any] , _A : Union[str, Any] , _A : int ) -> int: __magic_name__ : int = self.num_labels __magic_name__ : Union[str, Any] = MegatronBertForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : Any , _A : List[Any] , _A : Dict , _A : Optional[int] , _A : Optional[int] , _A : Dict , _A : List[str] ) -> Dict: __magic_name__ : Any = self.num_labels __magic_name__ : int = MegatronBertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , _A : List[str] , _A : List[Any] , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Optional[Any] , _A : List[str] ) -> Tuple: __magic_name__ : Union[str, Any] = self.num_choices __magic_name__ : List[str] = MegatronBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __magic_name__ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : Optional[Any] = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : Any = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Dict = config_and_inputs __magic_name__ : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A_ : Dict = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A_ : Tuple = True # test_resize_embeddings = False A_ : Optional[int] = False def __lowerCAmelCase ( self : Any , _A : List[Any] , _A : List[Any] , _A : str=False ) -> Dict: __magic_name__ : Optional[Any] = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): __magic_name__ : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) __magic_name__ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) return inputs_dict def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: __magic_name__ : str = MegatronBertModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : int ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: __magic_name__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" return torch.tensor( lowerCAmelCase , dtype=torch.long , device=lowerCAmelCase , ) lowerCAmelCase :Tuple = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('Model is not available.' ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: __magic_name__ : Any = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: __magic_name__ : Optional[Any] = os.path.join(os.environ['MYDIR'] , __SCREAMING_SNAKE_CASE ) __magic_name__ : Union[str, Any] = MegatronBertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.half() __magic_name__ : Any = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): __magic_name__ : Any = model(__SCREAMING_SNAKE_CASE )[0] __magic_name__ : Union[str, Any] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __magic_name__ : Union[str, Any] = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): __magic_name__ : Optional[int] = output[0, ii, jj] __magic_name__ : str = expected[3 * ii + jj] __magic_name__ : Any = 'ii={} jj={} a={} b={}'.format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertTrue(math.isclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rel_tol=__SCREAMING_SNAKE_CASE , abs_tol=__SCREAMING_SNAKE_CASE ) , msg=__SCREAMING_SNAKE_CASE )
352
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase :str = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase :int = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]=8 ): """simple docstring""" __magic_name__ : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __magic_name__ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : MultilingualCLIP , _A : XLMRobertaTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, DDPMScheduler] , _A : VQModel , ) -> int: super().__init__() self.register_modules( text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , movq=_A , ) __magic_name__ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : Optional[Any] , _A : Optional[int] , _A : Dict , _A : str , _A : List[str] ) -> str: if latents is None: __magic_name__ : Any = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __magic_name__ : int = latents.to(_A ) __magic_name__ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : List[str] , _A : List[str] , _A : List[Any] , _A : str=None , ) -> Dict: __magic_name__ : Optional[Any] = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings __magic_name__ : str = self.tokenizer( _A , padding='max_length' , truncation=_A , max_length=77 , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[Any] = text_inputs.input_ids __magic_name__ : Optional[Any] = self.tokenizer(_A , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_A , _A ): __magic_name__ : str = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __magic_name__ : Union[str, Any] = text_input_ids.to(_A ) __magic_name__ : Dict = text_inputs.attention_mask.to(_A ) __magic_name__ , __magic_name__ : str = self.text_encoder( input_ids=_A , attention_mask=_A ) __magic_name__ : Tuple = prompt_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : int = text_encoder_hidden_states.repeat_interleave(_A , dim=0 ) __magic_name__ : Union[str, Any] = text_mask.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : List[str] if negative_prompt is None: __magic_name__ : Optional[Any] = [''] * batch_size elif type(_A ) is not type(_A ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=' F' {type(_A )}.' ) elif isinstance(_A , _A ): __magic_name__ : int = [negative_prompt] elif batch_size != len(_A ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __magic_name__ : Dict = negative_prompt __magic_name__ : List[str] = self.tokenizer( _A , padding='max_length' , max_length=77 , truncation=_A , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[int] = uncond_input.input_ids.to(_A ) __magic_name__ : Optional[Any] = uncond_input.attention_mask.to(_A ) __magic_name__ , __magic_name__ : int = self.text_encoder( input_ids=_A , attention_mask=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : List[str] = negative_prompt_embeds.shape[1] __magic_name__ : str = negative_prompt_embeds.repeat(1 , _A ) __magic_name__ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A ) __magic_name__ : Any = uncond_text_encoder_hidden_states.shape[1] __magic_name__ : Optional[int] = uncond_text_encoder_hidden_states.repeat(1 , _A , 1 ) __magic_name__ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _A , -1 ) __magic_name__ : List[Any] = uncond_text_mask.repeat_interleave(_A , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) __magic_name__ : str = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __magic_name__ : str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCAmelCase ( self : Dict , _A : List[Any]=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __magic_name__ : List[Any] = torch.device(F'cuda:{gpu_id}' ) __magic_name__ : Dict = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def __lowerCAmelCase ( self : List[Any] , _A : List[str]=0 ) -> str: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __magic_name__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __magic_name__ : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __magic_name__ , __magic_name__ : Union[str, Any] = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) if self.safety_checker is not None: __magic_name__ , __magic_name__ : List[str] = cpu_offload_with_hook(self.safety_checker , _A , prev_module_hook=_A ) # We'll offload the last model manually. __magic_name__ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : int ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : int , _A : Union[str, List[str]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Optional[Union[str, List[str]]] = None , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Optional[int]: if isinstance(_A , _A ): __magic_name__ : Optional[int] = 1 elif isinstance(_A , _A ): __magic_name__ : Union[str, Any] = len(_A ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_A )}' ) __magic_name__ : Tuple = self._execution_device __magic_name__ : Any = batch_size * num_images_per_prompt __magic_name__ : int = guidance_scale > 1.0 __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = self._encode_prompt( _A , _A , _A , _A , _A ) if isinstance(_A , _A ): __magic_name__ : Union[str, Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __magic_name__ : Dict = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = negative_image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __magic_name__ : Tuple = self.scheduler.timesteps __magic_name__ : Optional[int] = self.unet.config.in_channels __magic_name__ , __magic_name__ : Dict = get_new_h_w(_A , _A , self.movq_scale_factor ) # create initial latent __magic_name__ : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __magic_name__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Tuple = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __magic_name__ : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __magic_name__ , __magic_name__ : Dict = noise_pred.chunk(2 ) __magic_name__ , __magic_name__ : List[str] = variance_pred.chunk(2 ) __magic_name__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __magic_name__ : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step( _A , _A , _A , generator=_A , ).prev_sample # post-processing __magic_name__ : int = self.movq.decode(_A , force_not_quantize=_A )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __magic_name__ : Dict = image * 0.5 + 0.5 __magic_name__ : str = image.clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : str = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
275
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : Optional[int] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] =['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
'''simple docstring''' import random def lowercase__ ( __lowercase : list , __lowercase : Optional[Any] ) -> tuple: """simple docstring""" __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = [], [], [] for element in data: if element < pivot: less.append(__lowercase ) elif element > pivot: greater.append(__lowercase ) else: equal.append(__lowercase ) return less, equal, greater def lowercase__ ( __lowercase : list , __lowercase : int ) -> Dict: """simple docstring""" if index >= len(__lowercase ) or index < 0: return None __UpperCamelCase = items[random.randint(0 , len(__lowercase ) - 1 )] __UpperCamelCase = 0 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = _partition(__lowercase , __lowercase ) __UpperCamelCase = len(__lowercase ) __UpperCamelCase = len(__lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__lowercase , __lowercase ) # must be in larger else: return quick_select(__lowercase , index - (m + count) )
53
1
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
363
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __snake_case : str = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub __snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def snake_case__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case__ ( self : int ): __snake_case : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case__ ( self : Dict ): __snake_case : int = self.get_feature_extractor() __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : List[Any] = floats_list((3, 10_00) ) __snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[int] ): __snake_case : Any = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = """This is a test string""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ): np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_lowerCAmelCase ) __snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ): __snake_case : int = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : Tuple = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: __snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: __snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : str = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : List[str] = 15 __snake_case : Optional[Any] = -20.0 __snake_case : Tuple = -4.0 __snake_case : List[Any] = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : List[str] = decoded_processor_out.text __snake_case : str = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: __snake_case : Dict = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) ) def snake_case__ ( self : Any ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Any = self._get_dummy_logits() __snake_case : Any = 2.0 __snake_case : int = 5.0 __snake_case : Optional[int] = -20.0 __snake_case : Optional[int] = True __snake_case : Any = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) __snake_case : str = decoded_processor_out.text __snake_case : int = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) __snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase ) __snake_case : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_lowerCAmelCase ) __snake_case : List[Any] = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case__ ( self : str ): __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case__ ( self : Dict ): __snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def snake_case__ ( self : List[str] ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case__ ( self : Optional[Any] ): import torch __snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) __snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __snake_case : List[Any] = iter(_lowerCAmelCase ) __snake_case : Optional[int] = next(_lowerCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy() __snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) __snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off __snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
20
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE__:Optional[Any] = logging.getLogger(__name__) def _lowerCamelCase( a , a ): return (preds == labels).mean() @dataclass class snake_case__ : _snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _snake_case : Optional[str] = field( default=snake_case_, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=snake_case_, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=snake_case_, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) @dataclass class snake_case__ : _snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) _snake_case : int = field( default=128, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) _snake_case : bool = field( default=snake_case_, metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowerCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __a , __a , __a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , a ) # Set seed set_seed(training_args.seed ) try: __a = processors[data_args.task_name]() __a = processor.get_labels() __a = len(a ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __a = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , ) # Get datasets __a = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __a = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a ) -> Dict: __a = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(a , p.label_ids )} # Data collator __a = DataCollatorWithPadding(a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __a = Trainer( model=a , args=a , train_dataset=a , eval_dataset=a , compute_metrics=a , data_collator=a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __a = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __a = trainer.evaluate() __a = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , a , a ) writer.write("%s = %s\n" % (key, value) ) results.update(a ) return results def _lowerCamelCase( a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
261
"""simple docstring""" import copy import re class snake_case__ : _snake_case : Dict = """hp""" _snake_case : List[str] = {} _snake_case : int = None @classmethod def a__ ( cls , lowerCamelCase , lowerCamelCase ): __a = prefix __a = defaults cls.build_naming_info() @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): if len(lowerCamelCase ) == 0: return "" __a = None if any(char.isdigit() for char in word ): raise Exception(F"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCamelCase ) + 1 ): __a = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __a = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCamelCase ): __a = "" while integer != 0: __a = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __a = 0 while True: __a = word + "#" + int_to_alphabetic(lowerCamelCase ) if sword in info["reverse_short_word"]: continue else: __a = sword break __a = short_word __a = word return short_word @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): __a = param_name.split("_" ) __a = [TrialShortNamer.shortname_for_word(lowerCamelCase , lowerCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __a = ["", "_"] for separator in separators: __a = separator.join(lowerCamelCase ) if shortname not in info["reverse_short_param"]: __a = shortname __a = param_name return shortname return param_name @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): __a = TrialShortNamer.shortname_for_key(lowerCamelCase , lowerCamelCase ) __a = short_name __a = param_name @classmethod def a__ ( cls ): if cls.NAMING_INFO is not None: return __a = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __a = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCamelCase , lowerCamelCase ) __a = info @classmethod def a__ ( cls , lowerCamelCase ): cls.build_naming_info() assert cls.PREFIX is not None __a = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __a = cls.NAMING_INFO["short_param"][k] if isinstance(lowerCamelCase , lowerCamelCase ): __a = 1 if v else 0 __a = "" if isinstance(lowerCamelCase , (int, float) ) else "-" __a = F"{key}{sep}{v}" name.append(lowerCamelCase ) return "_".join(lowerCamelCase ) @classmethod def a__ ( cls , lowerCamelCase ): __a = repr[len(cls.PREFIX ) + 1 :] if repr == "": __a = [] else: __a = repr.split("_" ) __a = {} for value in values: if "-" in value: __a , __a = value.split("-" ) else: __a = re.sub("[0-9.]" , "" , lowerCamelCase ) __a = float(re.sub("[^0-9.]" , "" , lowerCamelCase ) ) __a = cls.NAMING_INFO["reverse_short_param"][p_k] __a = p_v for k in cls.DEFAULTS: if k not in parameters: __a = cls.DEFAULTS[k] return parameters
261
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _lowerCamelCase ( _UpperCamelCase=None , _UpperCamelCase=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_UpperCamelCase ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( metadata={"""help""": """The csv file to plot."""} ,) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} ,) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} ,) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Disable logarithmic scale when plotting"""} ,) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } ,) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} ,) __UpperCAmelCase : Optional[List[str]] =list_field( default=lowerCAmelCase__ ,metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' try: int(_UpperCamelCase ) return True except ValueError: return False def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' try: float(_UpperCamelCase ) return True except ValueError: return False class _UpperCamelCase : '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = args __lowerCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: __lowerCAmelCase = csv.DictReader(__a ) for row in reader: __lowerCAmelCase = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None __lowerCAmelCase = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None __lowerCAmelCase = float(row["result"] ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = plt.subplots() __lowerCAmelCase = "Time usage" if self.args.is_time else "Memory usage" __lowerCAmelCase = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowerCAmelCase = sorted(set(self.result_dict[model_name]["bsz"] ) ) __lowerCAmelCase = sorted(set(self.result_dict[model_name]["seq_len"] ) ) __lowerCAmelCase = self.result_dict[model_name]["result"] ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowerCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowerCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__a , ) else: __lowerCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) __lowerCAmelCase = np.asarray(__a , __a )[: len(__a )] plt.scatter( __a , __a , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(__a , __a , "--" ) title_str += f" {label_model_name} vs." __lowerCAmelCase = title_str[:-4] __lowerCAmelCase = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__a ) plt.xlabel(__a ) plt.ylabel(__a ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = HfArgumentParser(_UpperCamelCase ) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] __lowerCAmelCase = Plot(args=_UpperCamelCase ) plot.plot() if __name__ == "__main__": main()
259
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Tuple = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str ="""data2vec-audio""" def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.0_2 , __a=1e-5 , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=16 , __a=19 , __a=5 , __a=0.0_5 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="sum" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ): super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) __lowerCAmelCase = hidden_size __lowerCAmelCase = feat_extract_activation __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = conv_bias __lowerCAmelCase = num_conv_pos_embeddings __lowerCAmelCase = num_conv_pos_embedding_groups __lowerCAmelCase = conv_pos_kernel_size __lowerCAmelCase = len(self.conv_dim ) __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = feat_proj_dropout __lowerCAmelCase = final_dropout __lowerCAmelCase = layerdrop __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = vocab_size __lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase = mask_time_prob __lowerCAmelCase = mask_time_length __lowerCAmelCase = mask_time_min_masks __lowerCAmelCase = mask_feature_prob __lowerCAmelCase = mask_feature_length __lowerCAmelCase = mask_feature_min_masks # ctc loss __lowerCAmelCase = ctc_loss_reduction __lowerCAmelCase = ctc_zero_infinity # adapter __lowerCAmelCase = add_adapter __lowerCAmelCase = adapter_kernel_size __lowerCAmelCase = adapter_stride __lowerCAmelCase = num_adapter_layers __lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = xvector_output_dim @property def snake_case ( self ): return math.prod(self.conv_stride )
259
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : List[str] = {"""vocab_file""": """sentencepiece.model"""} a_ : Union[str, Any] = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } a_ : str = { """google/rembert""": 256, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase="[CLS]" , UpperCamelCase="[SEP]" , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , **UpperCamelCase , ): """simple docstring""" super().__init__( do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor() self.sp_model.Load(UpperCamelCase ) @property def snake_case ( self ): """simple docstring""" return len(self.sp_model ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d lowerCamelCase_ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def snake_case ( self , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = self.sp_model.EncodeAsPieces(UpperCamelCase ) return pieces def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.sp_model.decode_pieces(UpperCamelCase ) return out_string def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(UpperCamelCase ) ) return lowerCamelCase_ = os.path.join( UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
55
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _a ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(SCREAMING_SNAKE_CASE , '''_dynamo''' ): return False return isinstance(SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" UpperCamelCase__ : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase__ : Optional[int] = is_compiled_module(SCREAMING_SNAKE_CASE ) if is_compiled: UpperCamelCase__ : Optional[int] = model UpperCamelCase__ : Optional[Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[int] = model.module if not keep_fpaa_wrapper: UpperCamelCase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , '''forward''' ) UpperCamelCase__ : Optional[Any] = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE , '''__wrapped__''' ): UpperCamelCase__ : Optional[int] = forward.__wrapped__ if forward == original_forward: break UpperCamelCase__ : Optional[Any] = forward if getattr(SCREAMING_SNAKE_CASE , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE ): convert_model(SCREAMING_SNAKE_CASE , to_transformer_engine=SCREAMING_SNAKE_CASE ) if is_compiled: UpperCamelCase__ : Tuple = model UpperCamelCase__ : Tuple = compiled_model return model def _a ( ): """simple docstring""" PartialState().wait_for_everyone() def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @contextmanager def _a ( **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for key, value in kwargs.items(): UpperCamelCase__ : Dict = str(SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if not hasattr(SCREAMING_SNAKE_CASE , '''__qualname__''' ) and not hasattr(SCREAMING_SNAKE_CASE , '''__name__''' ): UpperCamelCase__ : str = getattr(SCREAMING_SNAKE_CASE , '''__class__''' , SCREAMING_SNAKE_CASE ) if hasattr(SCREAMING_SNAKE_CASE , '''__qualname__''' ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE , '''__name__''' ): return obj.__name__ return str(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = destination.setdefault(SCREAMING_SNAKE_CASE , {} ) merge_dicts(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : List[Any] = value return destination def _a ( SCREAMING_SNAKE_CASE : int = None ): """simple docstring""" if port is None: UpperCamelCase__ : Union[str, Any] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
146
0
"""simple docstring""" from math import sqrt def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0_0_1 ): '''simple docstring''' _a : str = 0 _a : Dict = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
324
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _a = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } _a = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __A ( __lowerCAmelCase , __lowerCAmelCase=False )-> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = create_model( 'HTSAT-tiny' , 'roberta' , __lowerCAmelCase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=__lowerCAmelCase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = R'.*sequential.(\d+).*' _UpperCAmelCase = R'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCAmelCase = key.replace(__lowerCAmelCase , __lowerCAmelCase ) if re.match(__lowerCAmelCase , __lowerCAmelCase ): # replace sequential layers with list _UpperCAmelCase = re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) _UpperCAmelCase = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(__lowerCAmelCase )//3}.linear.""" ) elif re.match(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = int(re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _UpperCAmelCase = 1 if projecton_layer == 0 else 2 _UpperCAmelCase = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _UpperCAmelCase = value _UpperCAmelCase = mixed_qkv.size(0 ) // 3 _UpperCAmelCase = mixed_qkv[:qkv_dim] _UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] _UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] _UpperCAmelCase = query_layer _UpperCAmelCase = key_layer _UpperCAmelCase = value_layer else: _UpperCAmelCase = value return model_state_dict def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False )-> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = init_clap(__lowerCAmelCase , enable_fusion=__lowerCAmelCase ) clap_model.eval() _UpperCAmelCase = clap_model.state_dict() _UpperCAmelCase = rename_state_dict(__lowerCAmelCase ) _UpperCAmelCase = ClapConfig() _UpperCAmelCase = enable_fusion _UpperCAmelCase = ClapModel(__lowerCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) transformers_config.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') _a = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
39
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _lowercase ( lowercase__ ): __lowerCAmelCase : str = [] __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : str = [] for rt in rc.restypes: __lowerCAmelCase : List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __lowerCAmelCase : List[str] = {name: i for i, name in enumerate(lowercase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) __lowerCAmelCase : List[Any] = torch.tensor( lowercase__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __lowerCAmelCase : Optional[Any] = torch.tensor( lowercase__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __lowerCAmelCase : Tuple = torch.tensor( lowercase__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) __lowerCAmelCase : List[Any] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __lowerCAmelCase : Any = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase : Union[str, Any] = restype_atomaa_mask[protein_aatype] __lowerCAmelCase : int = residx_atomaa_mask __lowerCAmelCase : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __lowerCAmelCase : int = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask __lowerCAmelCase : str = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): __lowerCAmelCase : Optional[int] = rc.restype_atoa[restype_letter] __lowerCAmelCase : Optional[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: __lowerCAmelCase : str = rc.atom_order[atom_name] __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : Union[str, Any] = restype_atomaa_mask[protein_aatype] __lowerCAmelCase : Any = residx_atomaa_mask return protein def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = tree_map(lambda lowercase__ : torch.tensor(lowercase__ , device=batch['''aatype'''].device ) , lowercase__ , np.ndarray ) __lowerCAmelCase : Tuple = tensor_tree_map(lambda lowercase__ : np.array(lowercase__ ) , make_atomaa_masks(lowercase__ ) ) return out
275
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __UpperCamelCase : @property def a__ ( self :Optional[Any] ): return self.get_dummy_input() @property def a__ ( self :int ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def a__ ( self :List[Any] ,_UpperCamelCase :str=True ,_UpperCamelCase :int=False ,_UpperCamelCase :Any=False ,_UpperCamelCase :List[str]=False ,): snake_case_ : str = 4 snake_case_ : int = 3_2 snake_case_ : Optional[Any] = (3_2, 3_2) snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Any = torch.device(_UpperCamelCase ) snake_case_ : Optional[Any] = (batch_size, num_channels) + sizes snake_case_ : List[str] = randn_tensor(_UpperCamelCase ,generator=_UpperCamelCase ,device=_UpperCamelCase ) snake_case_ : Union[str, Any] = {"""hidden_states""": hidden_states} if include_temb: snake_case_ : Any = 1_2_8 snake_case_ : Union[str, Any] = randn_tensor((batch_size, temb_channels) ,generator=_UpperCamelCase ,device=_UpperCamelCase ) if include_res_hidden_states_tuple: snake_case_ : Dict = torch.manual_seed(1 ) snake_case_ : List[str] = (randn_tensor(_UpperCamelCase ,generator=_UpperCamelCase ,device=_UpperCamelCase ),) if include_encoder_hidden_states: snake_case_ : Dict = floats_tensor((batch_size, 3_2, 3_2) ).to(_UpperCamelCase ) if include_skip_sample: snake_case_ : Union[str, Any] = randn_tensor(((batch_size, 3) + sizes) ,generator=_UpperCamelCase ,device=_UpperCamelCase ) return dummy_input def a__ ( self :Optional[Any] ): snake_case_ : Optional[Any] = { """in_channels""": 3_2, """out_channels""": 3_2, """temb_channels""": 1_2_8, } if self.block_type == "up": snake_case_ : Any = 3_2 if self.block_type == "mid": init_dict.pop("""out_channels""" ) snake_case_ : Tuple = self.dummy_input return init_dict, inputs_dict def a__ ( self :Union[str, Any] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() snake_case_ : List[str] = self.block_class(**_UpperCamelCase ) unet_block.to(_UpperCamelCase ) unet_block.eval() with torch.no_grad(): snake_case_ : Optional[int] = unet_block(**_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : str = output[0] self.assertEqual(output.shape ,self.output_shape ) snake_case_ : Tuple = output[0, -1, -3:, -3:] snake_case_ : Optional[Any] = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) assert torch_all_close(output_slice.flatten() ,_UpperCamelCase ,atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" ,"""Training is not supported in mps""" ) def a__ ( self :Optional[int] ): snake_case_ : List[str] = self.prepare_init_args_and_inputs_for_common() snake_case_ : List[Any] = self.block_class(**_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() snake_case_ : Union[str, Any] = model(**_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : Tuple = output[0] snake_case_ : Optional[int] = torch.device(_UpperCamelCase ) snake_case_ : Any = randn_tensor(output.shape ,device=_UpperCamelCase ) snake_case_ : Union[str, Any] = torch.nn.functional.mse_loss(_UpperCamelCase ,_UpperCamelCase ) loss.backward()
355
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Any = only_cross_attention snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : str = ( AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none else: snake_case_ : Any = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase ) # let chunk size default to None snake_case_ : Optional[int] = None snake_case_ : Dict = 0 def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ): # Sets chunk feed-forward snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype ) else: snake_case_ : Optional[int] = self.norma(_UpperCamelCase ) snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Union[str, Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : Any = ( self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) snake_case_ : List[Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case_ : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Tuple = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase ) if activation_fn == "gelu-approximate": snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase ) elif activation_fn == "geglu-approximate": snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): for module in self.net: snake_case_ : Tuple = module(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[Any] = approximate def a__ ( self :str ,_UpperCamelCase :int ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Optional[Any] = self.proj(_UpperCamelCase ) snake_case_ : int = self.gelu(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): super().__init__() snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = nn.SiLU() snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 ) snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 ) snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = nn.SiLU() snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase ) snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 ) snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ): super().__init__() snake_case_ : Optional[int] = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : int = None else: snake_case_ : Dict = get_activation(_UpperCamelCase ) snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): if self.act: snake_case_ : Any = self.act(_UpperCamelCase ) snake_case_ : Optional[int] = self.linear(_UpperCamelCase ) snake_case_ : Dict = emb[:, :, None, None] snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 ) snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps ) snake_case_ : List[str] = x * (1 + scale) + shift return x
8
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _UpperCAmelCase = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , A) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.feature_extraction_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') # load decoder from hub _UpperCAmelCase = """hf-internal-testing/ngram-beam-search-decoder""" def _lowerCamelCase ( self : Tuple , **A : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(A) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : int , **A : str) -> Optional[Any]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Optional[int] , **A : int) -> Union[str, Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A) def _lowerCamelCase ( self : int) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname) def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) processor.save_pretrained(self.tmpdirname) _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , A) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , A) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3) # decoder self.assertEqual(processor.language_model.alpha , 5.0) self.assertEqual(processor.language_model.beta , 3.0) self.assertEqual(processor.language_model.score_boundary , -7.0) self.assertEqual(processor.language_model.unk_score_offset , 3) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx']) with self.assertRaisesRegex(A , 'include'): WavaVecaProcessorWithLM( tokenizer=A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = floats_list((3, 10_00)) _UpperCAmelCase = feature_extractor(A , return_tensors='np') _UpperCAmelCase = processor(A , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def _lowerCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = """This is a test string""" _UpperCAmelCase = processor(text=A) _UpperCAmelCase = tokenizer(A) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _lowerCamelCase ( self : List[str] , A : str=(2, 10, 16) , A : Optional[Any]=77) -> Optional[int]: """simple docstring""" np.random.seed(A) return np.random.rand(*A) def _lowerCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13) _UpperCAmelCase = processor.decode(A) _UpperCAmelCase = decoder.decode_beams(A)[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text) self.assertEqual('</s> <s> </s>' , decoded_processor.text) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score) @parameterized.expand([[None], ['fork'], ['spawn']]) def _lowerCamelCase ( self : Optional[int] , A : str) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase = processor.batch_decode(A) else: with get_context(A).Pool() as pool: _UpperCAmelCase = processor.batch_decode(A , A) _UpperCAmelCase = list(A) with get_context('fork').Pool() as p: _UpperCAmelCase = decoder.decode_beams_batch(A , A) _UpperCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) self.assertListEqual(A , decoded_processor.text) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text) self.assertListEqual(A , decoded_processor.logit_score) self.assertListEqual(A , decoded_processor.lm_score) def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = 15 _UpperCAmelCase = -2_0.0 _UpperCAmelCase = -4.0 _UpperCAmelCase = processor.batch_decode( A , beam_width=A , beam_prune_logp=A , token_min_logp=A , ) _UpperCAmelCase = decoded_processor_out.text _UpperCAmelCase = list(A) with get_context('fork').Pool() as pool: _UpperCAmelCase = decoder.decode_beams_batch( A , A , beam_width=A , beam_prune_logp=A , token_min_logp=A , ) _UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A , A) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , A) self.assertTrue(np.array_equal(A , decoded_processor_out.logit_score)) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , A , atol=1E-3)) self.assertTrue(np.array_equal(A , decoded_processor_out.lm_score)) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , A , atol=1E-3)) def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = 2.0 _UpperCAmelCase = 5.0 _UpperCAmelCase = -2_0.0 _UpperCAmelCase = True _UpperCAmelCase = processor.batch_decode( A , alpha=A , beta=A , unk_score_offset=A , lm_score_boundary=A , ) _UpperCAmelCase = decoded_processor_out.text _UpperCAmelCase = list(A) decoder.reset_params( alpha=A , beta=A , unk_score_offset=A , lm_score_boundary=A , ) with get_context('fork').Pool() as pool: _UpperCAmelCase = decoder.decode_beams_batch( A , A , ) _UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A , A) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , A) _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0) self.assertEqual(lm_model.beta , 5.0) self.assertEqual(lm_model.unk_score_offset , -2_0.0) self.assertEqual(lm_model.score_boundary , A) def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() _UpperCAmelCase = os.listdir(A) _UpperCAmelCase = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A , A) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = snapshot_download('hf-internal-testing/processor_with_lm') _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(A) _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() _UpperCAmelCase = os.listdir(A) _UpperCAmelCase = os.listdir(A) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A , A) def _lowerCamelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = floats_list((3, 10_00)) _UpperCAmelCase = processor_wavaveca(A , return_tensors='np') _UpperCAmelCase = processor_auto(A , return_tensors='np') for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = processor_wavaveca.batch_decode(A) _UpperCAmelCase = processor_auto.batch_decode(A) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def _lowerCamelCase ( A : Dict , A : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = self._get_dummy_logits()[0] _UpperCAmelCase = processor.decode(A , output_word_offsets=A) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(A , A)) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word')) , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset') , [1, 3, 5]) def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = processor.batch_decode(A , output_word_offsets=A) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(A , A)) self.assertListEqual( [' '.join(self.get_from_offsets(A , 'word')) for o in outputs['word_offsets']] , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset') , [1, 3, 5]) @slow @require_torch @require_torchaudio def _lowerCamelCase ( self : Optional[Any]) -> str: """simple docstring""" import torch _UpperCAmelCase = load_dataset('common_voice' , 'en' , split='train' , streaming=A) _UpperCAmelCase = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00)) _UpperCAmelCase = iter(A) _UpperCAmelCase = next(A) _UpperCAmelCase = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') _UpperCAmelCase = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase = processor(sample['audio']['array'] , return_tensors='pt').input_values with torch.no_grad(): _UpperCAmelCase = model(A).logits.cpu().numpy() _UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=A) _UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _UpperCAmelCase = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(' '.join(self.get_from_offsets(A , 'word')) , A) self.assertEqual(' '.join(self.get_from_offsets(A , 'word')) , output.text) # output times _UpperCAmelCase = torch.tensor(self.get_from_offsets(A , 'start_time')) _UpperCAmelCase = torch.tensor(self.get_from_offsets(A , 'end_time')) # fmt: off _UpperCAmelCase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9]) _UpperCAmelCase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4]) # fmt: on self.assertTrue(torch.allclose(A , A , atol=0.0_1)) self.assertTrue(torch.allclose(A , A , atol=0.0_1))
339
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = {} if top_k is not None: lowercase : int = top_k return {}, {}, postprocess_params def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(snake_case ) lowercase : List[Any] = self.image_processor(images=snake_case ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.model(**snake_case ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : Tuple = self.model.config.num_labels if self.framework == "pt": lowercase : str = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Dict = probs.topk(snake_case ) elif self.framework == "tf": lowercase : Optional[int] = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowercase : Union[str, Any] = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowercase : Tuple = scores.tolist() lowercase : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case ,snake_case )]
20
0
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : str ): return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def lowerCAmelCase__ ( lowerCamelCase : str ): _A : List[str] = credit_card_number _A : Dict = 0 _A : int = len(lowerCamelCase ) - 2 for i in range(lowerCamelCase ,-1 ,-2 ): # double the value of every second digit _A : int = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _A : Union[str, Any] = cc_number[:i] + str(lowerCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCamelCase ) - 1 ,-1 ,-2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCAmelCase__ ( lowerCamelCase : str ): _A : str = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(lowerCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
356
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): def count_of_possible_combinations(lowerCamelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): def count_of_possible_combinations_with_dp_array( lowerCamelCase : int ,lowerCamelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _A : Optional[Any] = sum( count_of_possible_combinations_with_dp_array(target - item ,lowerCamelCase ) for item in array ) _A : List[str] = answer return answer _A : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowerCamelCase ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : list[int] ,lowerCamelCase : int ): _A : Dict = [0] * (target + 1) _A : List[str] = 1 for i in range(1 ,target + 1 ): for j in range(lowerCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() A : Dict = 3 A : Union[str, Any] = 5 A : Union[str, Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
227
0
from __future__ import annotations from random import random from typing import Generic, TypeVar __snake_case = TypeVar("""KT""") __snake_case = TypeVar("""VT""") class UpperCAmelCase_ ( Generic[KT, VT] ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = "root" , SCREAMING_SNAKE_CASE_ = None ) -> Dict: UpperCamelCase :List[str] = key UpperCamelCase :int = value UpperCamelCase :list[Node[KT, VT]] = [] def __repr__( self ) -> str: return F'''Node({self.key}: {self.value})''' @property def UpperCAmelCase ( self ) -> int: return len(self.forward ) class UpperCAmelCase_ ( Generic[KT, VT] ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.5 , SCREAMING_SNAKE_CASE_ = 16 ) -> List[Any]: UpperCamelCase :Node[KT, VT] = Node[KT, VT]() UpperCamelCase :int = 0 UpperCamelCase :Optional[Any] = p UpperCamelCase :Tuple = max_level def __str__( self ) -> str: UpperCamelCase :Union[str, Any] = list(self ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return F'''SkipList(level={self.level})''' UpperCamelCase :Any = max((len(str(SCREAMING_SNAKE_CASE_ ) ) for item in items) , default=4 ) UpperCamelCase :Optional[Any] = max(SCREAMING_SNAKE_CASE_ , 4 ) + 4 UpperCamelCase :Tuple = self.head UpperCamelCase :List[str] = [] UpperCamelCase :Union[str, Any] = node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(SCREAMING_SNAKE_CASE_ , '''-''' ) + '''* ''' * len(SCREAMING_SNAKE_CASE_ ) ) lines.append(''' ''' * label_size + '''| ''' * len(SCREAMING_SNAKE_CASE_ ) ) while len(node.forward ) != 0: UpperCamelCase :List[Any] = node.forward[0] lines.append( F'''[{node.key}]'''.ljust(SCREAMING_SNAKE_CASE_ , '''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :Tuple = node.forward lines.append('''None'''.ljust(SCREAMING_SNAKE_CASE_ ) + '''* ''' * len(SCREAMING_SNAKE_CASE_ ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(SCREAMING_SNAKE_CASE_ ) def __iter__( self ) -> List[str]: UpperCamelCase :str = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCamelCase :Union[str, Any] = node.forward[0] def UpperCAmelCase ( self ) -> int: UpperCamelCase :int = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: UpperCamelCase :List[str] = [] UpperCamelCase :Optional[int] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCamelCase :int = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(SCREAMING_SNAKE_CASE_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase , UpperCamelCase :int = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: for i, update_node in enumerate(SCREAMING_SNAKE_CASE_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCamelCase :str = node.forward[i] else: UpperCamelCase :Dict = update_node.forward[:i] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase , UpperCamelCase :Any = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: UpperCamelCase :Any = value else: UpperCamelCase :Any = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , SCREAMING_SNAKE_CASE_ ): update_vector.append(self.head ) UpperCamelCase :str = level UpperCamelCase :str = Node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase :Tuple = new_node def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> VT | None: UpperCamelCase , UpperCamelCase :int = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: return node.value return None def _A ( ): UpperCamelCase :Tuple = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) UpperCamelCase :Tuple = skip_list.head UpperCamelCase :Union[str, Any] = {} while node.level != 0: UpperCamelCase :Any = node.forward[0] UpperCamelCase :Tuple = node.value assert len(SCREAMING_SNAKE_CASE__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _A ( ): UpperCamelCase :Optional[Any] = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) UpperCamelCase :List[str] = skip_list.head UpperCamelCase :Union[str, Any] = {} while node.level != 0: UpperCamelCase :int = node.forward[0] UpperCamelCase :Tuple = node.value if len(SCREAMING_SNAKE_CASE__ ) != 4: print() assert len(SCREAMING_SNAKE_CASE__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _A ( ): UpperCamelCase :Tuple = SkipList() assert skip_list.find('''Some key''' ) is None def _A ( ): UpperCamelCase :int = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def _A ( ): UpperCamelCase :Optional[int] = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def _A ( ): UpperCamelCase :Optional[int] = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def _A ( ): UpperCamelCase :Optional[int] = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def _A ( ): UpperCamelCase :Tuple = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 142 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(SCREAMING_SNAKE_CASE__ : Optional[int] ): yield node.key for forward_node in node.forward: yield from traverse_keys(SCREAMING_SNAKE_CASE__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _A ( ): def is_sorted(SCREAMING_SNAKE_CASE__ : Optional[int] ): return all(next_item >= item for item, next_item in zip(SCREAMING_SNAKE_CASE__ , lst[1:] ) ) UpperCamelCase :Optional[Any] = SkipList() for i in range(10 ): skip_list.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) def _A ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _A ( ): UpperCamelCase :Tuple = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
259
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=[1, 384, 24, 24] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , ) -> int: UpperCamelCase :List[Any] = parent UpperCamelCase :List[str] = batch_size UpperCamelCase :Optional[Any] = image_size UpperCamelCase :Optional[Any] = patch_size UpperCamelCase :Optional[Any] = num_channels UpperCamelCase :Union[str, Any] = is_training UpperCamelCase :Dict = use_labels UpperCamelCase :List[Any] = hidden_size UpperCamelCase :Optional[int] = num_hidden_layers UpperCamelCase :Any = backbone_out_indices UpperCamelCase :int = num_attention_heads UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :List[str] = hidden_act UpperCamelCase :Optional[int] = hidden_dropout_prob UpperCamelCase :int = attention_probs_dropout_prob UpperCamelCase :Optional[Any] = initializer_range UpperCamelCase :List[Any] = num_labels UpperCamelCase :Any = backbone_featmap_shape UpperCamelCase :Optional[int] = scope UpperCamelCase :Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase :Tuple = (image_size // patch_size) ** 2 UpperCamelCase :int = num_patches + 1 def UpperCAmelCase ( self ) -> str: UpperCamelCase :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase :int = None if self.use_labels: UpperCamelCase :str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase :Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Tuple = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Optional[int] = DPTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :Tuple = self.num_labels UpperCamelCase :Any = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :int = self.num_labels UpperCamelCase :str = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :List[str] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = config_and_inputs UpperCamelCase :List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ : Optional[Any] =( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Optional[int] =False UpperCamelCase_ : Union[str, Any] =False def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[Any] = DPTModelTester(self ) UpperCamelCase :List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def UpperCAmelCase ( self ) -> int: pass def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> int: UpperCamelCase , UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Tuple = [*signature.parameters.keys()] UpperCamelCase :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :int = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ): continue UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase :Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Union[str, Any] = False UpperCamelCase :Dict = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase :Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase :List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Dict: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Dict = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase :Tuple = model_class(config=SCREAMING_SNAKE_CASE_ ) # Skip the check for the backbone UpperCamelCase :List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase :Tuple = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self ) -> Tuple: pass @slow def UpperCAmelCase ( self ) -> Any: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase :int = DPTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Optional[Any] = '''add''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :int = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) def _A ( ): UpperCamelCase :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: UpperCamelCase :Any = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCamelCase :int = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = prepare_img() UpperCamelCase :Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase :Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = outputs.predicted_depth # verify the predicted depth UpperCamelCase :List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
259
1
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
354
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
0
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowercase__ : int = logging.getLogger(__name__) lowercase__ : List[Any] = 'pytorch_model.bin' @dataclasses.dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _snake_case : Optional[str] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _snake_case : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _snake_case : Optional[str] = dataclasses.field( default=__magic_name__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) _snake_case : Optional[str] = dataclasses.field( default=__magic_name__ , metadata={'help': 'The name of the task to train on.'} , ) _snake_case : Optional[List[str]] = dataclasses.field( default=__magic_name__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _snake_case : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _snake_case : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _snake_case : Optional[int] = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _snake_case : Optional[bool] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _snake_case : Optional[bool] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _snake_case : Optional[bool] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _snake_case : Optional[int] = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _snake_case : Optional[int] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Random seed for initialization.'} , ) def a__ ( lowercase : Any, lowercase : Optional[int], lowercase : Dict, lowercase : Dict, lowercase : List[Any], lowercase : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = datasets.concatenate_datasets([infer_input, infer_output], axis=1 ) if args.do_filter_by_confidence: _UpperCamelCase = dataset.filter(lambda lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _UpperCamelCase = int(eval_result * len(lowercase ) ) print(lowercase ) _UpperCamelCase = dataset.sort('''probability''', reverse=lowercase ) _UpperCamelCase = dataset.select(range(lowercase ) ) _UpperCamelCase = dataset.remove_columns(['''label''', '''probability'''] ) _UpperCamelCase = dataset.rename_column('''prediction''', '''label''' ) _UpperCamelCase = dataset.map(lambda lowercase : {"label": idalabel[example["label"]]} ) _UpperCamelCase = dataset.shuffle(seed=args.seed ) _UpperCamelCase = os.path.join(lowercase, F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(lowercase, index=lowercase ) else: dataset.to_json(lowercase ) def a__ ( lowercase : List[Any], lowercase : Any, lowercase : Union[str, Any], lowercase : Optional[int], **lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _UpperCamelCase = STModelArguments(model_name_or_path=lowercase ) _UpperCamelCase = STDataArguments(train_file=lowercase, infer_file=lowercase ) _UpperCamelCase = STTrainingArguments(output_dir=lowercase ) _UpperCamelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase ).items(): setattr(lowercase, lowercase, lowercase ) for key, value in kwargs.items(): if hasattr(lowercase, lowercase ): setattr(lowercase, lowercase, lowercase ) # Sanity checks _UpperCamelCase = {} _UpperCamelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _UpperCamelCase = args.train_file _UpperCamelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _UpperCamelCase = args.eval_file for key in data_files: _UpperCamelCase = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _UpperCamelCase = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) _UpperCamelCase = F"""{args.output_dir}/self-train_iter-{{}}""".format _UpperCamelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=lowercase ) os.makedirs(lowercase, exist_ok=lowercase ) accelerator.wait_for_everyone() _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = 0 _UpperCamelCase = False # Show the progress bar _UpperCamelCase = tqdm(range(args.max_selftrain_iterations ), disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0, int(args.max_selftrain_iterations ) ): _UpperCamelCase = data_dir_format(lowercase ) assert os.path.exists(lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _UpperCamelCase = os.path.join(lowercase, '''stage-1''' ) _UpperCamelCase = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase, lowercase ): arguments_dict.update({key: value} ) _UpperCamelCase = os.path.join(lowercase, '''best-checkpoint''', lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''', lowercase, lowercase, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''', lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''', lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _UpperCamelCase = os.path.join(lowercase, '''best-checkpoint''' ) _UpperCamelCase = os.path.join(lowercase, '''stage-2''' ) # Update arguments_dict _UpperCamelCase = model_path _UpperCamelCase = data_files['''train'''] _UpperCamelCase = current_output_dir _UpperCamelCase = os.path.join(lowercase, '''best-checkpoint''', lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''', lowercase, lowercase, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''', lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''', lowercase ) _UpperCamelCase = iteration _UpperCamelCase = data_dir_format(iteration + 1 ) _UpperCamelCase = AutoConfig.from_pretrained(os.path.join(lowercase, '''best-checkpoint''' ) ) _UpperCamelCase = config.idalabel _UpperCamelCase = os.path.join(lowercase, '''eval_results_best-checkpoint.json''' ) _UpperCamelCase = os.path.join(lowercase, '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowercase ) with open(lowercase, '''r''' ) as f: _UpperCamelCase = float(json.load(lowercase )[args.eval_metric] ) _UpperCamelCase = os.path.join(lowercase, '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowercase ) # Loading the dataset from local csv or json files. _UpperCamelCase = load_dataset(args.data_file_extension, data_files={'''data''': data_files['''infer''']} )['''data'''] _UpperCamelCase = load_dataset('''csv''', data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(lowercase, exist_ok=lowercase ) shutil.copy(lowercase, os.path.join(lowercase, F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(lowercase ): shutil.copy(lowercase, os.path.join(lowercase, F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) accelerator.wait_for_everyone() _UpperCamelCase = os.path.join(lowercase, F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _UpperCamelCase = eval_result if best_iteration is None: _UpperCamelCase = new_iteration _UpperCamelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _UpperCamelCase = new_iteration _UpperCamelCase = new_eval_result _UpperCamelCase = 0 else: if new_eval_result == best_eval_result: _UpperCamelCase = new_iteration _UpperCamelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _UpperCamelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''', lowercase ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase, F"""eval_results_iter-{iteration}.json""" ), os.path.join(lowercase, '''eval_results_best-iteration.json''' ), ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''', args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase, F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ), os.path.join(lowercase, '''eval_results_best-iteration.json''' ), )
324
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = LevitImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
324
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=32 , UpperCAmelCase_=3 , UpperCAmelCase_=4 , UpperCAmelCase_=[10, 20, 30, 40] , UpperCAmelCase_=[2, 2, 3, 2] , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=37 , UpperCAmelCase_="gelu" , UpperCAmelCase_=10 , UpperCAmelCase_=0.02 , UpperCAmelCase_=["stage2", "stage3", "stage4"] , UpperCAmelCase_=[2, 3, 4] , UpperCAmelCase_=None , ) -> List[Any]: lowerCamelCase : Dict = parent lowerCamelCase : List[Any] = batch_size lowerCamelCase : List[Any] = image_size lowerCamelCase : Dict = num_channels lowerCamelCase : Union[str, Any] = num_stages lowerCamelCase : List[str] = hidden_sizes lowerCamelCase : Tuple = depths lowerCamelCase : Tuple = is_training lowerCamelCase : List[str] = use_labels lowerCamelCase : Any = intermediate_size lowerCamelCase : List[str] = hidden_act lowerCamelCase : Tuple = num_labels lowerCamelCase : Tuple = initializer_range lowerCamelCase : List[Any] = out_features lowerCamelCase : int = out_indices lowerCamelCase : Optional[Any] = scope def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : int = None if self.use_labels: lowerCamelCase : int = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> Tuple: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: lowerCamelCase : int = ConvNextVaModel(config=_A ) model.to(_A ) model.eval() lowerCamelCase : str = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: lowerCamelCase : Union[str, Any] = ConvNextVaForImageClassification(_A ) model.to(_A ) model.eval() lowerCamelCase : Optional[Any] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: lowerCamelCase : Tuple = ConvNextVaBackbone(config=_A ) model.to(_A ) model.eval() lowerCamelCase : Optional[Any] = model(_A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase : List[str] = None lowerCamelCase : Union[str, Any] = ConvNextVaBackbone(config=_A ) model.to(_A ) model.eval() lowerCamelCase : str = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : List[str] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = config_and_inputs lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : Any = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : str = config_and_inputs lowerCamelCase : Optional[int] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class _lowercase ( snake_case__ , snake_case__ , unittest.TestCase ): lowercase_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase_ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : str = ConvNextVaModelTester(self ) lowerCamelCase : Optional[int] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> List[Any]: return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def _UpperCamelCase ( self ) -> str: pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def _UpperCamelCase ( self ) -> str: pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def _UpperCamelCase ( self ) -> Union[str, Any]: pass def _UpperCamelCase ( self ) -> str: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(_A ), *get_values(_A ), ]: continue lowerCamelCase : int = model_class(_A ) model.to(_A ) model.train() lowerCamelCase : List[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) lowerCamelCase : List[Any] = model(**_A ).loss loss.backward() def _UpperCamelCase ( self ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase , lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase : List[str] = False lowerCamelCase : Dict = True if ( model_class.__name__ in [*get_values(_A ), *get_values(_A )] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase : int = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() lowerCamelCase : int = self._prepare_for_class(_A , _A , return_labels=_A ) lowerCamelCase : Optional[Any] = model(**_A ).loss loss.backward() def _UpperCamelCase ( self ) -> int: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[Any] = model_class(_A ) lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Tuple = [*signature.parameters.keys()] lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase : Dict = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowerCamelCase : str = model(**self._prepare_for_class(_A , _A ) ) lowerCamelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase : Any = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase , lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Any = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Optional[int] = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def _UpperCamelCase ( self ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : List[str] = ConvNextVaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> Any: return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_A ) lowerCamelCase : int = self.default_image_processor lowerCamelCase : int = prepare_img() lowerCamelCase : Tuple = preprocessor(images=_A , return_tensors='pt' ).to(_A ) # forward pass with torch.no_grad(): lowerCamelCase : List[Any] = model(**_A ) # verify the logits lowerCamelCase : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) lowerCamelCase : Optional[Any] = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
364
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _A = logging.get_logger(__name__) _A = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'trajectory_transformer' lowercase_ = ['past_key_values'] lowercase_ = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCAmelCase_=100 , UpperCAmelCase_=5 , UpperCAmelCase_=1 , UpperCAmelCase_=1 , UpperCAmelCase_=249 , UpperCAmelCase_=6 , UpperCAmelCase_=17 , UpperCAmelCase_=25 , UpperCAmelCase_=4 , UpperCAmelCase_=4 , UpperCAmelCase_=128 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0006 , UpperCAmelCase_=512 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-1_2 , UpperCAmelCase_=1 , UpperCAmelCase_=True , UpperCAmelCase_=1 , UpperCAmelCase_=50256 , UpperCAmelCase_=50256 , **UpperCAmelCase_ , ) -> List[Any]: lowerCamelCase : int = vocab_size lowerCamelCase : List[str] = action_weight lowerCamelCase : List[Any] = reward_weight lowerCamelCase : List[str] = value_weight lowerCamelCase : Tuple = max_position_embeddings lowerCamelCase : List[str] = block_size lowerCamelCase : Any = action_dim lowerCamelCase : List[Any] = observation_dim lowerCamelCase : Any = transition_dim lowerCamelCase : int = learning_rate lowerCamelCase : Union[str, Any] = n_layer lowerCamelCase : Tuple = n_head lowerCamelCase : Any = n_embd lowerCamelCase : Union[str, Any] = embd_pdrop lowerCamelCase : Optional[int] = attn_pdrop lowerCamelCase : int = resid_pdrop lowerCamelCase : Optional[int] = initializer_range lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : Any = kaiming_initializer_range lowerCamelCase : str = use_cache super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
205
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowerCamelCase : int = TypeVar("T") class __UpperCAmelCase ( Generic[T] ): UpperCamelCase = 42 # Cache store of keys UpperCamelCase = 42 # References of the keys in cache UpperCamelCase = 1_0 # Maximum capacity of cache def __init__( self : Dict, __A : int ): UpperCAmelCase : int = deque() UpperCAmelCase : Any = set() if not n: UpperCAmelCase : Any = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: UpperCAmelCase : Union[str, Any] = n def __magic_name__ ( self : Dict, __A : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(_UpperCamelCase ) else: self.dq_store.remove(_UpperCamelCase ) self.dq_store.appendleft(_UpperCamelCase ) self.key_reference.add(_UpperCamelCase ) def __magic_name__ ( self : List[Any] ): for k in self.dq_store: print(_UpperCamelCase ) def __repr__( self : Optional[Any] ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Optional[int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
336
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
class A_ : '''simple docstring''' def __init__( self: Optional[int] ): __lowerCamelCase : Dict = {} def _snake_case ( self: Union[str, Any] ): print(self.vertex ) for i in self.vertex: print(a , ' -> ' , ' -> '.join([str(a ) for j in self.vertex[i]] ) ) def _snake_case ( self: Any , a: int , a: int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(a ) else: # else make a new vertex __lowerCamelCase : Dict = [to_vertex] def _snake_case ( self: List[str] ): # visited array for storing already visited nodes __lowerCamelCase : Tuple = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(a , a ) def _snake_case ( self: Optional[Any] , a: int , a: list ): # mark start vertex as visited __lowerCamelCase : Union[str, Any] = True print(a , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a , a ) if __name__ == "__main__": lowercase_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
194
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """vision-encoder-decoder""" __snake_case = True def __init__( self: Union[str, Any] , **a: Optional[Any] ): super().__init__(**a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) __lowerCamelCase : Dict = kwargs.pop('encoder' ) __lowerCamelCase : int = encoder_config.pop('model_type' ) __lowerCamelCase : Any = kwargs.pop('decoder' ) __lowerCamelCase : Union[str, Any] = decoder_config.pop('model_type' ) __lowerCamelCase : Optional[Any] = AutoConfig.for_model(a , **a ) __lowerCamelCase : List[Any] = AutoConfig.for_model(a , **a ) __lowerCamelCase : Tuple = True @classmethod def _snake_case ( cls: Optional[Any] , a: PretrainedConfig , a: PretrainedConfig , **a: Dict ): logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) __lowerCamelCase : Optional[Any] = True __lowerCamelCase : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a ) def _snake_case ( self: str ): __lowerCamelCase : int = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Dict = self.encoder.to_dict() __lowerCamelCase : Union[str, Any] = self.decoder.to_dict() __lowerCamelCase : Optional[int] = self.__class__.model_type return output class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = version.parse("""1.11""" ) @property def _snake_case ( self: Union[str, Any] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _snake_case ( self: Optional[Any] ): return 1e-4 @property def _snake_case ( self: List[str] ): return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class A_ ( __UpperCamelCase ): '''simple docstring''' @property def _snake_case ( self: Tuple ): __lowerCamelCase : Union[str, Any] = OrderedDict() __lowerCamelCase : Union[str, Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} __lowerCamelCase : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} __lowerCamelCase : Dict = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _snake_case ( self: List[Any] , a: "PreTrainedTokenizerBase" , a: int = -1 , a: int = -1 , a: bool = False , a: Optional["TensorType"] = None , ): import torch __lowerCamelCase : str = OrderedDict() __lowerCamelCase : List[Any] = super().generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) __lowerCamelCase , __lowerCamelCase : Dict = dummy_input['input_ids'].shape __lowerCamelCase : str = (batch, encoder_sequence, self._config.encoder_hidden_size) __lowerCamelCase : str = dummy_input.pop('input_ids' ) __lowerCamelCase : Union[str, Any] = dummy_input.pop('attention_mask' ) __lowerCamelCase : str = torch.zeros(a ) return common_inputs class A_ ( __UpperCamelCase ): '''simple docstring''' @property def _snake_case ( self: List[Any] ): pass def _snake_case ( self: List[str] , a: PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(a ) def _snake_case ( self: Optional[int] , a: PretrainedConfig , a: PretrainedConfig , a: str = "default" ): __lowerCamelCase : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(a , a )
194
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :Dict = XLMProphetNetTokenizer _UpperCAmelCase :str = False _UpperCAmelCase :Any = True def UpperCAmelCase__ ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str =XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : List[Any] ="[PAD]" lowerCamelCase_ : Tuple =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Tuple =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase_ ) , 1012 ) def UpperCAmelCase__ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Any =XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) lowerCamelCase_ : str =tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ : Union[str, Any] =tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase_ : str =tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowerCamelCase_ : Any =tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCAmelCase__ ( self : List[Any] ): return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Union[str, Any] ="Hello World!" lowerCamelCase_ : int =[3_5389, 6672, 49, 2] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Optional[Any] ={"input_ids": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
144
import random def a( A : Optional[Any] , A : Optional[Any] , A : str ) -> List[Any]: """simple docstring""" a = a[left_index] a = left_index + 1 for j in range(left_index + 1 , A ): if a[j] < pivot: a , a = a[i], a[j] i += 1 a , a = a[i - 1], a[left_index] return i - 1 def a( A : List[Any] , A : List[Any] , A : Union[str, Any] ) -> List[Any]: """simple docstring""" if left < right: a = random.randint(A , right - 1 ) a , a = ( a[left], a[pivot], ) # switches the pivot with the left most bound a = partition(A , A , A ) quick_sort_random( A , A , A ) # recursive quicksort to the left of the pivot point quick_sort_random( A , pivot_index + 1 , A ) # recursive quicksort to the right of the pivot point def a( ) -> Any: """simple docstring""" a = input("Enter numbers separated by a comma:\n" ).strip() a = [int(A ) for item in user_input.split("," )] quick_sort_random(A , 0 , len(A ) ) print(A ) if __name__ == "__main__": main()
227
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _a ( _snake_case = 200_0000 ): """simple docstring""" UpperCAmelCase = [0] UpperCAmelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target UpperCAmelCase = 0 # the area corresponding to the grid that gives the product closest to target UpperCAmelCase = 0 # an estimate of b, using the quadratic formula UpperCAmelCase = 42 # the largest integer less than b_estimate UpperCAmelCase = 42 # the largest integer less than b_estimate UpperCAmelCase = 42 # the triangle number corresponding to b_floor UpperCAmelCase = 42 # the triangle number corresponding to b_ceil UpperCAmelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): UpperCAmelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 UpperCAmelCase = floor(_snake_case ) UpperCAmelCase = ceil(_snake_case ) UpperCAmelCase = triangle_numbers[b_floor] UpperCAmelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase = triangle_b_first_guess * triangle_a UpperCAmelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase = triangle_b_second_guess * triangle_a UpperCAmelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
234
"""simple docstring""" from __future__ import annotations def _a ( _snake_case , _snake_case = None , _snake_case = None ): """simple docstring""" if start is None: UpperCAmelCase = 0 if end is None: UpperCAmelCase = len(_snake_case ) - 1 if start >= end: return UpperCAmelCase = (start + end) // 2 slowsort(_snake_case , _snake_case , _snake_case ) slowsort(_snake_case , mid + 1 , _snake_case ) if sequence[end] < sequence[mid]: UpperCAmelCase , UpperCAmelCase = sequence[mid], sequence[end] slowsort(_snake_case , _snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
234
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Dict = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __UpperCAmelCase =TypeVar("T") __UpperCAmelCase =TypeVar("U") class a__ ( Generic[T, U] ): def __init__( self : Dict , a : T | None , a : U | None ): """simple docstring""" __lowerCamelCase = key __lowerCamelCase = val __lowerCamelCase = None __lowerCamelCase = None def __repr__( self : Optional[Any] ): """simple docstring""" return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class a__ ( Generic[T, U] ): def __init__( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = DoubleLinkedListNode(a , a ) __lowerCamelCase = DoubleLinkedListNode(a , a ) __lowerCamelCase , __lowerCamelCase = self.rear, self.head def __repr__( self : Dict ): """simple docstring""" __lowerCamelCase = ['''DoubleLinkedList'''] __lowerCamelCase = self.head while node.next is not None: rep.append(str(a ) ) __lowerCamelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : DoubleLinkedListNode[T, U] ): """simple docstring""" __lowerCamelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowerCamelCase = node __lowerCamelCase = previous __lowerCamelCase = node __lowerCamelCase = self.rear def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : DoubleLinkedListNode[T, U] ): """simple docstring""" if node.prev is None or node.next is None: return None __lowerCamelCase = node.next __lowerCamelCase = node.prev __lowerCamelCase = None __lowerCamelCase = None return node class a__ ( Generic[T, U] ): lowerCamelCase : dict[Callable[[T], U], LRUCache[T, U]] ={} def __init__( self : Tuple , a : int ): """simple docstring""" __lowerCamelCase = DoubleLinkedList() __lowerCamelCase = capacity __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = {} def __repr__( self : Optional[int] ): """simple docstring""" return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Optional[Any] , a : T ): """simple docstring""" return key in self.cache def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : T ): """simple docstring""" if key in self.cache: self.hits += 1 __lowerCamelCase = self.cache[key] __lowerCamelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(a ) return node.val self.miss += 1 return None def SCREAMING_SNAKE_CASE__ ( self : int , a : T , a : U ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowerCamelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowerCamelCase = DoubleLinkedListNode(a , a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowerCamelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowerCamelCase = value self.list.add(a ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , a : int = 1_28 ): """simple docstring""" def cache_decorator_inner(a : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*a : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowerCamelCase = LRUCache(a ) __lowerCamelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowerCamelCase = func(*a ) cls.decorator_function_to_instance_map[func].put(args[0] , a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(a , '''cache_info''' , a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
237
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Any , *, a : int = 4 , a : int = 7_68 , a : int , a : Optional[int] , ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Parameter(torch.zeros(a ) ) # parameters for additional clip time embeddings __lowerCamelCase = nn.Linear(a , a ) __lowerCamelCase = nn.Linear(a , a ) # parameters for encoder hidden states __lowerCamelCase = clip_extra_context_tokens __lowerCamelCase = nn.Linear( a , self.clip_extra_context_tokens * cross_attention_dim ) __lowerCamelCase = nn.Linear(a , a ) __lowerCamelCase = nn.LayerNorm(a ) def SCREAMING_SNAKE_CASE__ ( self : int , *, a : Union[str, Any] , a : Any , a : str , a : Any ): """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowerCamelCase = image_embeddings.shape[0] __lowerCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowerCamelCase = classifier_free_guidance_embeddings.expand( a , -1 ) __lowerCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowerCamelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowerCamelCase = self.embedding_proj(a ) __lowerCamelCase = self.clip_image_embeddings_project_to_time_embeddings(a ) __lowerCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowerCamelCase = self.clip_extra_context_tokens_proj(a ) __lowerCamelCase = clip_extra_context_tokens.reshape(a , -1 , self.clip_extra_context_tokens ) __lowerCamelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowerCamelCase = self.encoder_hidden_states_proj(a ) __lowerCamelCase = self.text_encoder_hidden_states_norm(a ) __lowerCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
237
1