code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase__: def __init__( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Any=13 , UpperCamelCase_: Optional[int]=7 , UpperCamelCase_: Any=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[Any]=99 , UpperCamelCase_: Optional[int]=32 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: int=4 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Union[str, Any]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: str=True , UpperCamelCase_: Optional[Any]=5_12 , UpperCamelCase_: int=16 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: Tuple=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_multiple_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = weight_tying __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase__ ( self: Any ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = True return config, input_ids, input_mask, token_labels def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] ): __lowerCamelCase = GPTNeoXJapaneseModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] ): __lowerCamelCase = True __lowerCamelCase = GPTNeoXJapaneseModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: str , UpperCamelCase_: int ): __lowerCamelCase = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = True __lowerCamelCase = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ ) __lowerCamelCase = output_from_no_past["""hidden_states"""][0] __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )["""hidden_states"""][0] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : List[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCAmelCase__ : Dict = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : Dict = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: int ): __lowerCamelCase = GPTNeoXJapaneseModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: int ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): # This regression test was failing with PyTorch < 1.3 __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = """abeja/gpt-neox-japanese-2.7b""" __lowerCamelCase = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] __lowerCamelCase = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] __lowerCamelCase = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = [] for prompt in prompts: __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""pt""" ).input_ids __lowerCamelCase = model.generate(UpperCamelCase_ , max_length=50 ) __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
12
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
1
'''simple docstring''' from __future__ import annotations class lowerCamelCase : def __init__( self, lowercase_ = 0 ) -> Optional[int]: snake_case = key def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> list[str]: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) snake_case = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_ ) ^ key ) for ch in content] def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> list[str]: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) snake_case = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_ ) ^ key ) for ch in content] def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> str: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) snake_case = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case = '' for ch in content: ans += chr(ord(lowercase_ ) ^ key ) return ans def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> str: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) snake_case = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case = '' for ch in content: ans += chr(ord(lowercase_ ) ^ key ) return ans def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> bool: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) try: with open(lowercase_ ) as fin, open('encrypt.out', 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase_, lowercase_ ) ) except OSError: return False return True def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> bool: assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ ) try: with open(lowercase_ ) as fin, open('decrypt.out', 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase_, lowercase_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCAmelCase (lowercase_ , lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Dict = 1 @register_to_config def __init__(self : Tuple , UpperCamelCase : int = 1000 , UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None ): '''simple docstring''' self.set_timesteps(_lowerCAmelCase ) # standard deviation of the initial noise distribution lowercase__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase__ = 4 # running values lowercase__ = [] def UpperCamelCase__ (self : Any , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = num_inference_steps lowercase__ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase__ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase__ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase__ = (1.0 - self.betas**2) ** 0.5 lowercase__ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase__ = timesteps.to(_lowerCAmelCase ) lowercase__ = [] def UpperCamelCase__ (self : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase__ = (self.timesteps == timestep).nonzero().item() lowercase__ = timestep_index + 1 lowercase__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowerCAmelCase ) if len(self.ets ) == 1: lowercase__ = self.ets[-1] elif len(self.ets ) == 2: lowercase__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase__ = self._get_prev_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def UpperCamelCase__ (self : str , UpperCamelCase : torch.FloatTensor , *UpperCamelCase : int , **UpperCamelCase : Dict ): '''simple docstring''' return sample def UpperCamelCase__ (self : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.alphas[timestep_index] lowercase__ = self.betas[timestep_index] lowercase__ = self.alphas[prev_timestep_index] lowercase__ = self.betas[prev_timestep_index] lowercase__ = (sample - sigma * ets) / max(_lowerCAmelCase , 1E-8 ) lowercase__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__(self : int ): '''simple docstring''' return self.config.num_train_timesteps
2
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :List[str] = "" for word_or_phrase in separated: if not isinstance(lowerCamelCase, lowerCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
236
0
import os from datetime import datetime as dt from github import Github lowerCamelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCAmelCase__ : Optional[int] = g.get_repo('''huggingface/diffusers''' ) lowerCAmelCase__ : int = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCAmelCase__ : str = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) lowerCAmelCase__ : List[Any] = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
211
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase_ ( _a , _a=1_000 ): """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase__ : int = n - 1 lowerCAmelCase__ : Any = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase__ : Optional[Any] = 0 while count < prec: lowerCAmelCase__ : Optional[Any] = random.randint(2 , n - 1 ) lowerCAmelCase__ : List[Any] = bin_exp_mod(_a , _a , _a ) if b != 1: lowerCAmelCase__ : Dict = True for _ in range(_a ): if b == n - 1: lowerCAmelCase__ : Union[str, Any] = False break lowerCAmelCase__ : Tuple = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCamelCase = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
211
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = 'Speech2TextFeatureExtractor' __UpperCAmelCase : int = 'Speech2TextTokenizer' def __init__(self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" super().__init__(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.feature_extractor UpperCAmelCase__ = False def __call__(self : Any , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase__ = kwargs.pop("raw_speech" ) else: UpperCAmelCase__ = kwargs.pop("audio" , __UpperCAmelCase ) UpperCAmelCase__ = kwargs.pop("sampling_rate" , __UpperCAmelCase ) UpperCAmelCase__ = kwargs.pop("text" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: UpperCAmelCase__ = args[0] UpperCAmelCase__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase__ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: UpperCAmelCase__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase__ = encodings["input_ids"] return inputs def lowercase_ (self : Optional[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @contextmanager def lowercase_ (self : Dict ) -> str: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase__ = True UpperCAmelCase__ = self.tokenizer yield UpperCAmelCase__ = self.feature_extractor UpperCAmelCase__ = False
65
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''depth_multiplier''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Optional[Any]=13, lowerCamelCase : List[str]=3, lowerCamelCase : List[str]=32, lowerCamelCase : Union[str, Any]=0.25, lowerCamelCase : int=8, lowerCamelCase : Dict=True, lowerCamelCase : Optional[int]=1_024, lowerCamelCase : List[str]=32, lowerCamelCase : Optional[int]="relu6", lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : List[Any]=True, lowerCamelCase : Any=True, lowerCamelCase : Dict=10, lowerCamelCase : Optional[int]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = depth_multiplier lowercase__ = min_depth lowercase__ = tf_padding lowercase__ = int(last_hidden_size * depth_multiplier ) lowercase__ = output_stride lowercase__ = hidden_act lowercase__ = classifier_dropout_prob lowercase__ = use_labels lowercase__ = is_training lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = scope def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : List[str] ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, min_depth=self.min_depth, tf_padding=self.tf_padding, hidden_act=self.hidden_act, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def lowercase__ ( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = MobileNetVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def lowercase__ ( self : str, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : List[Any], lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = MobileNetVaForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = MobileNetVaModelTester(self ) lowercase__ = MobileNetVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : List[str] ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = 26 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = MobileNetVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : str ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
207
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger(__name__) _a : Union[str, Any] = "Hello, World!" _a : Optional[Any] = "en_XX" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = Path('''data_bin''' ) _UpperCamelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__snake_case ).parent ), checkpoint_file=Path(__snake_case ).name, _name='''xmod_base''', arch='''xmod_base''', task='''multilingual_masked_lm''', data_name_or_path=str(__snake_case ), bpe='''sentencepiece''', sentencepiece_model=str(Path(__snake_case ).parent / '''sentencepiece.bpe.model''' ), src_dict=str(data_dir / '''dict.txt''' ), ) xmod.eval() # disable dropout print(__snake_case ) _UpperCamelCase = xmod.model.encoder.sentence_encoder _UpperCamelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings, hidden_size=xmod.cfg.model.encoder_embed_dim, num_hidden_layers=xmod.cfg.model.encoder_layers, num_attention_heads=xmod.cfg.model.encoder_attention_heads, intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim, max_position_embeddings=5_14, type_vocab_size=1, layer_norm_eps=1e-5, pre_norm=xmod.cfg.model.encoder_normalize_before, adapter_reduction_factor=getattr(xmod.cfg.model, '''bottleneck''', 2 ), adapter_layer_norm=xmod.cfg.model.adapter_layer_norm, adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm, ln_before_adapter=xmod.cfg.model.ln_before_adapter, languages=xmod.cfg.model.languages, ) if classification_head: _UpperCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''', __snake_case ) _UpperCamelCase = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case ) model.eval() # Now let's copy all the weights. # Embeddings _UpperCamelCase = xmod_sent_encoder.embed_tokens.weight _UpperCamelCase = xmod_sent_encoder.embed_positions.weight _UpperCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _UpperCamelCase = xmod_sent_encoder.layernorm_embedding.weight _UpperCamelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _UpperCamelCase = model.roberta.encoder.layer[i] _UpperCamelCase = xmod_sent_encoder.layers[i] # self attention _UpperCamelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) _UpperCamelCase = xmod_layer.self_attn.q_proj.weight _UpperCamelCase = xmod_layer.self_attn.q_proj.bias _UpperCamelCase = xmod_layer.self_attn.k_proj.weight _UpperCamelCase = xmod_layer.self_attn.k_proj.bias _UpperCamelCase = xmod_layer.self_attn.v_proj.weight _UpperCamelCase = xmod_layer.self_attn.v_proj.bias # self-attention output _UpperCamelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) _UpperCamelCase = xmod_layer.self_attn.out_proj.weight _UpperCamelCase = xmod_layer.self_attn.out_proj.bias _UpperCamelCase = xmod_layer.self_attn_layer_norm.weight _UpperCamelCase = xmod_layer.self_attn_layer_norm.bias # intermediate _UpperCamelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) _UpperCamelCase = xmod_layer.fca.weight _UpperCamelCase = xmod_layer.fca.bias # output _UpperCamelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) _UpperCamelCase = xmod_layer.fca.weight _UpperCamelCase = xmod_layer.fca.bias _UpperCamelCase = xmod_layer.final_layer_norm.weight _UpperCamelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _UpperCamelCase = xmod_layer.adapter_layer_norm.weight _UpperCamelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _UpperCamelCase = bert_output.adapter_modules[lang_code] _UpperCamelCase = xmod_layer.adapter_modules[lang_code] _UpperCamelCase = from_adapter.fca.weight _UpperCamelCase = from_adapter.fca.bias _UpperCamelCase = from_adapter.fca.weight _UpperCamelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _UpperCamelCase = xmod_sent_encoder.layer_norm.weight _UpperCamelCase = xmod_sent_encoder.layer_norm.bias if classification_head: _UpperCamelCase = xmod.model.classification_heads['''mnli'''].dense.weight _UpperCamelCase = xmod.model.classification_heads['''mnli'''].dense.bias _UpperCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight _UpperCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _UpperCamelCase = xmod.model.encoder.lm_head.dense.weight _UpperCamelCase = xmod.model.encoder.lm_head.dense.bias _UpperCamelCase = xmod.model.encoder.lm_head.layer_norm.weight _UpperCamelCase = xmod.model.encoder.lm_head.layer_norm.bias _UpperCamelCase = xmod.model.encoder.lm_head.weight _UpperCamelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _UpperCamelCase = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__snake_case ) _UpperCamelCase = model(__snake_case )[0] if classification_head: _UpperCamelCase = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__snake_case ) ) else: _UpperCamelCase = xmod.model(__snake_case, lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape, their_output.shape ) _UpperCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _UpperCamelCase = torch.allclose(__snake_case, __snake_case, atol=1e-3 ) print('''Do both models output the same tensors?''', '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(__snake_case ).mkdir(parents=__snake_case, exist_ok=__snake_case ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) _a : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
357
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=10_00 , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = range_bbox def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # convert bbox to numpy since TF does not support item assignment _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCamelCase = bbox[i, j, 3] _UpperCamelCase = bbox[i, j, 1] _UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCamelCase = bbox[i, j, 2] _UpperCamelCase = bbox[i, j, 0] _UpperCamelCase = t _UpperCamelCase = tf.convert_to_tensor(__a) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModel(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , __a , token_type_ids=__a) _UpperCamelCase = model(__a , __a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMForMaskedLM(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFLayoutLMForSequenceClassification(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFLayoutLMForTokenClassification(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMForQuestionAnswering(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowercase__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = True lowercase__ = 10 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFLayoutLMModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip('''Onnx compliancy broke with TF 2.10''') def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _UpperCamelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''') _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a) # test the sequence output on [0, :3, :3] _UpperCamelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-3)) # test the pooled output on [1, :3] _UpperCamelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __a , atol=1e-3)) @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' # initialize model with randomly initialized sequence classification head _UpperCamelCase = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=tf.convert_to_tensor([1, 1]) , ) # test whether we get a loss as a scalar _UpperCamelCase = outputs.loss _UpperCamelCase = (2,) self.assertEqual(loss.shape , __a) # test the shape of the logits _UpperCamelCase = outputs.logits _UpperCamelCase = (2, 2) self.assertEqual(logits.shape , __a) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # initialize model with randomly initialized token classification head _UpperCamelCase = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=__a) # test the shape of the logits _UpperCamelCase = outputs.logits _UpperCamelCase = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape , __a) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' # initialize model with randomly initialized token classification head _UpperCamelCase = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''') _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a) # test the shape of the logits _UpperCamelCase = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape , __a) self.assertEqual(outputs.end_logits.shape , __a)
100
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class lowercase__ ( _UpperCAmelCase ): a_ ="""camembert""" def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> Any: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache lowerCAmelCase__ = classifier_dropout class lowercase__ ( _UpperCAmelCase ): @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Dict = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
73
"""simple docstring""" import qiskit def lowerCAmelCase_( lowercase_ : int , lowercase_ : int ) -> qiskit.result.counts.Counts: _lowerCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _lowerCamelCase = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _lowerCamelCase = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
73
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCamelCase__ = Lock() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __lowerCAmelCase : Tuple = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __lowerCAmelCase : Union[str, Any] = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __lowerCAmelCase : Tuple = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __lowerCAmelCase : Optional[Any] = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Any = [] __lowerCAmelCase : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __lowerCAmelCase : Union[str, Any] = Pipe() __lowerCAmelCase : Union[str, Any] = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __lowerCAmelCase : List[str] = temp_rs __lowerCAmelCase : Any = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): __lowerCAmelCase : Optional[Any] = Pipe() __lowerCAmelCase : Any = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __lowerCAmelCase : Optional[int] = temp_rs __lowerCAmelCase : Tuple = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): __lowerCAmelCase : Dict = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCAmelCase (): __lowerCAmelCase : Optional[int] = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case_ ) __lowerCAmelCase : Union[str, Any] = odd_even_transposition(snake_case_ ) print('Sorted List\n' ) print(*snake_case_ ) if __name__ == "__main__": main()
86
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Union[str, Any]=1E-5 , snake_case_ :List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :List[str]=0 , snake_case_ :Optional[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :List[str] ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :str , snake_case_ :List[str] ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Tuple ): def _expand_single_ad_tensor(snake_case_ :Optional[int] ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
332
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase: List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def __SCREAMING_SNAKE_CASE ( ): _lowercase : str = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) _lowercase : Optional[int] = os.path.join(__UpperCAmelCase , """words.txt""" ) _lowercase : Tuple = """""" with open(__UpperCAmelCase ) as f: _lowercase : Union[str, Any] = f.readline() _lowercase : Any = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _lowercase : Any = [ word for word in [sum(ord(__UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
336
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
1
'''simple docstring''' from collections import Counter from timeit import timeit def lowerCAmelCase (__A = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''').lower()).values()) < 2 def lowerCAmelCase (__A = ""): """simple docstring""" if len(__A) == 0: return True _a = input_str.replace(''' ''' , '''''').lower() # character_freq_dict: Stores the frequency of every character in the input string _a = {} for character in lower_case_input_str: _a = character_freq_dict.get(__A , 0) + 1 _a = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCAmelCase (__A = ""): """simple docstring""" print('''\nFor string = ''' , __A , ''':''') print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(__A) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(__A) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowercase_ = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) lowercase_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
211
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
211
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = array[indexa], array[indexa] def _a ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: '''simple docstring''' if length > 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = int(length / 2 ) for i in range(SCREAMING_SNAKE_CASE__ , low + middle ): comp_and_swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + middle , SCREAMING_SNAKE_CASE__ ) bitonic_merge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) bitonic_merge(SCREAMING_SNAKE_CASE__ , low + middle , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: '''simple docstring''' if length > 1: SCREAMING_SNAKE_CASE__ : Dict = int(length / 2 ) bitonic_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) bitonic_sort(SCREAMING_SNAKE_CASE__ , low + middle , SCREAMING_SNAKE_CASE__ , 0 ) bitonic_merge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : int = input('''Enter numbers separated by a comma:\n''').strip() _lowerCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
358
def _a ( SCREAMING_SNAKE_CASE__ : str ) -> str: '''simple docstring''' if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) SCREAMING_SNAKE_CASE__ : List[Any] = "" while len(SCREAMING_SNAKE_CASE__ ) % 3 != 0: SCREAMING_SNAKE_CASE__ : str = "0" + bin_string SCREAMING_SNAKE_CASE__ : List[Any] = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE__ : List[Any] = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE__ ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE__ ) ) oct_string += str(SCREAMING_SNAKE_CASE__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
191
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _A ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, "sqlalchemy.sql.Selectable"] , __SCREAMING_SNAKE_CASE : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' super().__init__(features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = Sql( cache_dir=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , sql=__SCREAMING_SNAKE_CASE , con=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = None __a = None __a = None __a = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , ) # Build dataset for splits __a = self.builder.as_dataset( split='''train''' , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory) return dataset class _A : def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Dataset , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.') __a = dataset __a = name __a = con __a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __a = num_proc __a = to_sql_kwargs def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.to_sql_kwargs.pop('''sql''' , __SCREAMING_SNAKE_CASE) __a = self.to_sql_kwargs.pop('''con''' , __SCREAMING_SNAKE_CASE) __a = self.to_sql_kwargs.pop('''index''' , __SCREAMING_SNAKE_CASE) __a = self._write(index=__SCREAMING_SNAKE_CASE , **self.to_sql_kwargs) return written def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a , __a = args __a = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __a = query_table( table=self.dataset.data , key=slice(__SCREAMING_SNAKE_CASE , offset + self.batch_size) , indices=self.dataset._indices , ) __a = batch.to_pandas() __a = df.to_sql(self.name , self.con , index=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) return num_rows or len(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs)) else: __a , __a = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
49
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = KandinskyVaaImgaImgPipeline __lowercase : str = ['''image_embeds''', '''negative_image_embeds''', '''image'''] __lowercase : Dict = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] __lowercase : Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __lowercase : Tuple = False @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return self.time_input_dim @property def snake_case_ ( self): return self.time_input_dim * 4 @property def snake_case_ ( self): return 1_0_0 @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __SCREAMING_SNAKE_CASE = UNetaDConditionModel(**lowerCAmelCase__) return model @property def snake_case_ ( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs) return model def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.dummy_unet __SCREAMING_SNAKE_CASE = self.dummy_movq __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __SCREAMING_SNAKE_CASE = DDIMScheduler(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=0): __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase__) # create init_image __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1)[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("""RGB""").resize((2_5_6, 2_5_6)) if str(lowerCAmelCase__).startswith("""mps"""): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""") __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") __SCREAMING_SNAKE_CASE = """A red cartoon frog, 4k""" __SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) __SCREAMING_SNAKE_CASE = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""").manual_seed(0) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __SCREAMING_SNAKE_CASE = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
100
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int]=1_3 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Tuple=9_9 , UpperCamelCase__ : List[str]=3_2 , UpperCamelCase__ : int=5 , UpperCamelCase__ : str=4 , UpperCamelCase__ : int=3_7 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=5_1_2 , UpperCamelCase__ : str=1_6 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Tuple=0.0_2 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : List[str]="None" , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = relative_attention UpperCamelCase = position_biased_input UpperCamelCase = pos_att_type UpperCamelCase = scope def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[str] ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_config() UpperCamelCase = 3_0_0 return config def A ( self : Optional[int] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A ( self : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = DebertaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ )[0] UpperCamelCase = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ )[0] UpperCamelCase = model(UpperCamelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = DebertaForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = DebertaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase__ ) def A ( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = DebertaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = DebertaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = DebertaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase__ ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase__ ) @slow def A ( self : Optional[Any] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = DebertaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def A ( self : Union[str, Any] ): """simple docstring""" pass @slow def A ( self : str ): """simple docstring""" UpperCamelCase = DebertaModel.from_pretrained('microsoft/deberta-base' ) UpperCamelCase = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] # compare the actual values for a slice. UpperCamelCase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
249
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _lowerCamelCase : List[str] = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (3_2, 3_2) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor([1_0] ).to(UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def A ( self : Optional[int] ): """simple docstring""" return (3, 3_2, 3_2) @property def A ( self : str ): """simple docstring""" return (3, 3_2, 3_2) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = { 'block_out_channels': (3_2, 6_4), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 3_2, } UpperCamelCase = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def A ( self : Any ): """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 4 UpperCamelCase = (3_2, 3_2) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor([1_0] ).to(UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def A ( self : Tuple ): """simple docstring""" return (4, 3_2, 3_2) @property def A ( self : Dict ): """simple docstring""" return (4, 3_2, 3_2) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = { 'sample_size': 3_2, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (3_2, 6_4), 'attention_head_dim': 3_2, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } UpperCamelCase = self.dummy_input return init_dict, inputs_dict def A ( self : List[str] ): """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCamelCase__ ) UpperCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCamelCase__ ) model.to(UpperCamelCase__ ) UpperCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCamelCase__ ) model_accelerate.to(UpperCamelCase__ ) model_accelerate.eval() UpperCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase = noise.to(UpperCamelCase__ ) UpperCamelCase = torch.tensor([1_0] * noise.shape[0] ).to(UpperCamelCase__ ) UpperCamelCase = model_accelerate(UpperCamelCase__ , UpperCamelCase__ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=UpperCamelCase__ , low_cpu_mem_usage=UpperCamelCase__ ) model_normal_load.to(UpperCamelCase__ ) model_normal_load.eval() UpperCamelCase = model_normal_load(UpperCamelCase__ , UpperCamelCase__ )['sample'] assert torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-3 ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(UpperCamelCase__ ) UpperCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase = noise.to(UpperCamelCase__ ) UpperCamelCase = torch.tensor([1_0] * noise.shape[0] ).to(UpperCamelCase__ ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ).sample UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-3 ) ) class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetaDModel _SCREAMING_SNAKE_CASE = """sample""" @property def A ( self : str , UpperCamelCase__ : Any=(3_2, 3_2) ): """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def A ( self : Optional[Any] ): """simple docstring""" return (3, 3_2, 3_2) @property def A ( self : Optional[int] ): """simple docstring""" return (3, 3_2, 3_2) def A ( self : int ): """simple docstring""" UpperCamelCase = { 'block_out_channels': [3_2, 6_4, 6_4, 6_4], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } UpperCamelCase = self.dummy_input return init_dict, inputs_dict @slow def A ( self : Dict ): """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCamelCase__ ) UpperCamelCase = self.dummy_input UpperCamelCase = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(UpperCamelCase__ ) UpperCamelCase = noise UpperCamelCase = model(**UpperCamelCase__ ) assert image is not None, "Make sure output is not None" @slow def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(UpperCamelCase__ ) UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (2_5_6, 2_5_6) UpperCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor(batch_size * [1E-4] ).to(UpperCamelCase__ ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ).sample UpperCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-2 ) ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(UpperCamelCase__ ) UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (3_2, 3_2) UpperCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) UpperCamelCase = torch.tensor(batch_size * [1E-4] ).to(UpperCamelCase__ ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ).sample UpperCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-2 ) ) def A ( self : List[str] ): """simple docstring""" pass
249
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ={ """nielsr/canine-s""": 2048, } # Unicode defines 1,114,112 total “codepoints” a =1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py a =0 a =0xe_0_0_0 a =0xe_0_0_1 a =0xe_0_0_2 a =0xe_0_0_3 a =0xe_0_0_4 # Maps special codepoints to human-readable names. a ={ # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. a ={name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int=chr(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ : Tuple=chr(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ : str=chr(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=chr(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ : Any=chr(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ : List[Any]=chr(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ : Optional[int]=False ,SCREAMING_SNAKE_CASE__ : Optional[int]=2_0_4_8 ,**SCREAMING_SNAKE_CASE__ : int ,): __lowerCamelCase : List[Any] = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else bos_token __lowerCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else eos_token __lowerCamelCase : List[str] = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else sep_token __lowerCamelCase : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else cls_token __lowerCamelCase : Tuple = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : List[Any] = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else mask_token super().__init__( bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,add_prefix_space=SCREAMING_SNAKE_CASE__ ,model_max_length=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) # Creates a mapping for looking up the IDs of special symbols. __lowerCamelCase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __lowerCamelCase : Union[str, Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __lowerCamelCase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } __lowerCamelCase : Any = UNICODE_VOCAB_SIZE __lowerCamelCase : Dict = len(self._special_codepoints) @property def lowerCAmelCase ( self : Any): return self._unicode_vocab_size def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str): return list(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : str): try: return ord(SCREAMING_SNAKE_CASE__) except TypeError: raise ValueError(F"invalid token: '{token}'") def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : int): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(SCREAMING_SNAKE_CASE__) except TypeError: raise ValueError(F"invalid id: {index}") def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int]): return "".join(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : Optional[Any] = [self.cls_token_id] __lowerCamelCase : str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ,SCREAMING_SNAKE_CASE__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] if token_ids_a is not None: result += ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] return result def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] __lowerCamelCase : Dict = len(cls + token_ids_a + sep) * [0] if token_ids_a is not None: result += len(token_ids_a + sep) * [1] return result def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): return ()
73
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __lowerCamelCase : int = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
73
1
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ = 4 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = abs(lowerCAmelCase_ ) or 4 return [[1 + x + y * row_size for x in range(lowerCAmelCase_ )] for y in range(lowerCAmelCase_ )] def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return reverse_row(transpose(lowerCAmelCase_ ) ) # OR.. transpose(reverse_column(matrix)) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return reverse_row(reverse_column(lowerCAmelCase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return reverse_column(transpose(lowerCAmelCase_ ) ) # OR.. transpose(reverse_row(matrix)) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [list(lowerCAmelCase_ ) for x in zip(*lowerCAmelCase_ )] return matrix def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = matrix[::-1] return matrix def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [x[::-1] for x in matrix] return matrix def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' for i in matrix: print(*lowerCAmelCase_ ) if __name__ == "__main__": a__ : int = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) a__ : Optional[int] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) a__ : int = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
195
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a__ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[Any] = ["pixel_values"] def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Dict , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 2_5_6, "width": 2_5_6} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_flip_channel_order def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PIL.Image.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(UpperCAmelCase__ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Any , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Dict , ) -> Dict: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: return flip_channel_order(UpperCAmelCase__ , data_format=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : str , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __SCREAMING_SNAKE_CASE = [self.flip_channel_order(image=UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Tuple] = None ) -> Optional[int]: __SCREAMING_SNAKE_CASE = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = target_sizes.numpy() __SCREAMING_SNAKE_CASE = [] for idx in range(len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
195
1
import os # Precomputes a list of the 100 first triangular numbers _lowerCamelCase : Any = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ) -> Any: UpperCAmelCase : List[Any] = os.path.dirname(os.path.realpath(UpperCAmelCase ) ) UpperCAmelCase : List[str] = os.path.join(UpperCAmelCase , '''words.txt''' ) UpperCAmelCase : Optional[Any] = '''''' with open(UpperCAmelCase ) as f: UpperCAmelCase : List[Any] = f.readline() UpperCAmelCase : Any = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] UpperCAmelCase : Union[str, Any] = [ word for word in [sum(ord(UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCAmelCase ) if __name__ == "__main__": print(solution())
336
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
1
from math import pi, sqrt, tan def _snake_case( SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _snake_case( SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def _snake_case( SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) A__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(SCREAMING_SNAKE_CASE__ , 2 ) * torus_radius * tube_radius def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def _snake_case( SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) A__ = (sidea + sidea + sidea) / 2 A__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def _snake_case( SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print("\nSurface Areas of various geometric shapes: \n") print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
355
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any],lowercase_ : str )-> List[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'],model_result['ss'] ): A__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sgugger/tiny-distilbert-classification' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,only_pretrain_model=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,torchscript=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu','Cant do half precision' ) def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,fpaa=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) # set architectures equal to `None` A__ = None A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu','Can\'t do half precision' ) def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],fpaa=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Optional[int]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,save_to_csv=lowercase_,sequence_lengths=[8],batch_sizes=[1],inference_time_csv_file=os.path.join(lowercase_,'inf_time.csv' ),train_memory_csv_file=os.path.join(lowercase_,'train_mem.csv' ),inference_memory_csv_file=os.path.join(lowercase_,'inf_mem.csv' ),train_time_csv_file=os.path.join(lowercase_,'train_time.csv' ),env_info_csv_file=os.path.join(lowercase_,'env.csv' ),multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'env.csv' ) ).exists() ) def snake_case__ ( self : Tuple )-> str: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase_ : Optional[Any] ): self.assertTrue(hasattr(lowercase_,'sequential' ) ) self.assertTrue(hasattr(lowercase_,'cumulative' ) ) self.assertTrue(hasattr(lowercase_,'current' ) ) self.assertTrue(hasattr(lowercase_,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],log_filename=os.path.join(lowercase_,'log.txt' ),log_print=lowercase_,trace_memory_line_by_line=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase_,'log.txt' ) ).exists() )
282
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowercase__ = logging.get_logger(__name__) # General docstring lowercase__ = """MobileNetV1Config""" # Base docstring lowercase__ = """google/mobilenet_v1_1.0_224""" lowercase__ = [1, 1024, 7, 7] # Image classification docstring lowercase__ = """google/mobilenet_v1_1.0_224""" lowercase__ = """tabby, tabby cat""" lowercase__ = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ) -> Any: """simple docstring""" lowerCAmelCase_ : Optional[Any] = {} if isinstance(a_ , a_ ): lowerCAmelCase_ : Optional[Any] = model.mobilenet_va else: lowerCAmelCase_ : Dict = model lowerCAmelCase_ : List[str] = '''MobilenetV1/Conv2d_0/''' lowerCAmelCase_ : Dict = backbone.conv_stem.convolution.weight lowerCAmelCase_ : Union[str, Any] = backbone.conv_stem.normalization.bias lowerCAmelCase_ : Union[str, Any] = backbone.conv_stem.normalization.weight lowerCAmelCase_ : str = backbone.conv_stem.normalization.running_mean lowerCAmelCase_ : List[str] = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCAmelCase_ : Optional[int] = i + 1 lowerCAmelCase_ : Any = i * 2 lowerCAmelCase_ : List[Any] = backbone.layer[pt_index] lowerCAmelCase_ : int = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' lowerCAmelCase_ : Dict = pointer.convolution.weight lowerCAmelCase_ : List[str] = pointer.normalization.bias lowerCAmelCase_ : Optional[Any] = pointer.normalization.weight lowerCAmelCase_ : str = pointer.normalization.running_mean lowerCAmelCase_ : Union[str, Any] = pointer.normalization.running_var lowerCAmelCase_ : Dict = backbone.layer[pt_index + 1] lowerCAmelCase_ : Tuple = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' lowerCAmelCase_ : str = pointer.convolution.weight lowerCAmelCase_ : str = pointer.normalization.bias lowerCAmelCase_ : List[str] = pointer.normalization.weight lowerCAmelCase_ : Tuple = pointer.normalization.running_mean lowerCAmelCase_ : int = pointer.normalization.running_var if isinstance(a_ , a_ ): lowerCAmelCase_ : str = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' lowerCAmelCase_ : List[str] = model.classifier.weight lowerCAmelCase_ : Union[str, Any] = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model lowerCAmelCase_ : List[str] = tf.train.list_variables(a_ ) lowerCAmelCase_ : Any = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) lowerCAmelCase_ : int = tf.train.load_variable(a_ , a_ ) lowerCAmelCase_ : Any = array # Build TF to PyTorch weights loading map lowerCAmelCase_ : List[Any] = _build_tf_to_pytorch_map(a_ , a_ , a_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue lowerCAmelCase_ : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) lowerCAmelCase_ : List[Any] = np.transpose(a_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer lowerCAmelCase_ : Tuple = array.squeeze().transpose() else: lowerCAmelCase_ : str = np.transpose(a_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) lowerCAmelCase_ : List[Any] = torch.from_numpy(a_ ) tf_weights.pop(a_ , a_ ) tf_weights.pop(name + "/RMSProp" , a_ ) tf_weights.pop(name + "/RMSProp_1" , a_ ) tf_weights.pop(name + "/ExponentialMovingAverage" , a_ ) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> torch.Tensor: """simple docstring""" lowerCAmelCase_ : Optional[Any] = features.shape[-2:] lowerCAmelCase_ : Dict = conv_layer.stride lowerCAmelCase_ : List[Any] = conv_layer.kernel_size if in_height % stride_height == 0: lowerCAmelCase_ : Tuple = max(kernel_height - stride_height , 0 ) else: lowerCAmelCase_ : Dict = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCAmelCase_ : int = max(kernel_width - stride_width , 0 ) else: lowerCAmelCase_ : List[Any] = max(kernel_width - (in_width % stride_width) , 0 ) lowerCAmelCase_ : str = pad_along_width // 2 lowerCAmelCase_ : Union[str, Any] = pad_along_width - pad_left lowerCAmelCase_ : str = pad_along_height // 2 lowerCAmelCase_ : Dict = pad_along_height - pad_top lowerCAmelCase_ : Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a_ , a_ , "constant" , 0.0 ) class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , a_ : str , a_ : Tuple , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Optional[int] = 1 , a_ : str = 1 , a_ : Tuple = False , a_ : int = True , a_ : Dict = True , ): super().__init__() lowerCAmelCase_ : str = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) lowerCAmelCase_ : List[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCAmelCase_ : Optional[int] = nn.Convad( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , groups=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , padding_mode="zeros" , ) if use_normalization: lowerCAmelCase_ : int = nn.BatchNormad( num_features=SCREAMING_SNAKE_CASE__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=SCREAMING_SNAKE_CASE__ , track_running_stats=SCREAMING_SNAKE_CASE__ , ) else: lowerCAmelCase_ : str = None if use_activation: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase_ : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase_ : int = ACTaFN[config.hidden_act] else: lowerCAmelCase_ : List[Any] = config.hidden_act else: lowerCAmelCase_ : Any = None def lowerCamelCase ( self : int , a_ : str ): if self.config.tf_padding: lowerCAmelCase_ : List[str] = apply_tf_padding(SCREAMING_SNAKE_CASE__ , self.convolution ) lowerCAmelCase_ : List[str] = self.convolution(SCREAMING_SNAKE_CASE__ ) if self.normalization is not None: lowerCAmelCase_ : List[str] = self.normalization(SCREAMING_SNAKE_CASE__ ) if self.activation is not None: lowerCAmelCase_ : Optional[int] = self.activation(SCREAMING_SNAKE_CASE__ ) return features class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Dict = MobileNetVaConfig a_ : Optional[Any] = load_tf_weights_in_mobilenet_va a_ : Tuple = '''mobilenet_v1''' a_ : List[str] = '''pixel_values''' a_ : Optional[Any] = False def lowerCamelCase ( self : int , a_ : List[Any] ): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowercase__ = r"""\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n""" lowercase__ = r"""\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n""" @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , A__ , ) class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Union[str, Any] , a_ : Union[str, Any] , a_ : Any = True ): super().__init__(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ : List[Any] = config lowerCAmelCase_ : Optional[Any] = 32 lowerCAmelCase_ : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCAmelCase_ : int = MobileNetVaConvLayer( SCREAMING_SNAKE_CASE__ , in_channels=config.num_channels , out_channels=SCREAMING_SNAKE_CASE__ , kernel_size=3 , stride=2 , ) lowerCAmelCase_ : Any = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCAmelCase_ : Optional[Any] = nn.ModuleList() for i in range(13 ): lowerCAmelCase_ : Tuple = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCAmelCase_ : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE__ , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , kernel_size=3 , stride=strides[i] , groups=SCREAMING_SNAKE_CASE__ , ) ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE__ , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , kernel_size=1 , ) ) lowerCAmelCase_ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowerCamelCase ( self : Any , a_ : Tuple ): raise NotImplementedError @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase ( self : int , a_ : Optional[int] = None , a_ : Dict = None , a_ : List[Any] = None , ): lowerCAmelCase_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowerCAmelCase_ : Tuple = self.conv_stem(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ : str = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCAmelCase_ : Tuple = layer_module(SCREAMING_SNAKE_CASE__ ) if output_hidden_states: lowerCAmelCase_ : List[Any] = all_hidden_states + (hidden_states,) lowerCAmelCase_ : Tuple = hidden_states if self.pooler is not None: lowerCAmelCase_ : str = torch.flatten(self.pooler(SCREAMING_SNAKE_CASE__ ) , start_dim=1 ) else: lowerCAmelCase_ : Dict = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , pooler_output=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , A__ , ) class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : List[Any] , a_ : int ): super().__init__(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ : Optional[Any] = config.num_labels lowerCAmelCase_ : Any = MobileNetVaModel(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ : int = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCAmelCase_ : Any = nn.Dropout(config.classifier_dropout_prob , inplace=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ : str = nn.Linear(SCREAMING_SNAKE_CASE__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase ( self : List[str] , a_ : Union[str, Any] = None , a_ : List[str] = None , a_ : Optional[int] = None , a_ : int = None , ): lowerCAmelCase_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Tuple = self.mobilenet_va(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ : Tuple = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase_ : str = self.classifier(self.dropout(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase_ : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ : List[Any] = '''single_label_classification''' else: lowerCAmelCase_ : Tuple = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase_ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase_ : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase_ : str = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ : Union[str, Any] = CrossEntropyLoss() lowerCAmelCase_ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ : Optional[int] = BCEWithLogitsLoss() lowerCAmelCase_ : List[str] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: lowerCAmelCase_ : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states , )
241
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["DPTFeatureExtractor"] lowerCamelCase_ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = KandinskyVaaControlnetImgaImgPipeline UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCamelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return 32 @property def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" return 32 @property def a__ ( self : Any ) -> Tuple: """simple docstring""" return self.time_input_dim @property def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return 100 @property def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase_ = UNetaDConditionModel(**A_ ) return model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ ( self : Optional[int] ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.dummy_unet lowerCamelCase_ = self.dummy_movq lowerCamelCase_ = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase_ = DDIMScheduler(**A_ ) lowerCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ ( self : int , A_ : Optional[Any] , A_ : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image lowerCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) # create hint lowerCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(A_ ) else: lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_ = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 'cpu' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = pipe(**self.get_dummy_inputs(A_ ) ) lowerCamelCase_ = output.images lowerCamelCase_ = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Tuple ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase_ = init_image.resize((512, 512) ) lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase_ = torch.from_numpy(np.array(A_ ) ).float() / 255.0 lowerCamelCase_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCamelCase_ = 'A robot, 4k photo' lowerCamelCase_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) lowerCamelCase_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCamelCase_ = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase_ , lowerCamelCase_ = pipe_prior( A_ , image=A_ , strength=0.85 , generator=A_ , negative_prompt='' , ).to_tuple() lowerCamelCase_ = pipeline( image=A_ , image_embeds=A_ , negative_image_embeds=A_ , hint=A_ , generator=A_ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A_ , A_ )
208
def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Dict , lowercase : List[str] , lowercase : Dict , lowercase : Dict , lowercase : List[str] ): '''simple docstring''' if index == r: for j in range(lowercase ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCamelCase_ = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Any , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above lowerCamelCase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
208
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="luke" def __init__( self , UpperCamelCase_=5_02_67 , UpperCamelCase_=50_00_00 , UpperCamelCase_=7_68 , UpperCamelCase_=2_56 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , **UpperCamelCase_ , ) -> str: super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : Optional[int] = vocab_size __lowercase : Optional[int] = entity_vocab_size __lowercase : int = hidden_size __lowercase : int = entity_emb_size __lowercase : Tuple = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Optional[int] = hidden_act __lowercase : int = intermediate_size __lowercase : int = hidden_dropout_prob __lowercase : Union[str, Any] = attention_probs_dropout_prob __lowercase : Any = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : List[Any] = initializer_range __lowercase : List[str] = layer_norm_eps __lowercase : Union[str, Any] = use_entity_aware_attention __lowercase : List[Any] = classifier_dropout
249
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a_ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( snake_case ): UpperCamelCase =[ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **UpperCamelCase_ ) -> Optional[Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowercase : Union[str, Any] = deprecated_arg[3:] setattr(self , UpperCamelCase_ , not kwargs.pop(UpperCamelCase_ ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) __lowercase : Dict = kwargs.pop('''torchscript''' , self.torchscript ) __lowercase : str = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) __lowercase : str = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**UpperCamelCase_ ) UpperCamelCase =field(default=snake_case , metadata={"help": "Trace the models using torchscript"} ) UpperCamelCase =field(default=snake_case , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) UpperCamelCase =field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def _lowerCamelCase ( self ) -> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __lowercase : str = torch.device('''cpu''' ) __lowercase : Optional[Any] = 0 elif is_torch_tpu_available(): __lowercase : str = xm.xla_device() __lowercase : Any = 0 else: __lowercase : List[str] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __lowercase : Any = torch.cuda.device_count() return device, n_gpu @property def _lowerCamelCase ( self ) -> Union[str, Any]: return is_torch_tpu_available() and self.tpu @property def _lowerCamelCase ( self ) -> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowerCamelCase ( self ) -> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def _lowerCamelCase ( self ) -> int: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def _lowerCamelCase ( self ) -> Dict: return self.n_gpu > 0
249
1
lowerCAmelCase__ : List[Any] ={'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} lowerCAmelCase__ : str =['a', 'b', 'c', 'd', 'e'] def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = start # add current to visited visited.append(A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE_ : Dict = topological_sort(A__, A__, A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE_ : Dict = topological_sort(A__, A__, A__ ) # return sort return sort if __name__ == "__main__": lowerCAmelCase__ : List[str] =topological_sort('a', [], []) print(sort)
162
lowerCAmelCase__ : Dict ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def a__ ( ): SCREAMING_SNAKE_CASE_ : Tuple = input('Enter message: ' ) SCREAMING_SNAKE_CASE_ : Any = input('Enter key [alphanumeric]: ' ) SCREAMING_SNAKE_CASE_ : Tuple = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'encrypt' SCREAMING_SNAKE_CASE_ : int = encrypt_message(A__, A__ ) elif mode.lower().startswith('d' ): SCREAMING_SNAKE_CASE_ : List[Any] = 'decrypt' SCREAMING_SNAKE_CASE_ : Any = decrypt_message(A__, A__ ) print(F'''\n{mode.title()}ed message:''' ) print(A__ ) def a__ ( A__, A__ ): return translate_message(A__, A__, 'encrypt' ) def a__ ( A__, A__ ): return translate_message(A__, A__, 'decrypt' ) def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = key.upper() for symbol in message: SCREAMING_SNAKE_CASE_ : List[str] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A__ ): SCREAMING_SNAKE_CASE_ : Dict = 0 else: translated.append(A__ ) return "".join(A__ ) if __name__ == "__main__": main()
162
1
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if digit_amount > 0: return round(number - int(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) return number - int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
195
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : str = ["""pixel_values"""] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BICUBIC , snake_case = True , snake_case = None , snake_case = True , snake_case = 1 / 255 , snake_case = True , snake_case = None , snake_case = None , snake_case = True , **snake_case , ): super().__init__(**snake_case ) lowercase = size if size is not None else {'shortest_edge': 224} lowercase = get_size_dict(snake_case , default_to_square=snake_case ) lowercase = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase = get_size_dict(snake_case , default_to_square=snake_case , param_name='crop_size' ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase = image_std if image_std is not None else OPENAI_CLIP_STD lowercase = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = PILImageResampling.BICUBIC , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case , default_to_square=snake_case ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase = get_resize_output_image_size(snake_case , size=size['shortest_edge'] , default_to_square=snake_case ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(snake_case , size=(size['height'], size['width']) , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ): return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(snake_case , param_name='size' , default_to_square=snake_case ) lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(snake_case , param_name='crop_size' , default_to_square=snake_case ) lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase = [convert_to_rgb(snake_case ) for image in images] # All transformations expect numpy arrays. lowercase = [to_numpy_array(snake_case ) for image in images] if do_resize: lowercase = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=snake_case , size=snake_case ) for image in images] if do_rescale: lowercase = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: lowercase = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] lowercase = [to_channel_dimension_format(snake_case , snake_case ) for image in images] lowercase = {'pixel_values': images} return BatchFeature(data=snake_case , tensor_type=snake_case )
195
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : int = """informer""" _lowerCAmelCase : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "student_t" , lowerCAmelCase = "nll" , lowerCAmelCase = 1 , lowerCAmelCase = None , lowerCAmelCase = "mean" , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 64 , lowerCAmelCase = 32 , lowerCAmelCase = 32 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = True , lowerCAmelCase = "gelu" , lowerCAmelCase = 0.05 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 1_00 , lowerCAmelCase = 0.02 , lowerCAmelCase=True , lowerCAmelCase = "prob" , lowerCAmelCase = 5 , lowerCAmelCase = True , **lowerCAmelCase , ): """simple docstring""" snake_case = prediction_length snake_case = context_length or prediction_length snake_case = distribution_output snake_case = loss snake_case = input_size snake_case = num_time_features snake_case = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case = scaling snake_case = num_dynamic_real_features snake_case = num_static_real_features snake_case = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) snake_case = cardinality else: snake_case = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) snake_case = embedding_dimension else: snake_case = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case = num_parallel_samples # Transformer architecture configuration snake_case = input_size * len(self.lags_sequence ) + self._number_of_features snake_case = d_model snake_case = encoder_attention_heads snake_case = decoder_attention_heads snake_case = encoder_ffn_dim snake_case = decoder_ffn_dim snake_case = encoder_layers snake_case = decoder_layers snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = activation_function snake_case = init_std snake_case = use_cache # Informer snake_case = attention_type snake_case = sampling_factor snake_case = distil super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase ) @property def snake_case ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase : Optional[datasets.Features] = None def lowerCAmelCase__ ( _UpperCamelCase : "pyspark.sql.DataFrame" , _UpperCamelCase : List[int] , ) -> Dict: """simple docstring""" import pyspark def generate_fn(): snake_case = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: snake_case = df_with_partition_id.select('*' ).where(f"""part_id = {partition_id}""" ).drop('part_id' ) snake_case = partition_df.collect() snake_case = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowerCAmelCase_ ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=None , ): """simple docstring""" snake_case = df snake_case = partition_order or range(self.df.rdd.getNumPartitions() ) snake_case = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): """simple docstring""" yield from self.generate_examples_fn() def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.split_shard_indices_by_worker(lowerCAmelCase , lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase ) @property def snake_case ( self ): """simple docstring""" return len(self.partition_order ) class lowerCAmelCase_ ( datasets.DatasetBuilder ): """simple docstring""" _lowerCAmelCase : List[str] = SparkConfig def __init__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): """simple docstring""" import pyspark snake_case = pyspark.sql.SparkSession.builder.getOrCreate() snake_case = df snake_case = working_dir super().__init__( cache_dir=lowerCAmelCase , config_name=str(self.df.semanticHash() ) , **lowerCAmelCase , ) def snake_case ( self ): """simple docstring""" def create_cache_and_write_probe(lowerCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCAmelCase ) snake_case = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCAmelCase , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def snake_case ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def snake_case ( self , lowerCAmelCase ): """simple docstring""" import pyspark def get_arrow_batch_size(lowerCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) snake_case = self.df.count() snake_case = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case = ( self.df.limit(lowerCAmelCase ) .repartition(1 ) .mapInArrow(lowerCAmelCase , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case = min(lowerCAmelCase , int(approx_total_size / max_shard_size ) ) snake_case = self.df.repartition(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" import pyspark snake_case = ParquetWriter if file_format == 'parquet' else ArrowWriter snake_case = os.path.join(self._working_dir , os.path.basename(lowerCAmelCase ) ) if self._working_dir else fpath snake_case = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case = self.config.features snake_case = self._writer_batch_size snake_case = self._fs.storage_options def write_arrow(lowerCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case = pyspark.TaskContext().taskAttemptId() snake_case = next(lowerCAmelCase , lowerCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) snake_case = 0 snake_case = writer_class( features=lowerCAmelCase , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=lowerCAmelCase , storage_options=lowerCAmelCase , embed_local_files=lowerCAmelCase , ) snake_case = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case ,snake_case = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 snake_case = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=lowerCAmelCase , storage_options=lowerCAmelCase , embed_local_files=lowerCAmelCase , ) snake_case = pa.Table.from_batches([batch] ) writer.write_table(lowerCAmelCase ) if writer._num_bytes > 0: snake_case ,snake_case = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCAmelCase ) ): snake_case = os.path.join(os.path.dirname(lowerCAmelCase ) , os.path.basename(lowerCAmelCase ) ) shutil.move(lowerCAmelCase , lowerCAmelCase ) snake_case = ( self.df.mapInArrow(lowerCAmelCase , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = "arrow" , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): """simple docstring""" self._validate_cache_dir() snake_case = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCAmelCase ) snake_case = not is_remote_filesystem(self._fs ) snake_case = os.path.join if is_local else posixpath.join snake_case = '-TTTTT-SSSSS-of-NNNNN' snake_case = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" snake_case = path_join(self._output_dir , lowerCAmelCase ) snake_case = 0 snake_case = 0 snake_case = 0 snake_case = [] snake_case = [] for task_id, content in self._prepare_split_single(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCAmelCase ) snake_case = total_num_examples snake_case = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: snake_case = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): rename( lowerCAmelCase , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) snake_case = [] snake_case = 0 for i in range(len(lowerCAmelCase ) ): snake_case ,snake_case = task_id_and_num_shards[i] for shard_id in range(lowerCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCAmelCase , len(lowerCAmelCase ) ).map(lambda lowerCAmelCase : _rename_shard(*lowerCAmelCase ) ).collect() else: # don't use any pattern snake_case = 0 snake_case = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(lowerCAmelCase , '' ) , ) def snake_case ( self , lowerCAmelCase , ): """simple docstring""" return SparkExamplesIterable(self.df )
149
0
"""simple docstring""" import argparse import struct import unittest class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : List[Any] = data # Initialize hash values _lowerCamelCase : Optional[int] = [ 0X6A09E667, 0XBB67AE85, 0X3C6EF372, 0XA54FF53A, 0X510E527F, 0X9B05688C, 0X1F83D9AB, 0X5BE0CD19, ] # Initialize round constants _lowerCamelCase : Tuple = [ 0X428A2F98, 0X71374491, 0XB5C0FBCF, 0XE9B5DBA5, 0X3956C25B, 0X59F111F1, 0X923F82A4, 0XAB1C5ED5, 0XD807AA98, 0X12835B01, 0X243185BE, 0X550C7DC3, 0X72BE5D74, 0X80DEB1FE, 0X9BDC06A7, 0XC19BF174, 0XE49B69C1, 0XEFBE4786, 0X0FC19DC6, 0X240CA1CC, 0X2DE92C6F, 0X4A7484AA, 0X5CB0A9DC, 0X76F988DA, 0X983E5152, 0XA831C66D, 0XB00327C8, 0XBF597FC7, 0XC6E00BF3, 0XD5A79147, 0X06CA6351, 0X14292967, 0X27B70A85, 0X2E1B2138, 0X4D2C6DFC, 0X53380D13, 0X650A7354, 0X766A0ABB, 0X81C2C92E, 0X92722C85, 0XA2BFE8A1, 0XA81A664B, 0XC24B8B70, 0XC76C51A3, 0XD192E819, 0XD6990624, 0XF40E3585, 0X106AA070, 0X19A4C116, 0X1E376C08, 0X2748774C, 0X34B0BCB5, 0X391C0CB3, 0X4ED8AA4A, 0X5B9CCA4F, 0X682E6FF3, 0X748F82EE, 0X78A5636F, 0X84C87814, 0X8CC70208, 0X90BEFFFA, 0XA4506CEB, 0XBEF9A3F7, 0XC67178F2, ] _lowerCamelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def A_ ( lowercase ): _lowerCamelCase : Optional[int] = B'\x80' + (B'\x00' * (63 - (len(lowercase ) + 8) % 64)) _lowerCamelCase : List[Any] = struct.pack('>Q' , (len(lowercase ) * 8) ) return data + padding + big_endian_integer def A_ ( self ): _lowerCamelCase : str = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCamelCase : Optional[Any] = list(struct.unpack('>16L' , lowercase ) ) # add 48 0-ed integers words += [0] * 48 _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCamelCase : List[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _lowerCamelCase : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _lowerCamelCase : Optional[Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression _lowerCamelCase : str = self.ror(lowercase , 6 ) ^ self.ror(lowercase , 11 ) ^ self.ror(lowercase , 25 ) _lowerCamelCase : Tuple = (e & f) ^ ((~e & 0XFFFFFFFF) & g) _lowerCamelCase : Any = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 _lowerCamelCase : int = self.ror(lowercase , 2 ) ^ self.ror(lowercase , 13 ) ^ self.ror(lowercase , 22 ) _lowerCamelCase : Dict = (a & b) ^ (a & c) ^ (b & c) _lowerCamelCase : Dict = (sa + maj) % 0X100000000 _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = ( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) _lowerCamelCase : List[str] = [a, b, c, d, e, f, g, h] # Modify final values _lowerCamelCase : Dict = [ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes ) ] _lowerCamelCase : str = ''.join([hex(lowercase )[2:].zfill(8 ) for value in self.hashes] ) def A_ ( self , lowercase , lowercase ): return 0XFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): import hashlib _lowerCamelCase : Any = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(lowercase ).hash , hashlib.shaaaa(lowercase ).hexdigest() ) def _snake_case ( ): import doctest doctest.testmod() _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCamelCase : Optional[int] = parser.parse_args() _lowerCamelCase : int = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCamelCase : int = f.read() else: _lowerCamelCase : Union[str, Any] = bytes(__lowercase , 'utf-8' ) print(SHAaaa(__lowercase ).hash ) if __name__ == "__main__": main()
96
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : int ): '''simple docstring''' _snake_case = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _snake_case = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _snake_case = 'The dog is cute and lives in the garden house' _snake_case = jnp.array([tokenizer.encode(lowercase )] ) _snake_case = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _snake_case = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _snake_case = model(lowercase )['last_hidden_state'] self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowercase , atol=1E-3 ) )
282
0
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if num < 0: return False __magic_name__ : int = num __magic_name__ : int = 0 while num > 0: __magic_name__ : List[Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import socket def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __magic_name__ : Union[str, Any] = socket.gethostname() __magic_name__ : int = 1_2312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: __magic_name__ : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
275
0
'''simple docstring''' class lowerCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _a : Dict ) -> Optional[Any]: # we need a list not a string, so do something to change the type __lowerCamelCase : List[Any] = arr.split(',' ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCamelCase : List[Any] = [int(self.array[0] )] * len(self.array ) __lowerCamelCase : Optional[int] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowerCamelCase : str = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowerCamelCase : int = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _UpperCamelCase = input('please input some numbers:') _UpperCamelCase = SubArray(whole_array) _UpperCamelCase = array.solve_sub_array() print(('the results is:', re))
208
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def a_ ( _lowerCAmelCase ) -> str: __lowerCamelCase ,__lowerCamelCase : List[Any] = image.size __lowerCamelCase ,__lowerCamelCase : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCamelCase : Optional[Any] = image.resize((w, h) ,resample=PIL_INTERPOLATION['lanczos'] ) __lowerCamelCase : List[Any] = np.array(_lowerCAmelCase ).astype(np.floataa ) / 255.0 __lowerCamelCase : Optional[Any] = image[None].transpose(0 ,3 ,1 ,2 ) __lowerCamelCase : int = torch.from_numpy(_lowerCAmelCase ) return 2.0 * image - 1.0 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : str , _a : VQModel , _a : UNetaDModel , _a : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Optional[Any]: super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : List[Any] , _a : Union[torch.Tensor, PIL.Image.Image] = None , _a : Optional[int] = 1 , _a : Optional[int] = 100 , _a : Optional[float] = 0.0 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : Optional[str] = "pil" , _a : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(_a , PIL.Image.Image ): __lowerCamelCase : Any = 1 elif isinstance(_a , torch.Tensor ): __lowerCamelCase : Any = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}' ) if isinstance(_a , PIL.Image.Image ): __lowerCamelCase : List[str] = preprocess(_a ) __lowerCamelCase ,__lowerCamelCase : List[str] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __lowerCamelCase : Union[str, Any] = (batch_size, self.unet.config.in_channels // 2, height, width) __lowerCamelCase : Tuple = next(self.unet.parameters() ).dtype __lowerCamelCase : Optional[int] = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __lowerCamelCase : Optional[int] = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __lowerCamelCase : Union[str, Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : List[str] = {} if accepts_eta: __lowerCamelCase : str = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __lowerCamelCase : str = torch.cat([latents, image] , dim=1 ) __lowerCamelCase : Union[str, Any] = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __lowerCamelCase : Optional[int] = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : List[Any] = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __lowerCamelCase : Union[str, Any] = self.vqvae.decode(_a ).sample __lowerCamelCase : Union[str, Any] = torch.clamp(_a , -1.0 , 1.0 ) __lowerCamelCase : List[str] = image / 2 + 0.5 __lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : Tuple = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
208
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class snake_case__: """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]=13 , SCREAMING_SNAKE_CASE : List[Any]=7 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : List[str]=99 , SCREAMING_SNAKE_CASE : int=32 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Tuple=4 , SCREAMING_SNAKE_CASE : Optional[int]=37 , SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Tuple=512 , SCREAMING_SNAKE_CASE : Dict=16 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : str="None" , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : int=4 , SCREAMING_SNAKE_CASE : Any=None , ): lowercase__ : Any = parent lowercase__ : Dict = batch_size lowercase__ : Optional[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Tuple = use_input_mask lowercase__ : List[Any] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : int = intermediate_size lowercase__ : Any = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : List[Any] = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : List[str] = num_labels lowercase__ : Tuple = num_choices lowercase__ : Optional[int] = relative_attention lowercase__ : Tuple = position_biased_input lowercase__ : Any = pos_att_type lowercase__ : Union[str, Any] = scope def snake_case ( self : Dict ): lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : List[str] = None if self.use_input_mask: lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Tuple = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : List[str] = None lowercase__ : str = None lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Optional[int] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : Optional[Any] = TFDebertaVaModel(config=a_ ) lowercase__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase__ : Dict = [input_ids, input_mask] lowercase__ : str = model(a_ ) lowercase__ : Optional[int] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : int = TFDebertaVaForMaskedLM(config=a_ ) lowercase__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Tuple = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): lowercase__ : str = self.num_labels lowercase__ : List[Any] = TFDebertaVaForSequenceClassification(config=a_ ) lowercase__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : List[str] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : str = self.num_labels lowercase__ : Union[str, Any] = TFDebertaVaForTokenClassification(config=a_ ) lowercase__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : Tuple = TFDebertaVaForQuestionAnswering(config=a_ ) lowercase__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : List[Any] = model(a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : Union[str, Any] ): lowercase__ : str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : str = config_and_inputs lowercase__ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowercase_ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowercase_ = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False def snake_case ( self : Dict ): lowercase__ : Optional[Any] = TFDebertaVaModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def snake_case ( self : Any ): self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ): lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case ( self : Optional[Any] ): lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def snake_case ( self : int ): lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def snake_case ( self : List[Any] ): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def snake_case ( self : Dict ): lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def snake_case ( self : Any ): lowercase__ : Any = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a_ ) @require_tf class snake_case__(unittest.TestCase ): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def snake_case ( self : Any ): pass @slow def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) lowercase__ : str = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowercase__ : Any = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Optional[int] = model(a_ , attention_mask=a_ )[0] lowercase__ : Any = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a_ , atol=1E-4 )
359
from math import ceil, sqrt def __lowerCamelCase ( lowerCamelCase__ = 1_000_000 ): """simple docstring""" lowercase__ : int = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase__ : List[str] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase__ : List[str] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
121
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
162
'''simple docstring''' import math import unittest def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def snake_case_ ( self ) -> int: '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
162
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase :Optional[int] = logging.get_logger(__name__) lowerCAmelCase :Any = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = """mobilenet_v2""" def __init__( self : Tuple , _A : List[Any]=3 , _A : Union[str, Any]=224 , _A : int=1.0 , _A : int=8 , _A : Optional[Any]=8 , _A : Optional[int]=6 , _A : List[str]=32 , _A : Any=True , _A : Tuple=True , _A : Tuple="relu6" , _A : Optional[int]=True , _A : List[Any]=0.8 , _A : List[Any]=0.02 , _A : List[str]=0.001 , _A : List[str]=255 , **_A : List[Any] , ) -> Tuple: super().__init__(**_A ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) __magic_name__ : Dict = num_channels __magic_name__ : List[Any] = image_size __magic_name__ : List[str] = depth_multiplier __magic_name__ : str = depth_divisible_by __magic_name__ : Tuple = min_depth __magic_name__ : str = expand_ratio __magic_name__ : Optional[int] = output_stride __magic_name__ : Optional[int] = first_layer_is_expansion __magic_name__ : str = finegrained_output __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : List[Any] = tf_padding __magic_name__ : int = classifier_dropout_prob __magic_name__ : List[Any] = initializer_range __magic_name__ : int = layer_norm_eps __magic_name__ : int = semantic_loss_ignore_index class _lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase : int = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def __lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def __lowerCAmelCase ( self : Dict ) -> float: return 1E-4
367
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : int = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase ) if number < 0: return False __magic_name__ : Tuple = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
275
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : str = len(A_ ) + 1 __snake_case : Dict = len(A_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __snake_case : str = [[0 for i in range(A_ )] for j in range(A_ )] # since string of zero length match pattern of zero length __snake_case : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , A_ ): __snake_case : Optional[int] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , A_ ): __snake_case : List[str] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , A_ ): for j in range(1 , A_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __snake_case : List[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __snake_case : Any = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __snake_case : int = dp[i - 1][j] else: __snake_case : int = 0 else: __snake_case : Optional[int] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _snake_case : Any = '''aab''' _snake_case : List[Any] = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
123
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCAmelCase_ ( A_ ,A_ ,A_): UpperCamelCase__: Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") UpperCamelCase__: Dict = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(A_): os.makedirs(A_) UpperCamelCase__: Optional[Any] = model.state_dict() def to_tf_var_name(A_): for patt, repl in iter(A_): UpperCamelCase__: Optional[Any] = name.replace(A_ ,A_) return F"bert/{name}" def create_tf_var(A_ ,A_ ,A_): UpperCamelCase__: Any = tf.dtypes.as_dtype(tensor.dtype) UpperCamelCase__: int = tf.get_variable(dtype=A_ ,shape=tensor.shape ,name=A_ ,initializer=tf.zeros_initializer()) session.run(tf.variables_initializer([tf_var])) session.run(A_) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase__: List[Any] = to_tf_var_name(A_) UpperCamelCase__: List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose): UpperCamelCase__: List[Any] = torch_tensor.T UpperCamelCase__: int = create_tf_var(tensor=A_ ,name=A_ ,session=A_) tf.keras.backend.set_value(A_ ,A_) UpperCamelCase__: Optional[Any] = session.run(A_) print(F"Successfully created {tf_name}: {np.allclose(A_ ,A_)}") UpperCamelCase__: Tuple = tf.train.Saver(tf.trainable_variables()) saver.save(A_ ,os.path.join(A_ ,model_name.replace("-" ,"_") + ".ckpt")) def lowerCAmelCase_ ( A_=None): UpperCamelCase__: Tuple = argparse.ArgumentParser() parser.add_argument("--model_name" ,type=A_ ,required=A_ ,help="model name e.g. bert-base-uncased") parser.add_argument( "--cache_dir" ,type=A_ ,default=A_ ,required=A_ ,help="Directory containing pytorch model") parser.add_argument("--pytorch_model_path" ,type=A_ ,required=A_ ,help="/path/to/<pytorch-model-name>.bin") parser.add_argument("--tf_cache_dir" ,type=A_ ,required=A_ ,help="Directory in which to save tensorflow model") UpperCamelCase__: Any = parser.parse_args(A_) UpperCamelCase__: List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name ,state_dict=torch.load(args.pytorch_model_path) ,cache_dir=args.cache_dir ,) convert_pytorch_checkpoint_to_tf(model=A_ ,ckpt_dir=args.tf_cache_dir ,model_name=args.model_name) if __name__ == "__main__": main()
149
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionSAGPipeline a_ = TEXT_TO_IMAGE_PARAMS a_ = TEXT_TO_IMAGE_BATCH_PARAMS a_ = TEXT_TO_IMAGE_IMAGE_PARAMS a_ = TEXT_TO_IMAGE_IMAGE_PARAMS a_ = False def lowercase ( self : Union[str, Any] ) -> Tuple: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __lowerCAmelCase = CLIPTextModel(lowerCAmelCase_ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int=0 ) -> Dict: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def lowercase ( self : int ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __lowerCAmelCase = sag_pipe.to(lowerCAmelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = '.' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sag_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowerCAmelCase = sag_pipe.to(lowerCAmelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = '.' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sag_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowerCAmelCase = sag_pipe.to(lowerCAmelCase_ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = '.' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=lowerCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np' , ) __lowerCAmelCase = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
371
from math import factorial class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> Union[str, Any]: __lowerCAmelCase = real if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [1] * rank else: __lowerCAmelCase = rank def __repr__( self : Optional[Any] ) -> Tuple: return ( f"""{self.real}+""" f"""{"+".join(str(lowerCAmelCase_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def lowercase ( self : str ) -> Dict: __lowerCAmelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCAmelCase_ ) def __add__( self : Union[str, Any] , lowerCAmelCase_ : Tuple ) -> Optional[Any]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return Dual(self.real + other , self.duals ) __lowerCAmelCase = self.duals.copy() __lowerCAmelCase = other.duals.copy() if len(lowerCAmelCase_ ) > len(lowerCAmelCase_ ): o_dual.extend([1] * (len(lowerCAmelCase_ ) - len(lowerCAmelCase_ )) ) elif len(lowerCAmelCase_ ) < len(lowerCAmelCase_ ): s_dual.extend([1] * (len(lowerCAmelCase_ ) - len(lowerCAmelCase_ )) ) __lowerCAmelCase = [] for i in range(len(lowerCAmelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCAmelCase_ ) a_ = __add__ def __sub__( self : int , lowerCAmelCase_ : Dict ) -> Optional[Any]: return self + other * -1 def __mul__( self : int , lowerCAmelCase_ : Optional[int] ) -> Dict: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCAmelCase_ ) __lowerCAmelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCAmelCase_ ) a_ = __mul__ def __truediv__( self : Union[str, Any] , lowerCAmelCase_ : str ) -> Dict: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCAmelCase_ ) raise ValueError def __floordiv__( self : str , lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCAmelCase_ ) raise ValueError def __pow__( self : Tuple , lowerCAmelCase_ : Dict ) -> List[str]: if n < 0 or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self __lowerCAmelCase = self for _ in range(n - 1 ): x *= self return x def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): if not callable(lowerCAmelCase_ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(lowerCAmelCase_, (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): raise ValueError('differentiate() requires an int as input for order' ) __lowerCAmelCase = Dual(lowerCAmelCase_, 1 ) __lowerCAmelCase = func(lowerCAmelCase_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() def a_ ( lowerCAmelCase_ : int ): return y**2 * y**4 print(differentiate(f, 9, 2))
207
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] = None , lowerCAmelCase__ : Optional[Any] = None , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : Optional[Any] = None , lowerCAmelCase__ : int = False , lowerCAmelCase__ : Optional[int] = False , lowerCAmelCase__ : Dict = None , **lowerCAmelCase__ : List[str] , ) -> Dict: '''simple docstring''' _UpperCamelCase = path_or_paths _UpperCamelCase = split if split or isinstance(A_ , A_ ) else '''train''' _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def snake_case__ ( self : Optional[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class __lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : Optional[Any] = None , lowerCAmelCase__ : Tuple = False , lowerCAmelCase__ : Tuple = False , lowerCAmelCase__ : List[str] = None , **lowerCAmelCase__ : List[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def snake_case__ ( self : int ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
324
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = ConsistencyModelPipeline _UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _UpperCamelCase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[Any] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[str] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def UpperCamelCase__ ( self , A_=False ) ->Dict: '''simple docstring''' if class_cond: __lowerCAmelCase : List[str] = self.dummy_cond_unet else: __lowerCAmelCase : Optional[Any] = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : Dict = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase__ ( self , A_ , A_=0 ) ->Tuple: '''simple docstring''' if str(A_ ).startswith('''mps''' ): __lowerCAmelCase : str = torch.manual_seed(A_ ) else: __lowerCAmelCase : Dict = torch.Generator(device=A_ ).manual_seed(A_ ) __lowerCAmelCase : Tuple = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Tuple = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(**A_ ) __lowerCAmelCase : List[str] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Any = self.get_dummy_inputs(A_ ) __lowerCAmelCase : int = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : str = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : str = self.get_dummy_components(class_cond=A_ ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(**A_ ) __lowerCAmelCase : List[Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(A_ ) __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : int = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCAmelCase : List[str] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Union[str, Any] = self.get_dummy_components() __lowerCAmelCase : List[Any] = ConsistencyModelPipeline(**A_ ) __lowerCAmelCase : int = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Tuple = self.get_dummy_inputs(A_ ) __lowerCAmelCase : Any = 1 __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Dict = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Any = image[0, -3:, -3:, -1] __lowerCAmelCase : List[Any] = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Optional[Any] = self.get_dummy_components(class_cond=A_ ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(**A_ ) __lowerCAmelCase : Union[str, Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Any = self.get_dummy_inputs(A_ ) __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Dict = None __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Dict = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] __lowerCAmelCase : Any = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , A_=0 , A_=False , A_="cpu" , A_=torch.floataa , A_=(1, 3, 64, 64) ) ->str: '''simple docstring''' __lowerCAmelCase : Dict = torch.manual_seed(A_ ) __lowerCAmelCase : Tuple = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase : List[str] = self.get_fixed_latents(seed=A_ , device=A_ , dtype=A_ , shape=A_ ) __lowerCAmelCase : Union[str, Any] = latents return inputs def UpperCamelCase__ ( self , A_=0 , A_="cpu" , A_=torch.floataa , A_=(1, 3, 64, 64) ) ->Optional[int]: '''simple docstring''' if type(A_ ) == str: __lowerCAmelCase : int = torch.device(A_ ) __lowerCAmelCase : Optional[Any] = torch.Generator(device=A_ ).manual_seed(A_ ) __lowerCAmelCase : Union[str, Any] = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) return latents def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : str = self.get_inputs() __lowerCAmelCase : Any = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[int] = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : List[Any] = self.get_inputs() __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : str = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCAmelCase : List[Any] = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Any = self.get_inputs(get_fixed_latents=A_ , device=A_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ , enable_math=A_ , enable_mem_efficient=A_ ): __lowerCAmelCase : Dict = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[int] = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Union[str, Any] = self.get_inputs(get_fixed_latents=A_ , device=A_ ) __lowerCAmelCase : Any = 1 __lowerCAmelCase : int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ , enable_math=A_ , enable_mem_efficient=A_ ): __lowerCAmelCase : int = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : str = image[0, -3:, -3:, -1] __lowerCAmelCase : Any = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
275
0
"""simple docstring""" def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a , _a = [], [] while len(_lowerCAmelCase ) > 1: _a , _a = min(_lowerCAmelCase ), max(_lowerCAmelCase ) start.append(_lowerCAmelCase ) end.append(_lowerCAmelCase ) collection.remove(_lowerCAmelCase ) collection.remove(_lowerCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
369
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : List[str], _lowerCAmelCase : List[str] ): """simple docstring""" _a = BertConfig.from_json_file(_lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) _a = BertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
153
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Union[str, Any] = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase__ ( a , a=10_00 ) -> Optional[int]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _A: List[Any] = n - 1 _A: Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _A: List[str] = 0 while count < prec: _A: Optional[int] = random.randint(2 , n - 1 ) _A: Union[str, Any] = bin_exp_mod(a , a , a ) if b != 1: _A: Optional[Any] = True for _ in range(a ): if b == n - 1: _A: int = False break _A: Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCAmelCase__ : Dict = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
121
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class snake_case__ ( _a ): _snake_case : List[Any] = None _snake_case : List[str] = None _snake_case : Optional[Any] = None _snake_case : Tuple = None class snake_case__ ( _a ): def __init__( self , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=512 , lowerCamelCase="cls" , lowerCamelCase=False , lowerCamelCase=True , **lowerCamelCase , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __a = project_dim __a = pooler_fn __a = learn_encoder __a = use_attention_mask class snake_case__ ( _a ): _snake_case : Union[str, Any] = [r"""pooler""", r"""logit_scale"""] _snake_case : Dict = [r"""position_ids""", r"""predictions.decoder.bias"""] _snake_case : str = """roberta""" _snake_case : List[Any] = RobertaSeriesConfig def __init__( self , lowerCamelCase ): super().__init__(_a ) __a = XLMRobertaModel(_a ) __a = nn.Linear(config.hidden_size , config.project_dim ) __a = getattr(_a , "has_pre_transformation" , _a ) if self.has_pre_transformation: __a = nn.Linear(config.hidden_size , config.project_dim ) __a = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def a__ ( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , ): __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.base_model( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_attentions=_a , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_a , ) if self.has_pre_transformation: __a = outputs["hidden_states"][-2] __a = self.pre_LN(_a ) __a = self.transformation_pre(_a ) return TransformationModelOutput( projection_state=_a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __a = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
370
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:Dict = logging.get_logger(__name__) def _lowerCamelCase( a , a , a ): __a = WavaVecaForSequenceClassification.from_pretrained(a , config=a ) __a = downstream_dict["projector.weight"] __a = downstream_dict["projector.bias"] __a = downstream_dict["model.post_net.linear.weight"] __a = downstream_dict["model.post_net.linear.bias"] return model def _lowerCamelCase( a , a , a ): __a = WavaVecaForAudioFrameClassification.from_pretrained(a , config=a ) __a = downstream_dict["model.linear.weight"] __a = downstream_dict["model.linear.bias"] return model def _lowerCamelCase( a , a , a ): __a = WavaVecaForXVector.from_pretrained(a , config=a ) __a = downstream_dict["connector.weight"] __a = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __a = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __a = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __a = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] __a = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] __a = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] __a = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] __a = downstream_dict["objective.W"] return model @torch.no_grad() def _lowerCamelCase( a , a , a , a ): __a = torch.load(a , map_location="cpu" ) __a = checkpoint["Downstream"] __a = WavaVecaConfig.from_pretrained(a ) __a = WavaVecaFeatureExtractor.from_pretrained( a , return_attention_mask=a , do_normalize=a ) __a = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): __a = convert_classification(a , a , a ) elif arch.endswith("ForAudioFrameClassification" ): __a = convert_diarization(a , a , a ) elif arch.endswith("ForXVector" ): __a = convert_xvector(a , a , a ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __a = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(a ) hf_model.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") SCREAMING_SNAKE_CASE__:Any = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
268
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> None: super().__init__(**A_ ) lowerCAmelCase = size if size is not None else {'''shortest_edge''': 256} lowerCAmelCase = get_size_dict(A_ , default_to_square=A_ ) lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase = get_size_dict(A_ ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: lowerCAmelCase = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase = get_resize_output_image_size(A_ , size=size["""shortest_edge"""] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def _snake_case ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: lowerCAmelCase = get_size_dict(A_ ) return center_crop(A_ , size=(size["""height"""], size["""width"""]) , data_format=A_ , **A_ ) def _snake_case ( self , lowercase , lowercase , lowercase = None , **lowercase ) -> np.ndarray: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def _snake_case ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> Tuple: lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(A_ , default_to_square=A_ ) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(A_ ) lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] lowerCAmelCase = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCAmelCase = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ )
46
def _lowercase ( lowercase__ , lowercase__ ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
275
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = KandinskyVaaPriorPipeline a = ["prompt"] a = ["prompt", "negative_prompt"] a = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] a = False @property def A ( self : List[str]): return 32 @property def A ( self : List[Any]): return 32 @property def A ( self : Dict): return self.time_input_dim @property def A ( self : Tuple): return self.time_input_dim * 4 @property def A ( self : Optional[int]): return 100 @property def A ( self : Dict): _A : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def A ( self : Optional[Any]): torch.manual_seed(0) _A : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE) @property def A ( self : List[Any]): torch.manual_seed(0) _A : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } _A : Any = PriorTransformer(**SCREAMING_SNAKE_CASE) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _A : str = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def A ( self : List[str]): torch.manual_seed(0) _A : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _A : Union[str, Any] = CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE) return model @property def A ( self : int): _A : Optional[Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE , do_resize=SCREAMING_SNAKE_CASE , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def A ( self : Optional[Any]): _A : Optional[int] = self.dummy_prior _A : Dict = self.dummy_image_encoder _A : Dict = self.dummy_text_encoder _A : str = self.dummy_tokenizer _A : Optional[Any] = self.dummy_image_processor _A : Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE , clip_sample_range=10.0 , ) _A : Dict = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def A ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str]=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : int = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : List[Any] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A ( self : List[Any]): _A : str = 'cpu' _A : Tuple = self.get_dummy_components() _A : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE) _A : Any = pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : Dict = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE)) _A : str = output.image_embeds _A : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE) , return_dict=SCREAMING_SNAKE_CASE , )[0] _A : Optional[int] = image[0, -10:] _A : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) _A : Dict = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def A ( self : Any): _A : Tuple = torch_device == 'cpu' _A : Optional[int] = True _A : Tuple = False self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE , relax_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , ) @skip_mps def A ( self : int): _A : Tuple = torch_device == 'cpu' _A : Optional[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , )
227
1
A__ = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A__ = [{'type': 'code', 'content': INSTALL_CONTENT}] A__ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
230
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : Dict, lowerCamelCase : List[str]=2, lowerCamelCase : List[str]=32, lowerCamelCase : Tuple=16, lowerCamelCase : List[Any]=3, lowerCamelCase : List[Any]=True, lowerCamelCase : str=True, lowerCamelCase : Tuple=32, lowerCamelCase : Dict=4, lowerCamelCase : Dict=[0, 1, 2, 3], lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Optional[int]=37, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[Any]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : str=3, lowerCamelCase : str=[1, 384, 24, 24], lowerCamelCase : Optional[int]=True, lowerCamelCase : List[str]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = backbone_out_indices lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = backbone_featmap_shape lowercase__ = scope lowercase__ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=lowerCamelCase, backbone_featmap_shape=self.backbone_featmap_shape, ) def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = DPTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = DPTForDepthEstimation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def lowercase__ ( self : int, lowerCamelCase : Any, lowerCamelCase : Optional[int], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = DPTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = DPTModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True if model_class in get_values(lowerCamelCase ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = False lowercase__ = True if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase ) # Skip the check for the backbone lowercase__ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__ = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass @slow def lowercase__ ( self : Dict ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__ = DPTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = '''add''' with self.assertRaises(lowerCamelCase ): lowercase__ = DPTForDepthEstimation(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase__ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(lowerCamelCase ) lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.predicted_depth # verify the predicted depth lowercase__ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, lowerCamelCase, atol=1E-4 ) )
207
0
import argparse import datetime def __magic_name__ ( __a : str ): '''simple docstring''' UpperCamelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } UpperCamelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__a ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month UpperCamelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) UpperCamelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day UpperCamelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator UpperCamelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year UpperCamelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation UpperCamelCase__ = datetime.date(int(__a ) , int(__a ) , int(__a ) ) # Start math if m <= 2: UpperCamelCase__ = y - 1 UpperCamelCase__ = m + 12 # maths var UpperCamelCase__ = int(str(__a )[:2] ) UpperCamelCase__ = int(str(__a )[2:] ) UpperCamelCase__ = int(2.6 * m - 5.39 ) UpperCamelCase__ = int(c / 4 ) UpperCamelCase__ = int(k / 4 ) UpperCamelCase__ = int(d + k ) UpperCamelCase__ = int(t + u + v + x ) UpperCamelCase__ = int(z - (2 * c) ) UpperCamelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response UpperCamelCase__ = f"Your date {date_input}, is a {days[str(__a )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) lowerCamelCase_ = parser.parse_args() zeller(args.date_input)
178
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __A: """simple docstring""" @staticmethod def UpperCAmelCase_ (*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): pass def __magic_name__ ( __a : Image ): '''simple docstring''' UpperCamelCase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __magic_name__ ( __a : Image ): '''simple docstring''' UpperCamelCase__ = np.array(__a ) UpperCamelCase__ = npimg.shape return {"hash": hashimage(__a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __A( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def UpperCAmelCase_ (self ): pass @slow @require_torch def UpperCAmelCase_ (self ): UpperCamelCase__ = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) UpperCamelCase__ = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_56 ) # Shortening by hashing UpperCamelCase__ = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_80, 6_40)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_80, 6_40)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_80, 6_40)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_80, 6_40)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (4_80, 6_40)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_80, 6_40)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_80, 6_40)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_80, 6_40)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_80, 6_40)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_80, 6_40)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_80, 6_40)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_80, 6_40)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_80, 6_40)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_80, 6_40)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (4_80, 6_40)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_80, 6_40)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_80, 6_40)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (4_80, 6_40)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_80, 6_40)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_80, 6_40)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_80, 6_40)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_80, 6_40)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_80, 6_40)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = """facebook/sam-vit-huge""" UpperCamelCase__ = pipeline("""mask-generation""" , model=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing UpperCamelCase__ = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053}, ] , )
178
1
"""simple docstring""" import functools def _snake_case ( lowercase__ : int , lowercase__ : Any ) -> List[Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(_SCREAMING_SNAKE_CASE ) >= 3_6_6: raise ValueError("""All days elements should be less than 366""" ) lowerCAmelCase_ :Optional[Any] = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(lowercase__ : Tuple ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
84
"""simple docstring""" from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase , UpperCamelCase = set(_SCREAMING_SNAKE_CASE ), [start] while stack: UpperCamelCase = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored lowerCAmelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
153
0
import numpy # List of input, output pairs UpperCamelCase__ : int = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase__ : Optional[int] = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCamelCase__ : str = [2, 4, 1, 5] UpperCamelCase__ : Union[str, Any] = len(train_data) UpperCamelCase__ : List[Any] = 0.0_0_9 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_="train" ) -> List[str]: """simple docstring""" return calculate_hypothesis_value(snake_case_, snake_case_ ) - output( snake_case_, snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" a = 0 for i in range(len(snake_case_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=m ) -> Any: """simple docstring""" a = 0 for i in range(snake_case_ ): if index == -1: summation_value += _error(snake_case_ ) else: summation_value += _error(snake_case_ ) * train_data[i][0][index] return summation_value def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = summation_of_cost_derivative(snake_case_, snake_case_ ) / m return cost_derivative_value def SCREAMING_SNAKE_CASE__ ( ) -> Any: """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output a = 0.00_0002 a = 0 a = 0 while True: j += 1 a = [0, 0, 0, 0] for i in range(0, len(snake_case_ ) ): a = get_cost_derivative(i - 1 ) a = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( snake_case_, snake_case_, atol=snake_case_, rtol=snake_case_, ): break a = temp_parameter_vector print(('''Number of iterations:''', j) ) def SCREAMING_SNAKE_CASE__ ( ) -> Any: """simple docstring""" for i in range(len(snake_case_ ) ): print(('''Actual output value:''', output(snake_case_, '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(snake_case_, '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
330
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase__ : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab)))) UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = Path(tmpdirname) UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) UpperCamelCase__ : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase__ : Union[str, Any] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase__ : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
330
1
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "autoformer" lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : List[Any] , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : str = "student_t" , snake_case_ : str = "nll" , snake_case_ : int = 1 , snake_case_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , snake_case_ : bool = True , snake_case_ : int = 0 , snake_case_ : int = 0 , snake_case_ : int = 0 , snake_case_ : int = 0 , snake_case_ : Optional[List[int]] = None , snake_case_ : Optional[List[int]] = None , snake_case_ : int = 64 , snake_case_ : int = 2 , snake_case_ : int = 2 , snake_case_ : int = 2 , snake_case_ : int = 2 , snake_case_ : int = 32 , snake_case_ : int = 32 , snake_case_ : str = "gelu" , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : int = 100 , snake_case_ : float = 0.02 , snake_case_ : bool = True , snake_case_ : Optional[Any]=True , snake_case_ : int = 10 , snake_case_ : int = 25 , snake_case_ : int = 3 , **snake_case_ : Optional[int] , ): # time series specific configuration snake_case__ : Optional[Any] = prediction_length snake_case__ : List[str] = context_length if context_length is not None else prediction_length snake_case__ : List[str] = distribution_output snake_case__ : Dict = loss snake_case__ : List[str] = input_size snake_case__ : Any = num_time_features snake_case__ : Any = lags_sequence snake_case__ : List[Any] = scaling snake_case__ : List[Any] = num_dynamic_real_features snake_case__ : Union[str, Any] = num_static_real_features snake_case__ : List[str] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case__ : Union[str, Any] = cardinality else: snake_case__ : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case__ : Union[str, Any] = embedding_dimension else: snake_case__ : List[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case__ : List[str] = num_parallel_samples # Transformer architecture configuration snake_case__ : str = input_size * len(self.lags_sequence ) + self._number_of_features snake_case__ : Optional[Any] = d_model snake_case__ : Optional[Any] = encoder_attention_heads snake_case__ : str = decoder_attention_heads snake_case__ : Any = encoder_ffn_dim snake_case__ : int = decoder_ffn_dim snake_case__ : Tuple = encoder_layers snake_case__ : Dict = decoder_layers snake_case__ : List[str] = dropout snake_case__ : Optional[Any] = attention_dropout snake_case__ : List[Any] = activation_dropout snake_case__ : Tuple = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : int = activation_function snake_case__ : str = init_std snake_case__ : str = use_cache # Autoformer snake_case__ : Optional[Any] = label_length snake_case__ : Dict = moving_average snake_case__ : Tuple = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCamelCase ( self : List[str] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
35
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def snake_case ( A__ ): UpperCAmelCase_ : Dict = SwinConfig(image_size=1_92 ) if "base" in model_name: UpperCAmelCase_ : Any = 6 UpperCAmelCase_ : Optional[Any] = 1_28 UpperCAmelCase_ : Optional[int] = (2, 2, 18, 2) UpperCAmelCase_ : List[str] = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : int = 1_92 UpperCAmelCase_ : List[Any] = (2, 2, 18, 2) UpperCAmelCase_ : int = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) UpperCAmelCase_ : str = window_size UpperCAmelCase_ : Any = embed_dim UpperCAmelCase_ : int = depths UpperCAmelCase_ : Any = num_heads return config def snake_case ( A__ ): if "encoder.mask_token" in name: UpperCAmelCase_ : str = name.replace("encoder.mask_token" ,"embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: UpperCAmelCase_ : Optional[int] = name.replace("encoder.patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: UpperCAmelCase_ : List[str] = name.replace("encoder.patch_embed.norm" ,"embeddings.norm" ) if "attn.proj" in name: UpperCAmelCase_ : Optional[Any] = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name: UpperCAmelCase_ : Any = name.replace("attn" ,"attention.self" ) if "norm1" in name: UpperCAmelCase_ : str = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: UpperCAmelCase_ : Tuple = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ : List[str] = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ : str = name.replace("mlp.fc2" ,"output.dense" ) if name == "encoder.norm.weight": UpperCAmelCase_ : List[str] = "layernorm.weight" if name == "encoder.norm.bias": UpperCAmelCase_ : int = "layernorm.bias" if "decoder" in name: pass else: UpperCAmelCase_ : Any = "swin." + name return name def snake_case ( A__ ,A__ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Tuple = orig_state_dict.pop(A__ ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase_ : Optional[int] = key.split("." ) UpperCAmelCase_ : str = int(key_split[2] ) UpperCAmelCase_ : Union[str, Any] = int(key_split[4] ) UpperCAmelCase_ : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ : List[Any] = val[:dim, :] UpperCAmelCase_ : str = val[ dim : dim * 2, : ] UpperCAmelCase_ : str = val[-dim:, :] else: UpperCAmelCase_ : List[str] = val[ :dim ] UpperCAmelCase_ : str = val[ dim : dim * 2 ] UpperCAmelCase_ : Optional[Any] = val[ -dim: ] else: UpperCAmelCase_ : Tuple = val return orig_state_dict def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : List[Any] = torch.load(A__ ,map_location="cpu" )["model"] UpperCAmelCase_ : Optional[Any] = get_swin_config(A__ ) UpperCAmelCase_ : List[Any] = SwinForMaskedImageModeling(A__ ) model.eval() UpperCAmelCase_ : str = convert_state_dict(A__ ,A__ ) model.load_state_dict(A__ ) UpperCAmelCase_ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : int = ViTImageProcessor(size={"height": 1_92, "width": 1_92} ) UpperCAmelCase_ : Any = Image.open(requests.get(A__ ,stream=A__ ).raw ) UpperCAmelCase_ : Any = image_processor(images=A__ ,return_tensors="pt" ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**A__ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase_ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
268
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['input_features', 'attention_mask'] def __init__( self : int , lowercase_ : int=80 , lowercase_ : Optional[Any]=1_6000 , lowercase_ : Optional[Any]=80 , lowercase_ : List[Any]=0.0 , lowercase_ : List[Any]=True , lowercase_ : Optional[int]=True , lowercase_ : str=True , **lowercase_ : Tuple , ): super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ ) UpperCamelCase__ : int =num_mel_bins UpperCamelCase__ : int =do_ceptral_normalize UpperCamelCase__ : str =normalize_means UpperCamelCase__ : Tuple =normalize_vars UpperCamelCase__ : str =True def _lowerCAmelCase ( self : int , lowercase_ : np.ndarray , ): UpperCamelCase__ : int =waveform * (2**15) # Kaldi compliance: 16-bit signed integers UpperCamelCase__ : Union[str, Any] =torch.from_numpy(lowercase_ ).unsqueeze(0 ) UpperCamelCase__ : List[str] =ta_kaldi.fbank(lowercase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCAmelCase ( lowercase_ : np.ndarray , lowercase_ : int , lowercase_ : Optional[bool] = True , lowercase_ : Optional[bool] = True , lowercase_ : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: UpperCamelCase__ : Any =x[:input_length].mean(axis=0 ) UpperCamelCase__ : int =np.subtract(lowercase_ , lowercase_ ) if normalize_vars: UpperCamelCase__ : str =x[:input_length].std(axis=0 ) UpperCamelCase__ : Union[str, Any] =np.divide(lowercase_ , lowercase_ ) if input_length < x.shape[0]: UpperCamelCase__ : Dict =padding_value # make sure array is in float32 UpperCamelCase__ : Optional[int] =x.astype(np.floataa ) return x def _lowerCAmelCase ( self : List[str] , lowercase_ : List[np.ndarray] , lowercase_ : Optional[np.ndarray] = None ): UpperCamelCase__ : Dict =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowercase_ , lowercase_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowercase_ , lowercase_ ) ] def __call__( self : List[Any] , lowercase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , **lowercase_ : Union[str, Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase__ : str =isinstance(lowercase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase__ : int =is_batched_numpy or ( isinstance(lowercase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase__ : Any =[np.asarray(lowercase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray ): UpperCamelCase__ : Optional[Any] =np.asarray(lowercase_ , dtype=np.floataa ) elif isinstance(lowercase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase__ : str =raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase__ : Tuple =[raw_speech] # extract fbank features UpperCamelCase__ : Union[str, Any] =[self._extract_fbank_features(lowercase_ ) for waveform in raw_speech] # convert into correct format for padding UpperCamelCase__ : int =BatchFeature({'''input_features''': features} ) UpperCamelCase__ : List[str] =self.pad( lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) # make sure list is in array format UpperCamelCase__ : Any =padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , lowercase_ ): UpperCamelCase__ : int =[np.asarray(lowercase_ , dtype=np.floataa ) for feature in input_features] UpperCamelCase__ : Union[str, Any] =padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCamelCase__ : List[str] =[np.asarray(lowercase_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: UpperCamelCase__ : Union[str, Any] =( np.array(lowercase_ , dtype=np.intaa ) if self._get_padding_strategies(lowercase_ , max_length=lowercase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCamelCase__ : List[Any] =self.normalize( padded_inputs['''input_features'''] , attention_mask=lowercase_ ) if return_tensors is not None: UpperCamelCase__ : Optional[Any] =padded_inputs.convert_to_tensors(lowercase_ ) return padded_inputs
157
"""simple docstring""" import argparse import os import re _SCREAMING_SNAKE_CASE : List[str] = """src/diffusers""" # Pattern that looks at the indentation in a line. _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _SCREAMING_SNAKE_CASE : Any = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _SCREAMING_SNAKE_CASE : List[str] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _SCREAMING_SNAKE_CASE : str = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r"""\[([^\]]+)\]""") def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : str =_re_indent.search(UpperCAmelCase ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]="" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None ): '''simple docstring''' UpperCamelCase__ : int =0 UpperCamelCase__ : Union[str, Any] =code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase ): index += 1 UpperCamelCase__ : Optional[int] =['''\n'''.join(lines[:index] )] else: UpperCamelCase__ : List[Any] =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ : Dict =[lines[index]] index += 1 while index < len(UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(UpperCAmelCase ) ) if index < len(UpperCAmelCase ) - 1: UpperCamelCase__ : Optional[Any] =[lines[index + 1]] index += 1 else: UpperCamelCase__ : List[str] =[] else: blocks.append('''\n'''.join(UpperCAmelCase ) ) UpperCamelCase__ : List[Any] =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase ) > 0: blocks.append('''\n'''.join(UpperCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( UpperCAmelCase : str ): '''simple docstring''' def _inner(UpperCAmelCase : Dict ): return key(UpperCAmelCase ).lower().replace('''_''' , '''''' ) return _inner def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Dict=None ): '''simple docstring''' def noop(UpperCAmelCase : Optional[Any] ): return x if key is None: UpperCamelCase__ : int =noop # Constants are all uppercase, they go first. UpperCamelCase__ : List[str] =[obj for obj in objects if key(UpperCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ : Dict =[obj for obj in objects if key(UpperCAmelCase )[0].isupper() and not key(UpperCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ : int =[obj for obj in objects if not key(UpperCAmelCase )[0].isupper()] UpperCamelCase__ : Optional[int] =ignore_underscore(UpperCAmelCase ) return sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ): '''simple docstring''' def _replace(UpperCAmelCase : Union[str, Any] ): UpperCamelCase__ : List[str] =match.groups()[0] if "," not in imports: return F'''[{imports}]''' UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ : Tuple =keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) + "]" UpperCamelCase__ : List[Any] =import_statement.split('''\n''' ) if len(UpperCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ : List[str] =2 if lines[1].strip() == '''[''' else 1 UpperCamelCase__ : List[str] =[(i, _re_strip_line.search(UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase__ : List[str] =sort_objects(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] ) UpperCamelCase__ : Tuple =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase__ : Dict =_re_bracket_content.sub(_replace , lines[1] ) else: UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ : Tuple =keys[:-1] UpperCamelCase__ : Optional[Any] =get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) return "\n".join(UpperCAmelCase ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ : List[str] =_re_bracket_content.sub(_replace , UpperCAmelCase ) return import_statement def _lowerCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=True ): '''simple docstring''' with open(UpperCAmelCase , '''r''' ) as f: UpperCamelCase__ : int =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ : Optional[int] =split_code_in_indented_blocks( UpperCAmelCase , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ : Dict =main_blocks[block_idx] UpperCamelCase__ : List[str] =block.split('''\n''' ) # Get to the start of the imports. UpperCamelCase__ : str =0 while line_idx < len(UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ : Optional[int] =len(UpperCAmelCase ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[line_idx:-1] ) UpperCamelCase__ : Tuple =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ : str =split_code_in_indented_blocks(UpperCAmelCase , indent_level=UpperCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ : str =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ : Tuple =[(pattern.search(UpperCAmelCase ).groups()[0] if pattern.search(UpperCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ : List[Any] =[(i, key) for i, key in enumerate(UpperCAmelCase ) if key is not None] UpperCamelCase__ : Optional[Any] =[x[0] for x in sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ : Union[str, Any] =0 UpperCamelCase__ : str =[] for i in range(len(UpperCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase__ : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCAmelCase ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write('''\n'''.join(UpperCAmelCase ) ) def _lowerCAmelCase ( UpperCAmelCase : Dict=True ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] =[] for root, _, files in os.walk(UpperCAmelCase ): if "__init__.py" in files: UpperCamelCase__ : List[Any] =sort_imports(os.path.join(UpperCAmelCase , '''__init__.py''' ) , check_only=UpperCAmelCase ) if result: UpperCamelCase__ : int =[os.path.join(UpperCAmelCase , '''__init__.py''' )] if len(UpperCAmelCase ) > 0: raise ValueError(F'''Would overwrite {len(UpperCAmelCase )} files, run `make style`.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
157
1
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self , lowerCamelCase_ = 1 , lowerCamelCase_ = None , lowerCamelCase_ = 50 , lowerCamelCase_ = "pil" , lowerCamelCase_ = True , **lowerCamelCase_ , ): """simple docstring""" a = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase_ , ) a = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output a = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample a = (image / 2 + 0.5).clamp(0 , 1 ) a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCamelCase_ ), "This is a local test"
227
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a( A : Tuple ) -> Optional[Any]: """simple docstring""" a = model.config a = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) a = MBartConfig( is_decoder=A , is_encoder_decoder=A , add_cross_attention=A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=A , add_final_layer_norm=A , ) return encoder_config, decoder_config def a( A : List[Any] ) -> Union[str, Any]: """simple docstring""" if "encoder.model" in name: a = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: a = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: a = "encoder." + name if "attn.proj" in name: a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: a = name.replace("attn" , "attention.self" ) if "norm1" in name: a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": a = "encoder.layernorm.weight" if name == "encoder.norm.bias": a = "encoder.layernorm.bias" return name def a( A : Union[str, Any] , A : Tuple ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(A ) if "qkv" in key: a = key.split("." ) a = int(key_split[3] ) a = int(key_split[5] ) a = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] else: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: a = val return orig_state_dict def a( A : List[Any] , A : Tuple=None , A : List[Any]=False ) -> Optional[int]: """simple docstring""" a = DonutModel.from_pretrained(A ).eval() # load HuggingFace model a , a = get_configs(A ) a = DonutSwinModel(A ) a = MBartForCausalLM(A ) a = VisionEncoderDecoderModel(encoder=A , decoder=A ) model.eval() a = original_model.state_dict() a = convert_state_dict(A , A ) model.load_state_dict(A ) # verify results on scanned document a = load_dataset("hf-internal-testing/example-documents" ) a = dataset["test"][0]["image"].convert("RGB" ) a = XLMRobertaTokenizerFast.from_pretrained(A , from_slow=A ) a = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) a = DonutProcessor(A , A ) a = processor(A , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": a = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a = "When is the coffee break?" a = task_prompt.replace("{user_input}" , A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": a = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: a = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": a = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": a = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt a = "hello world" else: raise ValueError("Model name not supported" ) a = original_model.decoder.tokenizer(A , add_special_tokens=A , return_tensors="pt" )[ "input_ids" ] a = original_model.encoder.model.patch_embed(A ) a , a = model.encoder.embeddings(A ) assert torch.allclose(A , A , atol=1e-3 ) # verify encoder hidden states a = original_model.encoder(A ) a = model.encoder(A ).last_hidden_state assert torch.allclose(A , A , atol=1e-2 ) # verify decoder hidden states a = original_model(A , A , A ).logits a = model(A , decoder_input_ids=A ).logits assert torch.allclose(A , A , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": _lowercase: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowercase: Optional[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
227
1
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: if isinstance(A_ , A_ ): __SCREAMING_SNAKE_CASE = np.full((len(A_ ), sequence_length, 2) , A_ ) else: __SCREAMING_SNAKE_CASE = np.full((len(A_ ), sequence_length) , A_ ) for i, tensor in enumerate(A_ ): if padding_side == "right": if isinstance(A_ , A_ ): __SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: __SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(A_ , A_ ): __SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: __SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def _lowerCAmelCase ( UpperCamelCase_ ) -> List[str]: __SCREAMING_SNAKE_CASE = ord(A_ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __SCREAMING_SNAKE_CASE = unicodedata.category(A_ ) if cat.startswith("""P""" ): return True return False @dataclass class SCREAMING_SNAKE_CASE_ ( a_ ): """simple docstring""" __lowercase : List[Any] = 42 __lowercase : Union[str, Any] = True __lowercase : Optional[Any] = None __lowercase : Dict = None __lowercase : Any = -100 __lowercase : str = '''pt''' def snake_case_ ( self , lowerCAmelCase__): import torch __SCREAMING_SNAKE_CASE = '''label''' if '''label''' in features[0].keys() else '''labels''' __SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __SCREAMING_SNAKE_CASE = self.tokenizer.pad( lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch __SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""]).shape[1] __SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": __SCREAMING_SNAKE_CASE = [ list(lowercase_) + [self.label_pad_token_id] * (sequence_length - len(lowercase_)) for label in labels ] else: __SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(lowercase_)) + list(lowercase_) for label in labels ] __SCREAMING_SNAKE_CASE = [feature['''ner_tags'''] for feature in features] __SCREAMING_SNAKE_CASE = padding_tensor(lowercase_ , -1 , lowercase_ , lowercase_) __SCREAMING_SNAKE_CASE = [feature['''original_entity_spans'''] for feature in features] __SCREAMING_SNAKE_CASE = padding_tensor(lowercase_ , (-1, -1) , lowercase_ , lowercase_) __SCREAMING_SNAKE_CASE = {k: torch.tensor(lowercase_ , dtype=torch.intaa) for k, v in batch.items()} return batch
358
"""simple docstring""" from string import ascii_uppercase __magic_name__ = {str(ord(c) - 55): c for c in ascii_uppercase} def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while div != 1: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = divmod(UpperCamelCase_ , UpperCamelCase_ ) if base >= 11 and 9 < mod < 36: __SCREAMING_SNAKE_CASE = ALPHABET_VALUES[str(UpperCamelCase_ )] else: __SCREAMING_SNAKE_CASE = str(UpperCamelCase_ ) new_value += actual_value __SCREAMING_SNAKE_CASE = num // base __SCREAMING_SNAKE_CASE = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
255
0
from __future__ import annotations lowercase = 1.6_021e-19 # units = C def __UpperCAmelCase ( a_ , a_ , a_ , ): if (conductivity, electron_conc, mobility).count(0) != 1: raise ValueError('You cannot supply more or less than 2 values') elif conductivity < 0: raise ValueError('Conductivity cannot be negative') elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative') elif mobility < 0: raise ValueError('mobility cannot be negative') elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
178
from __future__ import annotations def __UpperCAmelCase ( a_ , a_ , a_ , a_): # noqa: E741 while r - l > 1: snake_case_ = (l + r) // 2 if v[m] >= key: snake_case_ = m else: snake_case_ = m # noqa: E741 return r def __UpperCAmelCase ( a_): if len(a_) == 0: return 0 snake_case_ = [0] * len(a_) snake_case_ = 1 snake_case_ = v[0] for i in range(1 , len(a_)): if v[i] < tail[0]: snake_case_ = v[i] elif v[i] > tail[length - 1]: snake_case_ = v[i] length += 1 else: snake_case_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
178
1
from sklearn.metrics import matthews_corrcoef import datasets __lowerCAmelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __lowerCAmelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __lowerCAmelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Union[str, Any]: return { "matthews_correlation": float(matthews_corrcoef(A__ , A__ , sample_weight=A__ ) ), }
359
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _snake_case = 0 _snake_case = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _snake_case = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _snake_case = i _snake_case = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
270
0
import numpy # List of input, output pairs a_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) a_ = [2, 4, 1, 5] a_ = len(train_data) a_ = 0.0_09 def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : int="train" ): return calculate_hypothesis_value(_UpperCamelCase ,_UpperCamelCase ) - output( _UpperCamelCase ,_UpperCamelCase ) def a__ ( _UpperCamelCase : Tuple ): __lowerCamelCase = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Optional[Any] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : List[str] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( _UpperCamelCase : str ,_UpperCamelCase : List[Any]=m ): __lowerCamelCase = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase = summation_of_cost_derivative(_UpperCamelCase ,_UpperCamelCase ) / m return cost_derivative_value def a__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase = 0.000_002 __lowerCamelCase = 0 __lowerCamelCase = 0 while True: j += 1 __lowerCamelCase = [0, 0, 0, 0] for i in range(0 ,len(_UpperCamelCase ) ): __lowerCamelCase = get_cost_derivative(i - 1 ) __lowerCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase ,_UpperCamelCase ,atol=_UpperCamelCase ,rtol=_UpperCamelCase ,): break __lowerCamelCase = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ): for i in range(len(_UpperCamelCase ) ): print(('''Actual output value:''', output(_UpperCamelCase ,'''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(_UpperCamelCase ,'''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
330
def a__ ( _UpperCamelCase : int ): __lowerCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
330
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _a , _a , unittest.TestCase ): snake_case__ = CycleDiffusionPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=10_00 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase = CLIPTextModel(snake_case_ ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) lowerCAmelCase = image / 2 + 0.5 if str(snake_case_ ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(snake_case_ ) else: lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) lowerCAmelCase = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = CycleDiffusionPipeline(**snake_case_ ) lowerCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase = self.get_dummy_inputs(snake_case_ ) lowerCAmelCase = pipe(**snake_case_ ) lowerCAmelCase = output.images lowerCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case_ , 'half' ): lowerCAmelCase = module.half() lowerCAmelCase = CycleDiffusionPipeline(**snake_case_ ) lowerCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase = self.get_dummy_inputs(snake_case_ ) lowerCAmelCase = pipe(**snake_case_ ) lowerCAmelCase = output.images lowerCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def UpperCamelCase__ ( self ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) lowerCAmelCase = init_image.resize((5_12, 5_12) ) lowerCAmelCase = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase = DDIMScheduler.from_pretrained(snake_case_ , subfolder='scheduler' ) lowerCAmelCase = CycleDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowerCAmelCase = """A black colored car""" lowerCAmelCase = """A blue colored car""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type='np' , ) lowerCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) lowerCAmelCase = init_image.resize((5_12, 5_12) ) lowerCAmelCase = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase = DDIMScheduler.from_pretrained(snake_case_ , subfolder='scheduler' ) lowerCAmelCase = CycleDiffusionPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowerCAmelCase = """A black colored car""" lowerCAmelCase = """A blue colored car""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type='np' , ) lowerCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
371
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Tuple: __UpperCAmelCase : Tuple = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __UpperCAmelCase : Dict = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) __UpperCAmelCase : str = model.state_dict() def to_tf_var_name(snake_case__ ): for patt, repl in iter(snake_case__ ): __UpperCAmelCase : Optional[int] = name.replace(snake_case__, snake_case__ ) return f'''bert/{name}''' def create_tf_var(snake_case__, snake_case__, snake_case__ ): __UpperCAmelCase : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase : Any = tf.get_variable(dtype=snake_case__, shape=tensor.shape, name=snake_case__, initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase : Any = to_tf_var_name(snake_case__ ) __UpperCAmelCase : str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase : List[str] = torch_tensor.T __UpperCAmelCase : Tuple = create_tf_var(tensor=snake_case__, name=snake_case__, session=snake_case__ ) tf.keras.backend.set_value(snake_case__, snake_case__ ) __UpperCAmelCase : int = session.run(snake_case__ ) print(f'''Successfully created {tf_name}: {np.allclose(snake_case__, snake_case__ )}''' ) __UpperCAmelCase : int = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case__, os.path.join(snake_case__, model_name.replace("-", "_" ) + ".ckpt" ) ) def _UpperCamelCase ( snake_case__=None ) -> Optional[int]: __UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--model_name", type=snake_case__, required=snake_case__, help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir", type=snake_case__, default=snake_case__, required=snake_case__, help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path", type=snake_case__, required=snake_case__, help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir", type=snake_case__, required=snake_case__, help="Directory in which to save tensorflow model" ) __UpperCAmelCase : str = parser.parse_args(snake_case__ ) __UpperCAmelCase : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=snake_case__, ckpt_dir=args.tf_cache_dir, model_name=args.model_name ) if __name__ == "__main__": main()
157
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: def run_func(snake_case__ ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__, **snake_case__ ): return func(*snake_case__, **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__, **snake_case__ ): return func(*snake_case__, **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> ["tf.Tensor"]: __UpperCAmelCase : str = random.Random() __UpperCAmelCase : str = [rng.randint(0, vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__, shape=(batch_size, sequence_length), dtype=tf.intaa ) class _snake_case ( _lowercase ): lowerCamelCase__: TensorFlowBenchmarkArguments lowerCamelCase__: PretrainedConfig lowerCamelCase__: str = "TensorFlow" @property def _lowerCamelCase ( self: int ) -> Any: return tf.__version__ def _lowerCamelCase ( self: Dict , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> float: # initialize GPU on separate process __UpperCAmelCase : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __UpperCAmelCase : int = self._prepare_inference_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_speed(_inference ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> float: __UpperCAmelCase : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __UpperCAmelCase : Dict = self._prepare_train_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_speed(_train ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __UpperCAmelCase : int = self._prepare_inference_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_memory(_inference ) def _lowerCamelCase ( self: str , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCamelCase ) __UpperCAmelCase : int = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __UpperCAmelCase : int = self._prepare_train_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_memory(_train ) def _lowerCamelCase ( self: int , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> Callable[[], None]: __UpperCAmelCase : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __UpperCAmelCase : int = ( hasattr(__lowerCamelCase , "architectures" ) and isinstance(config.architectures , __lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCAmelCase : int = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCAmelCase : Dict = __import__("transformers" , fromlist=[model_class] ) __UpperCAmelCase : str = getattr(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = model_cls(__lowerCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __UpperCAmelCase : int = TF_MODEL_MAPPING[config.__class__](__lowerCamelCase ) # encoder-decoder has vocab size saved differently __UpperCAmelCase : List[str] = config.vocab_size if hasattr(__lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size __UpperCAmelCase : Dict = random_input_ids(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__lowerCamelCase , decoder_input_ids=__lowerCamelCase , training=__lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__lowerCamelCase , training=__lowerCamelCase ) __UpperCAmelCase : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCamelCase ( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> Callable[[], None]: __UpperCAmelCase : Any = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __UpperCAmelCase : Tuple = ( hasattr(__lowerCamelCase , "architectures" ) and isinstance(config.architectures , __lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCAmelCase : Dict = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCAmelCase : Optional[Any] = __import__("transformers" , fromlist=[model_class] ) __UpperCAmelCase : int = getattr(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = model_cls(__lowerCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __UpperCAmelCase : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__lowerCamelCase ) # encoder-decoder has vocab size saved differently __UpperCAmelCase : List[Any] = config.vocab_size if hasattr(__lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size __UpperCAmelCase : Dict = random_input_ids(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __UpperCAmelCase : List[Any] = model(__lowerCamelCase , decoder_input_ids=__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase )[0] __UpperCAmelCase : Optional[Any] = tf.gradients(__lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase )[0] __UpperCAmelCase : List[Any] = tf.gradients(__lowerCamelCase , model.trainable_variables ) return gradients __UpperCAmelCase : Optional[int] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __UpperCAmelCase : List[str] = timeit.repeat( __lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(__lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Callable[[], None] ) -> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) __UpperCAmelCase : Union[str, Any] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) __UpperCAmelCase : Union[str, Any] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() __UpperCAmelCase : str = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __UpperCAmelCase : List[Any] = nvml.nvmlDeviceGetMemoryInfo(__lowerCamelCase ) __UpperCAmelCase : List[Any] = meminfo.used __UpperCAmelCase : List[Any] = Memory(__lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) __UpperCAmelCase : Tuple = None else: __UpperCAmelCase : str = measure_peak_memory_cpu(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = Memory(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: __UpperCAmelCase : str = stop_memory_tracing(__lowerCamelCase ) if memory is None: __UpperCAmelCase : Tuple = summary.total else: __UpperCAmelCase : Union[str, Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
157
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(UpperCAmelCase_ ) while cur > 1: # Find the maximum number in arr lowercase__ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowercase__ = arr[mi::-1] + arr[mi + 1 : len(UpperCAmelCase_ )] # Reverse whole list lowercase__ = arr[cur - 1 :: -1] + arr[cur : len(UpperCAmelCase_ )] cur -= 1 return arr if __name__ == "__main__": _snake_case = input('Enter numbers separated by a comma:\n').strip() _snake_case = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
353
def _a ( SCREAMING_SNAKE_CASE = 10_00 ): """simple docstring""" return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
93
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase__ = """__DUMMY_TRANSFORMERS_USER__""" lowerCAmelCase__ = """Dummy User""" lowerCAmelCase__ = """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""" lowerCAmelCase__ = """https://hub-ci.huggingface.co""" lowerCAmelCase__ = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCAmelCase__ = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCAmelCase__ = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> int: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , SCREAMING_SNAKE_CASE_ ) @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> int: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , SCREAMING_SNAKE_CASE_ ) @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , SCREAMING_SNAKE_CASE_ ) @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Tuple ) -> Optional[int]: '''simple docstring''' HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return HfApi(endpoint=SCREAMING_SNAKE_CASE_ ) @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: HfApi ) -> str: '''simple docstring''' A__ = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> List[str]: '''simple docstring''' def _cleanup_repo(SCREAMING_SNAKE_CASE_: Tuple ): hf_api.delete_repo(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] ) -> str: '''simple docstring''' @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE_: Any ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE_ ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: HfApi , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: List[str] ) -> Any: '''simple docstring''' A__ = F'repo_txt_data-{int(time.time() * 10e3 )}' A__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ , repo_type="dataset" , private=SCREAMING_SNAKE_CASE_ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE_ , path_or_fileobj=str(SCREAMING_SNAKE_CASE_ ) , path_in_repo="data/text_data.txt" , repo_id=SCREAMING_SNAKE_CASE_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Any: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: HfApi , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Any ) -> List[Any]: '''simple docstring''' A__ = F'repo_zipped_txt_data-{int(time.time() * 10e3 )}' A__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ , repo_type="dataset" , private=SCREAMING_SNAKE_CASE_ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE_ , path_or_fileobj=str(SCREAMING_SNAKE_CASE_ ) , path_in_repo="data.zip" , repo_id=SCREAMING_SNAKE_CASE_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: int ) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: HfApi , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Optional[int] ) -> List[str]: '''simple docstring''' A__ = F'repo_zipped_img_data-{int(time.time() * 10e3 )}' A__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ , repo_type="dataset" , private=SCREAMING_SNAKE_CASE_ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE_ , path_or_fileobj=str(SCREAMING_SNAKE_CASE_ ) , path_in_repo="data.zip" , repo_id=SCREAMING_SNAKE_CASE_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Any: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
68
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 42 class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self : Optional[int], lowerCAmelCase : int = 32, lowerCAmelCase : int = 64, lowerCAmelCase : int = 20, lowerCAmelCase : int = 768, lowerCAmelCase : Optional[Any]=77, lowerCAmelCase : Tuple=4, lowerCAmelCase : float = 0.0, lowerCAmelCase : str = "silu", lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = "linear", lowerCAmelCase : Optional[str] = "prd", lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[int] = None, ) -> List[Any]: super().__init__() lowercase : List[Any] = num_attention_heads lowercase : int = attention_head_dim lowercase : List[Any] = num_attention_heads * attention_head_dim lowercase : Tuple = additional_embeddings lowercase : Dict = time_embed_dim or inner_dim lowercase : Optional[Any] = embedding_proj_dim or embedding_dim lowercase : int = clip_embed_dim or embedding_dim lowercase : List[str] = Timesteps(lowerCAmelCase, lowerCAmelCase, 0 ) lowercase : List[str] = TimestepEmbedding(lowerCAmelCase, lowerCAmelCase, out_dim=lowerCAmelCase, act_fn=lowerCAmelCase ) lowercase : List[str] = nn.Linear(lowerCAmelCase, lowerCAmelCase ) if embedding_proj_norm_type is None: lowercase : str = None elif embedding_proj_norm_type == "layer": lowercase : Tuple = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowercase : List[str] = nn.Linear(lowerCAmelCase, lowerCAmelCase ) if encoder_hid_proj_type is None: lowercase : Optional[int] = None elif encoder_hid_proj_type == "linear": lowercase : Dict = nn.Linear(lowerCAmelCase, lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowercase : Dict = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, lowerCAmelCase ) ) if added_emb_type == "prd": lowercase : Union[str, Any] = nn.Parameter(torch.zeros(1, 1, lowerCAmelCase ) ) elif added_emb_type is None: lowercase : str = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowercase : Dict = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, dropout=lowerCAmelCase, activation_fn='gelu', attention_bias=lowerCAmelCase, ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": lowercase : str = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: lowercase : Optional[int] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) lowercase : int = nn.LayerNorm(lowerCAmelCase ) lowercase : str = nn.Linear(lowerCAmelCase, lowerCAmelCase ) lowercase : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -1_0000.0 ) causal_attention_mask.triu_(1 ) lowercase : List[str] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask', lowerCAmelCase, persistent=lowerCAmelCase ) lowercase : Any = nn.Parameter(torch.zeros(1, lowerCAmelCase ) ) lowercase : Any = nn.Parameter(torch.zeros(1, lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase ( self : Tuple ) -> Dict[str, AttentionProcessor]: lowercase : Any = {} def fn_recursive_add_processors(lowerCAmelCase : str, lowerCAmelCase : torch.nn.Module, lowerCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(lowerCAmelCase, 'set_processor' ): lowercase : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''', lowerCAmelCase, lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) return processors def lowercase ( self : Union[str, Any], lowerCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Tuple: lowercase : str = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase, lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase : str, lowerCAmelCase : torch.nn.Module, lowerCAmelCase : Union[str, Any] ): if hasattr(lowerCAmelCase, 'set_processor' ): if not isinstance(lowerCAmelCase, lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''', lowerCAmelCase, lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Union[torch.Tensor, float, int], lowerCAmelCase : torch.FloatTensor, lowerCAmelCase : Optional[torch.FloatTensor] = None, lowerCAmelCase : Optional[torch.BoolTensor] = None, lowerCAmelCase : bool = True, ) -> List[Any]: lowercase : Optional[Any] = hidden_states.shape[0] lowercase : Union[str, Any] = timestep if not torch.is_tensor(lowerCAmelCase ): lowercase : List[str] = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: lowercase : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase : Optional[int] = timesteps * torch.ones(lowerCAmelCase, dtype=timesteps.dtype, device=timesteps.device ) lowercase : Dict = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase : Optional[int] = timesteps_projected.to(dtype=self.dtype ) lowercase : Any = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: lowercase : Any = self.embedding_proj_norm(lowerCAmelCase ) lowercase : List[str] = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase : str = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowercase : Optional[Any] = self.proj_in(lowerCAmelCase ) lowercase : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) lowercase : Dict = [] lowercase : Optional[int] = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase : Union[str, Any] = hidden_states[:, None, :] lowercase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase, -1, -1 ) additional_embeds.append(lowerCAmelCase ) lowercase : Union[str, Any] = torch.cat( lowerCAmelCase, dim=1, ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase : List[Any] = F.pad( lowerCAmelCase, ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ), value=0.0, ) lowercase : str = hidden_states + positional_embeddings if attention_mask is not None: lowercase : Tuple = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowercase : List[Any] = F.pad(lowerCAmelCase, (0, self.additional_embeddings), value=0.0 ) lowercase : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase : Union[str, Any] = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0 ) if self.norm_in is not None: lowercase : List[Any] = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: lowercase : Tuple = block(lowerCAmelCase, attention_mask=lowerCAmelCase ) lowercase : Optional[Any] = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: lowercase : Optional[Any] = hidden_states[:, -1] else: lowercase : Any = hidden_states[:, additional_embeddings_len:] lowercase : Optional[int] = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def lowercase ( self : Any, lowerCAmelCase : Dict ) -> Dict: lowercase : int = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
255
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : int = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : Tuple = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : Tuple = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : str = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE__ : Any = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE__ : List[str] = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE__ : List[Any] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : int = VOCAB_FILES_NAMES a__ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ : Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a__ : Dict = DPRContextEncoderTokenizer class lowerCAmelCase__ ( __lowercase ): a__ : Any = VOCAB_FILES_NAMES a__ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : int = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a__ : int = DPRQuestionEncoderTokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE__ : Optional[int] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE__ : Optional[int] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__lowercase ) class lowerCAmelCase__ : def __call__( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Union[bool, str] = False , SCREAMING_SNAKE_CASE__ : Union[bool, str] = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , **SCREAMING_SNAKE_CASE__ : Any , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) elif titles is None or texts is None: __lowerCamelCase = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = titles if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [titles] __lowerCamelCase = texts if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [texts] __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = questions if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE__ ) == len( SCREAMING_SNAKE_CASE__ ), f'''There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE__ )} titles and {len(SCREAMING_SNAKE_CASE__ )} texts.''' __lowerCamelCase = super().__call__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['''input_ids'''] __lowerCamelCase = super().__call__(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['''input_ids'''] __lowerCamelCase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] } if return_attention_mask is not False: __lowerCamelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCamelCase = attention_mask return self.pad(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : BatchEncoding , SCREAMING_SNAKE_CASE__ : DPRReaderOutput , SCREAMING_SNAKE_CASE__ : int = 16 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : int = 4 , ) -> List[DPRSpanPrediction]: __lowerCamelCase = reader_input['''input_ids'''] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reader_output[:3] __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = sorted(range(SCREAMING_SNAKE_CASE__ ) , reverse=SCREAMING_SNAKE_CASE__ , key=relevance_logits.__getitem__ ) __lowerCamelCase = [] for doc_id in sorted_docs: __lowerCamelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCamelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCamelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE__ , top_spans=SCREAMING_SNAKE_CASE__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE__ , start_index=SCREAMING_SNAKE_CASE__ , end_index=SCREAMING_SNAKE_CASE__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ) -> List[DPRSpanPrediction]: __lowerCamelCase = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' __lowerCamelCase = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowercase ) class lowerCAmelCase__ ( __lowercase , __lowercase ): a__ : Tuple = VOCAB_FILES_NAMES a__ : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP a__ : List[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[str] = READER_PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = ["""input_ids""", """attention_mask"""] a__ : List[Any] = DPRReaderTokenizer
339
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LayoutLMv2FeatureExtractor"] __A = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : List[Any] = TypeVar("T") def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (position - 1) // 2 def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (2 * position) + 1 def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): def __init__( self : List[str] ) -> None: __lowerCamelCase = [] __lowerCamelCase = {} __lowerCamelCase = 0 def __len__( self : Optional[int] ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def __A ( self : Union[str, Any] ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __A ( self : str , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) __lowerCamelCase = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __lowerCamelCase , __lowerCamelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowerCamelCase , __lowerCamelCase = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE__ ) return elem def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Update the weight of the given key __lowerCamelCase = self.position_map[elem] __lowerCamelCase = (elem, weight) if position > 0: __lowerCamelCase = get_parent_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] __lowerCamelCase = self.position_map[elem] if curr_pos == 0: return None __lowerCamelCase = get_parent_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = self.heap[curr_pos] __lowerCamelCase , __lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_up(SCREAMING_SNAKE_CASE__ ) return None def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] __lowerCamelCase = self.position_map[elem] __lowerCamelCase , __lowerCamelCase = self.heap[curr_pos] __lowerCamelCase = get_child_left_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = get_child_right_position(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements and child_right_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_left_position] __lowerCamelCase , __lowerCamelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: return None if child_right_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) return None def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: # Swap the nodes at the given positions __lowerCamelCase = self.heap[nodea_pos][0] __lowerCamelCase = self.heap[nodea_pos][0] __lowerCamelCase , __lowerCamelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowerCamelCase = nodea_pos __lowerCamelCase = nodea_pos class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) -> None: __lowerCamelCase = {} __lowerCamelCase = 0 def __repr__( self : Optional[int] ) -> str: return str(self.connections ) def __len__( self : List[str] ) -> int: return self.nodes def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: __lowerCamelCase = {} self.nodes += 1 def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(SCREAMING_SNAKE_CASE__ ) self.add_node(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = weight __lowerCamelCase = weight def __magic_name__ ( __lowerCAmelCase : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: __lowerCamelCase = {node: maxsize for node in graph.connections} __lowerCamelCase = {node: None for node in graph.connections} __lowerCamelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowerCAmelCase , __lowerCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization __lowerCamelCase = priority_queue.extract_min() __lowerCamelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowerCAmelCase , dist[neighbour] ) __lowerCamelCase = node # running prim's algorithm while not priority_queue.is_empty(): __lowerCamelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowerCAmelCase , dist[neighbour] ) __lowerCamelCase = node return dist, parent
270
0
import argparse import struct import unittest class SCREAMING_SNAKE_CASE : def __init__( self : str , lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = data # Initialize hash values __lowerCAmelCase : str = [ 0X6a09e667, 0Xbb67ae85, 0X3c6ef372, 0Xa54ff53a, 0X510e527f, 0X9b05688c, 0X1f83d9ab, 0X5be0cd19, ] # Initialize round constants __lowerCAmelCase : Union[str, Any] = [ 0X428a2f98, 0X71374491, 0Xb5c0fbcf, 0Xe9b5dba5, 0X3956c25b, 0X59f111f1, 0X923f82a4, 0Xab1c5ed5, 0Xd807aa98, 0X12835b01, 0X243185be, 0X550c7dc3, 0X72be5d74, 0X80deb1fe, 0X9bdc06a7, 0Xc19bf174, 0Xe49b69c1, 0Xefbe4786, 0X0fc19dc6, 0X240ca1cc, 0X2de92c6f, 0X4a7484aa, 0X5cb0a9dc, 0X76f988da, 0X983e5152, 0Xa831c66d, 0Xb00327c8, 0Xbf597fc7, 0Xc6e00bf3, 0Xd5a79147, 0X06ca6351, 0X14292967, 0X27b70a85, 0X2e1b2138, 0X4d2c6dfc, 0X53380d13, 0X650a7354, 0X766a0abb, 0X81c2c92e, 0X92722c85, 0Xa2bfe8a1, 0Xa81a664b, 0Xc24b8b70, 0Xc76c51a3, 0Xd192e819, 0Xd6990624, 0Xf40e3585, 0X106aa070, 0X19a4c116, 0X1e376c08, 0X2748774c, 0X34b0bcb5, 0X391c0cb3, 0X4ed8aa4a, 0X5b9cca4f, 0X682e6ff3, 0X748f82ee, 0X78a5636f, 0X84c87814, 0X8cc70208, 0X90befffa, 0Xa4506ceb, 0Xbef9a3f7, 0Xc67178f2, ] __lowerCAmelCase : List[str] = self.preprocessing(self.data ) self.final_hash() @staticmethod def SCREAMING_SNAKE_CASE ( lowerCAmelCase : int ) -> Any: """simple docstring""" __lowerCAmelCase : Any = B"""\x80""" + (B"""\x00""" * (63 - (len(lowerCamelCase__ ) + 8) % 64)) __lowerCAmelCase : str = struct.pack(""">Q""" , (len(lowerCamelCase__ ) * 8) ) return data + padding + big_endian_integer def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __lowerCAmelCase : List[str] = list(struct.unpack(""">16L""" , lowerCamelCase__ ) ) # add 48 0-ed integers words += [0] * 48 __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __lowerCAmelCase : Dict = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __lowerCAmelCase : Union[str, Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __lowerCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression __lowerCAmelCase : int = self.ror(lowerCamelCase__ , 6 ) ^ self.ror(lowerCamelCase__ , 11 ) ^ self.ror(lowerCamelCase__ , 25 ) __lowerCAmelCase : List[str] = (e & f) ^ ((~e & 0Xffffffff) & g) __lowerCAmelCase : Any = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 __lowerCAmelCase : Tuple = self.ror(lowerCamelCase__ , 2 ) ^ self.ror(lowerCamelCase__ , 13 ) ^ self.ror(lowerCamelCase__ , 22 ) __lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) __lowerCAmelCase : List[str] = (sa + maj) % 0X100000000 __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Optional[int] = ( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) __lowerCAmelCase : Tuple = [a, b, c, d, e, f, g, h] # Modify final values __lowerCAmelCase : Optional[int] = [ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes ) ] __lowerCAmelCase : List[Any] = """""".join([hex(lowerCamelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" return 0Xffffffff & (value << (32 - rotations)) | (value >> rotations) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" import hashlib __lowerCAmelCase : Union[str, Any] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowerCamelCase__ ).hash , hashlib.shaaaa(lowerCamelCase__ ).hexdigest() ) def snake_case_ () -> None: import doctest doctest.testmod() __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) __lowerCAmelCase : str = parser.parse_args() __lowerCAmelCase : Optional[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: __lowerCAmelCase : Optional[Any] = f.read() else: __lowerCAmelCase : List[Any] = bytes(lowercase_ , """utf-8""" ) print(SHAaaa(lowercase_ ).hash ) if __name__ == "__main__": main()
357
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : str =field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase : ClassVar[Features] =Features({"audio": Audio()} ) lowerCamelCase : ClassVar[Features] =Features({"labels": ClassLabel} ) lowerCamelCase : str ="audio" lowerCamelCase : str ="labels" def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Dict ) -> Dict: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __lowerCAmelCase : Tuple = copy.deepcopy(self ) __lowerCAmelCase : Tuple = self.label_schema.copy() __lowerCAmelCase : Union[str, Any] = features[self.label_column] __lowerCAmelCase : Any = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : str ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
139
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = IFImgaImgSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCamelCase ( self : str ): return self._get_superresolution_dummy_components() def lowerCamelCase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : List[str]=0 ): if str(snake_case_ ).startswith("""mps""" ): snake_case__ : List[str] = torch.manual_seed(snake_case_ ) else: snake_case__ : Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase ( self : int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase ( self : Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase ( self : List[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase ( self : Dict ): self._test_save_load_local() def lowerCamelCase ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
35
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : List[str]=None , UpperCamelCase : int=None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = list(poly_a or [0] )[:] __UpperCAmelCase : Optional[Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __UpperCAmelCase : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __UpperCAmelCase : Dict = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __UpperCAmelCase : List[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __UpperCAmelCase : Union[str, Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __UpperCAmelCase : Dict = self.__multiply() def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(UpperCamelCase ) <= 1: return dft[0] # __UpperCAmelCase : Dict = self.c_max_length // 2 while next_ncol > 0: __UpperCAmelCase : List[str] = [[] for i in range(UpperCamelCase )] __UpperCAmelCase : Optional[Any] = self.root**next_ncol # First half of next step __UpperCAmelCase : Dict = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __UpperCAmelCase : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __UpperCAmelCase : int = new_dft __UpperCAmelCase : Tuple = next_ncol // 2 return dft[0] def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.__dft("""A""" ) __UpperCAmelCase : Any = self.__dft("""B""" ) __UpperCAmelCase : Optional[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __UpperCAmelCase : Tuple = 2 while next_ncol <= self.c_max_length: __UpperCAmelCase : Dict = [[] for i in range(UpperCamelCase )] __UpperCAmelCase : str = self.root ** (next_ncol // 2) __UpperCAmelCase : int = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __UpperCAmelCase : List[str] = new_inverse_c next_ncol *= 2 # Unpack __UpperCAmelCase : int = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __UpperCAmelCase : List[Any] = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __UpperCAmelCase : str = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""] __UpperCAmelCase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
320
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class a__ : def __init__( self : str , a : Dict ): """simple docstring""" __lowerCamelCase = data __lowerCamelCase = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0] @staticmethod def SCREAMING_SNAKE_CASE__ ( a : Union[str, Any] , a : Any ): """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0xFFFFFFFF def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) __lowerCamelCase = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Tuple ): """simple docstring""" __lowerCamelCase = list(struct.unpack('''>16L''' , a ) ) + [0] * 64 for i in range(16 , 80 ): __lowerCamelCase = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.padding() __lowerCamelCase = self.split_blocks() for block in self.blocks: __lowerCamelCase = self.expand_block(a ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.h for i in range(0 , 80 ): if 0 <= i < 20: __lowerCamelCase = (b & c) | ((~b) & d) __lowerCamelCase = 0x5A827999 elif 20 <= i < 40: __lowerCamelCase = b ^ c ^ d __lowerCamelCase = 0x6ED9EBA1 elif 40 <= i < 60: __lowerCamelCase = (b & c) | (b & d) | (c & d) __lowerCamelCase = 0x8F1BBCDC elif 60 <= i < 80: __lowerCamelCase = b ^ c ^ d __lowerCamelCase = 0xCA62C1D6 __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = ( self.rotate(a , 5 ) + f + e + k + expanded_block[i] & 0xFFFFFFFF, a, self.rotate(a , 30 ), c, d, ) __lowerCamelCase = ( self.h[0] + a & 0xFFFFFFFF, self.h[1] + b & 0xFFFFFFFF, self.h[2] + c & 0xFFFFFFFF, self.h[3] + d & 0xFFFFFFFF, self.h[4] + e & 0xFFFFFFFF, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCAmelCase ( ) -> List[str]: __lowerCamelCase = B'''Test String''' assert SHAaHash(UpperCamelCase__ ).final_hash() == hashlib.shaa(UpperCamelCase__ ).hexdigest() # noqa: S324 def __lowerCAmelCase ( ) -> List[str]: __lowerCamelCase = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: __lowerCamelCase = f.read() else: __lowerCamelCase = bytes(UpperCamelCase__ , '''utf-8''' ) print(SHAaHash(UpperCamelCase__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
67
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Union[str, Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
93
0
'''simple docstring''' def __a ( _UpperCamelCase: int , _UpperCamelCase: int ) -> str: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(_UpperCamelCase , int(b / 2 ) ) * actual_power(_UpperCamelCase , int(b / 2 ) ) else: return a * actual_power(_UpperCamelCase , int(b / 2 ) ) * actual_power(_UpperCamelCase , int(b / 2 ) ) def __a ( _UpperCamelCase: int , _UpperCamelCase: int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(_UpperCamelCase , _UpperCamelCase ) return actual_power(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": print(power(-2, -3))
142
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ : Any = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __a ( _UpperCamelCase: str , _UpperCamelCase: Union[str, Any]=100 , _UpperCamelCase: List[str]=" " ) -> List[str]: """simple docstring""" _snake_case = text.split(_UpperCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )] def __a ( _UpperCamelCase: dict ) -> dict: """simple docstring""" _snake_case , _snake_case = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_UpperCamelCase ): titles.append(title if title is not None else "" ) texts.append(_UpperCamelCase ) return {"title": titles, "text": texts} def __a ( _UpperCamelCase: dict , _UpperCamelCase: DPRContextEncoder , _UpperCamelCase: DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" _snake_case = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_UpperCamelCase , padding="longest" , return_tensors="pt" )["input_ids"] _snake_case = ctx_encoder(input_ids.to(device=_UpperCamelCase ) , return_dict=_UpperCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __a ( _UpperCamelCase: "RagExampleArguments" , _UpperCamelCase: "ProcessingArguments" , _UpperCamelCase: "IndexHnswArguments" , ) -> Dict: """simple docstring""" logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _snake_case = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _snake_case = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _snake_case = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCamelCase ) _snake_case = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _snake_case = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _snake_case = dataset.map( partial(_UpperCamelCase , ctx_encoder=_UpperCamelCase , ctx_tokenizer=_UpperCamelCase ) , batched=_UpperCamelCase , batch_size=processing_args.batch_size , features=_UpperCamelCase , ) # And finally save your dataset _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_UpperCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _snake_case = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_UpperCamelCase ) # And save the index _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_UpperCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _a : SCREAMING_SNAKE_CASE_ : str = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=__lowerCAmelCase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) SCREAMING_SNAKE_CASE_ : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : int = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) SCREAMING_SNAKE_CASE_ : int = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ : List[str] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : List[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
142
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer UpperCAmelCase__ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase__ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase__ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A ) class __lowerCAmelCase : def __call__( self : Dict , A : int , A : Optional[str] = None , A : Optional[str] = None , A : Union[bool, str] = False , A : Union[bool, str] = False , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[bool] = None , **A : int , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( A , A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) _UpperCAmelCase = titles if not isinstance(A , A) else [titles] _UpperCAmelCase = texts if not isinstance(A , A) else [texts] _UpperCAmelCase = len(A) _UpperCAmelCase = questions if not isinstance(A , A) else [questions] * n_passages assert len(A) == len( A), F"There should be as many titles than texts but got {len(A)} titles and {len(A)} texts." _UpperCAmelCase = super().__call__(A , A , padding=A , truncation=A)['input_ids'] _UpperCAmelCase = super().__call__(A , add_special_tokens=A , padding=A , truncation=A)['input_ids'] _UpperCAmelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A , A) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _UpperCAmelCase = attention_mask return self.pad(A , padding=A , max_length=A , return_tensors=A) def _lowerCamelCase ( self : str , A : BatchEncoding , A : DPRReaderOutput , A : int = 16 , A : int = 64 , A : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = reader_input['input_ids'] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(A) _UpperCAmelCase = sorted(range(A) , reverse=A , key=relevance_logits.__getitem__) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id) else: _UpperCAmelCase = len(A) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A , top_spans=A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A , start_index=A , end_index=A , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(A) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCamelCase ( self : int , A : List[int] , A : List[int] , A : int , A : int , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = [] for start_index, start_score in enumerate(A): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _UpperCAmelCase = sorted(A , key=lambda A: x[1] , reverse=A) _UpperCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" _UpperCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(A) == top_spans: break return chosen_span_intervals @add_end_docstrings(A ) class __lowerCAmelCase ( A , A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = DPRReaderTokenizer
339
import os import sys import unittest UpperCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCAmelCase__ = os.path.join(git_repo_path, "src", "diffusers") class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = find_backend(' if not is_torch_available():') self.assertEqual(A , 'torch') # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _UpperCAmelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):') self.assertEqual(A , 'torch_and_transformers') # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _UpperCAmelCase = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):') self.assertEqual(A , 'torch_and_transformers_and_onnx') def _lowerCamelCase ( self : int) -> Dict: """simple docstring""" _UpperCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , A) self.assertIn('torch_and_transformers' , A) self.assertIn('flax_and_transformers' , A) self.assertIn('torch_and_transformers_and_onnx' , A) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch']) self.assertIn('FlaxUNet2DConditionModel' , objects['flax']) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers']) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers']) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy']) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx']) def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = create_dummy_object('CONSTANT' , '\'torch\'') self.assertEqual(A , '\nCONSTANT = None\n') _UpperCAmelCase = create_dummy_object('function' , '\'torch\'') self.assertEqual( A , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n') _UpperCAmelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' _UpperCAmelCase = create_dummy_object('FakeClass' , '\'torch\'') self.assertEqual(A , A) def _lowerCamelCase ( self : Dict) -> int: """simple docstring""" _UpperCAmelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' _UpperCAmelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']}) self.assertEqual(dummy_files['torch'] , A)
339
1
'''simple docstring''' def __UpperCAmelCase ( a_: float, a_: float ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with open(lowerCAmelCase ) as metadata_file: _lowerCAmelCase = json.load(lowerCAmelCase ) _lowerCAmelCase = LukeConfig(use_entity_aware_attention=lowerCAmelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _lowerCAmelCase = torch.load(lowerCAmelCase , map_location="""cpu""" )["""module"""] # Load the entity vocab file _lowerCAmelCase = load_original_entity_vocab(lowerCAmelCase ) # add an entry for [MASK2] _lowerCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase = AddedToken("""<ent>""" , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) _lowerCAmelCase = AddedToken("""<ent2>""" , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """tokenizer_config.json""" ) , """r""" ) as f: _lowerCAmelCase = json.load(lowerCAmelCase ) _lowerCAmelCase = """MLukeTokenizer""" with open(os.path.join(lowerCAmelCase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = MLukeTokenizer.from_pretrained(lowerCAmelCase ) # Initialize the embeddings of the special tokens _lowerCAmelCase = tokenizer.convert_tokens_to_ids(["""@"""] )[0] _lowerCAmelCase = tokenizer.convert_tokens_to_ids(["""#"""] )[0] _lowerCAmelCase = state_dict["""embeddings.word_embeddings.weight"""] _lowerCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _lowerCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _lowerCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _lowerCAmelCase = state_dict[bias_name] _lowerCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _lowerCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _lowerCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase = f"encoder.layer.{layer_index}.attention.self." _lowerCAmelCase = state_dict[prefix + matrix_name] _lowerCAmelCase = state_dict[prefix + matrix_name] _lowerCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase = state_dict["""entity_embeddings.entity_embeddings.weight"""] _lowerCAmelCase = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) _lowerCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _lowerCAmelCase = state_dict["""entity_predictions.bias"""] _lowerCAmelCase = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) _lowerCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _lowerCAmelCase = LukeForMaskedLM(config=lowerCAmelCase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) _lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): _lowerCAmelCase = state_dict[key] else: _lowerCAmelCase = state_dict[key] _lowerCAmelCase , _lowerCAmelCase = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) if set(lowerCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(lowerCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _lowerCAmelCase = MLukeTokenizer.from_pretrained(lowerCAmelCase , task="""entity_classification""" ) _lowerCAmelCase = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" _lowerCAmelCase = (0, 9) _lowerCAmelCase = tokenizer(lowerCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) _lowerCAmelCase = model(**lowerCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase = torch.Size((1, 33, 7_68) ) _lowerCAmelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase = torch.Size((1, 1, 7_68) ) _lowerCAmelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _lowerCAmelCase = MLukeTokenizer.from_pretrained(lowerCAmelCase ) _lowerCAmelCase = """Tokyo is the capital of <mask>.""" _lowerCAmelCase = (24, 30) _lowerCAmelCase = tokenizer(lowerCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) _lowerCAmelCase = model(**lowerCAmelCase ) _lowerCAmelCase = encoding["""input_ids"""][0].tolist() _lowerCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) _lowerCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase ) _lowerCAmelCase = outputs.entity_logits[0][0].argmax().item() _lowerCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowerCAmelCase ) ) model.save_pretrained(lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ["""[MASK]""", """[PAD]""", """[UNK]"""] _lowerCAmelCase = [json.loads(lowerCAmelCase ) for line in open(lowerCAmelCase )] _lowerCAmelCase = {} for entry in data: _lowerCAmelCase = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _lowerCAmelCase = entity_id break _lowerCAmelCase = f"{language}:{entity_name}" _lowerCAmelCase = entity_id return new_mapping if __name__ == "__main__": A__ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) A__ : Union[str, Any] =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
70
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( _a , _a , unittest.TestCase ): _A : Tuple = AutoencoderKL _A : Union[str, Any] = '''sample''' _A : int = 1E-2 @property def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Tuple = 4 SCREAMING_SNAKE_CASE:Dict = 3 SCREAMING_SNAKE_CASE:str = (32, 32) SCREAMING_SNAKE_CASE:List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": image} @property def __UpperCamelCase ( self : Any ): return (3, 32, 32) @property def __UpperCamelCase ( self : int ): return (3, 32, 32) def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE:Optional[Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } SCREAMING_SNAKE_CASE:List[Any] = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self : int ): pass def __UpperCamelCase ( self : Tuple ): pass @unittest.skipIf(torch_device == "mps" ,"Gradient checkpointing skipped on MPS" ) def __UpperCamelCase ( self : str ): # enable deterministic behavior for gradient checkpointing SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE:Optional[Any] = self.model_class(**SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) assert not model.is_gradient_checkpointing and model.training SCREAMING_SNAKE_CASE:str = model(**SCREAMING_SNAKE_CASE__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() SCREAMING_SNAKE_CASE:str = torch.randn_like(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing SCREAMING_SNAKE_CASE:List[Any] = self.model_class(**SCREAMING_SNAKE_CASE__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training SCREAMING_SNAKE_CASE:Optional[int] = model_a(**SCREAMING_SNAKE_CASE__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() SCREAMING_SNAKE_CASE:List[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) SCREAMING_SNAKE_CASE:Dict = dict(model.named_parameters() ) SCREAMING_SNAKE_CASE:Tuple = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ,output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info["missing_keys"] ) ,0 ) model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) SCREAMING_SNAKE_CASE:int = model.to(SCREAMING_SNAKE_CASE__ ) model.eval() if torch_device == "mps": SCREAMING_SNAKE_CASE:str = torch.manual_seed(0 ) else: SCREAMING_SNAKE_CASE:Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE:Any = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) SCREAMING_SNAKE_CASE:Optional[int] = image.to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ).sample SCREAMING_SNAKE_CASE:str = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": SCREAMING_SNAKE_CASE:List[Any] = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: SCREAMING_SNAKE_CASE:Dict = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ): return F'''gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE__ ) for s in shape] )}.npy''' def __UpperCamelCase ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Any=(4, 3, 512, 512) ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): SCREAMING_SNAKE_CASE:str = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE:List[Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) ).to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return image def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Dict="CompVis/stable-diffusion-v1-4" ,SCREAMING_SNAKE_CASE__ : int=False ): SCREAMING_SNAKE_CASE:Union[str, Any] = "fp16" if fpaa else None SCREAMING_SNAKE_CASE:Optional[Any] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE:Union[str, Any] = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE__ ,subfolder="vae" ,torch_dtype=SCREAMING_SNAKE_CASE__ ,revision=SCREAMING_SNAKE_CASE__ ,) model.to(SCREAMING_SNAKE_CASE__ ).eval() return model def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str]=0 ): if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE__ ) return torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:Any = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:Tuple = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[str] = model(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE:Union[str, Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Tuple ): SCREAMING_SNAKE_CASE:Tuple = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[int] = model(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:int = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:List[str] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:Union[str, Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:int = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE:str = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:Any = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[str] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE:List[str] = sample[-1, -2:, :2, -2:].flatten().cpu() SCREAMING_SNAKE_CASE:Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): SCREAMING_SNAKE_CASE:int = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ,fpaa=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE:Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE:Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): SCREAMING_SNAKE_CASE:str = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ,fpaa=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[str] = model.decode(SCREAMING_SNAKE_CASE__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE:int = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[Any] = model.encode(SCREAMING_SNAKE_CASE__ ).latent_dist SCREAMING_SNAKE_CASE:int = dist.sample(generator=SCREAMING_SNAKE_CASE__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] SCREAMING_SNAKE_CASE:List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() SCREAMING_SNAKE_CASE:int = torch.tensor(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__ )
139
0
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = PriorTransformer SCREAMING_SNAKE_CASE_ : Optional[int] = """hidden_states""" @property def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def __A ( self , lowerCAmelCase__=0 ) -> List[str]: torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def __A ( self ) -> Optional[int]: return (4, 8) @property def __A ( self ) -> Optional[int]: return (4, 8) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE = self.model_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase__ ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) SCREAMING_SNAKE_CASE = model.to(lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , 'set_default_attn_processor' ): model.set_default_attn_processor() SCREAMING_SNAKE_CASE = self.get_dummy_seed_input() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE = output[0, :5].flatten().cpu() print(lowerCAmelCase__ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. SCREAMING_SNAKE_CASE = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1e-2 ) ) @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self , lowerCAmelCase__=1 , lowerCAmelCase__=768 , lowerCAmelCase__=77 , lowerCAmelCase__=0 ) -> Any: torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = embedding_dim SCREAMING_SNAKE_CASE = num_embeddings SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def __A ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: SCREAMING_SNAKE_CASE = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_seed_input(seed=lowerCAmelCase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ )[0] assert list(sample.shape ) == [1, 768] SCREAMING_SNAKE_CASE = sample[0, :8].flatten().cpu() print(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor(lowerCAmelCase__ ) assert torch_all_close(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 )
38
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCamelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCamelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCamelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCamelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase = np.expand_dims(test_image, axis=0) __UpperCamelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase = '''Normal''' if result[0][0] == 1: __UpperCamelCase = '''Abnormality detected'''
38
1
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
1
class _UpperCAmelCase : def __init__( self : Optional[Any] ): snake_case_ : int = """""" snake_case_ : str = """""" snake_case_ : Dict = [] def _snake_case ( self : Tuple , lowercase_ : int , lowercase_ : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: snake_case_ : int = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: snake_case_ : Union[str, Any] = self.__min_dist_top_down_dp(lowercase_ , n - 1 ) snake_case_ : List[Any] = self.__min_dist_top_down_dp(m - 1 , lowercase_ ) snake_case_ : List[str] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) snake_case_ : Optional[Any] = 1 + min(lowercase_ , lowercase_ , lowercase_ ) return self.dp[m][n] def _snake_case ( self : Dict , lowercase_ : str , lowercase_ : str ): snake_case_ : Any = worda snake_case_ : Union[str, Any] = worda snake_case_ : Optional[int] = [[-1 for _ in range(len(lowercase_ ) )] for _ in range(len(lowercase_ ) )] return self.__min_dist_top_down_dp(len(lowercase_ ) - 1 , len(lowercase_ ) - 1 ) def _snake_case ( self : List[Any] , lowercase_ : str , lowercase_ : str ): snake_case_ : Any = worda snake_case_ : int = worda snake_case_ : str = len(lowercase_ ) snake_case_ : int = len(lowercase_ ) snake_case_ : Tuple = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty snake_case_ : Tuple = j elif j == 0: # second string is empty snake_case_ : str = i elif worda[i - 1] == worda[j - 1]: # last characters are equal snake_case_ : Any = self.dp[i - 1][j - 1] else: snake_case_ : str = self.dp[i][j - 1] snake_case_ : Union[str, Any] = self.dp[i - 1][j] snake_case_ : List[Any] = self.dp[i - 1][j - 1] snake_case_ : int = 1 + min(lowercase_ , lowercase_ , lowercase_ ) return self.dp[m][n] if __name__ == "__main__": lowercase__ : int = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() lowercase__ : List[str] = input('''Enter the first string: ''').strip() lowercase__ : Union[str, Any] = input('''Enter the second string: ''').strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
371
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : str = get_logger(__name__) lowercase__ : List[str] = Path(__file__).parent / '''model_card_template.md''' lowercase__ : Union[str, Any] = uuida().hex lowercase__ : Tuple = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[int] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowercase ( _a = None ): snake_case_ : List[str] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def __lowercase ( _a , _a = None , _a = None ): if token is None: snake_case_ : Union[str, Any] = HfFolder.get_token() if organization is None: snake_case_ : int = whoami(_a )['''name'''] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def __lowercase ( _a , _a ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ : Union[str, Any] = args.hub_token if hasattr(_a , '''hub_token''' ) else None snake_case_ : Dict = get_full_repo_name(_a , token=_a ) snake_case_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ : Tuple = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def __lowercase ( _a , _a = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : Tuple = str(Path(_a ).as_posix() ) snake_case_ : int = re.search(r'''snapshots/([^/]+)/''' , _a ) if search is None: return None snake_case_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : str = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase__ : List[Any] = os.path.join(hf_cache_home, '''diffusers''') def __lowercase ( _a = None , _a = None ): if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : List[str] = old_diffusers_cache snake_case_ : Union[str, Any] = Path(_a ).expanduser() snake_case_ : str = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : List[Any] = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase__ : Optional[int] = 0 else: with open(cache_version_file) as f: try: lowercase__ : Optional[Any] = int(f.read()) except ValueError: lowercase__ : Optional[Any] = 0 if cache_version < 1: lowercase__ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase__ : Optional[Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __lowercase ( _a , _a = None ): if variant is not None: snake_case_ : str = weights_name.split('''.''' ) snake_case_ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] snake_case_ : List[Any] = '''.'''.join(_a ) return weights_name def __lowercase ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): snake_case_ : Dict = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint snake_case_ : Dict = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): snake_case_ : List[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ : str = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _a , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}' so that the correct variant file can be added." , _a , ) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
155
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" # Initialise PyTorch model lowerCamelCase__ : str = LxmertConfig.from_json_file(UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) lowerCamelCase__ : List[Any] = LxmertForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _A : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
142
from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , A : Any ) ->Optional[int]: lowerCamelCase__ : Optional[int] = data lowerCamelCase__ : Any = None class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->str: lowerCamelCase__ : Any = None def __lowerCamelCase ( self : Tuple ) ->Any: lowerCamelCase__ : str = self.head while temp is not None: print(temp.data , end=''' ''' ) lowerCamelCase__ : Dict = temp.next print() def __lowerCamelCase ( self : Dict , A : Any ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = Node(A ) lowerCamelCase__ : Dict = self.head lowerCamelCase__ : List[str] = new_node def __lowerCamelCase ( self : Optional[int] , A : int , A : Tuple ) ->List[Any]: if node_data_a == node_data_a: return else: lowerCamelCase__ : Tuple = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase__ : Union[str, Any] = node_a.next lowerCamelCase__ : int = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase__ : Optional[int] = node_a.next if node_a is None or node_a is None: return lowerCamelCase__ , lowerCamelCase__ : str = node_a.data, node_a.data if __name__ == "__main__": _A : List[Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
142
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase : Any = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
358
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
294
0
"""simple docstring""" def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density") if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus") return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
1
"""simple docstring""" class snake_case : def __init__( self : List[str] , a__ : int , a__ : Any=None , a__ : Dict=None ) -> str: '''simple docstring''' _A = data _A = previous _A = next_node def __str__( self : str ) -> str: '''simple docstring''' return F"""{self.data}""" def a_ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.data def a_ ( self : int ) -> Union[str, Any]: '''simple docstring''' return self.next def a_ ( self : Tuple ) -> Any: '''simple docstring''' return self.previous class snake_case : def __init__( self : Tuple , a__ : Tuple ) -> Optional[int]: '''simple docstring''' _A = head def __iter__( self : str ) -> Optional[Any]: '''simple docstring''' return self def a_ ( self : Any ) -> Dict: '''simple docstring''' if not self.current: raise StopIteration else: _A = self.current.get_data() _A = self.current.get_next() return value class snake_case : def __init__( self : Optional[Any] ) -> str: '''simple docstring''' _A = None # First node in list _A = None # Last node in list def __str__( self : Dict ) -> List[Any]: '''simple docstring''' _A = self.head _A = [] while current is not None: nodes.append(current.get_data() ) _A = current.get_next() return " ".join(str(a__ ) for node in nodes ) def __contains__( self : Optional[Any] , a__ : int ) -> List[Any]: '''simple docstring''' _A = self.head while current: if current.get_data() == value: return True _A = current.get_next() return False def __iter__( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return LinkedListIterator(self.head ) def a_ ( self : List[str] ) -> Dict: '''simple docstring''' if self.head: return self.head.get_data() return None def a_ ( self : str ) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def a_ ( self : int , a__ : Node ) -> None: '''simple docstring''' if self.head is None: _A = node _A = node else: self.insert_before_node(self.head , a__ ) def a_ ( self : int , a__ : Node ) -> None: '''simple docstring''' if self.head is None: self.set_head(a__ ) else: self.insert_after_node(self.tail , a__ ) def a_ ( self : str , a__ : int ) -> None: '''simple docstring''' _A = Node(a__ ) if self.head is None: self.set_head(a__ ) else: self.set_tail(a__ ) def a_ ( self : int , a__ : Node , a__ : Node ) -> None: '''simple docstring''' _A = node _A = node.previous if node.get_previous() is None: _A = node_to_insert else: _A = node_to_insert _A = node_to_insert def a_ ( self : List[str] , a__ : Node , a__ : Node ) -> None: '''simple docstring''' _A = node _A = node.next if node.get_next() is None: _A = node_to_insert else: _A = node_to_insert _A = node_to_insert def a_ ( self : Any , a__ : int , a__ : int ) -> None: '''simple docstring''' _A = 1 _A = Node(a__ ) _A = self.head while node: if current_position == position: self.insert_before_node(a__ , a__ ) return current_position += 1 _A = node.next self.insert_after_node(self.tail , a__ ) def a_ ( self : Union[str, Any] , a__ : int ) -> Node: '''simple docstring''' _A = self.head while node: if node.get_data() == item: return node _A = node.get_next() raise Exception("Node not found" ) def a_ ( self : int , a__ : Union[str, Any] ) -> int: '''simple docstring''' if (node := self.get_node(a__ )) is not None: if node == self.head: _A = self.head.get_next() if node == self.tail: _A = self.tail.get_previous() self.remove_node_pointers(a__ ) @staticmethod def a_ ( a__ : Node ) -> None: '''simple docstring''' if node.get_next(): _A = node.previous if node.get_previous(): _A = node.next _A = None _A = None def a_ ( self : Any ) -> List[str]: '''simple docstring''' return self.head is None def a__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
163
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def a__ ( __lowercase , __lowercase , __lowercase = 1_6000 ) -> List[str]: _A = int(round(sample_rate * max_length ) ) if len(__lowercase ) <= sample_length: return wav _A = randint(0 , len(__lowercase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class snake_case : __UpperCamelCase = field(default=_UpperCamelCase , metadata={'help': 'Name of a dataset from the datasets package'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'A file containing the training audio paths and labels.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'A file containing the validation audio paths and labels.'}) __UpperCamelCase = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) __UpperCamelCase = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) __UpperCamelCase = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) __UpperCamelCase = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __UpperCamelCase = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class snake_case : __UpperCamelCase = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) __UpperCamelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , a__ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def a__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _A = DatasetDict() _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--audio_column_name` to the correct audio column - one of " f"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--label_column_name` to the correct text column - one of " f"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _A = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _A = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _A = feature_extractor.model_input_names[0] def train_transforms(__lowercase ): _A = [] for audio in batch[data_args.audio_column_name]: _A = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowercase ) _A = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) _A = {model_input_name: inputs.get(__lowercase )} _A = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowercase ): _A = [audio["array"] for audio in batch[data_args.audio_column_name]] _A = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) _A = {model_input_name: inputs.get(__lowercase )} _A = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _A = raw_datasets["train"].features[data_args.label_column_name].names _A , _A = {}, {} for i, label in enumerate(__lowercase ): _A = str(__lowercase ) _A = label # Load the accuracy metric from the datasets package _A = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowercase ): _A = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowercase , references=eval_pred.label_ids ) _A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _A = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowercase , output_all_columns=__lowercase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _A = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowercase , output_all_columns=__lowercase ) # Initialize our trainer _A = Trainer( model=__lowercase , args=__lowercase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics("eval" , __lowercase ) trainer.save_metrics("eval" , __lowercase ) # Write model card and (optionally) push to hub _A = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
163
1
# using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : int=None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: UpperCamelCase , UpperCamelCase :Optional[Any] = True, True UpperCamelCase :Dict = dfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return path def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" UpperCamelCase :Dict = 0 UpperCamelCase :Dict = -1 for i in range(__magic_name__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 UpperCamelCase :List[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : List[Any] ) -> int: """simple docstring""" UpperCamelCase :str = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] UpperCamelCase , UpperCamelCase :Optional[int] = check_circuit_or_path(__magic_name__ , __magic_name__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return UpperCamelCase :int = 1 if check == 2: UpperCamelCase :Optional[int] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) UpperCamelCase :Optional[int] = dfs(__magic_name__ , __magic_name__ , __magic_name__ ) print(__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: """simple docstring""" UpperCamelCase :List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} UpperCamelCase :Optional[int] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} UpperCamelCase :Tuple = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} UpperCamelCase :Optional[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} UpperCamelCase :List[Any] = { 1: [], 2: [] # all degree is zero } UpperCamelCase :List[str] = 10 check_euler(__magic_name__ , __magic_name__ ) check_euler(__magic_name__ , __magic_name__ ) check_euler(__magic_name__ , __magic_name__ ) check_euler(__magic_name__ , __magic_name__ ) check_euler(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
38
import re import string import numpy as np import datasets UpperCAmelCase_ : Dict = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' UpperCAmelCase_ : Any = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' UpperCAmelCase_ : Tuple = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def _A ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase :str = np.array([re.sub(__lowerCamelCase , """""" , __lowerCamelCase ) for x in predictions] ) UpperCamelCase :Tuple = np.array([re.sub(__lowerCamelCase , """""" , __lowerCamelCase ) for x in references] ) else: UpperCamelCase :Any = np.asarray(__lowerCamelCase ) UpperCamelCase :str = np.asarray(__lowerCamelCase ) if ignore_case: UpperCamelCase :Tuple = np.char.lower(__lowerCamelCase ) UpperCamelCase :Any = np.char.lower(__lowerCamelCase ) if ignore_punctuation: UpperCamelCase :Optional[int] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase :Optional[Any] = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :List[str] = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) if ignore_numbers: UpperCamelCase :Tuple = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase :Dict = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :Tuple = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :int = predictions == references return {"exact_match": np.mean(__lowerCamelCase ) * 100}
38
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 2 @register_to_config def __init__( self , _a = 0.02 , _a = 100 , _a = 1.007 , _a = 80 , _a = 0.05 , _a = 50 , ): """simple docstring""" lowerCamelCase = sigma_max # setable values lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None # sigma(t_i) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" return sample def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = num_inference_steps lowerCamelCase = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCamelCase = torch.from_numpy(_a ).to(_a ) lowerCamelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCamelCase = torch.tensor(_a , dtype=torch.floataa , device=_a ) def _lowerCAmelCase ( self , _a , _a , _a = None ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCamelCase = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase = self.config.s_noise * randn_tensor(sample.shape , generator=_a ).to(sample.device ) lowerCamelCase = sigma + gamma * sigma lowerCamelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowerCAmelCase ( self , _a , _a , _a , _a , _a = True , ): """simple docstring""" lowerCamelCase = sample_hat + sigma_hat * model_output lowerCamelCase = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_a , derivative=_a , pred_original_sample=_a ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a = True , ): """simple docstring""" lowerCamelCase = sample_prev + sigma_prev * model_output lowerCamelCase = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_a , derivative=_a , pred_original_sample=_a ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" raise NotImplementedError()
364
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( snake_case__ ) -> List[str]: lowerCamelCase = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def a__ ( snake_case__ ) -> int: lowerCamelCase , lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) lowerCamelCase = emb.weight.data return lin_layer def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCamelCase = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowerCamelCase = checkpoint["""model"""] remove_ignore_keys_(snake_case__ ) lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} lowerCamelCase = XGLMConfig( vocab_size=snake_case__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCamelCase = XGLMForCausalLM(snake_case__ ) lowerCamelCase = model.load_state_dict(snake_case__ , strict=snake_case__ ) print(snake_case__ ) lowerCamelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase : Union[str, Any] = parser.parse_args() lowerCAmelCase : Tuple = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
168
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
"""simple docstring""" import argparse import json from tqdm import tqdm def lowercase () -> Dict: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=snake_case__ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=snake_case__ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=snake_case__ , help="""where to store parsed gold_data_path file""" , ) lowerCAmelCase = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: lowerCAmelCase = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): lowerCAmelCase = dpr_record["""question"""] lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case__ ) + """\n""" ) if __name__ == "__main__": main()
155
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a ) , """Tatoeba directory does not exist.""" ) class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCamelCase ) @slow def __snake_case( self : str ) -> Tuple: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def __snake_case( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.resolver.write_model_card("opus-mt-he-en" , dry_run=_UpperCamelCase ) assert mmeta["long_pair"] == "heb-eng"
206
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase ( a ): lowercase__ : Tuple = """unispeech-sat""" def __init__( self : str , _UpperCamelCase : Tuple=32 , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : Tuple=12 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Tuple=3_072 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Union[str, Any]="group" , _UpperCamelCase : Optional[int]="gelu" , _UpperCamelCase : Tuple=(512, 512, 512, 512, 512, 512, 512) , _UpperCamelCase : List[str]=(5, 2, 2, 2, 2, 2, 2) , _UpperCamelCase : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Dict=128 , _UpperCamelCase : Optional[int]=16 , _UpperCamelCase : Tuple=False , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[Any]=0.0_5 , _UpperCamelCase : Union[str, Any]=10 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : str=0.0 , _UpperCamelCase : List[Any]=10 , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : Any=320 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : str=0.1 , _UpperCamelCase : str=100 , _UpperCamelCase : int=256 , _UpperCamelCase : Optional[Any]=256 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : str="mean" , _UpperCamelCase : int=False , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Any=256 , _UpperCamelCase : str=(512, 512, 512, 512, 1_500) , _UpperCamelCase : List[Any]=(5, 3, 3, 1, 1) , _UpperCamelCase : Union[str, Any]=(1, 2, 3, 1, 1) , _UpperCamelCase : Any=512 , _UpperCamelCase : str=0 , _UpperCamelCase : int=1 , _UpperCamelCase : Any=2 , _UpperCamelCase : Optional[Any]=504 , **_UpperCamelCase : str , ) -> int: '''simple docstring''' super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = feat_extract_norm SCREAMING_SNAKE_CASE = feat_extract_activation SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = conv_bias SCREAMING_SNAKE_CASE = num_conv_pos_embeddings SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE = len(self.conv_dim ) SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = feat_proj_dropout SCREAMING_SNAKE_CASE = final_dropout SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = num_clusters SCREAMING_SNAKE_CASE = do_stable_layer_norm SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE = apply_spec_augment SCREAMING_SNAKE_CASE = mask_time_prob SCREAMING_SNAKE_CASE = mask_time_length SCREAMING_SNAKE_CASE = mask_time_min_masks SCREAMING_SNAKE_CASE = mask_feature_prob SCREAMING_SNAKE_CASE = mask_feature_length SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE = num_codevectors_per_group SCREAMING_SNAKE_CASE = num_codevector_groups SCREAMING_SNAKE_CASE = contrastive_logits_temperature SCREAMING_SNAKE_CASE = feat_quantizer_dropout SCREAMING_SNAKE_CASE = num_negatives SCREAMING_SNAKE_CASE = codevector_dim SCREAMING_SNAKE_CASE = proj_codevector_dim SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE = ctc_loss_reduction SCREAMING_SNAKE_CASE = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE = xvector_output_dim @property def __snake_case( self : Tuple ) -> str: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
206
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = LxmertConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ = LxmertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
136
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _snake_case = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } _snake_case = { '169M': 768, '430M': 1024, '1B5': 2048, '3B': 2560, '7B': 4096, '14B': 5120, } def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = list(state_dict.keys() ) for name in state_dict_keys: _a : str = state_dict.pop(UpperCamelCase__ ) # emb -> embedding if name.startswith("""emb.""" ): _a : Dict = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): _a : Dict = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention _a : Any = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , UpperCamelCase__ ) # ffn -> feed_forward _a : int = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , UpperCamelCase__ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): _a : List[str] = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): _a : Tuple = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): _a : Dict = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": _a : Optional[int] = """rwkv.""" + name _a : Any = weight return state_dict def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=None ): '''simple docstring''' # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) _a : Tuple = 5_0_2_7_7 _a : str = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: _a : int = PreTrainedTokenizerFast(tokenizer_file=UpperCamelCase__ ) _a : int = len(UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) # 2. Build the config _a : Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : Tuple = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : List[Any] = RwkvConfig( vocab_size=UpperCamelCase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(UpperCamelCase__ ) # 3. Download model file then convert state_dict _a : str = hf_hub_download(UpperCamelCase__ , UpperCamelCase__ ) _a : int = torch.load(UpperCamelCase__ , map_location="""cpu""" ) _a : List[str] = convert_state_dict(UpperCamelCase__ ) # 4. Split in shards and save _a , _a : List[str] = shard_checkpoint(UpperCamelCase__ ) for shard_file, shard in shards.items(): torch.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) if index is not None: _a : Optional[Any] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) # Save the index as well with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: _a : Dict = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + """\n""" f.write(UpperCamelCase__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Any = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) _a : Dict = AutoModelForCausalLM.from_pretrained(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) _snake_case = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
294
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case ={ """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def a_ ( lowerCamelCase : Any ): lowerCAmelCase = {} state_dict.pop('pixel_mean' , lowerCamelCase ) state_dict.pop('pixel_std' , lowerCamelCase ) lowerCAmelCase = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase = key.replace(lowerCamelCase , lowerCamelCase ) if re.match(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = int(re.match(lowerCamelCase , lowerCamelCase ).group(2 ) ) if layer_nb == 0: lowerCAmelCase = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: lowerCAmelCase = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: lowerCAmelCase = key.replace('layers.2' , 'proj_out' ) lowerCAmelCase = value lowerCAmelCase = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def a_ ( lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int="ybelkada/segment-anything" ): lowerCAmelCase = hf_hub_download(lowerCamelCase , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowerCAmelCase = SamConfig() elif "sam_vit_l" in model_name: lowerCAmelCase = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCAmelCase = SamConfig( vision_config=lowerCamelCase , ) elif "sam_vit_h" in model_name: lowerCAmelCase = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCAmelCase = SamConfig( vision_config=lowerCamelCase , ) lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) lowerCAmelCase = replace_keys(lowerCamelCase ) lowerCAmelCase = SamImageProcessor() lowerCAmelCase = SamProcessor(image_processor=lowerCamelCase ) lowerCAmelCase = SamModel(lowerCamelCase ) hf_model.load_state_dict(lowerCamelCase ) lowerCAmelCase = hf_model.to('cuda' ) lowerCAmelCase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert('RGB' ) lowerCAmelCase = [[[400, 650]]] lowerCAmelCase = [[1]] lowerCAmelCase = processor(images=np.array(lowerCamelCase ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowerCAmelCase = hf_model(**lowerCamelCase ) lowerCAmelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 lowerCAmelCase = processor( images=np.array(lowerCamelCase ) , input_points=lowerCamelCase , input_labels=lowerCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowerCAmelCase = hf_model(**lowerCamelCase ) lowerCAmelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 lowerCAmelCase = ((75, 275, 1725, 850),) lowerCAmelCase = processor(images=np.array(lowerCamelCase ) , input_boxes=lowerCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowerCAmelCase = hf_model(**lowerCamelCase ) lowerCAmelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. lowerCAmelCase = [[[400, 650], [800, 650]]] lowerCAmelCase = [[1, 1]] lowerCAmelCase = processor( images=np.array(lowerCamelCase ) , input_points=lowerCamelCase , input_labels=lowerCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowerCAmelCase = hf_model(**lowerCamelCase ) lowerCAmelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": __snake_case =argparse.ArgumentParser() __snake_case =["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __snake_case =parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
371
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : List[str]=1_0 , UpperCAmelCase__ : Optional[int]=[8, 1_6, 3_2, 6_4] , UpperCAmelCase__ : str=[1, 1, 2, 1] , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Tuple=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Union[str, Any]=[2, 3, 4] , UpperCAmelCase__ : Any=1 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = embeddings_size lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_act lowerCAmelCase = num_labels lowerCAmelCase = scope lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = out_features lowerCAmelCase = out_indices lowerCAmelCase = num_groups def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : int ) -> int: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Any: lowerCAmelCase = BitModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[str]: lowerCAmelCase = self.num_labels lowerCAmelCase = BitForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ) -> Any: lowerCAmelCase = BitBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase = None lowerCAmelCase = BitBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Optional[int] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCamelCase : Optional[Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase = BitModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self : Any ) -> Optional[Any]: return @unittest.skip(reason='Bit does not output attentions' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: pass def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(config=UpperCAmelCase__ ) for name, module in model.named_modules(): if isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: def check_hidden_states_output(UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ): lowerCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase = layer_type lowerCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: pass def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = BitModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> Optional[int]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**UpperCAmelCase__ ) # verify the logits lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @require_torch class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : int = (BitBackbone,) if is_torch_available() else () lowerCamelCase : Dict = BitConfig lowerCamelCase : Tuple = False def __UpperCAmelCase ( self : str ) -> Optional[Any]: lowerCAmelCase = BitModelTester(self )
55
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters __A =False __A =False def _UpperCamelCase ( UpperCamelCase__ ): return TrainCommand(UpperCamelCase__ ) class _snake_case ( a__ ): @staticmethod def snake_case__ ( _lowerCamelCase): UpperCAmelCase__ : Tuple = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""") train_parser.add_argument( """--train_data""" , type=_lowerCamelCase , required=_lowerCamelCase , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=_lowerCamelCase , default=0 , help="""Column of the dataset csv file with example labels.""") train_parser.add_argument( """--column_text""" , type=_lowerCamelCase , default=1 , help="""Column of the dataset csv file with example texts.""") train_parser.add_argument( """--column_id""" , type=_lowerCamelCase , default=2 , help="""Column of the dataset csv file with example ids.""") train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""") train_parser.add_argument("""--validation_data""" , type=_lowerCamelCase , default="""""" , help="""path to validation dataset.""") train_parser.add_argument( """--validation_split""" , type=_lowerCamelCase , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=_lowerCamelCase , default="""./""" , help="""path to saved the trained model.""") train_parser.add_argument( """--task""" , type=_lowerCamelCase , default="""text_classification""" , help="""Task to train the model on.""") train_parser.add_argument( """--model""" , type=_lowerCamelCase , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""") train_parser.add_argument("""--train_batch_size""" , type=_lowerCamelCase , default=32 , help="""Batch size for training.""") train_parser.add_argument("""--valid_batch_size""" , type=_lowerCamelCase , default=64 , help="""Batch size for validation.""") train_parser.add_argument("""--learning_rate""" , type=_lowerCamelCase , default=3e-5 , help="""Learning rate.""") train_parser.add_argument("""--adam_epsilon""" , type=_lowerCamelCase , default=1e-0_8 , help="""Epsilon for Adam optimizer.""") train_parser.set_defaults(func=_lowerCamelCase) def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Dict = logging.get_logger("""transformers-cli/training""") UpperCAmelCase__ : int = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=_lowerCamelCase) UpperCAmelCase__ : Tuple = args.output UpperCAmelCase__ : Union[str, Any] = args.column_label UpperCAmelCase__ : str = args.column_text UpperCAmelCase__ : List[str] = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''') if args.task == "text_classification": UpperCAmelCase__ : Optional[int] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''') UpperCAmelCase__ : Optional[int] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase__ : List[Any] = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''') UpperCAmelCase__ : List[str] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase__ : Tuple = args.validation_split UpperCAmelCase__ : Dict = args.train_batch_size UpperCAmelCase__ : Dict = args.valid_batch_size UpperCAmelCase__ : Union[str, Any] = args.learning_rate UpperCAmelCase__ : Tuple = args.adam_epsilon def snake_case__ ( self): if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case__ ( self): raise NotImplementedError def snake_case__ ( self): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
163
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( UpperCamelCase__ ): return [ord(UpperCamelCase__ ) - 9_6 for elem in plain] def _UpperCamelCase ( UpperCamelCase__ ): return "".join(chr(elem + 9_6 ) for elem in encoded ) def _UpperCamelCase ( ): UpperCAmelCase__ : int = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCamelCase__ ) print("""Decoded:""" , decode(UpperCamelCase__ ) ) if __name__ == "__main__": main()
163
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase__ = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert('''RGB''' ) return image def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int] ): '''simple docstring''' UpperCamelCase__ = dct.pop(snake_case__ ) UpperCamelCase__ = val def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase__ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCamelCase__ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCamelCase__ = torch.cat((q_bias, torch.zeros_like(snake_case__, requires_grad=snake_case__ ), v_bias) ) UpperCamelCase__ = qkv_bias def lowerCamelCase_ ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = 364 if 'coco' in model_name else 224 UpperCamelCase__ = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase__ = OPTConfig.from_pretrained('''facebook/opt-2.7b''', eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase__ = OPTConfig.from_pretrained('''facebook/opt-6.7b''', eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: UpperCamelCase__ = TaConfig.from_pretrained('''google/flan-t5-xl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase__ = TaConfig.from_pretrained('''google/flan-t5-xxl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict() UpperCamelCase__ = BlipaConfig(vision_config=snake_case__, text_config=snake_case__ ) return config, image_size @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Dict=None, UpperCamelCase__ : int=False ): '''simple docstring''' UpperCamelCase__ = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCamelCase__ = tokenizer('''\n''', add_special_tokens=snake_case__ ).input_ids[0] UpperCamelCase__ = get_blipa_config(snake_case__, eos_token_id=snake_case__ ) UpperCamelCase__ = BlipaForConditionalGeneration(snake_case__ ).eval() UpperCamelCase__ = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase__ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase__ = load_model_and_preprocess( name=snake_case__, model_type=snake_case__, is_eval=snake_case__, device=snake_case__ ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCamelCase__ = original_model.state_dict() UpperCamelCase__ = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase__ = state_dict.pop(snake_case__ ) if key.startswith('''Qformer.bert''' ): UpperCamelCase__ = key.replace('''Qformer.bert''', '''qformer''' ) if "attention.self" in key: UpperCamelCase__ = key.replace('''self''', '''attention''' ) if "opt_proj" in key: UpperCamelCase__ = key.replace('''opt_proj''', '''language_projection''' ) if "t5_proj" in key: UpperCamelCase__ = key.replace('''t5_proj''', '''language_projection''' ) if key.startswith('''opt''' ): UpperCamelCase__ = key.replace('''opt''', '''language''' ) if key.startswith('''t5''' ): UpperCamelCase__ = key.replace('''t5''', '''language''' ) UpperCamelCase__ = val # read in qv biases read_in_q_v_bias(snake_case__, snake_case__ ) UpperCamelCase__ = hf_model.load_state_dict(snake_case__, strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase__ = load_demo_image() UpperCamelCase__ = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) UpperCamelCase__ = tokenizer(['''\n'''], return_tensors='''pt''' ).input_ids.to(snake_case__ ) # create processor UpperCamelCase__ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size}, image_mean=snake_case__, image_std=snake_case__ ) UpperCamelCase__ = BlipaProcessor(image_processor=snake_case__, tokenizer=snake_case__ ) UpperCamelCase__ = processor(images=snake_case__, return_tensors='''pt''' ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__, snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase__ = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCamelCase__ = hf_model(snake_case__, snake_case__ ).logits else: UpperCamelCase__ = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCamelCase__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100 ) UpperCamelCase__ = hf_model(snake_case__, snake_case__, labels=snake_case__ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''', original_logits[0, :3, :3] ) print('''First values of HF logits:''', logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase__ = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]], device=snake_case__ ) assert torch.allclose(logits[0, :3, :3], snake_case__, atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase__ = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]], device=snake_case__ ) else: # cast to same type UpperCamelCase__ = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ), snake_case__, atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCamelCase__ = '' UpperCamelCase__ = tokenizer(snake_case__, return_tensors='''pt''' ).input_ids.to(snake_case__ ) UpperCamelCase__ = original_model.generate({'''image''': original_pixel_values} ) UpperCamelCase__ = hf_model.generate( snake_case__, snake_case__, do_sample=snake_case__, num_beams=5, max_length=30, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, temperature=1, ) print('''Original generation:''', snake_case__ ) UpperCamelCase__ = input_ids.shape[1] UpperCamelCase__ = processor.batch_decode(outputs[:, prompt_length:], skip_special_tokens=snake_case__ ) UpperCamelCase__ = [text.strip() for text in output_text] print('''HF generation:''', snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() lowercase = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) lowercase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __lowercase ( A ): '''simple docstring''' _A : int = '''align_text_model''' def __init__( self : Tuple , _a : Tuple=30_522 , _a : str=768 , _a : Tuple=12 , _a : Dict=12 , _a : Any=3_072 , _a : str="gelu" , _a : int=0.1 , _a : Optional[Any]=0.1 , _a : int=512 , _a : List[str]=2 , _a : Any=0.02 , _a : Dict=1E-12 , _a : Tuple=0 , _a : Optional[Any]="absolute" , _a : str=True , **_a : Union[str, Any] , ): super().__init__(**_a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = pad_token_id @classmethod def A_ ( cls : List[str] , _a : Union[str, os.PathLike] , **_a : Any ): cls._set_token_in_kwargs(_a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase__ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __lowercase ( A ): '''simple docstring''' _A : List[Any] = '''align_vision_model''' def __init__( self : List[str] , _a : int = 3 , _a : int = 600 , _a : float = 2.0 , _a : float = 3.1 , _a : int = 8 , _a : List[int] = [3, 3, 5, 3, 5, 5, 3] , _a : List[int] = [32, 16, 24, 40, 80, 112, 192] , _a : List[int] = [16, 24, 40, 80, 112, 192, 320] , _a : List[int] = [] , _a : List[int] = [1, 2, 2, 2, 1, 2, 1] , _a : List[int] = [1, 2, 2, 3, 3, 4, 1] , _a : List[int] = [1, 6, 6, 6, 6, 6, 6] , _a : float = 0.25 , _a : str = "swish" , _a : int = 2_560 , _a : str = "mean" , _a : float = 0.02 , _a : float = 0.001 , _a : float = 0.99 , _a : float = 0.2 , **_a : List[Any] , ): super().__init__(**_a ) UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = width_coefficient UpperCamelCase__ = depth_coefficient UpperCamelCase__ = depth_divisor UpperCamelCase__ = kernel_sizes UpperCamelCase__ = in_channels UpperCamelCase__ = out_channels UpperCamelCase__ = depthwise_padding UpperCamelCase__ = strides UpperCamelCase__ = num_block_repeats UpperCamelCase__ = expand_ratios UpperCamelCase__ = squeeze_expansion_ratio UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dim UpperCamelCase__ = pooling_type UpperCamelCase__ = initializer_range UpperCamelCase__ = batch_norm_eps UpperCamelCase__ = batch_norm_momentum UpperCamelCase__ = drop_connect_rate UpperCamelCase__ = sum(_a ) * 4 @classmethod def A_ ( cls : Tuple , _a : Union[str, os.PathLike] , **_a : Union[str, Any] ): cls._set_token_in_kwargs(_a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __lowercase ( A ): '''simple docstring''' _A : List[Any] = '''align''' _A : Optional[int] = True def __init__( self : Optional[int] , _a : Tuple=None , _a : int=None , _a : Any=640 , _a : Optional[Any]=1.0 , _a : Tuple=0.02 , **_a : List[Any] , ): super().__init__(**_a ) if text_config is None: UpperCamelCase__ = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCamelCase__ = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCamelCase__ = AlignTextConfig(**_a ) UpperCamelCase__ = AlignVisionConfig(**_a ) UpperCamelCase__ = projection_dim UpperCamelCase__ = temperature_init_value UpperCamelCase__ = initializer_range @classmethod def A_ ( cls : Optional[int] , _a : AlignTextConfig , _a : AlignVisionConfig , **_a : Optional[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def A_ ( self : Tuple ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.text_config.to_dict() UpperCamelCase__ = self.vision_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
35
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowercase_ ( _lowerCamelCase : Union[dict, list, tuple, torch.Tensor]): lowercase__ : Any = [] if isinstance(lowerCAmelCase__ , lowerCAmelCase__): for v in tree.values(): shapes.extend(_fetch_dims(lowerCAmelCase__)) elif isinstance(lowerCAmelCase__ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCAmelCase__)) elif isinstance(lowerCAmelCase__ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError("Not supported") return shapes @torch.jit.ignore def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple[int, ...]): lowercase__ : Union[str, Any] = [] for d in reversed(lowerCAmelCase__): idx.append(flat_idx % d) lowercase__ : Tuple = flat_idx // d return tuple(reversed(lowerCAmelCase__)) @torch.jit.ignore def lowercase_ ( _lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Optional[Sequence[bool]] = None , _lowerCamelCase : Optional[Sequence[bool]] = None , ): def reduce_edge_list(_lowerCamelCase : List[bool]) -> None: lowercase__ : Dict = True for i in range(len(lowerCAmelCase__)): lowercase__ : str = -1 * (i + 1) l[reversed_idx] &= tally lowercase__ : str = l[reversed_idx] if start_edges is None: lowercase__ : Optional[Any] = [s == 0 for s in start] reduce_edge_list(lowerCAmelCase__) if end_edges is None: lowercase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCAmelCase__ , lowerCAmelCase__)] reduce_edge_list(lowerCAmelCase__) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCAmelCase__) == 0: return [()] elif len(lowerCAmelCase__) == 1: return [(slice(start[0] , end[0] + 1),)] lowercase__ : Tuple = [] lowercase__ : List[Any] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCAmelCase__ , lowerCAmelCase__): if s == e: path_list.append(slice(lowerCAmelCase__ , s + 1)) else: break lowercase__ : str = tuple(lowerCAmelCase__) lowercase__ : str = len(lowerCAmelCase__) # start == end, and we're done if divergence_idx == len(lowerCAmelCase__): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ : List[Any] = start[divergence_idx] return tuple( path + (slice(lowerCAmelCase__ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ : Union[str, Any] = end[divergence_idx] return tuple( path + (slice(lowerCAmelCase__ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) lowercase__ : List[Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def lowercase_ ( _lowerCamelCase : torch.Tensor , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): lowercase__ : Dict = t.shape[:no_batch_dims] lowercase__ : Optional[int] = list(_flat_idx_to_idx(lowerCAmelCase__ , lowerCAmelCase__)) # _get_minimal_slice_set is inclusive lowercase__ : Union[str, Any] = list(_flat_idx_to_idx(flat_end - 1 , lowerCAmelCase__)) # Get an ordered list of slices to perform lowercase__ : List[str] = _get_minimal_slice_set( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) lowercase__ : Optional[int] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def lowercase_ ( _lowerCamelCase : Callable , _lowerCamelCase : Dict[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool = False , _lowerCamelCase : Any = None , _lowerCamelCase : bool = False , ): if not (len(lowerCAmelCase__) > 0): raise ValueError("Must provide at least one input") lowercase__ : Any = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCAmelCase__)] lowercase__ : Optional[int] = tuple([max(lowerCAmelCase__) for s in zip(*lowerCAmelCase__)]) def _prep_inputs(_lowerCamelCase : torch.Tensor) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: lowercase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) lowercase__ : List[str] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: lowercase__ : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t lowercase__ : List[Any] = tensor_tree_map(_prep_inputs , lowerCAmelCase__) lowercase__ : List[Any] = None if _out is not None: lowercase__ : Any = tensor_tree_map(lambda _lowerCamelCase: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) lowercase__ : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d lowercase__ : Optional[int] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCamelCase : torch.Tensor) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowercase__ : Any = 0 lowercase__ : Dict = prepped_outputs for _ in range(lowerCAmelCase__): # Chunk the input if not low_mem: lowercase__ : Tuple = _select_chunk else: lowercase__ : Tuple = partial( _chunk_slice , flat_start=lowerCAmelCase__ , flat_end=min(lowerCAmelCase__ , i + chunk_size) , no_batch_dims=len(lowerCAmelCase__) , ) lowercase__ : int = tensor_tree_map(lowerCAmelCase__ , lowerCAmelCase__) # Run the layer on the chunk lowercase__ : Any = layer(**lowerCAmelCase__) # Allocate space for the output if out is None: lowercase__ : List[str] = tensor_tree_map(lambda _lowerCamelCase: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCAmelCase__) # Put the chunk in its pre-allocated space if isinstance(lowerCAmelCase__ , lowerCAmelCase__): def assign(_lowerCamelCase : dict , _lowerCamelCase : dict) -> None: for k, v in da.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): assign(lowerCAmelCase__ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowercase__ : str = da[k] assign(lowerCAmelCase__ , lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): for xa, xa in zip(lowerCAmelCase__ , lowerCAmelCase__): if _add_into_out: xa[i : i + chunk_size] += xa else: lowercase__ : List[str] = xa elif isinstance(lowerCAmelCase__ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowercase__ : Any = output_chunk else: raise ValueError("Not supported") i += chunk_size lowercase__ : Tuple = tensor_tree_map(lambda _lowerCamelCase: t.view(orig_batch_dims + t.shape[1:]) , lowerCAmelCase__) return out class snake_case_ : def __init__( self : str , lowercase_ : Any = 5_12 , ) -> int: lowercase__ : Tuple = max_chunk_size lowercase__ : Tuple = None lowercase__ : Any = None def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : int ) -> int: logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowercase__ : Dict = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowercase__ : Dict = [c for c in candidates if c > min_chunk_size] lowercase__ : int = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowercase_ : List[Any] ) -> bool: try: with torch.no_grad(): fn(*lowercase_ , chunk_size=lowercase_ ) return True except RuntimeError: return False lowercase__ : Optional[int] = 0 lowercase__ : Any = len(lowercase_ ) - 1 while i > min_viable_chunk_size_index: lowercase__ : Any = test_chunk_size(candidates[i] ) if not viable: lowercase__ : List[str] = (min_viable_chunk_size_index + i) // 2 else: lowercase__ : int = i lowercase__ : Tuple = (i + len(lowercase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] ) -> bool: lowercase__ : List[Any] = True for aa, aa in zip(lowercase_ , lowercase_ ): assert type(lowercase_ ) == type(lowercase_ ) if isinstance(lowercase_ , (list, tuple) ): consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): lowercase__ : Any = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] lowercase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , ) -> int: lowercase__ : int = True lowercase__ : Union[str, Any] = tree_map(lambda lowercase_ : a.shape if isinstance(lowercase_ , torch.Tensor ) else a , lowercase_ , lowercase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowercase_ ) lowercase__ : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , lowercase_ ) else: # Otherwise, we can reuse the precomputed value lowercase__ : int = False if not consistent: lowercase__ : Any = self._determine_favorable_chunk_size( lowercase_ , lowercase_ , lowercase_ , ) lowercase__ : int = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
87
'''simple docstring''' import numpy as np class a : def __init__( self ) -> List[str]: _a = (0, 0) _a = None _a = 0 _a = 0 _a = 0 def __eq__( self , __magic_name__ ) -> Optional[int]: return self.position == cell.position def __UpperCAmelCase ( self ) -> Any: print(self.position ) class a : def __init__( self , __magic_name__=(5, 5) ) -> Optional[int]: _a = np.zeros(__magic_name__ ) _a = world_size[0] _a = world_size[1] def __UpperCAmelCase ( self ) -> List[Any]: print(self.w ) def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: _a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _a = cell.position[0] _a = cell.position[1] _a = [] for n in neughbour_cord: _a = current_x + n[0] _a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _a = Cell() _a = (x, y) _a = cell neighbours.append(__magic_name__ ) return neighbours def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> List[str]: '''simple docstring''' _a = [] _a = [] _open.append(lowerCAmelCase__ ) while _open: _a = np.argmin([n.f for n in _open] ) _a = _open[min_f] _closed.append(_open.pop(lowerCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(lowerCAmelCase__ ): for c in _closed: if c == n: continue _a = current.g + 1 _a , _a = n.position _a , _a = goal.position _a = (ya - ya) ** 2 + (xa - xa) ** 2 _a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCAmelCase__ ) _a = [] while current.parent is not None: path.append(current.position ) _a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a_ : str = Gridworld() # Start position and goal a_ : str = Cell() a_ : Dict = (0, 0) a_ : Dict = Cell() a_ : Optional[Any] = (4, 4) print(f'''path from {start.position} to {goal.position}''') a_ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: a_ : Any = 1 print(world.w)
168
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[Any] ) -> str: '''simple docstring''' __lowerCamelCase : Any = TaConfig.from_json_file(_lowerCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase : Dict = TaForConditionalGeneration(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
64
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _snake_case ( a__ ): snake_case__ = "rwkv" snake_case__ = {"max_position_embeddings": "context_length"} def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=50277 , UpperCAmelCase : Dict=1024 , UpperCAmelCase : int=4096 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : str=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=1E-5 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : int=0 , UpperCAmelCase : Tuple=6 , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[Any]=True , **UpperCAmelCase : Any , ): __lowerCamelCase : Optional[Any] = vocab_size __lowerCamelCase : List[Any] = context_length __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Optional[Any] = num_hidden_layers __lowerCamelCase : Tuple = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : str = layer_norm_epsilon __lowerCamelCase : Dict = rescale_every __lowerCamelCase : Optional[Any] = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Tuple = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
64
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase :Union[str, Any] = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Any = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCamelCase :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
206
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCamelCase :str = TypeVar('''T''') class _lowerCAmelCase ( Generic[T] ): def __init__(self , lowercase = True ): A_ : dict[T, list[T]] = {} # dictionary of lists A_ : Any = directed def _a (self , lowercase , lowercase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) self.adj_list[destination_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) A_ : Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowercase ) A_ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A_ : Optional[Any] = [destination_vertex] A_ : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase ) A_ : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A_ : Tuple = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A_ : int = [destination_vertex] A_ : List[str] = [] return self def __repr__(self ): return pformat(self.adj_list )
206
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={ "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } __lowerCAmelCase : int ={ "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } __lowerCAmelCase : List[str] ={ "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char A__ = set(_lowerCamelCase ) return pairs class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , lowercase_ :Optional[int] , lowercase_ :int , lowercase_ :Union[str, Any]="<s>" , lowercase_ :Tuple="</s>" , lowercase_ :Optional[int]="</s>" , lowercase_ :Dict="<s>" , lowercase_ :List[str]="<unk>" , lowercase_ :Union[str, Any]="<pad>" , lowercase_ :Dict="<mask>" , **lowercase_ :str , )-> int: super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) A__ = vocab_file A__ = merges_file A__ = {} A__ = 0 A__ = 1 A__ = 2 A__ = 3 self.add_from_file(lowercase_ ) A__ = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding="utf-8" ) as merges_handle: A__ = merges_handle.read().split("\n" )[:-1] A__ = [tuple(merge.split()[:-1] ) for merge in merges] A__ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) A__ = {} def UpperCAmelCase_ ( self :Any , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None )-> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self :Tuple , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None )-> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self :Optional[int] )-> Any: return len(self.encoder ) def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :List[str] )-> Optional[int]: if token in self.cache: return self.cache[token] A__ = tuple(lowercase_ ) A__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A__ = get_pairs(lowercase_ ) if not pairs: return token while True: A__ = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A__, A__ = bigram A__ = [] A__ = 0 while i < len(lowercase_ ): try: A__ = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(lowercase_ ) A__ = new_word if len(lowercase_ ) == 1: break else: A__ = get_pairs(lowercase_ ) A__ = "@@ ".join(lowercase_ ) A__ = word[:-4] A__ = word return word def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :str )-> Optional[Any]: A__ = [] A__ = re.findall(R"\S+\n?" , lowercase_ ) for token in words: split_tokens.extend(list(self.bpe(lowercase_ ).split(" " ) ) ) return split_tokens def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[int] )-> str: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :List[Any] )-> List[str]: return self.decoder.get(lowercase_ , self.unk_token ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[str] )-> Optional[Any]: A__ = " ".join(lowercase_ ).replace("@@ " , "" ).strip() return out_string def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :str , lowercase_ :Optional[str] = None )-> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowercase_ ): copyfile(self.merges_file , lowercase_ ) return out_vocab_file, out_merge_file def UpperCAmelCase_ ( self :Tuple , lowercase_ :Dict )-> Tuple: if isinstance(lowercase_ , lowercase_ ): try: with open(lowercase_ , "r" , encoding="utf-8" ) as fd: self.add_from_file(lowercase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ = f.readlines() for lineTmp in lines: A__ = lineTmp.strip() A__ = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) A__ = line[:idx] A__ = len(self.encoder )
362
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=False ): A__ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=False ): for i in range(config.num_hidden_layers ): if base_model: A__ = "" else: A__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( _lowerCamelCase : Any ): A__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): A__ = dct.pop(_lowerCamelCase ) A__ = val def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : int=False ): A__ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_lowerCamelCase , ) A__ = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=3_84 , num_labels=10_00 ) A__ = False # load original model from timm A__ = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) A__ = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "huggingface/label-files" A__ = "imagenet-1k-id2label.json" A__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A__ = ViTHybridModel(_lowerCamelCase ).eval() else: A__ = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor A__ = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) A__ = transform.transforms A__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A__ = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(_lowerCamelCase ).unsqueeze(0 ) A__ = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): A__ = model(_lowerCamelCase ) A__ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: A__ = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: A__ = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __lowerCAmelCase : Optional[Any] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
123
0
def UpperCamelCase (lowercase_: list ) -> Tuple: if len(UpperCAmelCase_ ) < 2: return collection def circle_sort_util(lowercase_: list , lowercase_: int , lowercase_: int ) -> bool: A__ : Dict = False if low == high: return swapped A__ : int = low A__ : Optional[int] = high while left < right: if collection[left] > collection[right]: A__ , A__ : Optional[Any] = ( collection[right], collection[left], ) A__ : List[str] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: A__ , A__ : Union[str, Any] = ( collection[right + 1], collection[left], ) A__ : Optional[int] = True A__ : Union[str, Any] = low + int((high - low) / 2 ) A__ : List[str] = circle_sort_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) A__ : Tuple = circle_sort_util(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) return swapped or left_swap or right_swap A__ : Any = True while is_not_sorted is True: A__ : Dict = circle_sort_util(UpperCAmelCase_ , 0 , len(UpperCAmelCase_ ) - 1 ) return collection if __name__ == "__main__": A_ : List[Any] = input('Enter numbers separated by a comma:\n').strip() A_ : Any = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
192
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class snake_case : """simple docstring""" @staticmethod def snake_case ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" pass def __snake_case ( UpperCAmelCase_ : List[Any] ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ : Dict = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model=UpperCamelCase , tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) lowerCamelCase_ = "What is the placebo?" lowerCamelCase_ = [ { "image": load_image(UpperCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = dqa_pipeline(UpperCamelCase , top_k=2 ) self.assertEqual( UpperCamelCase , [ [ {"score": ANY(UpperCamelCase ), "answer": ANY(UpperCamelCase ), "start": ANY(UpperCamelCase ), "end": ANY(UpperCamelCase )}, {"score": ANY(UpperCamelCase ), "answer": ANY(UpperCamelCase ), "start": ANY(UpperCamelCase ), "end": ANY(UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "How many cats are there?" lowerCamelCase_ = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , UpperCamelCase ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , words=UpperCamelCase , boxes=UpperCamelCase , top_k=2 ) self.assertEqual(UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=UpperCamelCase ) lowerCamelCase_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=UpperCamelCase , revision="3dc6de3" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=UpperCamelCase ) lowerCamelCase_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=UpperCamelCase , revision="3dc6de3" , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def snake_case ( self ): """simple docstring""" pass
55
0
"""simple docstring""" from __future__ import annotations import time import numpy as np snake_case_ = [8, 5, 9, 7] snake_case_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] snake_case_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class A_ : """simple docstring""" def __init__( self :int , lowercase_ :List[Any] , lowercase_ :Optional[Any] , lowercase_ :Optional[int] , ) -> None: UpperCAmelCase = claim_vector UpperCAmelCase = allocated_resources_table UpperCAmelCase = maximum_claim_table def UpperCAmelCase__ ( self :Optional[Any] ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase__ ( self :Union[str, Any] ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase__ ( self :str ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase__ ( self :Union[str, Any] ) -> dict[int, list[int]]: return {self.__need().index(_lowerCamelCase ): i for i in self.__need()} def UpperCAmelCase__ ( self :Optional[int] , **lowercase_ :int ) -> None: UpperCAmelCase = self.__need() UpperCAmelCase = self.__allocated_resources_table UpperCAmelCase = self.__available_resources() UpperCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: UpperCAmelCase = False for each_need in need_list: UpperCAmelCase = True for index, need in enumerate(_lowerCamelCase ): if need > available_resources[index]: UpperCAmelCase = False break if execution: UpperCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCAmelCase = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(_lowerCamelCase ) # update available/freed resources stack UpperCAmelCase = np.array(_lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_lowerCamelCase ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def UpperCAmelCase__ ( self :Optional[int] ) -> Any: print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(_lowerCamelCase ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(_lowerCamelCase ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_lowerCamelCase ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging snake_case_ = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = R'\w+[.]\d+' UpperCAmelCase = re.findall(lowercase_ , lowercase_ ) for pat in pats: UpperCAmelCase = key.replace(lowercase_ , '_'.join(pat.split('.' ) ) ) return key def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=42 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase = flax_model.init_weights(PRNGKey(lowercase_ ) ) UpperCAmelCase = flatten_dict(lowercase_ ) UpperCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = rename_key(lowercase_ ) UpperCAmelCase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor(lowercase_ , lowercase_ , lowercase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(lowercase_ ) return unflatten_dict(lowercase_ )
181
0
"""simple docstring""" import math def lowercase ( _snake_case : int ) ->bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( _snake_case : float = 0.1 ) ->int: """simple docstring""" __snake_case : Tuple = 3 __snake_case : Any = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
102
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Optional[Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Any = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Union[str, Any] =VOCAB_FILES_NAMES lowercase : Any =PRETRAINED_VOCAB_FILES_MAP lowercase : Any =PRETRAINED_INIT_CONFIGURATION lowercase : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Union[str, Any] =SqueezeBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_="[UNK]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase_ :int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowercase_ :Any = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowercase_ :Optional[Any] = do_lower_case lowercase_ :int = strip_accents lowercase_ :Optional[Any] = tokenize_chinese_chars lowercase_ :Union[str, Any] = normalizer_class(**UpperCamelCase_ ) lowercase_ :Optional[int] = do_lower_case def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ): lowercase_ :Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Tuple = [self.sep_token_id] lowercase_ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Any = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
252
from __future__ import annotations from random import random class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ = None ): lowercase_ :Tuple = value lowercase_ :Tuple = random() lowercase_ :Node | None = None lowercase_ :Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self ): lowercase_ :Optional[int] = str(self.value ) + ''' ''' lowercase_ :List[str] = str(self.left or '''''' ) lowercase_ :List[Any] = str(self.right or '''''' ) return value + left + right def UpperCamelCase ( _a , _a ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase_ , lowercase_ :List[Any] = split(root.left , _a ) return left, root else: lowercase_ , lowercase_ :Tuple = split(root.right , _a ) return root, right def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase_ :Tuple = merge(left.right , _a ) return left else: lowercase_ :Optional[int] = merge(_a , right.left ) return right def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' lowercase_ :str = Node(_a ) lowercase_ , lowercase_ :Dict = split(_a , _a ) return merge(merge(_a , _a ) , _a ) def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' lowercase_ , lowercase_ :List[str] = split(_a , value - 1 ) lowercase_ , lowercase_ :Tuple = split(_a , _a ) return merge(_a , _a ) def UpperCamelCase ( _a ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def UpperCamelCase ( _a , _a ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": lowercase_ :Any = insert(_a , int(arg[1:] ) ) elif arg[0] == "-": lowercase_ :Optional[int] = erase(_a , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :List[Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase_ :Optional[Any] = input() while args != "q": lowercase_ :Union[str, Any] = interact_treap(_a , _a ) print(_a ) lowercase_ :str = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
252
1
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = RoCBertTokenizer lowercase__ = None lowercase__ = False lowercase__ = True lowercase__ = filter_non_english def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] _snake_case : Tuple = {} _snake_case : Any = {} for i, value in enumerate(a_ ): _snake_case : List[str] = i _snake_case : Optional[int] = i _snake_case : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""word_shape_file"""] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file, """w""", encoding="""utf-8""" ) as word_shape_writer: json.dump(a_, a_, ensure_ascii=a_ ) with open(self.word_pronunciation_file, """w""", encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(a_, a_, ensure_ascii=a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) _snake_case : str = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(a_, ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(a_ ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(a_ ), [5, 6, 2, 5, 7, 8] ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ), ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Tuple = RoCBertBasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ), ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = RoCBertBasicTokenizer(do_lower_case=a_, strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""h\u00E9llo"""] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Any = RoCBertBasicTokenizer(do_lower_case=a_, strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[int] = RoCBertBasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ), ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : str = RoCBertBasicTokenizer(do_lower_case=a_, strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=a_, strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : str = RoCBertBasicTokenizer(do_lower_case=a_, never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ), ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _snake_case : Optional[Any] = {} for i, token in enumerate(a_ ): _snake_case : Dict = i _snake_case : Optional[Any] = RoCBertWordpieceTokenizer(vocab=a_, unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ), [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ), ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ), ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a_ ) for t in ["""Test""", """\xad""", """test"""]], [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: _snake_case : Optional[int] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(a_ ) for t in ["""Test""", """\xad""", """test"""]], [["""[UNK]"""], [], ["""[UNK]"""]] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : List[Any] = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _snake_case : List[Any] = tokenizer_r.encode_plus( a_, return_attention_mask=a_, return_token_type_ids=a_, return_offsets_mapping=a_, add_special_tokens=a_, ) _snake_case : Optional[Any] = tokenizer_r.do_lower_case if hasattr(a_, """do_lower_case""" ) else False _snake_case : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results], tokens["""offset_mapping"""] ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = ["""的""", """人""", """有"""] _snake_case : Any = """""".join(a_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : int = True _snake_case : Tuple = self.tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : Optional[Any] = tokenizer_p.encode(a_, add_special_tokens=a_ ) _snake_case : int = tokenizer_r.encode(a_, add_special_tokens=a_ ) _snake_case : Optional[Any] = tokenizer_r.convert_ids_to_tokens(a_ ) _snake_case : Optional[int] = tokenizer_p.convert_ids_to_tokens(a_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a_, a_ ) self.assertListEqual(a_, a_ ) _snake_case : List[str] = False _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : str = self.tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : Optional[Any] = tokenizer_r.encode(a_, add_special_tokens=a_ ) _snake_case : Any = tokenizer_p.encode(a_, add_special_tokens=a_ ) _snake_case : Optional[int] = tokenizer_r.convert_ids_to_tokens(a_ ) _snake_case : Tuple = tokenizer_p.convert_ids_to_tokens(a_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case : List[Any] = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(a_ ) ] self.assertListEqual(a_, a_ ) self.assertListEqual(a_, a_ ) @slow def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) _snake_case : Tuple = tokenizer.encode("""你好""", add_special_tokens=a_ ) _snake_case : Optional[int] = tokenizer.encode("""你是谁""", add_special_tokens=a_ ) _snake_case : str = tokenizer.build_inputs_with_special_tokens(a_ ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(a_, a_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : int = """你好,你是谁""" _snake_case : List[str] = tokenizer.tokenize(a_ ) _snake_case : List[str] = tokenizer.convert_tokens_to_ids(a_ ) _snake_case : List[Any] = tokenizer.convert_tokens_to_shape_ids(a_ ) _snake_case : Optional[Any] = tokenizer.convert_tokens_to_pronunciation_ids(a_ ) _snake_case : Dict = tokenizer.prepare_for_model( a_, a_, a_, add_special_tokens=a_ ) _snake_case : Dict = tokenizer.encode_plus(a_, add_special_tokens=a_ ) self.assertEqual(a_, a_ )
64
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _snake_case : Tuple = 1_92 _snake_case : Any = 7_68 _snake_case : Any = 12 _snake_case : List[Any] = 3 _snake_case : int = [8_00, 13_33] _snake_case : Tuple = False elif yolos_name == "yolos_s_dWr": _snake_case : Tuple = 3_30 _snake_case : List[str] = 14 _snake_case : List[str] = 6 _snake_case : Union[str, Any] = 13_20 elif "yolos_s" in yolos_name: _snake_case : Union[str, Any] = 3_84 _snake_case : List[str] = 15_36 _snake_case : Any = 12 _snake_case : Optional[int] = 6 elif "yolos_b" in yolos_name: _snake_case : Dict = [8_00, 13_44] _snake_case : str = 91 _snake_case : Optional[Any] = """huggingface/label-files""" _snake_case : str = """coco-detection-id2label.json""" _snake_case : str = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : List[str] = idalabel _snake_case : List[str] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : YolosConfig , snake_case__ : bool = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : int = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _snake_case : Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _snake_case : Any = in_proj_weight[: config.hidden_size, :] _snake_case : Optional[Any] = in_proj_bias[: config.hidden_size] _snake_case : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Tuple = in_proj_weight[-config.hidden_size :, :] _snake_case : List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" if "backbone" in name: _snake_case : str = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: _snake_case : Union[str, Any] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: _snake_case : str = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: _snake_case : str = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: _snake_case : Tuple = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _snake_case : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: _snake_case : str = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _snake_case : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _snake_case : str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _snake_case : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _snake_case : str = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _snake_case : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _snake_case : int = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: _snake_case : Union[str, Any] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: _snake_case : str = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: _snake_case : Union[str, Any] = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : YolosForObjectDetection ): """simple docstring""" for key in orig_state_dict.copy().keys(): _snake_case : List[str] = orig_state_dict.pop(snake_case__ ) if "qkv" in key: _snake_case : Optional[Any] = key.split(""".""" ) _snake_case : Optional[Any] = int(key_split[2] ) _snake_case : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _snake_case : str = val[:dim, :] _snake_case : Optional[Any] = val[ dim : dim * 2, : ] _snake_case : Optional[Any] = val[-dim:, :] else: _snake_case : Dict = val[:dim] _snake_case : Any = val[dim : dim * 2] _snake_case : Dict = val[-dim:] else: _snake_case : Tuple = val return orig_state_dict def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : bool = False ): """simple docstring""" _snake_case : Optional[Any] = get_yolos_config(snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )["""model"""] # load 🤗 model _snake_case : Optional[Any] = YolosForObjectDetection(snake_case__ ) model.eval() _snake_case : Optional[Any] = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by YolosImageProcessor _snake_case : List[str] = 8_00 if yolos_name != """yolos_ti""" else 5_12 _snake_case : Optional[int] = YolosImageProcessor(format="""coco_detection""" , size=snake_case__ ) _snake_case : Optional[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) _snake_case , _snake_case : Optional[int] = outputs.logits, outputs.pred_boxes _snake_case , _snake_case : Dict = None, None if yolos_name == "yolos_ti": _snake_case : Optional[Any] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) _snake_case : Tuple = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": _snake_case : List[str] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) _snake_case : List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": _snake_case : Dict = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) _snake_case : Union[str, Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": _snake_case : Tuple = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) _snake_case : Optional[Any] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": _snake_case : int = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) _snake_case : Optional[int] = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: _snake_case : Dict = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) _snake_case : str = model_mapping[yolos_name] image_processor.push_to_hub(snake_case__ , organization="""hustvl""" ) model.push_to_hub(snake_case__ , organization="""hustvl""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
64
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int , snake_case_ :int , snake_case_ :int ): __UpperCAmelCase = [] __UpperCAmelCase , __UpperCAmelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __UpperCAmelCase = result + left + right return input_list def lowercase__ ( snake_case_ :list ): if len(snake_case_ ) <= 1: return input_list __UpperCAmelCase = list(snake_case_ ) # iteration for two-way merging __UpperCAmelCase = 2 while p <= len(snake_case_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case_ ) , snake_case_ ): __UpperCAmelCase = i __UpperCAmelCase = i + p - 1 __UpperCAmelCase = (low + high + 1) // 2 __UpperCAmelCase = merge(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # final merge of last two parts if p * 2 >= len(snake_case_ ): __UpperCAmelCase = i __UpperCAmelCase = merge(snake_case_ , 0 , snake_case_ , len(snake_case_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowercase : Dict = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _lowercase : Dict = [] else: _lowercase : List[str] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
353
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : Tuple = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } _lowercase : str = {'allegro/herbert-base-cased': 5_14} _lowercase : Tuple = {} class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_INIT_CONFIGURATION a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = HerbertTokenizer def __init__( self : List[Any] , _lowercase : Optional[int]=None , _lowercase : int=None , _lowercase : Tuple=None , _lowercase : str="<s>" , _lowercase : List[str]="<unk>" , _lowercase : int="<pad>" , _lowercase : str="<mask>" , _lowercase : List[Any]="</s>" , **_lowercase : List[Any] , ): super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sep_token=_lowercase , **_lowercase , ) def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
86
0
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _UpperCamelCase = parser.parse_args() _UpperCamelCase = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } _UpperCamelCase = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } _UpperCamelCase = "" if has_file(args.repo_path, '''config.json''') else "unet" with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: _UpperCamelCase = reader.read() _UpperCamelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): _UpperCamelCase = UNetaDModel(**config) else: _UpperCamelCase = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel _UpperCamelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _UpperCamelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _UpperCamelCase = config[key] del config[key] _UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config["down_block_types"]] _UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config["up_block_types"]] if do_only_weights: _UpperCamelCase = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) _UpperCamelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue _UpperCamelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: _UpperCamelCase = param_value _UpperCamelCase = True if not has_changed: _UpperCamelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
254
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Load configuration defined in the metadata file with open(__lowerCamelCase ) as metadata_file: __snake_case : Tuple = json.load(__lowerCamelCase ) __snake_case : int = LukeConfig(use_entity_aware_attention=__lowerCamelCase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : Any = torch.load(__lowerCamelCase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Any = load_original_entity_vocab(__lowerCamelCase ) # add an entry for [MASK2] __snake_case : int = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : List[str] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : List[Any] = AddedToken("<ent>" , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) __snake_case : str = AddedToken("<ent2>" , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : int = json.load(__lowerCamelCase ) __snake_case : str = "MLukeTokenizer" with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) __snake_case : Any = MLukeTokenizer.from_pretrained(__lowerCamelCase ) # Initialize the embeddings of the special tokens __snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : Tuple = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Tuple = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Tuple = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : List[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : Optional[int] = state_dict[bias_name] __snake_case : Any = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : List[str] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Optional[int] = F'encoder.layer.{layer_index}.attention.self.' __snake_case : int = state_dict[prefix + matrix_name] __snake_case : Optional[Any] = state_dict[prefix + matrix_name] __snake_case : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Union[str, Any] = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : Union[str, Any] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : str = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Optional[int] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=__lowerCamelCase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : Optional[int] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : Dict = state_dict[key] else: __snake_case : int = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) if set(__lowerCamelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(__lowerCamelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : Union[str, Any] = MLukeTokenizer.from_pretrained(__lowerCamelCase , task="entity_classification" ) __snake_case : Optional[Any] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Tuple = (0, 9) __snake_case : Dict = tokenizer(__lowerCamelCase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Optional[Any] = model(**__lowerCamelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 3_3, 7_6_8) ) __snake_case : List[str] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Union[str, Any] = torch.Size((1, 1, 7_6_8) ) __snake_case : Optional[int] = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : Union[str, Any] = MLukeTokenizer.from_pretrained(__lowerCamelCase ) __snake_case : List[Any] = "Tokyo is the capital of <mask>." __snake_case : List[Any] = (2_4, 3_0) __snake_case : Tuple = tokenizer(__lowerCamelCase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Optional[Any] = model(**__lowerCamelCase ) __snake_case : Tuple = encoding["input_ids"][0].tolist() __snake_case : Tuple = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__lowerCamelCase ) __snake_case : Dict = outputs.entity_logits[0][0].argmax().item() __snake_case : Dict = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__lowerCamelCase ) ) model.save_pretrained(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Tuple = [json.loads(__lowerCamelCase ) for line in open(__lowerCamelCase )] __snake_case : Dict = {} for entry in data: __snake_case : Optional[Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Union[str, Any] = entity_id break __snake_case : Tuple = F'{language}:{entity_name}' __snake_case : int = entity_id return new_mapping if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _snake_case : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
123
0
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A__ ( _lowerCamelCase): A_ : Tuple = 'new-model' if is_tf_available(): class A__ ( _lowerCamelCase): A_ : str = NewModelConfig @require_tf class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'bert-base-cased' __lowerCAmelCase : Any = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = 'bert-base-cased' __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[str] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[str] = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TFAutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow @require_tensorflow_probability def __lowerCamelCase ( self ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = TFAutoModelForTableQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Any = TFAutoModelForTableQuestionAnswering.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) def __lowerCamelCase ( self ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __lowerCAmelCase : Any = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = copy.deepcopy(model.config ) __lowerCAmelCase : Tuple = ['FunnelBaseModel'] __lowerCAmelCase : Union[str, Any] = TFAutoModel.from_config(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): try: AutoConfig.register('new-model' , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCAmelCase : Optional[Any] = BertModelTester(self ).get_config() __lowerCAmelCase : Any = NewModelConfig(**tiny_config.to_dict() ) __lowerCAmelCase : Tuple = auto_class.from_config(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = auto_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowerCamelCase ( self ): with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'bert-base is not a local folder and is not a valid model identifier' ): __lowerCAmelCase : Any = TFAutoModel.from_pretrained('bert-base' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowerCAmelCase : List[str] = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , revision='aaaaaa' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): __lowerCAmelCase : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , 'Use `from_pt=True` to load this model' ): __lowerCAmelCase : Dict = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def __lowerCamelCase ( self ): # Make sure we have cached the model. __lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: __lowerCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __lowerCAmelCase : Dict = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: __lowerCAmelCase : int = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
182
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[str] = str(_UpperCamelCase ) return len(_UpperCamelCase ) == 9 and set(_UpperCamelCase ) == set('123456789' ) def __lowerCAmelCase (): for base_num in range(9999 , 4999 , -1 ): __lowerCAmelCase : Union[str, Any] = 10_0002 * base_num if is_9_pandigital(_UpperCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): __lowerCAmelCase : Dict = 100_2003 * base_num if is_9_pandigital(_UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'{solution() = }')
182
1
import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE :List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE :Optional[int] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' SCREAMING_SNAKE_CASE :Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) ,codebase_urls=["https://www.atticusprojectai.org/cuad"] ,reference_urls=["https://www.atticusprojectai.org/cuad"] ,) def UpperCamelCase_ ( self : Dict ,A : Optional[int] ,A : Dict ): __A = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} __A = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] __A = evaluate(dataset=A ,predictions=A ) return score
15
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') UpperCamelCase__ , UpperCamelCase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') UpperCamelCase__ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: UpperCamelCase__ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCamelCase__ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
181
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Union[str, Any] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys snake_case__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow def _lowerCAmelCase (self :Dict )-> Dict: __A = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_UpperCamelCase ).to(_UpperCamelCase ) __A = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __A = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __A = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __A = model(input_ids.to(_UpperCamelCase ) , labels=labels.to(_UpperCamelCase ) ).loss __A = -(labels.shape[-1] * loss.item()) __A = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
250
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Any = DanceDiffusionPipeline UpperCamelCase : List[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } UpperCamelCase : Any = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS UpperCamelCase : Union[str, Any] = False UpperCamelCase : List[Any] = False def __A ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=A , use_timestep_embedding=A , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) lowerCamelCase = IPNDMScheduler() lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, } return components def __A ( self , A , A=0 ) -> Any: '''simple docstring''' if str(A ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(A ) else: lowerCamelCase = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = DanceDiffusionPipeline(**A ) lowerCamelCase = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = pipe(**A ) lowerCamelCase = output.audios lowerCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCamelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A ( self ) -> Optional[int]: '''simple docstring''' return super().test_save_load_local() @skip_mps def __A ( self ) -> Optional[int]: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __A ( self ) -> List[Any]: '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __A ( self ) -> Tuple: '''simple docstring''' return super().test_attention_slicing_forward_pass() def __A ( self ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = torch_device lowerCamelCase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) lowerCamelCase = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe(generator=A , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCamelCase = output.audios lowerCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCamelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = torch_device lowerCamelCase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) lowerCamelCase = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe(generator=A , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCamelCase = output.audios lowerCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCamelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
252
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ): '''simple docstring''' if gpta_config_file == "": lowerCamelCase = GPTaConfig() else: lowerCamelCase = GPTaConfig.from_json_file(lowerCamelCase__ ) lowerCamelCase = GPTaModel(lowerCamelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model lowerCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) UpperCAmelCase : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
252
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) snake_case_ = emb.weight.data return lin_layer def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__="facebook/mbart-large-en-ro" , UpperCamelCase__=False , UpperCamelCase__=False ): '''simple docstring''' snake_case_ = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] remove_ignore_keys_(UpperCamelCase__ ) snake_case_ = state_dict['encoder.embed_tokens.weight'].shape[0] snake_case_ = MBartConfig.from_pretrained(UpperCamelCase__ , vocab_size=UpperCamelCase__ ) if mbart_aa and finetuned: snake_case_ = 'relu' snake_case_ = state_dict['decoder.embed_tokens.weight'] snake_case_ = MBartForConditionalGeneration(UpperCamelCase__ ) model.model.load_state_dict(UpperCamelCase__ ) if finetuned: snake_case_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") _UpperCAmelCase : Any = parser.parse_args() _UpperCAmelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
355
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] create_all_state(1 , UpperCamelCase__ , UpperCamelCase__ , [] , UpperCamelCase__ ) return result def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase__ , total_number - level + 2 ): current_list.append(UpperCamelCase__ ) create_all_state(i + 1 , UpperCamelCase__ , level - 1 , UpperCamelCase__ , UpperCamelCase__ ) current_list.pop() def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' for i in total_list: print(*UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : str = 4 _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : Optional[int] = generate_all_combinations(n, k) print_all_state(total_list)
200
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any]=False ): """simple docstring""" try: a__ : str =os.environ[key] except KeyError: # KEY isn't set, default to `default`. a__ : str =default else: # KEY is set, convert it to True or False. try: a__ : Optional[int] =strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value UpperCAmelCase : Optional[Any] = parse_flag_from_env("""RUN_SLOW""", default=False) UpperCAmelCase : int = parse_flag_from_env("""RUN_REMOTE""", default=False) UpperCAmelCase : Any = parse_flag_from_env("""RUN_LOCAL""", default=True) UpperCAmelCase : List[Any] = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression UpperCAmelCase : Any = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") UpperCAmelCase : str = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") UpperCAmelCase : Dict = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio UpperCAmelCase : Optional[int] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam UpperCAmelCase : Tuple = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility UpperCAmelCase : Any = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows UpperCAmelCase : Any = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def _A ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" try: import faiss # noqa except ImportError: a__ : Dict =unittest.skip("test requires faiss" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" try: import regex # noqa except ImportError: a__ : Dict =unittest.skip("test requires regex" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" try: import elasticsearch # noqa except ImportError: a__ : Optional[int] =unittest.skip("test requires elasticsearch" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: a__ : Union[str, Any] =unittest.skip("test requires sqlalchemy" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not config.TORCH_AVAILABLE: a__ : List[str] =unittest.skip("test requires PyTorch" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" if not config.TF_AVAILABLE: a__ : List[Any] =unittest.skip("test requires TensorFlow" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" if not config.JAX_AVAILABLE: a__ : Tuple =unittest.skip("test requires JAX" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if not config.PIL_AVAILABLE: a__ : Tuple =unittest.skip("test requires Pillow" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(_UpperCamelCase ) else: return test_case def _A ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(_UpperCamelCase ) else: return test_case def _A ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(_UpperCamelCase ) else: return test_case def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" def _require_spacy_model(SCREAMING_SNAKE_CASE : Optional[int] ): try: import spacy # noqa F401 spacy.load(_UpperCamelCase ) except ImportError: return unittest.skip("test requires spacy" )(_UpperCamelCase ) except OSError: return unittest.skip("test requires spacy model \'{}\'".format(_UpperCamelCase ) )(_UpperCamelCase ) else: return test_case return _require_spacy_model def _A ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(_UpperCamelCase ) else: return test_case def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(_UpperCamelCase ) else: return test_case def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: a__ : Union[str, Any] =unittest.skip("test is slow" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: a__ : str =unittest.skip("test is local" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: a__ : Union[str, Any] =unittest.skip("test is packaged" )(_UpperCamelCase ) return test_case def _A ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: a__ : int =unittest.skip("test requires remote" )(_UpperCamelCase ) return test_case def _A ( *SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" def decorate(cls : Dict ): for name, fn in cls.__dict__.items(): if callable(_UpperCamelCase ) and name.startswith("test" ): for decorator in decorators: a__ : Any =decorator(_UpperCamelCase ) setattr(cls , _UpperCamelCase , _UpperCamelCase ) return cls return decorate class __lowerCAmelCase ( _lowerCamelCase): pass class __lowerCAmelCase ( _lowerCamelCase): _lowercase : Tuple = 0 _lowercase : List[Any] = 1 _lowercase : Optional[int] = 2 @contextmanager def _A ( SCREAMING_SNAKE_CASE : Optional[Any]=OfflineSimulationMode.CONNECTION_FAILS , SCREAMING_SNAKE_CASE : Tuple=1e-16 ): """simple docstring""" a__ : List[str] =requests.Session().request def timeout_request(SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[Any] ): # Change the url to an invalid url so that the connection hangs a__ : Optional[int] ='https://10.255.255.1' if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) a__ : List[Any] =timeout try: return online_request(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier a__ : Tuple =url a__ : Optional[int] =e.args[0] a__ : Any =(max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]''' ),) a__ : List[str] =(max_retry_error,) raise def raise_connection_error(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : int ): raise requests.ConnectionError("Offline mode is enabled." , request=_UpperCamelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , _UpperCamelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , _UpperCamelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCamelCase ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def _A ( *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Tuple =str(Path().resolve() ) with tempfile.TemporaryDirectory(*_UpperCamelCase , **_UpperCamelCase ) as tmp_dir: try: os.chdir(_UpperCamelCase ) yield finally: os.chdir(_UpperCamelCase ) @contextmanager def _A ( ): """simple docstring""" import gc gc.collect() a__ : Optional[Any] =pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _A ( ): """simple docstring""" import gc gc.collect() a__ : List[Any] =pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return deepcopy(_UpperCamelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(_UpperCamelCase ).integers(0 , 100 , 10 ).tolist() def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(SCREAMING_SNAKE_CASE : List[str] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ): try: return func(*_UpperCamelCase , **_UpperCamelCase ) except HTTPError as err: if str(_UpperCamelCase ).startswith("500" ) or str(_UpperCamelCase ).startswith("502" ): pytest.xfail(str(_UpperCamelCase ) ) raise err return decorator.decorator(_wrapper , _UpperCamelCase ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] =returncode a__ : Optional[Any] =stdout a__ : Optional[int] =stderr async def _A ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" while True: a__ : Optional[Any] =await stream.readline() if line: callback(_UpperCamelCase ) else: break async def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Union[str, Any]=False ): """simple docstring""" if echo: print("\nRunning: " , " ".join(_UpperCamelCase ) ) a__ : Any =await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) a__ : int =[] a__ : Tuple =[] def tee(SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple="" ): a__ : Tuple =line.decode("utf-8" ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label="stderr:" ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def _A ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Tuple=180 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : str=True ): """simple docstring""" a__ : List[Any] =asyncio.get_event_loop() a__ : Union[str, Any] =loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) a__ : List[Any] =' '.join(_UpperCamelCase ) if result.returncode > 0: a__ : Union[str, Any] ='\n'.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def _A ( ): """simple docstring""" a__ : str =os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) a__ : Any =re.sub(r"^gw" , "" , _UpperCamelCase , 0 , re.M ) return int(_UpperCamelCase ) def _A ( ): """simple docstring""" a__ : int =29_500 a__ : Optional[int] =pytest_xdist_worker_id() return port + uniq_delta
95
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : Union[str, Any] = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : Dict = is_training __lowerCAmelCase : List[str] = use_input_mask __lowerCAmelCase : int = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : Tuple = embedding_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Union[str, Any] = intermediate_size __lowerCAmelCase : Optional[Any] = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : Any = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : str = num_labels __lowerCAmelCase : int = num_choices __lowerCAmelCase : Union[str, Any] = scope def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Optional[int] = None if self.use_input_mask: __lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : str = None if self.use_token_type_ids: __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Union[str, Any] = None if self.use_labels: __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = MobileBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = MobileBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = MobileBertForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = MobileBertForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.num_labels __lowerCAmelCase : Tuple = MobileBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : int = MobileBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.num_choices __lowerCAmelCase : List[str] = MobileBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs __lowerCAmelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : str = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A_ : List[str] = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) A_ : Dict = True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowerCAmelCase : List[str] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = MobileBertModelTester(self ) __lowerCAmelCase : str = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (_UpperCamelCase ): return torch.tensor( _UpperCamelCase , dtype=torch.long , device=_UpperCamelCase , ) lowerCamelCase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase : Dict = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=_SCREAMING_SNAKE_CASE , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Tuple = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
86
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCamelCase ( _A : List[str] )-> Optional[Any]: """simple docstring""" if is_torch_version("<" , "2.0.0" ) or not hasattr(_A , "_dynamo" ): return False return isinstance(_A , torch._dynamo.eval_frame.OptimizedModule ) def UpperCamelCase ( _A : str , _A : bool = True )-> Optional[Any]: """simple docstring""" A__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A__ = is_compiled_module(_A ) if is_compiled: A__ = model A__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_A , _A ): A__ = model.module if not keep_fpaa_wrapper: A__ = getattr(_A , "forward" ) A__ = model.__dict__.pop("_original_forward" , _A ) if original_forward is not None: while hasattr(_A , "__wrapped__" ): A__ = forward.__wrapped__ if forward == original_forward: break A__ = forward if getattr(_A , "_converted_to_transformer_engine" , _A ): convert_model(_A , to_transformer_engine=_A ) if is_compiled: A__ = model A__ = compiled_model return model def UpperCamelCase ( )-> List[str]: """simple docstring""" PartialState().wait_for_everyone() def UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] )-> Union[str, Any]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_A , _A ) elif PartialState().local_process_index == 0: torch.save(_A , _A ) @contextmanager def UpperCamelCase ( **_A : Union[str, Any] )-> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): A__ = str(_A ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCamelCase ( _A : Tuple )-> List[Any]: """simple docstring""" if not hasattr(_A , "__qualname__" ) and not hasattr(_A , "__name__" ): A__ = getattr(_A , "__class__" , _A ) if hasattr(_A , "__qualname__" ): return obj.__qualname__ if hasattr(_A , "__name__" ): return obj.__name__ return str(_A ) def UpperCamelCase ( _A : Any , _A : Union[str, Any] )-> Tuple: """simple docstring""" for key, value in source.items(): if isinstance(_A , _A ): A__ = destination.setdefault(_A , {} ) merge_dicts(_A , _A ) else: A__ = value return destination def UpperCamelCase ( _A : int = None )-> bool: """simple docstring""" if port is None: A__ = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
198
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCamelCase ( _A : Tuple )-> Dict: """simple docstring""" A__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_A , _A ) def UpperCamelCase ( _A : int )-> Optional[Any]: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(_A , _A , bias=_A ) A__ = emb.weight.data return lin_layer def UpperCamelCase ( _A : str , _A : Optional[Any]=None )-> str: """simple docstring""" A__ = {} for old_key in state_dict.keys(): A__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: A__ = key.replace("moe_layer.experts.0" , f"""ffn.experts.expert_{expert_idx}""" ) else: A__ = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: A__ = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: A__ = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: A__ = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: A__ = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: A__ = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: A__ = key.replace("final_layer_norm" , "ff_layer_norm" ) A__ = state_dict[old_key] return new_dict def UpperCamelCase ( _A : Tuple , _A : Tuple , _A : int , _A : str , _A : str = WEIGHTS_NAME )-> List[str]: """simple docstring""" A__ = [] A__ = 0 os.makedirs(_A , exist_ok=_A ) for expert in range(_A ): A__ = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(_A ): A__ = torch.load(_A )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = os.path.join( _A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) torch.save(_A , _A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_A )[0]].dtype ) # Add the last block A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) A__ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_A ) == 1: A__ = os.path.join(_A , _A ) torch.save(_A , _A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_A , _A ) # Otherwise, let's build the index A__ = {} for idx, shard in enumerate(_A ): A__ = weights_name.replace(".bin" , f"""-{idx+1:05d}-of-{len(_A ):05d}.bin""" ) A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_A , os.path.join(_A , _A ) ) for key in shard: A__ = shard_file # Add the metadata A__ = {"total_size": total_size} A__ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_A , _A ) , "w" , encoding="utf-8" ) as f: A__ = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCAmelCase_ : Any = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCAmelCase_ : Tuple = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
198
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCamelCase : Optional[Any] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
182
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase__ ( unittest.TestCase): def __A ( self : str , UpperCamelCase__ : int ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(UpperCamelCase__ ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = '''sshleifer/tiny-gpt2''' SCREAMING_SNAKE_CASE : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : str = TensorFlowBenchmark(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = '''sgugger/tiny-distilbert-classification''' SCREAMING_SNAKE_CASE : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , only_pretrain_model=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : List[str] = TensorFlowBenchmark(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''sshleifer/tiny-gpt2''' SCREAMING_SNAKE_CASE : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = TensorFlowBenchmark(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''sshleifer/tiny-gpt2''' SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : str = TensorFlowBenchmark(UpperCamelCase__ , [config] ) SCREAMING_SNAKE_CASE : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''sshleifer/tiny-gpt2''' SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : List[str] = TensorFlowBenchmark(UpperCamelCase__ , [config] ) SCREAMING_SNAKE_CASE : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = '''sshleifer/tiny-gpt2''' SCREAMING_SNAKE_CASE : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Optional[int] = TensorFlowBenchmark(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''sshleifer/tiny-gpt2''' SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Dict = TensorFlowBenchmark(UpperCamelCase__ , [config] ) SCREAMING_SNAKE_CASE : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''patrickvonplaten/t5-tiny-random''' SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Dict = TensorFlowBenchmark(UpperCamelCase__ , configs=[config] ) SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = '''sshleifer/tiny-gpt2''' SCREAMING_SNAKE_CASE : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Any = TensorFlowBenchmark(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , save_to_csv=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase__ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(UpperCamelCase__ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(UpperCamelCase__ , '''env.csv''' ) , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = TensorFlowBenchmark(UpperCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCamelCase__ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , '''env.csv''' ) ).exists() ) def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(UpperCamelCase__ : Dict ): self.assertTrue(hasattr(UpperCamelCase__ , '''sequential''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''cumulative''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''current''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase__ , '''log.txt''' ) , log_print=UpperCamelCase__ , trace_memory_line_by_line=UpperCamelCase__ , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : List[Any] = TensorFlowBenchmark(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , '''log.txt''' ) ).exists() )
182
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""DeiTFeatureExtractor"""] UpperCAmelCase__ = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
1