code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[Any]=7 ,lowerCamelCase__ : Union[str, Any]=3 ,lowerCamelCase__ : int=18 ,lowerCamelCase__ : Any=30 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : int=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Tuple=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Optional[Any]=False ,): UpperCAmelCase__ = size if size is not None else {'height': 20, 'width': 20} UpperCAmelCase__ = crop_size if crop_size is not None else {'height': 18, 'width': 18} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean UpperCAmelCase__ = image_std UpperCAmelCase__ = do_reduce_labels def __lowerCAmelCase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def a_ ( ): UpperCAmelCase__ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCAmelCase__ = Image.open(dataset[0]['file'] ) UpperCAmelCase__ = Image.open(dataset[1]['file'] ) return image, map def a_ ( ): UpperCAmelCase__ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCAmelCase__ = Image.open(ds[0]['file'] ) UpperCAmelCase__ = Image.open(ds[1]['file'] ) UpperCAmelCase__ = Image.open(ds[2]['file'] ) UpperCAmelCase__ = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = BeitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = BeitImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_std' ) ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels ,lowerCamelCase__ ) UpperCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=lowerCamelCase__ ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): pass def __lowerCAmelCase ( self : str ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCAmelCase ( self : Dict ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCAmelCase ( self : Any ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) UpperCAmelCase__ = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] ,maps[0] ,return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual( encoding['labels'].shape ,( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual(encoding['labels'].dtype ,torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual( encoding['labels'].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual(encoding['labels'].dtype ,torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) UpperCAmelCase__ , UpperCAmelCase__ = prepare_semantic_single_inputs() UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual( encoding['labels'].shape ,( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual(encoding['labels'].dtype ,torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) UpperCAmelCase__ , UpperCAmelCase__ = prepare_semantic_batch_inputs() UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual( encoding['labels'].shape ,( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) self.assertEqual(encoding['labels'].dtype ,torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase__ , UpperCAmelCase__ = prepare_semantic_single_inputs() UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) UpperCAmelCase__ = True UpperCAmelCase__ = image_processing(lowerCamelCase__ ,lowerCamelCase__ ,return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
98
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None ) -> List[str]: '''simple docstring''' _lowercase =self.layer[current_layer](lowerCAmelCase , lowerCAmelCase , head_mask[current_layer] ) _lowercase =layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =BertEncoderWithPabee(lowerCAmelCase ) self.init_weights() _lowercase =0 _lowercase =0 _lowercase =0 _lowercase =0 def A__ ( self , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =threshold def A__ ( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' _lowercase =patience def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =0 _lowercase =0 def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.inference_layers_num / self.inference_instances_num _lowercase =( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase ) @add_start_docstrings_to_model_forward(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=False , ) -> str: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase =input_ids.size() elif inputs_embeds is not None: _lowercase =inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) if token_type_ids is None: _lowercase =torch.zeros(lowerCAmelCase , dtype=torch.long , device=lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase =self.get_extended_attention_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _lowercase , _lowercase , _lowercase =encoder_hidden_states.size() _lowercase =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _lowercase =torch.ones(lowerCAmelCase , device=lowerCAmelCase ) _lowercase =self.invert_attention_mask(lowerCAmelCase ) else: _lowercase =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase =self.get_head_mask(lowerCAmelCase , self.config.num_hidden_layers ) _lowercase =self.embeddings( input_ids=lowerCAmelCase , position_ids=lowerCAmelCase , token_type_ids=lowerCAmelCase , inputs_embeds=lowerCAmelCase ) _lowercase =embedding_output if self.training: _lowercase =[] for i in range(self.config.num_hidden_layers ): _lowercase =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) _lowercase =output_layers[i](output_dropout(lowerCAmelCase ) ) res.append(lowerCAmelCase ) elif self.patience == 0: # Use all layers for inference _lowercase =self.encoder( lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) _lowercase =self.pooler(encoder_outputs[0] ) _lowercase =[output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase )] else: _lowercase =0 _lowercase =None _lowercase =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _lowercase =self.encoder.adaptive_forward( lowerCAmelCase , current_layer=lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) _lowercase =output_layers[i](lowerCAmelCase ) if regression: _lowercase =logits.detach() if patient_result is not None: _lowercase =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _lowercase =0 else: _lowercase =logits.detach().argmax(dim=1 ) if patient_result is not None: _lowercase =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase ) ): patient_counter += 1 else: _lowercase =0 _lowercase =logits if patient_counter == self.patience: break _lowercase =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =config.num_labels _lowercase =BertModelWithPabee(lowerCAmelCase ) _lowercase =nn.Dropout(config.hidden_dropout_prob ) _lowercase =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.bert( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , position_ids=lowerCAmelCase , head_mask=lowerCAmelCase , inputs_embeds=lowerCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _lowercase =(logits[-1],) if labels is not None: _lowercase =None _lowercase =0 for ix, logits_item in enumerate(lowerCAmelCase ): if self.num_labels == 1: # We are doing regression _lowercase =MSELoss() _lowercase =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _lowercase =CrossEntropyLoss() _lowercase =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _lowercase =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _lowercase =(total_loss / total_weights,) + outputs return outputs
205
0
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : List[str] = 0 __snake_case : Any = number while duplicate > 0: __snake_case , __snake_case : Any = divmod(__SCREAMING_SNAKE_CASE , 1_0 ) fact_sum += factorial(__SCREAMING_SNAKE_CASE ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowercase_ = int(input("Enter number: ").strip()) print( F'''{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.''' )
20
from __future__ import annotations def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __snake_case , __snake_case : str = array[indexa], array[indexa] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if length > 1: __snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
20
1
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _a = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a=None , __a=1) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = tokenizer _UpperCamelCase = dataset _UpperCamelCase = len(__a) if n_tasks is None else n_tasks _UpperCamelCase = n_copies def __iter__( self) -> Dict: '''simple docstring''' _UpperCamelCase = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip()) _UpperCamelCase = self.tokenizer(__a , padding=__a , return_tensors='''pt''') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = start_length _UpperCamelCase = eof_strings _UpperCamelCase = tokenizer def __call__( self , __a , __a , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) _UpperCamelCase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(__a) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = re.split('''(%s)''' % '''|'''.join(__snake_case ), __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case=20, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _UpperCamelCase = batch['''ids'''].shape[-1] _UpperCamelCase = accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=__snake_case, **__snake_case ) # each task is generated batch_size times _UpperCamelCase = batch['''task_id'''].repeat(__snake_case ) _UpperCamelCase = accelerator.pad_across_processes( __snake_case, dim=1, pad_index=tokenizer.pad_token_id ) _UpperCamelCase , _UpperCamelCase = accelerator.gather((generated_tokens, generated_tasks) ) _UpperCamelCase = generated_tokens.cpu().numpy() _UpperCamelCase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case, __snake_case ): gen_token_dict[task].append(__snake_case ) _UpperCamelCase = [[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _UpperCamelCase = tokenizer.decode(__snake_case, skip_special_tokens=__snake_case, clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def lowerCamelCase__ ( ) -> Any: """simple docstring""" _UpperCamelCase = HfArgumentParser(__snake_case ) _UpperCamelCase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _UpperCamelCase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _UpperCamelCase = '''false''' if args.num_workers is None: _UpperCamelCase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _UpperCamelCase = Accelerator() set_seed(args.seed, device_specific=__snake_case ) # Load model and tokenizer _UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCamelCase = tokenizer.eos_token _UpperCamelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _UpperCamelCase = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, __snake_case, __snake_case )] ), } # Load evaluation dataset and metric _UpperCamelCase = load_dataset('''openai_humaneval''' ) _UpperCamelCase = load_metric('''code_eval''' ) _UpperCamelCase = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _UpperCamelCase = args.n_samples // args.batch_size _UpperCamelCase = TokenizedDataset(__snake_case, human_eval['''test'''], n_copies=__snake_case, n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _UpperCamelCase = DataLoader(__snake_case, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _UpperCamelCase = code_eval_metric.compute(references=[''''''], predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _UpperCamelCase , _UpperCamelCase = accelerator.prepare(__snake_case, __snake_case ) _UpperCamelCase = complete_code( __snake_case, __snake_case, __snake_case, __snake_case, n_tasks=__snake_case, batch_size=args.batch_size, **__snake_case, ) if accelerator.is_main_process: _UpperCamelCase = [] for task in tqdm(range(__snake_case ) ): _UpperCamelCase = human_eval['''test'''][task]['''test'''] _UpperCamelCase = F'''check({human_eval["test"][task]["entry_point"]})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _UpperCamelCase , _UpperCamelCase = code_eval_metric.compute( references=__snake_case, predictions=__snake_case, num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file, '''w''' ) as fp: json.dump(__snake_case, __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
194
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 10_00 ) -> int: """simple docstring""" _UpperCamelCase = 2**power _UpperCamelCase = str(__snake_case ) _UpperCamelCase = list(__snake_case ) _UpperCamelCase = 0 for i in list_num: sum_of_num += int(__snake_case ) return sum_of_num if __name__ == "__main__": _a = int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) _a = solution(power) print("""Sum of the digits is: """, result)
194
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) lowerCamelCase__ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) lowerCamelCase__ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) lowerCamelCase__ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) lowerCamelCase__ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) lowerCamelCase__ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : List[str] = FLAX_MODEL_MAPPING lowerCamelCase__ = auto_class_update(FlaxAutoModel) class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : List[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCamelCase__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : str = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : List[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : Optional[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCamelCase__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : Any = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCamelCase__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCamelCase__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : str = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class lowerCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase : List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCamelCase__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
234
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = old_name if "patch_embed" in old_name: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = old_name.split("." ) if layer == "0": _UpperCAmelCase : List[str] = old_name.replace("0" , "convolution1" ) elif layer == "1": _UpperCAmelCase : Dict = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": _UpperCAmelCase : Tuple = old_name.replace("3" , "convolution2" ) else: _UpperCAmelCase : Tuple = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = R"\b\d{2}\b" if bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) ): _UpperCAmelCase : Optional[int] = re.search(R"\d\.\d\d." , __lowerCAmelCase ).group() else: _UpperCAmelCase : Any = re.search(R"\d\.\d." , __lowerCAmelCase ).group() if int(match[0] ) < 6: _UpperCAmelCase : str = old_name.replace(__lowerCAmelCase , "" ) _UpperCAmelCase : Optional[Any] = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _UpperCAmelCase : Union[str, Any] = "intermediate_stages." + trimmed_name else: _UpperCAmelCase : Tuple = old_name.replace(__lowerCAmelCase , "" ) if int(match[2] ) < num_meta4D_last_stage: _UpperCAmelCase : Any = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: _UpperCAmelCase : List[str] = str(int(match[2] ) - num_meta4D_last_stage ) _UpperCAmelCase : int = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _UpperCAmelCase : Tuple = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: _UpperCAmelCase : int = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: _UpperCAmelCase : Optional[int] = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: _UpperCAmelCase : List[str] = trimmed_name.replace("fc2" , "linear_out" ) _UpperCAmelCase : Optional[Any] = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: _UpperCAmelCase : Union[str, Any] = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _UpperCAmelCase : List[Any] = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _UpperCAmelCase : List[Any] = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: _UpperCAmelCase : Union[str, Any] = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: _UpperCAmelCase : List[Any] = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: _UpperCAmelCase : str = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: _UpperCAmelCase : List[str] = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _UpperCAmelCase : List[Any] = new_name.replace("norm" , "layernorm" ) _UpperCAmelCase : Any = "efficientformer." + new_name else: _UpperCAmelCase : Dict = "efficientformer.encoder." + new_name return new_name def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key in checkpoint.copy().keys(): _UpperCAmelCase : List[Any] = checkpoint.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = val return checkpoint def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = torch.load(__lowerCAmelCase , map_location="cpu" )["model"] _UpperCAmelCase : Dict = EfficientFormerConfig.from_json_file(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(__lowerCAmelCase ) _UpperCAmelCase : Tuple = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _UpperCAmelCase : Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 _UpperCAmelCase : Optional[int] = convert_torch_checkpoint(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() _UpperCAmelCase : Optional[Any] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image _UpperCAmelCase : int = prepare_img() _UpperCAmelCase : List[str] = 256 _UpperCAmelCase : Optional[int] = 224 _UpperCAmelCase : Tuple = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) _UpperCAmelCase : Any = processor(images=__lowerCAmelCase , return_tensors="pt" ).pixel_values # original processing pipeline _UpperCAmelCase : int = Compose( [ Resize(__lowerCAmelCase , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(__lowerCAmelCase ), ToTensor(), Normalize(__lowerCAmelCase , __lowerCAmelCase ), ] ) _UpperCAmelCase : Any = image_transforms(__lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = model(__lowerCAmelCase ) _UpperCAmelCase : Dict = outputs.logits _UpperCAmelCase : Optional[int] = (1, 1_000) if "l1" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowerCAmelCase ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowerCamelCase__ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
234
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase__ = imread(R'''digital_image_processing/image_data/lena_small.jpg''') lowerCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = cn.convert_to_negative(_UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def snake_case_ ( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCamelCase, 1_10 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : int = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : str = imread('''digital_image_processing/image_data/lena_small.jpg''', 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCamelCase : Any = canny.canny(_UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def snake_case_ ( ): '''simple docstring''' assert gg.gaussian_filter(_UpperCamelCase, 5, sigma=0.9 ).all() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCamelCase : Tuple = conv.img_convolve(_UpperCamelCase, _UpperCamelCase ).astype(_UpperCamelCase ) assert res.any() def snake_case_ ( ): '''simple docstring''' assert med.median_filter(_UpperCamelCase, 3 ).any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : str = sob.sobel_filter(_UpperCamelCase ) assert grad.any() and theta.any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Dict = sp.make_sepia(_UpperCamelCase, 20 ) assert sepia.all() def snake_case_ ( A_ : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' _lowerCamelCase : Dict = bs.Burkes(imread(_UpperCamelCase, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def snake_case_ ( A_ : str = "digital_image_processing/image_data/lena_small.jpg", ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = rs.NearestNeighbour(imread(_UpperCamelCase, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. _lowerCamelCase : Tuple = imread(_UpperCamelCase, 0 ) # Test for get_neighbors_pixel function() return not None _lowerCamelCase : Any = 0 _lowerCamelCase : Dict = 0 _lowerCamelCase : Union[str, Any] = image[x_coordinate][y_coordinate] _lowerCamelCase : Union[str, Any] = lbp.get_neighbors_pixel( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCamelCase : int = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): _lowerCamelCase : str = lbp.local_binary_value(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) assert lbp_image.any()
359
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def snake_case_ ( A_ : Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def snake_case_ ( A_ : Dict, A_ : Any ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : List[str] = False elif args.student_type == "gpt2": _lowerCamelCase : Any = False def snake_case_ ( A_ : Optional[Any], A_ : List[Any] ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : Optional[int] = False def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''', action='''store_true''', help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''', type=A_, required=A_, help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''', type=A_, required=A_, help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''', ) parser.add_argument( '''--student_type''', type=A_, choices=['''distilbert''', '''roberta''', '''gpt2'''], required=A_, help='''The student type (DistilBERT, RoBERTa).''', ) parser.add_argument('''--student_config''', type=A_, required=A_, help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''', default=A_, type=A_, help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''', choices=['''bert''', '''roberta''', '''gpt2'''], required=A_, help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''', type=A_, required=A_, help='''The teacher model.''' ) parser.add_argument('''--temperature''', default=2.0, type=A_, help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''', default=0.5, type=A_, help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''', default=0.0, type=A_, help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''', ) parser.add_argument('''--alpha_clm''', default=0.5, type=A_, help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''', default=0.0, type=A_, help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''', default=0.0, type=A_, help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''', action='''store_true''', help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''', default=0.15, type=A_, help='''Proportion of tokens for which we need to make a prediction.''', ) parser.add_argument('''--word_mask''', default=0.8, type=A_, help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''', default=0.1, type=A_, help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''', default=0.1, type=A_, help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''', default=0.7, type=A_, help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''', ) parser.add_argument('''--token_counts''', type=A_, help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''', action='''store_true''', help='''If true, compute the distillation loss only the [MLM] prediction distribution.''', ) parser.add_argument( '''--freeze_pos_embs''', action='''store_true''', help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''', ) parser.add_argument( '''--freeze_token_type_embds''', action='''store_true''', help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''', ) parser.add_argument('''--n_epoch''', type=A_, default=3, help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''', type=A_, default=5, help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''', action='''store_false''', help='''If true, group sequences that have similar length into the same batch. Default is true.''', ) parser.add_argument( '''--gradient_accumulation_steps''', type=A_, default=50, help='''Gradient accumulation for larger training batches.''', ) parser.add_argument('''--warmup_prop''', default=0.05, type=A_, help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''', default=0.0, type=A_, help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''', default=5E-4, type=A_, help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''', default=1E-6, type=A_, help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''', default=5.0, type=A_, help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''', default=0.02, type=A_, help='''Random initialization range.''' ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=A_, default='''O1''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_gpu''', type=A_, default=1, help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''', type=A_, default=-1, help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''', type=A_, default=56, help='''Random seed''' ) parser.add_argument('''--log_interval''', type=A_, default=5_00, help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''', type=A_, default=40_00, help='''Checkpoint interval.''' ) _lowerCamelCase : List[Any] = parser.parse_args() sanity_checks(A_ ) # ARGS # init_gpu_params(A_ ) set_seed(A_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path, '''parameters.json''' ), '''w''' ) as f: json.dump(vars(A_ ), A_, indent=4 ) git_log(args.dump_path ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = MODEL_CLASSES[args.student_type] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowerCamelCase : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowerCamelCase : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowerCamelCase : Optional[int] = tokenizer.all_special_tokens.index(A_ ) _lowerCamelCase : Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _lowerCamelCase : Optional[Any] = special_tok_ids _lowerCamelCase : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file, '''rb''' ) as fp: _lowerCamelCase : Any = pickle.load(A_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts, '''rb''' ) as fp: _lowerCamelCase : str = pickle.load(A_ ) _lowerCamelCase : List[Any] = np.maximum(A_, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowerCamelCase : List[Any] = 0.0 # do not predict special tokens _lowerCamelCase : str = torch.from_numpy(A_ ) else: _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Any = LmSeqsDataset(params=A_, data=A_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _lowerCamelCase : str = student_config_class.from_pretrained(args.student_config ) _lowerCamelCase : Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _lowerCamelCase : Dict = student_model_class.from_pretrained(args.student_pretrained_weights, config=A_ ) else: _lowerCamelCase : Optional[Any] = student_model_class(A_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # _lowerCamelCase : int = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=A_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A_, A_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A_, A_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowerCamelCase : Optional[int] = Distiller( params=A_, dataset=A_, token_probs=A_, student=A_, teacher=A_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
175
0
'''simple docstring''' class UpperCAmelCase ( UpperCamelCase__ ): pass class UpperCAmelCase ( UpperCamelCase__ ): pass class UpperCAmelCase : def __init__( self :Dict )-> Tuple: A__ = [ [], [], [], ] def UpperCAmelCase_ ( self :int , lowercase_ :int , lowercase_ :int )-> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(lowercase_ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def UpperCAmelCase_ ( self :List[str] )-> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self :Union[str, Any] )-> str: return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class UpperCAmelCase : def __init__( self :Dict )-> List[Any]: A__ = [] def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :int )-> None: if len(self.queue ) == 1_00: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> int: if not self.queue: raise UnderFlowError("The queue is empty" ) else: A__ = min(self.queue ) self.queue.remove(lowercase_ ) return data def __str__( self :Optional[Any] )-> str: return str(self.queue ) def UpperCamelCase ( ): A__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCamelCase ( ): A__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
237
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __lowerCAmelCase : Optional[Any] ={ "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """facebook/nllb-200-distilled-600M""" __lowercase = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __lowercase = """translator""" __lowercase = AutoTokenizer __lowercase = AutoModelForSeqaSeqLM __lowercase = LANGUAGE_CODES __lowercase = ["""text""", """text""", """text"""] __lowercase = ["""text"""] def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :int )-> str: if src_lang not in self.lang_to_code: raise ValueError(F"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(F"{tgt_lang} is not a supported language." ) A__ = self.lang_to_code[src_lang] A__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase_ , return_tensors="pt" , src_lang=lowercase_ , tgt_lang=lowercase_ ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Any )-> int: return self.model.generate(**lowercase_ ) def UpperCAmelCase_ ( self :int , lowercase_ :Optional[Any] )-> str: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase_ )
237
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str]=13 , UpperCAmelCase : str=32 , UpperCAmelCase : str=3 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] , UpperCAmelCase : Any=[2, 2, 3, 2] , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : List[str]=["stage2", "stage3", "stage4"] , UpperCAmelCase : Union[str, Any]=[2, 3, 4] , UpperCAmelCase : Dict=None , ): lowerCAmelCase_ : str = parent lowerCAmelCase_ : Dict = batch_size lowerCAmelCase_ : Optional[Any] = image_size lowerCAmelCase_ : str = num_channels lowerCAmelCase_ : int = num_stages lowerCAmelCase_ : int = hidden_sizes lowerCAmelCase_ : Dict = depths lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : int = use_labels lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Tuple = num_labels lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : str = out_features lowerCAmelCase_ : Dict = out_indices lowerCAmelCase_ : Optional[int] = scope def A ( self : str ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : str = ConvNextModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Tuple = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple ): lowerCAmelCase_ : Dict = ConvNextForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Any = ConvNextBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Dict = ConvNextBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : Tuple ): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : int = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __snake_case : Any = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) __snake_case : Optional[Any] = True __snake_case : Optional[int] = False __snake_case : Dict = False __snake_case : List[Any] = False __snake_case : Dict = False def A ( self : str ): lowerCAmelCase_ : List[str] = ConvNextModelTester(self ) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : List[str] ): return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def A ( self : Union[str, Any] ): pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def A ( self : Optional[int] ): pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def A ( self : List[Any] ): pass def A ( self : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Tuple = model_class(UpperCAmelCase ) lowerCAmelCase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : int = [*signature.parameters.keys()] lowerCAmelCase_ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A ( self : List[Any] ): def check_hidden_states_output(UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ): lowerCAmelCase_ : Dict = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCAmelCase_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Tuple = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A ( self : Union[str, Any] ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = ConvNextModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def A ( self : Optional[Any] ): lowerCAmelCase_ : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(UpperCAmelCase ) lowerCAmelCase_ : str = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Dict = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Optional[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @require_torch class __a ( unittest.TestCase ,__UpperCamelCase ): __snake_case : Any = (ConvNextBackbone,) if is_torch_available() else () __snake_case : Any = ConvNextConfig __snake_case : Union[str, Any] = False def A ( self : int ): lowerCAmelCase_ : List[Any] = ConvNextModelTester(self )
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowercase : Tuple = {"""UserAgent""": UserAgent().random} def _snake_case( SCREAMING_SNAKE_CASE__ ) -> dict: lowercase : Any = script.contents[0] lowercase : Union[str, Any] = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __snake_case : def __init__( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = f"https://www.instagram.com/{username}/" lowercase : str = self.get_json() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = requests.get(self.url ,headers=snake_case ).text lowercase : Dict = BeautifulSoup(snake_case ,"""html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return f"{self.__class__.__name__}('{self.username}')" def __str__( self ): '''simple docstring''' return f"{self.fullname} ({self.username}) is {self.biography}" @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["username"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["full_name"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["biography"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["business_email"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["external_url"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.user_data["is_private"] def _snake_case( SCREAMING_SNAKE_CASE__ = "github" ) -> None: import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowercase : Tuple = InstagramUser(SCREAMING_SNAKE_CASE__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , SCREAMING_SNAKE_CASE__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowercase : List[str] = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = RobertaTokenizer _lowerCAmelCase = RobertaTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = {"""cls_token""": """<s>"""} def __UpperCAmelCase ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) _a = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _a = {'unk_token': '<unk>'} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__magic_name__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__magic_name__ ) ) def __UpperCAmelCase ( self , **__magic_name__ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __UpperCAmelCase ( self , **__magic_name__ ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[Any]: _a = 'lower newer' _a = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self ) -> Optional[int]: _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = 'lower newer' _a = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _a = tokenizer.tokenize(__magic_name__ ) # , add_prefix_space=True) self.assertListEqual(__magic_name__ , __magic_name__ ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=__magic_name__ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=__magic_name__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __UpperCAmelCase ( self ) -> str: _a = self.tokenizer_class.from_pretrained('roberta-base' ) _a = tokenizer.encode('sequence builders' , add_special_tokens=__magic_name__ ) _a = tokenizer.encode('multi-sequence build' , add_special_tokens=__magic_name__ ) _a = tokenizer.encode( 'sequence builders' , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) _a = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) _a = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) _a = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = 'Encode this sequence.' _a = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__magic_name__ , __magic_name__ ) _a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__magic_name__ , __magic_name__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__magic_name__ , __magic_name__ ) # Testing spaces after special tokens _a = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(__magic_name__ ) _a = 'Encode <mask> sequence' _a = 'Encode <mask>sequence' _a = tokenizer.encode(__magic_name__ ) _a = encoded.index(__magic_name__ ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__magic_name__ , __magic_name__ ) _a = tokenizer.encode(__magic_name__ ) _a = encoded.index(__magic_name__ ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self ) -> str: pass def __UpperCAmelCase ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) _a = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) _a = 'A, <mask> AllenNLP sentence.' _a = tokenizer_r.encode_plus(__magic_name__ , add_special_tokens=__magic_name__ , return_token_type_ids=__magic_name__ ) _a = tokenizer_p.encode_plus(__magic_name__ , add_special_tokens=__magic_name__ , return_token_type_ids=__magic_name__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __magic_name__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __magic_name__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __UpperCAmelCase ( self ) -> Dict: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , __magic_name__ ) self.assertEqual(post_processor_state['add_prefix_space'] , __magic_name__ ) self.assertEqual(post_processor_state['trim_offsets'] , __magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _a = f'{text_of_1_token} {text_of_1_token}' _a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) _a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ) + 1, len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) _a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ) + 1, len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) _a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ), len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) _a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ), len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) _a = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) _a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__magic_name__ ) + 1, 1 + len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) _a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__magic_name__ ), 1 + len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) _a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) _a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__magic_name__ ), 1 + len(__magic_name__ ) + 1 + len(__magic_name__ )) , )
356
'''simple docstring''' def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 _a , _a = 1, 1 for _ in range(number_of_steps - 1 ): _a , _a = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
104
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Any: '''simple docstring''' try: __UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: __UpperCAmelCase = strtobool(SCREAMING_SNAKE_CASE ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value A_ : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return unittest.skip('''Test was skipped''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> int: '''simple docstring''' if test_case is None: return partial(SCREAMING_SNAKE_CASE , version=SCREAMING_SNAKE_CASE ) return unittest.skipUnless(is_torch_version('''>=''' , SCREAMING_SNAKE_CASE ) , f'''test requires torch version >= {version}''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(SCREAMING_SNAKE_CASE ) A_ : List[str] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(SCREAMING_SNAKE_CASE ) class A_ ( unittest.TestCase ): '''simple docstring''' a__ = True @classmethod def lowerCAmelCase_ (cls ) -> Optional[Any]: __UpperCAmelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase_ (cls ) -> int: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase_ (self ) -> Tuple: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase__ ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Tuple: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ ) -> Any: __UpperCAmelCase = mocks if isinstance(lowercase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = AcceleratorState() __UpperCAmelCase = tensor[None].clone().to(state.device ) __UpperCAmelCase = gather(SCREAMING_SNAKE_CASE ).cpu() __UpperCAmelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , SCREAMING_SNAKE_CASE ): return False return True class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: __UpperCAmelCase = returncode __UpperCAmelCase = stdout __UpperCAmelCase = stderr async def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' while True: __UpperCAmelCase = await stream.readline() if line: callback(SCREAMING_SNAKE_CASE ) else: break async def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> _RunOutput: '''simple docstring''' if echo: print('''\nRunning: ''' , ''' '''.join(SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=SCREAMING_SNAKE_CASE , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCAmelCase = [] __UpperCAmelCase = [] def tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" ): __UpperCAmelCase = line.decode('''utf-8''' ).rstrip() sink.append(SCREAMING_SNAKE_CASE ) if not quiet: print(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , file=SCREAMING_SNAKE_CASE ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE : tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE : tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=SCREAMING_SNAKE_CASE , ) return _RunOutput(await p.wait() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1_8_0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True ) -> _RunOutput: '''simple docstring''' __UpperCAmelCase = asyncio.get_event_loop() __UpperCAmelCase = loop.run_until_complete( _stream_subprocess(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , stdin=SCREAMING_SNAKE_CASE , timeout=SCREAMING_SNAKE_CASE , quiet=SCREAMING_SNAKE_CASE , echo=SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = ''' '''.join(SCREAMING_SNAKE_CASE ) if result.returncode > 0: __UpperCAmelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class A_ ( _a ): '''simple docstring''' pass def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: '''simple docstring''' try: __UpperCAmelCase = subprocess.check_output(SCREAMING_SNAKE_CASE , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(SCREAMING_SNAKE_CASE , '''decode''' ): __UpperCAmelCase = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(SCREAMING_SNAKE_CASE )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ): UpperCAmelCase_ = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCAmelCase__ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCAmelCase__ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCAmelCase__ ) return parser.parse_args() def a__ ( ): UpperCAmelCase_ = parse_args() # Import training_script as a module. UpperCAmelCase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase_ = script_fpath.stem UpperCAmelCase_ = importlib.import_module(lowerCAmelCase__ ) # Patch sys.argv UpperCAmelCase_ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
357
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A red cat sitting on a park bench" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
241
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCamelCase ( A__ , A__ ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(A__ , A__ ) ) ) def __lowerCamelCase ( A__ , A__ ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: UpperCamelCase = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(A__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(A__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(A__ ) UpperCamelCase = [] for value in value_array: UpperCamelCase = euclidean(A__ , dataset[0] ) UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase = euclidean(A__ , A__ ) if dist > temp_dist: UpperCamelCase = temp_dist UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCamelCase ( A__ , A__ ) -> float: """simple docstring""" return np.dot(A__ , A__ ) / (norm(A__ ) * norm(A__ )) if __name__ == "__main__": import doctest doctest.testmod()
28
from __future__ import annotations def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): # noqa: E741 while r - l > 1: UpperCamelCase_ : Union[str, Any] = (l + r) // 2 if v[m] >= key: UpperCamelCase_ : str = m else: UpperCamelCase_ : List[Any] = m # noqa: E741 return r def __lowercase ( lowerCamelCase : list[int] ): if len(lowerCamelCase ) == 0: return 0 UpperCamelCase_ : Tuple = [0] * len(lowerCamelCase ) UpperCamelCase_ : int = 1 UpperCamelCase_ : Dict = v[0] for i in range(1 , len(lowerCamelCase ) ): if v[i] < tail[0]: UpperCamelCase_ : Any = v[i] elif v[i] > tail[length - 1]: UpperCamelCase_ : Dict = v[i] length += 1 else: UpperCamelCase_ : List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
175
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests __lowercase = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase = BASE_URL + """/user""" # https://github.com/settings/tokens __lowercase = os.environ.get("""USER_TOKEN""", """""") def lowercase ( A_ )-> dict[Any, Any]: '''simple docstring''' a : str = { "Authorization": F'''token {auth_token}''', "Accept": "application/vnd.github.v3+json", } return requests.get(A_ , headers=A_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
226
"""simple docstring""" from __future__ import annotations class _A : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : List[Any]=None): a : int = data a : Dict = None def __repr__( self : Dict): a : List[Any] = [] a : str = self while temp: string_rep.append(f'''{temp.data}''') a : Tuple = temp.next return "->".join(__UpperCAmelCase) def lowercase ( A_ )-> Any: '''simple docstring''' if not elements_list: raise Exception("The Elements List is empty" ) a : Any = Node(elements_list[0] ) for i in range(1 , len(A_ ) ): a : int = Node(elements_list[i] ) a : Optional[Any] = current.next return head def lowercase ( A_ )-> None: '''simple docstring''' if head_node is not None and isinstance(A_ , A_ ): print_reverse(head_node.next ) print(head_node.data ) def lowercase ( )-> List[Any]: '''simple docstring''' from doctest import testmod testmod() a : Union[str, Any] = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A_ ) print("Elements in Reverse:" ) print_reverse(A_ ) if __name__ == "__main__": main()
226
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = int(number**0.5 ) return number == sq * sq def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowerCAmelCase : List[str] = x_den * y_den * z_den _lowerCAmelCase : Optional[Any] = gcd(A__ , A__ ) top //= hcf bottom //= hcf return top, bottom def A ( _lowerCamelCase = 35 ): '''simple docstring''' _lowerCAmelCase : int = set() _lowerCAmelCase : str = 42 _lowerCAmelCase : List[str] = Fraction(0 ) _lowerCAmelCase : Union[str, Any] = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowerCAmelCase : Optional[Any] = x_num * y_den + x_den * y_num _lowerCAmelCase : Optional[int] = x_den * y_den _lowerCAmelCase : Optional[int] = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : List[Any] = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=2 _lowerCAmelCase : Optional[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowerCAmelCase : List[str] = x_den * x_den * y_den * y_den if is_sq(A__ ) and is_sq(A__ ): _lowerCAmelCase : Tuple = int(sqrt(A__ ) ) _lowerCAmelCase : Optional[Any] = int(sqrt(A__ ) ) _lowerCAmelCase : List[str] = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Any = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=-1 _lowerCAmelCase : Tuple = x_num * y_num _lowerCAmelCase : int = x_den * y_num + x_num * y_den _lowerCAmelCase : Tuple = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Dict = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=2 _lowerCAmelCase : Dict = x_num * x_num * y_num * y_num _lowerCAmelCase : Optional[int] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(A__ ) and is_sq(A__ ): _lowerCAmelCase : str = int(sqrt(A__ ) ) _lowerCAmelCase : Optional[Any] = int(sqrt(A__ ) ) _lowerCAmelCase : Optional[Any] = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Optional[int] = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) for num, den in unique_s: total += Fraction(A__ , A__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
36
'''simple docstring''' import math class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : Optional[Any]=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" UpperCamelCase = n UpperCamelCase = [ [math.inf for j in range(0 , UpperCamelCase__ )] for i in range(0 , UpperCamelCase__ ) ] # adjacency matrix for weight UpperCamelCase = [ [math.inf for j in range(0 , UpperCamelCase__ )] for i in range(0 , UpperCamelCase__ ) ] # dp[i][j] stores minimum distance from i to j def A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = w def A ( self : str ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : List[str] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
28
0
"""simple docstring""" def _UpperCAmelCase ( ) -> int: return 1 def _UpperCAmelCase ( __lowerCamelCase : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _UpperCAmelCase ( __lowerCamelCase : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : int = 2_00 ) -> int: return two_pound(__lowerCamelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
40
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase__ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase__ = { 'allenai/led-base-16384': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase , __lowerCamelCase ) ) def _UpperCAmelCase ( __lowerCamelCase : Any ) -> List[Any]: _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class lowerCAmelCase__ ( A_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] def __init__( self : str , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int]="replace" , _lowerCamelCase : Dict="<s>" , _lowerCamelCase : Optional[Any]="</s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : Any="<pad>" , _lowerCamelCase : Union[str, Any]="<mask>" , _lowerCamelCase : Optional[int]=False , **_lowerCamelCase : str , ): _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: _snake_case = json.load(_lowerCamelCase ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase , encoding='''utf-8''' ) as merges_handle: _snake_case = merges_handle.read().split('''\n''' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase ( self : Tuple ): return len(self.encoder ) def lowercase ( self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self : Dict , _lowerCamelCase : str ): if token in self.cache: return self.cache[token] _snake_case = tuple(_lowerCamelCase ) _snake_case = get_pairs(_lowerCamelCase ) if not pairs: return token while True: _snake_case = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(_lowerCamelCase ): try: _snake_case = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(_lowerCamelCase ) _snake_case = new_word if len(_lowerCamelCase ) == 1: break else: _snake_case = get_pairs(_lowerCamelCase ) _snake_case = ''' '''.join(_lowerCamelCase ) _snake_case = word return word def lowercase ( self : str , _lowerCamelCase : Dict ): _snake_case = [] for token in re.findall(self.pat , _lowerCamelCase ): _snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(''' ''' ) ) return bpe_tokens def lowercase ( self : Optional[Any] , _lowerCamelCase : List[str] ): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase ( self : Optional[int] , _lowerCamelCase : Dict ): return self.decoder.get(_lowerCamelCase ) def lowercase ( self : Dict , _lowerCamelCase : Union[str, Any] ): _snake_case = ''''''.join(_lowerCamelCase ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) _snake_case = 0 with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _snake_case = token_index writer.write(''' '''.join(_lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase ( self : str , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self : Tuple , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def lowercase ( self : Optional[int] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Any=False , **_lowerCamelCase : List[Any] ): _snake_case = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): _snake_case = ''' ''' + text return (text, kwargs) def lowercase ( self : int , _lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[bool] = None , ): _snake_case = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: _snake_case = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _snake_case = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: _snake_case = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _snake_case = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _snake_case = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
40
1
def _a ( lowerCamelCase: Tuple = 10_00 ) -> List[Any]: '''simple docstring''' __A = 2**power __A = 0 while n: __A , __A = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
117
'''simple docstring''' lowerCAmelCase__ = '''Input must be a string of 8 numbers plus letter''' lowerCAmelCase__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): __lowercase = F"Expected string as input, found {type(A__ ).__name__}" raise TypeError(A__ ) __lowercase = spanish_id.replace('''-''' , '''''' ).upper() if len(A__ ) != 9: raise ValueError(A__ ) try: __lowercase = int(spanish_id_clean[0:8] ) __lowercase = spanish_id_clean[8] except ValueError as ex: raise ValueError(A__ ) from ex if letter.isdigit(): raise ValueError(A__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
104
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCAmelCase__ ( _a : str , _a : str , **_a : Any ): snake_case_ : Optional[int] = AutoConfig.from_pretrained(_a , **_a ) snake_case_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(_a ) model.save_pretrained(_a ) AutoTokenizer.from_pretrained(_a ).save_pretrained(_a ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
364
import datasets from .evaluate import evaluate lowercase : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' lowercase : int = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' lowercase : int = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ : Union[str, Any] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} snake_case_ : Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] snake_case_ : Any = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE ) return score
36
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( A__ , A__ , unittest.TestCase ): a__ = IFInpaintingSuperResolutionPipeline a__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} a__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) a__ = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def lowerCamelCase_ ( self , lowercase , lowercase=0) -> int: '''simple docstring''' if str(a_).startswith('mps'): a__: List[Any] = torch.manual_seed(a_) else: a__: str = torch.Generator(device=a_).manual_seed(a_) a__: List[str] = floats_tensor((1, 3, 16, 16) , rng=random.Random(a_)).to(a_) a__: Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_)).to(a_) a__: int = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_)).to(a_) a__: Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' self._test_save_load_local() def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
290
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = ["""image_processor""", """tokenizer"""] a_ : List[str] = """ViTImageProcessor""" a_ : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[str] , a_ : str=None , a_ : Dict=None , **a_ : List[Any] ): lowerCAmelCase_ : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) def __call__( self : Union[str, Any] , a_ : Any=None , a_ : Dict=None , a_ : List[str]=None , a_ : str=None , **a_ : Any ): if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None: lowerCAmelCase_ : Optional[Any] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if images is not None: lowerCAmelCase_ : List[str] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None and images is not None: lowerCAmelCase_ : Union[str, Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ : Dict = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def lowerCamelCase ( self : Optional[int] , *a_ : Optional[Any] , **a_ : List[str] ): return self.tokenizer.batch_decode(*a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , *a_ : Tuple , **a_ : Tuple ): return self.tokenizer.decode(*a_ , **a_ ) @property def lowerCamelCase ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def lowerCamelCase ( self : Dict ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
241
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase__ ( a__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BertJapaneseTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def A_ ( self ): super().setUp() _lowerCamelCase : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] _lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self , lowercase ): _lowerCamelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。''' _lowerCamelCase : str = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def A_ ( self , lowercase ): _lowerCamelCase : int = self.get_input_output_texts(_lowerCamelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): _lowerCamelCase : str = self.tokenizer_class(self.vocab_file ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(_lowerCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。''' _lowerCamelCase : Optional[int] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCamelCase , 'wb' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , 'rb' ) as handle: _lowerCamelCase : Any = pickle.load(_lowerCamelCase ) _lowerCamelCase : Tuple = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : Any = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : str = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = MecabTokenizer(do_lower_case=_lowerCamelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self ): try: _lowerCamelCase : List[str] = MecabTokenizer( do_lower_case=_lowerCamelCase , normalize_text=_lowerCamelCase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def A_ ( self ): _lowerCamelCase : Any = MecabTokenizer(normalize_text=_lowerCamelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(_lowerCamelCase ) _lowerCamelCase : List[str] = '''こんにちは、世界。\nこんばんは、世界。''' _lowerCamelCase : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCamelCase , 'wb' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , 'rb' ) as handle: _lowerCamelCase : int = pickle.load(_lowerCamelCase ) _lowerCamelCase : Optional[int] = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_sudachi def A_ ( self ): _lowerCamelCase : List[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Any = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def A_ ( self ): _lowerCamelCase : Dict = SudachiTokenizer(do_lower_case=_lowerCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Optional[int] = SudachiTokenizer(normalize_text=_lowerCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def A_ ( self ): _lowerCamelCase : Any = SudachiTokenizer(trim_whitespace=_lowerCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(_lowerCamelCase ) _lowerCamelCase : Dict = '''こんにちは、世界。\nこんばんは、世界。''' _lowerCamelCase : Any = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCamelCase , 'wb' ) as handle: pickle.dump(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , 'rb' ) as handle: _lowerCamelCase : Any = pickle.load(_lowerCamelCase ) _lowerCamelCase : Tuple = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_jumanpp def A_ ( self ): _lowerCamelCase : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Dict = JumanppTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Any = JumanppTokenizer(normalize_text=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Optional[int] = JumanppTokenizer(trim_whitespace=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def A_ ( self ): _lowerCamelCase : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def A_ ( self ): _lowerCamelCase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] _lowerCamelCase : List[Any] = {} for i, token in enumerate(_lowerCamelCase ): _lowerCamelCase : Any = i _lowerCamelCase : Tuple = WordpieceTokenizer(vocab=_lowerCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def A_ ( self ): _lowerCamelCase : str = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) _lowerCamelCase : List[str] = tokenizer.subword_tokenizer _lowerCamelCase : str = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(_lowerCamelCase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) _lowerCamelCase : int = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(_lowerCamelCase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) _lowerCamelCase : Optional[int] = tokenizer.encode('ありがとう。' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode('どういたしまして。' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( a__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BertJapaneseTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() _lowerCamelCase : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self , **lowercase ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **_lowerCamelCase ) def A_ ( self , lowercase ): _lowerCamelCase : int = '''こんにちは、世界。 \nこんばんは、世界。''' _lowerCamelCase : Optional[int] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): pass # TODO add if relevant def A_ ( self ): _lowerCamelCase : Optional[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) _lowerCamelCase : List[str] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( _lowerCamelCase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A_ ( self ): _lowerCamelCase : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _lowerCamelCase : str = {} for i, token in enumerate(_lowerCamelCase ): _lowerCamelCase : Optional[int] = i _lowerCamelCase : Dict = CharacterTokenizer(vocab=_lowerCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def A_ ( self ): _lowerCamelCase : str = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) _lowerCamelCase : Optional[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : str = tokenizer.encode('どういたしまして。' , add_special_tokens=_lowerCamelCase ) _lowerCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : str = '''cl-tohoku/bert-base-japanese''' _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Union[str, Any] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) _lowerCamelCase : Optional[Any] = '''bert-base-cased''' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
368
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *a_ : Union[str, Any] , a_ : Any=None , a_ : Any=None , **a_ : Any ): '''simple docstring''' super().__init__(*a_ , **a_ ) __UpperCAmelCase : int = eval_examples __UpperCAmelCase : Tuple = post_process_function def snake_case__ ( self : Union[str, Any] , a_ : Tuple=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : str = "eval" ): '''simple docstring''' __UpperCAmelCase : Any = self.eval_dataset if eval_dataset is None else eval_dataset __UpperCAmelCase : Union[str, Any] = self.get_eval_dataloader(a_ ) __UpperCAmelCase : Dict = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __UpperCAmelCase : str = self.compute_metrics __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __UpperCAmelCase : Optional[int] = time.time() try: __UpperCAmelCase : str = eval_loop( a_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , metric_key_prefix=a_ , ) finally: __UpperCAmelCase : int = compute_metrics __UpperCAmelCase : List[Any] = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( a_ , a_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __UpperCAmelCase : Tuple = self.post_process_function(a_ , a_ , output.predictions ) __UpperCAmelCase : Dict = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): __UpperCAmelCase : Optional[int] = metrics.pop(a_ ) metrics.update(output.metrics ) else: __UpperCAmelCase : Dict = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __UpperCAmelCase : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , a_ ) return metrics def snake_case__ ( self : Dict , a_ : str , a_ : Union[str, Any] , a_ : Any=None , a_ : str = "test" ): '''simple docstring''' __UpperCAmelCase : str = self.get_test_dataloader(a_ ) # Temporarily disable metric computation, we will do it in the loop here. __UpperCAmelCase : List[Any] = self.compute_metrics __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __UpperCAmelCase : Tuple = time.time() try: __UpperCAmelCase : str = eval_loop( a_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , metric_key_prefix=a_ , ) finally: __UpperCAmelCase : Optional[Any] = compute_metrics __UpperCAmelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( a_ , a_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __UpperCAmelCase : List[Any] = self.post_process_function(a_ , a_ , output.predictions , '''predict''' ) __UpperCAmelCase : List[Any] = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): __UpperCAmelCase : Any = metrics.pop(a_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a_ )
226
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A =logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = ["""pixel_values"""] def __init__( self : Tuple , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Dict[str, int] = None , a_ : bool = True , a_ : Union[int, float] = 1 / 2_55 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = True , **a_ : str , ): '''simple docstring''' super().__init__(**a_ ) __UpperCAmelCase : List[Any] = size if size is not None else {'''shortest_edge''': 2_24} __UpperCAmelCase : List[str] = get_size_dict(a_ , default_to_square=a_ ) __UpperCAmelCase : int = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __UpperCAmelCase : Optional[int] = get_size_dict(a_ , default_to_square=a_ , param_name='''crop_size''' ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Union[str, Any] = size __UpperCAmelCase : Union[str, Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Dict = rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : int = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[str] = do_convert_rgb def snake_case__ ( self : Optional[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCAmelCase : Optional[int] = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Union[str, Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def snake_case__ ( self : Union[str, Any] , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[str] , ): '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Optional[Any] , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Any , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : int = None , a_ : bool = None , a_ : float = None , a_ : bool = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **a_ : Dict , ): '''simple docstring''' __UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[Any] = size if size is not None else self.size __UpperCAmelCase : Dict = get_size_dict(a_ , param_name='''size''' , default_to_square=a_ ) __UpperCAmelCase : int = resample if resample is not None else self.resample __UpperCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Any = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(a_ , param_name='''crop_size''' , default_to_square=a_ ) __UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : Optional[Any] = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(a_ ) for image in images] if do_resize: __UpperCAmelCase : int = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __UpperCAmelCase : List[str] = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __UpperCAmelCase : Optional[int] = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __UpperCAmelCase : Optional[int] = [to_channel_dimension_format(a_ , a_ ) for image in images] __UpperCAmelCase : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=a_ , tensor_type=a_ )
226
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = tmp_path / '''cache''' lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = tmp_path / '''cache''' lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = tmp_path / '''cache''' lowercase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} lowercase = features.copy() lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = tmp_path / '''cache''' lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = tmp_path / '''cache''' lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = jsonl_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = [jsonl_path] lowercase = tmp_path / '''cache''' lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=("train",) ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: lowercase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = tmp_path / '''cache''' lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = tmp_path / '''cache''' lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = JsonDatasetReader({'''train''': jsonl_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if split: lowercase = {split: jsonl_path} else: lowercase = '''train''' lowercase = {'''train''': jsonl_path, '''test''': jsonl_path} lowercase = tmp_path / '''cache''' lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return json.load(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return [json.loads(lowerCAmelCase__ ) for line in buffer] class lowercase : @pytest.mark.parametrize('''lines, load_json_function''' ,[(True, load_json_lines), (False, load_json)]) def A__ ( self ,A__ ,A__ ,A__): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,lines=A__).write() buffer.seek(0) lowercase = load_json_function(A__) assert isinstance(A__ ,A__) assert isinstance(exported_content[0] ,A__) assert len(A__) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' ,[ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789'''), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] ,) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,lines=A__ ,orient=A__).write() buffer.seek(0) lowercase = load_json(A__) assert isinstance(A__ ,A__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A__ ,'''keys''') and not hasattr(exported_content[0] ,'''keys''') if len_at: assert len(exported_content[len_at]) == 1_0 else: assert len(A__) == 1_0 @pytest.mark.parametrize('''lines, load_json_function''' ,[(True, load_json_lines), (False, load_json)]) def A__ ( self ,A__ ,A__ ,A__): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,lines=A__ ,num_proc=2).write() buffer.seek(0) lowercase = load_json_function(A__) assert isinstance(A__ ,A__) assert isinstance(exported_content[0] ,A__) assert len(A__) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' ,[ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789'''), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] ,) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,lines=A__ ,orient=A__ ,num_proc=2).write() buffer.seek(0) lowercase = load_json(A__) assert isinstance(A__ ,A__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A__ ,'''keys''') and not hasattr(exported_content[0] ,'''keys''') if len_at: assert len(exported_content[len_at]) == 1_0 else: assert len(A__) == 1_0 def A__ ( self ,A__): with pytest.raises(A__): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,num_proc=0) @pytest.mark.parametrize('''compression, extension''' ,[('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')]) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = tmp_path_factory.mktemp('''data''') / f'test.json.{extension}' lowercase = str(shared_datadir / f'test_file.json.{extension}') JsonDatasetWriter(A__ ,A__ ,compression=A__).write() with fsspec.open(A__ ,'''rb''' ,compression='''infer''') as f: lowercase = f.read() with fsspec.open(A__ ,'''rb''' ,compression='''infer''') as f: lowercase = f.read() assert exported_content == original_content
368
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ :Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ :int = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ :List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ :List[str] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
97
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __lowercase = None __lowercase = logging.get_logger(__name__) __lowercase = """▁""" __lowercase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } __lowercase = { """google/pegasus-xsum""": 512, } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[Any] = PegasusTokenizer UpperCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[Any]="<pad>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : Optional[int]="<unk>" , __UpperCAmelCase : str="<mask_2>" , __UpperCAmelCase : List[str]="<mask_1>" , __UpperCAmelCase : str=None , __UpperCAmelCase : Any=103 , **__UpperCAmelCase : Union[str, Any] , ): a : List[Any] = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase): raise TypeError( f'''additional_special_tokens should be of type {type(__UpperCAmelCase)}, but is''' f''' {type(__UpperCAmelCase)}''') a : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(__UpperCAmelCase) , self.offset - 1) ] if len(set(__UpperCAmelCase)) != len(__UpperCAmelCase): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''') a : int = additional_special_tokens_extended else: a : List[str] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset)] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) a : str = vocab_file a : str = False if not self.vocab_file else True def __snake_case ( self : Tuple , __UpperCAmelCase : int): a : int = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}''') return [1 if x in all_special_ids else 0 for x in seq] def __snake_case ( self : Any , __UpperCAmelCase : List , __UpperCAmelCase : Optional[List] = None , __UpperCAmelCase : bool = False): if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def __snake_case ( self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=None): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __snake_case ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__UpperCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return a : Dict = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__UpperCAmelCase): copyfile(self.vocab_file , __UpperCAmelCase) return (out_vocab_file,)
40
"""simple docstring""" def lowercase ( A_ )-> str: '''simple docstring''' if isinstance(A_ , A_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(A_ , A_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" a : Optional[Any] = False if num < 0: a : Tuple = True a : str = -num a : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A_ ) for e in binary ) return "0b" + "".join(str(A_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __A = logging.get_logger(__name__) @add_end_docstrings( __magic_name__ , r'''\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ''' , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ ) -> np.ndarray: '''simple docstring''' if self.framework == "tf": __lowerCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __lowerCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ) else: raise ValueError('Unsupported framework' ) return masked_index def lowercase_ ( self , lowerCamelCase__ ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = self.get_masked_index(__A ) __lowerCamelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' if isinstance(__A , __A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__A ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ) -> Dict[str, GenericTensor]: '''simple docstring''' if return_tensors is None: __lowerCamelCase = self.framework __lowerCamelCase = self.tokenizer(__A , return_tensors=__A ) self.ensure_exactly_one_mask_token(__A ) return model_inputs def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.model(**__A ) __lowerCamelCase = model_inputs['input_ids'] return model_outputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=5 , lowerCamelCase__=None ) -> Any: '''simple docstring''' # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __lowerCamelCase = target_ids.shape[0] __lowerCamelCase = model_outputs['input_ids'][0] __lowerCamelCase = model_outputs['logits'] if self.framework == "tf": __lowerCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __lowerCamelCase = outputs.numpy() __lowerCamelCase = outputs[0, masked_index, :] __lowerCamelCase = stable_softmax(__A , axis=-1 ) if target_ids is not None: __lowerCamelCase = tf.gather_nd(tf.squeeze(__A , 0 ) , target_ids.reshape(-1 , 1 ) ) __lowerCamelCase = tf.expand_dims(__A , 0 ) __lowerCamelCase = tf.math.top_k(__A , k=__A ) __lowerCamelCase , __lowerCamelCase = topk.values.numpy(), topk.indices.numpy() else: __lowerCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __lowerCamelCase = outputs[0, masked_index, :] __lowerCamelCase = logits.softmax(dim=-1 ) if target_ids is not None: __lowerCamelCase = probs[..., target_ids] __lowerCamelCase , __lowerCamelCase = probs.topk(__A ) __lowerCamelCase = [] __lowerCamelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __lowerCamelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __lowerCamelCase = input_ids.numpy().copy() if target_ids is not None: __lowerCamelCase = target_ids[p].tolist() __lowerCamelCase = p # Filter padding out: __lowerCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __lowerCamelCase = self.tokenizer.decode(__A , skip_special_tokens=__A ) __lowerCamelCase = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(__A ) result.append(__A ) if single_mask: return result[0] return result def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]: '''simple docstring''' if isinstance(__A , __A ): __lowerCamelCase = [targets] try: __lowerCamelCase = self.tokenizer.get_vocab() except Exception: __lowerCamelCase = {} __lowerCamelCase = [] for target in targets: __lowerCamelCase = vocab.get(__A , __A ) if id_ is None: __lowerCamelCase = self.tokenizer( __A , add_special_tokens=__A , return_attention_mask=__A , return_token_type_ids=__A , max_length=1 , truncation=__A , )['input_ids'] if len(__A ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue __lowerCamelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) __lowerCamelCase = list(set(__A ) ) if len(__A ) == 0: raise ValueError('At least one target must be provided when passed.' ) __lowerCamelCase = np.array(__A ) return target_ids def lowercase_ ( self , lowerCamelCase__=None , lowerCamelCase__=None ) -> List[Any]: '''simple docstring''' __lowerCamelCase = {} if targets is not None: __lowerCamelCase = self.get_target_ids(__A , __A ) __lowerCamelCase = target_ids if top_k is not None: __lowerCamelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = super().__call__(__A , **__A ) if isinstance(__A , __A ) and len(__A ) == 1: return outputs[0] return outputs
359
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowercase_ = NewType("""DataClass""", Any) lowercase_ = NewType("""DataClassType""", Any) def lowerCamelCase ( __lowerCamelCase : str ) ->int: if isinstance(__lowerCamelCase , __lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def lowerCamelCase ( __lowerCamelCase : list ) ->Callable[[str], Any]: _SCREAMING_SNAKE_CASE = {str(__lowerCamelCase ): choice for choice in choices} return lambda __lowerCamelCase : str_to_choice.get(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase ( *, __lowerCamelCase : Union[str, List[str]] = None , __lowerCamelCase : str = None , __lowerCamelCase : Any = dataclasses.MISSING , __lowerCamelCase : Callable[[], Any] = dataclasses.MISSING , __lowerCamelCase : dict = None , **__lowerCamelCase : Optional[Any] , ) ->dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _SCREAMING_SNAKE_CASE = {} if aliases is not None: _SCREAMING_SNAKE_CASE = aliases if help is not None: _SCREAMING_SNAKE_CASE = help return dataclasses.field(metadata=__lowerCamelCase , default=__lowerCamelCase , default_factory=__lowerCamelCase , **__lowerCamelCase ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 42 def __init__( self , A , **A ) -> int: # To make the default appear when using --help if "formatter_class" not in kwargs: _SCREAMING_SNAKE_CASE = ArgumentDefaultsHelpFormatter super().__init__(**A ) if dataclasses.is_dataclass(A ): _SCREAMING_SNAKE_CASE = [dataclass_types] _SCREAMING_SNAKE_CASE = list(A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A ) @staticmethod def snake_case_( A , A ) -> int: _SCREAMING_SNAKE_CASE = f'--{field.name}' _SCREAMING_SNAKE_CASE = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , A ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) _SCREAMING_SNAKE_CASE = kwargs.pop("""aliases""" , [] ) if isinstance(A , A ): _SCREAMING_SNAKE_CASE = [aliases] _SCREAMING_SNAKE_CASE = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(A , """UnionType""" ) and isinstance(A , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f' Problem encountered in field \'{field.name}\'.' ) if type(A ) not in field.type.__args__: # filter `str` in Union _SCREAMING_SNAKE_CASE = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _SCREAMING_SNAKE_CASE = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _SCREAMING_SNAKE_CASE = ( field.type.__args__[0] if isinstance(A , field.type.__args__[1] ) else field.type.__args__[1] ) _SCREAMING_SNAKE_CASE = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _SCREAMING_SNAKE_CASE = {} if origin_type is Literal or (isinstance(field.type , A ) and issubclass(field.type , A )): if origin_type is Literal: _SCREAMING_SNAKE_CASE = field.type.__args__ else: _SCREAMING_SNAKE_CASE = [x.value for x in field.type] _SCREAMING_SNAKE_CASE = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: _SCREAMING_SNAKE_CASE = field.default else: _SCREAMING_SNAKE_CASE = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _SCREAMING_SNAKE_CASE = copy(A ) # Hack because type=bool in argparse does not behave as we want. _SCREAMING_SNAKE_CASE = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _SCREAMING_SNAKE_CASE = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _SCREAMING_SNAKE_CASE = default # This tells argparse we accept 0 or 1 value after --field_name _SCREAMING_SNAKE_CASE = """?""" # This is the value that will get picked if we do --field_name (without value) _SCREAMING_SNAKE_CASE = True elif isclass(A ) and issubclass(A , A ): _SCREAMING_SNAKE_CASE = field.type.__args__[0] _SCREAMING_SNAKE_CASE = """+""" if field.default_factory is not dataclasses.MISSING: _SCREAMING_SNAKE_CASE = field.default_factory() elif field.default is dataclasses.MISSING: _SCREAMING_SNAKE_CASE = True else: _SCREAMING_SNAKE_CASE = field.type if field.default is not dataclasses.MISSING: _SCREAMING_SNAKE_CASE = field.default elif field.default_factory is not dataclasses.MISSING: _SCREAMING_SNAKE_CASE = field.default_factory() else: _SCREAMING_SNAKE_CASE = True parser.add_argument(A , *A , **A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _SCREAMING_SNAKE_CASE = False parser.add_argument(f'--no_{field.name}' , action="""store_false""" , dest=field.name , **A ) def snake_case_( self , A ) -> Dict: if hasattr(A , """_argument_group_name""" ): _SCREAMING_SNAKE_CASE = self.add_argument_group(dtype._argument_group_name ) else: _SCREAMING_SNAKE_CASE = self try: _SCREAMING_SNAKE_CASE = get_type_hints(A ) except NameError: raise RuntimeError( f'Type resolution failed for {dtype}. Try declaring the class in global scope or ' """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ): _SCREAMING_SNAKE_CASE = """.""".join(map(A , sys.version_info[:3] ) ) raise RuntimeError( f'Type resolution failed for {dtype} on Python {python_version}. Try removing ' """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(A ): if not field.init: continue _SCREAMING_SNAKE_CASE = type_hints[field.name] self._parse_dataclass_field(A , A ) def snake_case_( self , A=None , A=False , A=True , A=None , A=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _SCREAMING_SNAKE_CASE = [] if args_filename: args_files.append(Path(A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _SCREAMING_SNAKE_CASE = ArgumentParser() args_file_parser.add_argument(A , type=A , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = args_file_parser.parse_known_args(args=A ) _SCREAMING_SNAKE_CASE = vars(A ).get(args_file_flag.lstrip("""-""" ) , A ) if cmd_args_file_paths: args_files.extend([Path(A ) for p in cmd_args_file_paths] ) _SCREAMING_SNAKE_CASE = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _SCREAMING_SNAKE_CASE = file_args + args if args is not None else file_args + sys.argv[1:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.parse_known_args(args=A ) _SCREAMING_SNAKE_CASE = [] for dtype in self.dataclass_types: _SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(A ) if f.init} _SCREAMING_SNAKE_CASE = {k: v for k, v in vars(A ).items() if k in keys} for k in keys: delattr(A , A ) _SCREAMING_SNAKE_CASE = dtype(**A ) outputs.append(A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def snake_case_( self , A , A = False ) -> Tuple[DataClass, ...]: _SCREAMING_SNAKE_CASE = set(args.keys() ) _SCREAMING_SNAKE_CASE = [] for dtype in self.dataclass_types: _SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(A ) if f.init} _SCREAMING_SNAKE_CASE = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _SCREAMING_SNAKE_CASE = dtype(**A ) outputs.append(A ) if not allow_extra_keys and unused_keys: raise ValueError(f'Some keys are not used by the HfArgumentParser: {sorted(A )}' ) return tuple(A ) def snake_case_( self , A , A = False ) -> Tuple[DataClass, ...]: with open(Path(A ) , encoding="""utf-8""" ) as open_json_file: _SCREAMING_SNAKE_CASE = json.loads(open_json_file.read() ) _SCREAMING_SNAKE_CASE = self.parse_dict(A , allow_extra_keys=A ) return tuple(A ) def snake_case_( self , A , A = False ) -> Tuple[DataClass, ...]: _SCREAMING_SNAKE_CASE = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) , allow_extra_keys=A ) return tuple(A )
58
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=24, __a=2, __a=6, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Tuple = scope _lowerCAmelCase : str = range_bbox def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Dict = bbox[i, j, 3] _lowerCAmelCase : int = bbox[i, j, 1] _lowerCAmelCase : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : str = bbox[i, j, 2] _lowerCAmelCase : List[Any] = bbox[i, j, 0] _lowerCAmelCase : str = t _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = LiltModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model(__a, bbox=__a, attention_mask=__a, token_type_ids=__a) _lowerCAmelCase : str = model(__a, bbox=__a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, bbox=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[Any] = LiltForTokenClassification(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = LiltForQuestionAnswering(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , a , unittest.TestCase): lowerCamelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' return True def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = LiltModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Any = type self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LiltModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__a) _lowerCAmelCase : Any = torch.tensor([[1, 2]], device=__a) _lowerCAmelCase : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(input_ids=__a, bbox=__a) _lowerCAmelCase : Optional[int] = torch.Size([1, 2, 768]) _lowerCAmelCase : List[str] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]], device=__a, ) self.assertTrue(outputs.last_hidden_state.shape, __a) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], __a, atol=1E-3))
36
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase : Union[str, Any] = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def a__ ( snake_case__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model lowerCamelCase = list(s_dict.keys() ) for key in keys: lowerCamelCase = R""".*/layers_(\d+)""" lowerCamelCase = key if re.match(snake_case__ , snake_case__ ): lowerCamelCase = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , snake_case__ ) lowerCamelCase = R"""(encoder|decoder)\/""" if re.match(snake_case__ , snake_case__ ): lowerCamelCase = re.match(snake_case__ , snake_case__ ).groups() if groups[0] == "encoder": lowerCamelCase = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , snake_case__ ) lowerCamelCase = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , snake_case__ ) elif groups[0] == "decoder": lowerCamelCase = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , snake_case__ ) lowerCamelCase = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , snake_case__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCamelCase = new_key.replace(snake_case__ , snake_case__ ) print(F'{key} -> {new_key}' ) lowerCamelCase = s_dict.pop(snake_case__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCamelCase = s_dict[key].shape[0] lowerCamelCase = s_dict[key] for idx in range(snake_case__ ): lowerCamelCase = expert_weihts[idx] print(F'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(snake_case__ ) return s_dict lowerCAmelCase : Dict = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def a__ ( snake_case__ , snake_case__ ) -> Union[str, Any]: # Convert a google style config to the hugging face fromat import regex as re with open(snake_case__ , """r""" ) as f: lowerCamelCase = f.read() lowerCamelCase = re.findall(R"""(.*) = ([0-9.]*)""" , snake_case__ ) lowerCamelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCamelCase = float(snake_case__ ) if """.""" in value else int(snake_case__ ) lowerCamelCase = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , snake_case__ )[0] lowerCamelCase = str(activation[1] ) lowerCamelCase = num_experts lowerCamelCase = SwitchTransformersConfig(**snake_case__ ) return config def a__ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__="./" , snake_case__=8 ) -> Any: # Initialise PyTorch model print(F'Loading flax weights from : {flax_checkpoint_path}' ) lowerCamelCase = checkpoints.load_tax_checkpoint(snake_case__ ) if gin_file is not None: lowerCamelCase = convert_gin_to_config(snake_case__ , snake_case__ ) else: lowerCamelCase = SwitchTransformersConfig.from_pretrained(snake_case__ ) lowerCamelCase = SwitchTransformersForConditionalGeneration(snake_case__ ) lowerCamelCase = flax_params["""target"""] lowerCamelCase = flatten_dict(snake_case__ , sep="""/""" ) lowerCamelCase = rename_keys(snake_case__ ) lowerCamelCase = unflatten_dict(snake_case__ , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(snake_case__ ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCAmelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
355
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = 0 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = Path(_a ) / """preprocessor_config.json""" lowerCamelCase = Path(_a ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = Path(_a ) / """preprocessor_config.json""" lowerCamelCase = Path(_a ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCamelCase = Path(_a ) / """preprocessor_config.json""" lowerCamelCase = Path(_a ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCamelCase = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCamelCase = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = Path(_a ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _a , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCamelCase = AutoImageProcessor.from_pretrained("""clip-base""" ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _a , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCamelCase = AutoImageProcessor.from_pretrained(_a , revision="""aaaaaa""" ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _a , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _lowerCAmelCase ( self ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a ) lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _lowerCAmelCase ( self ): """simple docstring""" try: AutoConfig.register("""custom""" , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = Path(_a ) / """preprocessor_config.json""" lowerCamelCase = Path(_a ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) ) lowerCamelCase = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self ): """simple docstring""" class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = True try: AutoConfig.register("""custom""" , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(_a , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
168
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __A ='''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __A ='''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __A ='''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase = 1 , lowercase = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowercase , hypotheses=lowercase , min_len=lowercase , max_len=lowercase ) }
19
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
0
def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) SCREAMING_SNAKE_CASE__ = str(bin(_A ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = str(bin(_A ) )[2:] SCREAMING_SNAKE_CASE__ = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
352
import comet # From: unbabel-comet import torch import datasets _SCREAMING_SNAKE_CASE : List[str] = datasets.logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _SCREAMING_SNAKE_CASE : str = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Dict ) -> Tuple: if self.config_name == "default": SCREAMING_SNAKE_CASE__ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: SCREAMING_SNAKE_CASE__ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowercase_ ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[int]=False ) -> str: if gpus is None: SCREAMING_SNAKE_CASE__ = 1 if torch.cuda.is_available() else 0 SCREAMING_SNAKE_CASE__ = {'''src''': sources, '''mt''': predictions, '''ref''': references} SCREAMING_SNAKE_CASE__ = [dict(zip(__lowerCamelCase , __lowerCamelCase ) ) for t in zip(*data.values() )] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.scorer.predict(__lowerCamelCase , gpus=__lowerCamelCase , progress_bar=__lowerCamelCase ) return {"mean_score": mean_score, "scores": scores}
218
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> list[list[float]]: _a : List[str] =Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__a ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _a : Optional[int] =float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _a : List[Any] =[[0.0, 0.0], [0.0, 0.0]] _a : int =matrix[1][1], matrix[0][0] _a : Union[str, Any] =-matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__a ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__a ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _a : Tuple =float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _a : Any =[ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _a : int =(d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _a : Union[str, Any] =-( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _a : Tuple =(d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _a : Any =-( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _a : Dict =(d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _a : Tuple =-( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _a : List[Any] =(d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _a : str =-( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _a : Tuple =(d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _a : Optional[int] =array(__a ) for i in range(3 ): for j in range(3 ): _a : Optional[int] =cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _a : str =array(__a ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__a ) # Calculate the inverse of the matrix return [[float(d(__a ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
276
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Any = Generator( cache_dir=UpperCamelCase_ , features=UpperCamelCase_ , generator=UpperCamelCase_ , gen_kwargs=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' if self.streaming: UpperCamelCase__ :Optional[Any] = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :int = None UpperCamelCase__ :Any = None UpperCamelCase__ :Any = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) UpperCamelCase__ :List[Any] = self.builder.as_dataset( split='''train''' , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset
97
0
"""simple docstring""" from pathlib import Path import fire def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' lowerCamelCase : List[Any] = Path(a_ ) lowerCamelCase : Any = Path(a_ ) dest_dir.mkdir(exist_ok=a_ ) for path in src_dir.iterdir(): lowerCamelCase : Union[str, Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCamelCase : Any = dest_dir.joinpath(path.name ) print(a_ ) dest_path.open('w' ).write('\n'.join(a_ ) ) if __name__ == "__main__": fire.Fire(minify)
205
"""simple docstring""" import numpy as np def UpperCAmelCase ( a_, a_, a_ = 1E-12, a_ = 100, ): '''simple docstring''' assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) lowerCamelCase : Optional[int] = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_, input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[str] = 0 lowerCamelCase : Any = 0 lowerCamelCase : Dict = 1E12 while not convergence: # Multiple matrix by the vector. lowerCamelCase : Optional[int] = np.dot(a_, a_ ) # Normalize the resulting output vector. lowerCamelCase : Optional[int] = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase : Optional[Any] = vector.conj().T if is_complex else vector.T lowerCamelCase : str = np.dot(a_, np.dot(a_, a_ ) ) # Check convergence. lowerCamelCase : Optional[int] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase : int = True lowerCamelCase : Optional[Any] = lambda_ if is_complex: lowerCamelCase : Any = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : str = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase : str = np.array([41, 4, 20] ) lowerCamelCase : Optional[Any] = real_input_matrix.astype(np.complexaaa ) lowerCamelCase : Dict = np.triu(1j * complex_input_matrix, 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase : List[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase : str = real_input_matrix lowerCamelCase : Any = real_vector elif problem_type == "complex": lowerCamelCase : str = complex_input_matrix lowerCamelCase : Dict = complex_vector # Our implementation. lowerCamelCase , lowerCamelCase : List[str] = power_iteration(a_, a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase , lowerCamelCase : Optional[Any] = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. lowerCamelCase : Dict = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase : List[str] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
205
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModel.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =AutoModel.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =AutoModelForPreTraining.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =TFAutoModelForCausalLM.from_pretrained( lowerCAmelCase, output_loading_info=lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =AutoModelForCausalLM.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =AutoModelForCausalLM.from_pretrained( lowerCAmelCase, output_loading_info=lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =AutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =TFAutoModelForMaskedLM.from_pretrained( lowerCAmelCase, output_loading_info=lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =AutoModelForMaskedLM.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =AutoModelForMaskedLM.from_pretrained( lowerCAmelCase, output_loading_info=lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =TFAutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase, output_loading_info=lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =AutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase, output_loading_info=lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 ) lowerCamelCase_ =AutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 ) lowerCamelCase_ =AutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 )
75
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
0
import math import qiskit def A__ ( SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 1) -> qiskit.result.counts.Counts: if ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) ): raise TypeError("""inputs must be integers.""") if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""") if ( (math.floor(SCREAMING_SNAKE_CASE__) != input_a) or (math.floor(SCREAMING_SNAKE_CASE__) != input_a) or (math.floor(SCREAMING_SNAKE_CASE__) != carry_in) ): raise ValueError("""inputs must be exact integers.""") if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""") # build registers __snake_case: Optional[Any] = qiskit.QuantumRegister(4 , """qr""") __snake_case: Optional[Any] = qiskit.ClassicalRegister(2 , """cr""") # list the entries __snake_case: List[Any] = [input_a, input_a, carry_in] __snake_case: Union[str, Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) for i in range(0 , 3): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE__) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE__) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE__) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3) # ccx = toffoli gate quantum_circuit.cx(0 , 1) quantum_circuit.ccx(1 , 2 , 3) quantum_circuit.cx(1 , 2) quantum_circuit.cx(0 , 1) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE__) # measure the last two qbits __snake_case: List[Any] = qiskit.Aer.get_backend("""aer_simulator""") __snake_case: Union[str, Any] = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=1000) return job.result().get_counts(SCREAMING_SNAKE_CASE__) if __name__ == "__main__": print(f'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
293
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( __lowerCamelCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A , """num_attention_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self : int , A : str , A : Dict=13 , A : str=32 , A : Any=2 , A : Optional[Any]=3 , A : str=640 , A : Tuple=4 , A : Dict="silu" , A : List[Any]=3 , A : Any=32 , A : Any=0.1 , A : int=0.1 , A : Dict=0.1 , A : Optional[Any]=0.02 , A : List[Any]=True , A : Tuple=True , A : Any=10 , A : Optional[int]=None , ): __snake_case: List[Any] = parent __snake_case: Dict = batch_size __snake_case: int = image_size __snake_case: Tuple = patch_size __snake_case: Tuple = num_channels __snake_case: str = last_hidden_size __snake_case: Dict = num_attention_heads __snake_case: Dict = hidden_act __snake_case: Tuple = conv_kernel_size __snake_case: List[str] = output_stride __snake_case: List[str] = hidden_dropout_prob __snake_case: Optional[Any] = attention_probs_dropout_prob __snake_case: int = classifier_dropout_prob __snake_case: List[Any] = use_labels __snake_case: Union[str, Any] = is_training __snake_case: Union[str, Any] = num_labels __snake_case: str = initializer_range __snake_case: List[Any] = scope def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case: Tuple = None __snake_case: Any = None if self.use_labels: __snake_case: Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case: str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case: Any = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self : int ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : str , A : Optional[Any] , A : Any , A : Any , A : Union[str, Any] ): __snake_case: List[Any] = MobileViTModel(config=A ) model.to(A ) model.eval() __snake_case: int = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : str , A : List[Any] , A : Any , A : Any , A : int ): __snake_case: str = self.num_labels __snake_case: Optional[int] = MobileViTForImageClassification(A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] , A : str , A : Optional[Any] , A : int , A : str ): __snake_case: List[Any] = self.num_labels __snake_case: Dict = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case: Tuple = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Tuple = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case: Any = config_and_inputs __snake_case: Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[Any] = MobileViTModelTester(self ) __snake_case: str = MobileViTConfigTester(self , config_class=A , has_text_modality=A ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[Any] ): pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Dict ): pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def UpperCAmelCase__ ( self : Optional[Any] ): pass def UpperCAmelCase__ ( self : str ): __snake_case , __snake_case: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[Any] = model_class(A ) __snake_case: int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case: Optional[int] = [*signature.parameters.keys()] __snake_case: List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : Optional[int] ): pass def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ ( self : Dict ): def check_hidden_states_output(A : List[Any] , A : int , A : Tuple ): __snake_case: List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __snake_case: str = model(**self._prepare_for_class(A , A ) ) __snake_case: Optional[int] = outputs.hidden_states __snake_case: Any = 5 self.assertEqual(len(A ) , A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case: Union[str, Any] = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case: Dict = True check_hidden_states_output(A , A , A ) def UpperCAmelCase__ ( self : int ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case: List[Any] = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def A__ ( ) -> Optional[int]: __snake_case: Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase__ ( self : Dict ): return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Tuple = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(A ) __snake_case: str = self.default_image_processor __snake_case: Optional[Any] = prepare_img() __snake_case: List[Any] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Dict = model(**A ) # verify the logits __snake_case: List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A ) __snake_case: Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Tuple ): __snake_case: Tuple = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[str] = model.to(A ) __snake_case: Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[Any] = prepare_img() __snake_case: List[str] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: List[Any] = model(**A ) __snake_case: Optional[int] = outputs.logits # verify the logits __snake_case: Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A ) __snake_case: Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: int = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: str = model.to(A ) __snake_case: Optional[Any] = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[str] = prepare_img() __snake_case: Optional[int] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Dict = model(**A ) __snake_case: List[Any] = outputs.logits.detach().cpu() __snake_case: List[str] = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(50, 60)] ) __snake_case: str = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A ) __snake_case: int = image_processor.post_process_semantic_segmentation(outputs=A ) __snake_case: Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A )
293
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=13 , lowerCAmelCase__ : str=30 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Optional[Any]=32 , lowerCAmelCase__ : List[str]=5 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : List[str]=37 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Tuple=2 , ): SCREAMING_SNAKE_CASE_: List[str] = parent SCREAMING_SNAKE_CASE_: str = batch_size SCREAMING_SNAKE_CASE_: Dict = image_size SCREAMING_SNAKE_CASE_: Union[str, Any] = patch_size SCREAMING_SNAKE_CASE_: Optional[Any] = num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = is_training SCREAMING_SNAKE_CASE_: int = use_labels SCREAMING_SNAKE_CASE_: Dict = hidden_size SCREAMING_SNAKE_CASE_: List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_: Tuple = num_attention_heads SCREAMING_SNAKE_CASE_: str = intermediate_size SCREAMING_SNAKE_CASE_: int = hidden_act SCREAMING_SNAKE_CASE_: int = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE_: List[Any] = initializer_range SCREAMING_SNAKE_CASE_: str = scope SCREAMING_SNAKE_CASE_: Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE_: int = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: int = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[str]): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Any = DeiTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = DeiTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: Tuple = DeiTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: Tuple = DeiTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Optional[int] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = DeiTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Optional[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Any = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _UpperCAmelCase : List[str] = False _UpperCAmelCase : Any = False _UpperCAmelCase : Optional[int] = False def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[Any] = DeiTModelTester(self) SCREAMING_SNAKE_CASE_: Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=False): SCREAMING_SNAKE_CASE_: Dict = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase__) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.train() SCREAMING_SNAKE_CASE_: Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model(**lowerCAmelCase__).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_: List[str] = False SCREAMING_SNAKE_CASE_: List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) model.gradient_checkpointing_enable() model.to(lowerCAmelCase__) model.train() SCREAMING_SNAKE_CASE_: List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model(**lowerCAmelCase__).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Tuple = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase__), *get_values(lowerCAmelCase__), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}"): SCREAMING_SNAKE_CASE_: Union[str, Any] = problem_type["title"] SCREAMING_SNAKE_CASE_: Any = problem_type["num_labels"] SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.train() SCREAMING_SNAKE_CASE_: int = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE_: int = inputs["labels"].unsqueeze(1).repeat(1 , problem_type["num_labels"]) SCREAMING_SNAKE_CASE_: Tuple = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase__) as warning_list: SCREAMING_SNAKE_CASE_: Dict = model(**lowerCAmelCase__).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}") loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Dict = DeiTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[str] = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to( lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.default_image_processor SCREAMING_SNAKE_CASE_: Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE_: Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([-1.0266, 0.1912, -1.2861]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[Any] = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: Dict = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__)
13
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _A (lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class a : def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: pass def __UpperCAmelCase ( self ) -> Any: pass def __UpperCAmelCase ( self ) -> List[Any]: pass def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = np.abs((a - b) ).max() self.assertLessEqual(__magic_name__ , __magic_name__ , f'Difference between torch and flax is {diff} (>= {tol}).' ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Tuple: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Optional[Any]: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Union[str, Any]: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) _a = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ ) _a = model(input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ ) _a = after_output[0] _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-3 ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Any: _a , _a = self.get_vision_text_model(__magic_name__ , __magic_name__ ) _a = {'vision_model': vision_model, 'text_model': text_model} _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__magic_name__ ) _a = model( input_ids=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , output_attentions=__magic_name__ ) _a = output.vision_model_output.attentions self.assertEqual(len(__magic_name__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _a = to_atuple(vision_model.config.image_size ) _a = to_atuple(vision_model.config.patch_size ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a = output.text_model_output.attentions self.assertEqual(len(__magic_name__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: pt_model.to(__magic_name__ ) pt_model.eval() # prepare inputs _a = inputs_dict _a = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _a = pt_model(**__magic_name__ ).to_tuple() _a = fx_model(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__magic_name__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) _a = fx_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__magic_name__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__magic_name__ ) _a = VisionTextDualEncoderModel.from_pretrained(__magic_name__ , from_flax=__magic_name__ ) pt_model_loaded.to(__magic_name__ ) pt_model_loaded.eval() with torch.no_grad(): _a = pt_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__magic_name__ , pt_output_loaded.numpy() , 4e-2 ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = VisionTextDualEncoderModel(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __magic_name__ ) _a = fx_state self.check_pt_flax_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = VisionTextDualEncoderConfig.from_vision_text_configs(__magic_name__ , __magic_name__ ) _a = VisionTextDualEncoderModel(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel(__magic_name__ ) _a = load_flax_weights_in_pytorch_model(__magic_name__ , fx_model.params ) self.check_pt_flax_equivalence(__magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: _a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() self.check_save_load(**__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: _a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__magic_name__ ) @is_pt_flax_cross_test def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.prepare_config_and_inputs() _a = config_inputs_dict.pop('vision_config' ) _a = config_inputs_dict.pop('text_config' ) _a = config_inputs_dict self.check_equivalence_pt_to_flax(__magic_name__ , __magic_name__ , __magic_name__ ) self.check_equivalence_flax_to_pt(__magic_name__ , __magic_name__ , __magic_name__ ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: _a , _a = self.get_pretrained_model_and_inputs() _a = model_a(**__magic_name__ ) _a = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__magic_name__ ) _a = FlaxVisionTextDualEncoderModel.from_pretrained(__magic_name__ ) _a = model_a(**__magic_name__ ) _a = after_outputs[0] _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-5 ) @require_flax class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __UpperCAmelCase ( self ) -> List[str]: _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__magic_name__ , text_from_pt=__magic_name__ , ) _a = 13 _a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = FlaxViTModel(__magic_name__ ) _a = FlaxBertModel(__magic_name__ ) return vision_model, text_model def __UpperCAmelCase ( self ) -> Optional[Any]: _a = FlaxViTModelTester(self ) _a = FlaxBertModelTester(self ) _a = vit_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a = vision_config_and_inputs _a , _a , _a , _a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __UpperCAmelCase ( self ) -> Any: _a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__magic_name__ , text_from_pt=__magic_name__ , ) _a = 13 _a = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = FlaxCLIPVisionModel(__magic_name__ ) _a = FlaxBertModel(__magic_name__ ) return vision_model, text_model def __UpperCAmelCase ( self ) -> Tuple: _a = FlaxCLIPVisionModelTester(self ) _a = FlaxBertModelTester(self ) _a = clip_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a = vision_config_and_inputs _a , _a , _a , _a = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class a ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ) -> Tuple: _a = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) _a = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=__magic_name__ , padding=__magic_name__ , return_tensors='np' ) _a = model(**__magic_name__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _a = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __magic_name__ , atol=1e-3 ) )
168
0
from __future__ import annotations class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case ): snake_case , snake_case = text, pattern snake_case , snake_case = len(__snake_case ), len(__snake_case ) def a_ ( self , __snake_case ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def a_ ( self , __snake_case ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a_ ( self ): # searches pattern in text and returns index positions snake_case = [] for i in range(self.textLen - self.patLen + 1 ): snake_case = self.mismatch_in_text(__snake_case ) if mismatch_index == -1: positions.append(__snake_case ) else: snake_case = self.match_in_pattern(self.text[mismatch_index] ) snake_case = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _SCREAMING_SNAKE_CASE : str = "ABAABA" _SCREAMING_SNAKE_CASE : Optional[int] = "AB" _SCREAMING_SNAKE_CASE : List[Any] = BoyerMooreSearch(text, pattern) _SCREAMING_SNAKE_CASE : Dict = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
213
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : int = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
213
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _A : Optional[int] ='''hf-internal-testing/tiny-random-bert''' _A : Union[str, Any] =os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') _A : Optional[Any] ='''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , """refs""" , """main""" ) ) as f: lowerCamelCase__ : int = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """snapshots""" , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. lowerCamelCase__ : Union[str, Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. lowerCamelCase__ : str = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="""9b8c223""" ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """snapshots""" , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase_ ( self: List[Any] ): with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid model identifier""" ): lowerCamelCase__ : Tuple = cached_file("""tiny-random-bert""" , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid git identifier""" ): lowerCamelCase__ : List[str] = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="""aaaa""" ) with self.assertRaisesRegex(UpperCamelCase__ , """does not appear to have a file named""" ): lowerCamelCase__ : str = cached_file(UpperCamelCase__ , """conf""" ) def lowerCamelCase_ ( self: Optional[int] ): with self.assertRaisesRegex(UpperCamelCase__ , """does not appear to have a file named""" ): lowerCamelCase__ : Any = cached_file(UpperCamelCase__ , """conf""" ) with open(os.path.join(UpperCamelCase__ , """refs""" , """main""" ) ) as f: lowerCamelCase__ : Optional[int] = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , """.no_exist""" , UpperCamelCase__ , """conf""" ) ) ) lowerCamelCase__ : Optional[Any] = cached_file(UpperCamelCase__ , """conf""" , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) lowerCamelCase__ : Dict = cached_file(UpperCamelCase__ , """conf""" , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = mock.Mock() lowerCamelCase__ : str = 500 lowerCamelCase__ : List[str] = {} lowerCamelCase__ : Union[str, Any] = HTTPError lowerCamelCase__ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase__ ) as mock_head: lowerCamelCase__ : List[Any] = cached_file(UpperCamelCase__ , """conf""" , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase_ ( self: Dict ): self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) def lowerCamelCase_ ( self: Optional[Any] ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , UpperCamelCase__ , revision="""ahaha""" ) lowerCamelCase__ : Tuple = get_file_from_repo("""bert-base-cased""" , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase__ : str = json.loads(open(UpperCamelCase__ , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def lowerCamelCase_ ( self: List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : int = Path(UpperCamelCase__ ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , """a.txt""" ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , """b.txt""" ) )
41
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Any ): """simple docstring""" __a =np.argmax(_snake_case , axis=1 ) return np.sum(outputs == labels ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" with open(_snake_case , encoding='utf_8' ) as f: __a =csv.reader(_snake_case ) __a =[] next(_snake_case ) # skip the first line for line in tqdm(_snake_case ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Tuple ): """simple docstring""" __a =[] for dataset in encoded_datasets: __a =len(_snake_case ) __a =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __a =np.zeros((n_batch, 2) , dtype=np.intaa ) __a =np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __a =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_snake_case ): __a =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a =with_conta __a =with_conta __a =len(_snake_case ) - 1 __a =len(_snake_case ) - 1 __a =with_conta __a =with_conta __a =mc_label __a =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_snake_case ) for t in all_inputs ) ) return tensor_datasets def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser() parser.add_argument('--model_name' , type=_snake_case , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=_snake_case , default='' ) parser.add_argument('--eval_dataset' , type=_snake_case , default='' ) parser.add_argument('--seed' , type=_snake_case , default=42 ) parser.add_argument('--num_train_epochs' , type=_snake_case , default=3 ) parser.add_argument('--train_batch_size' , type=_snake_case , default=8 ) parser.add_argument('--eval_batch_size' , type=_snake_case , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=_snake_case , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=_snake_case , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=_snake_case , default=6.2_5e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=_snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=_snake_case , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=_snake_case , default=0.01 ) parser.add_argument('--lm_coef' , type=_snake_case , default=0.9 ) parser.add_argument('--n_valid' , type=_snake_case , default=374 ) parser.add_argument('--server_ip' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) __a =parser.parse_args() print(_snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __a =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __a =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(_snake_case , _snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a =['_start_', '_delimiter_', '_classify_'] __a =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_snake_case ) __a =tokenizer.convert_tokens_to_ids(_snake_case ) __a =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_snake_case ) ) model.to(_snake_case ) # Load and encode the datasets def tokenize_and_encode(_snake_case : int ): if isinstance(_snake_case , _snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_snake_case ) ) elif isinstance(_snake_case , _snake_case ): return obj return [tokenize_and_encode(_snake_case ) for o in obj] logger.info('Encoding dataset...' ) __a =load_rocstories_dataset(args.train_dataset ) __a =load_rocstories_dataset(args.eval_dataset ) __a =(train_dataset, eval_dataset) __a =tokenize_and_encode(_snake_case ) # Compute the max input length for the Transformer __a =model.config.n_positions // 2 - 2 __a =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __a =min(_snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a =pre_process_datasets(_snake_case , _snake_case , _snake_case , *_snake_case ) __a , __a =tensor_datasets[0], tensor_datasets[1] __a =TensorDataset(*_snake_case ) __a =RandomSampler(_snake_case ) __a =DataLoader(_snake_case , sampler=_snake_case , batch_size=args.train_batch_size ) __a =TensorDataset(*_snake_case ) __a =SequentialSampler(_snake_case ) __a =DataLoader(_snake_case , sampler=_snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a =args.max_steps __a =args.max_steps // (len(_snake_case ) // args.gradient_accumulation_steps) + 1 else: __a =len(_snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs __a =list(model.named_parameters() ) __a =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __a =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __a =AdamW(_snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) __a =get_linear_schedule_with_warmup( _snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=_snake_case ) if args.do_train: __a , __a , __a =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __a =0 __a =0 __a =tqdm(_snake_case , desc='Training' ) for step, batch in enumerate(_snake_case ): __a =tuple(t.to(_snake_case ) for t in batch ) __a , __a , __a , __a =batch __a =model(_snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) __a =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a ='Training loss: {:.2e} lr: {:.2e}'.format(_snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a =model.module if hasattr(_snake_case , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a =os.path.join(args.output_dir , _snake_case ) __a =os.path.join(args.output_dir , _snake_case ) torch.save(model_to_save.state_dict() , _snake_case ) model_to_save.config.to_json_file(_snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __a =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __a =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_snake_case ) if args.do_eval: model.eval() __a , __a =0, 0 __a , __a =0, 0 for batch in tqdm(_snake_case , desc='Evaluating' ): __a =tuple(t.to(_snake_case ) for t in batch ) __a , __a , __a , __a =batch with torch.no_grad(): __a , __a , __a , __a =model( _snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) __a =mc_logits.detach().cpu().numpy() __a =mc_labels.to('cpu' ).numpy() __a =accuracy(_snake_case , _snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __a =eval_loss / nb_eval_steps __a =eval_accuracy / nb_eval_examples __a =tr_loss / nb_tr_steps if args.do_train else None __a ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __a =os.path.join(args.output_dir , 'eval_results.txt' ) with open(_snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _snake_case , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
218
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ = 1_6 lowercase__ = 3_2 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 16 ) -> str: '''simple docstring''' snake_case : Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE__ ): # max_length=None => use the model max length (it's actually the default) snake_case : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case : int = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE__ ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case : Optional[Any] = 16 elif accelerator.mixed_precision != "no": snake_case : int = 8 else: snake_case : List[str] = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case : int = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , drop_last=SCREAMING_SNAKE_CASE__ ) snake_case : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: '''simple docstring''' snake_case : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : List[str] = config['''lr'''] snake_case : Optional[Any] = int(config['''num_epochs'''] ) snake_case : Tuple = int(config['''seed'''] ) snake_case : Optional[Any] = int(config['''batch_size'''] ) snake_case : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE snake_case : str = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE__ ) snake_case : Dict = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case : Dict = model.to(accelerator.device ) # Instantiate optimizer snake_case : int = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler snake_case : List[Any] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case : Any = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) snake_case : Optional[int] = outputs.loss snake_case : Any = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case : str = model(**SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = outputs.logits.argmax(dim=-1 ) snake_case : Dict = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) snake_case : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ) -> Any: '''simple docstring''' snake_case : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) snake_case : Any = parser.parse_args() snake_case : str = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
357
'''simple docstring''' class snake_case__ : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : list[int] ) -> None: """simple docstring""" snake_case : List[Any] = len(UpperCamelCase__ ) snake_case : Tuple = [0] * len_array if len_array > 0: snake_case : List[str] = array[0] for i in range(1 , UpperCamelCase__ ): snake_case : Tuple = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase ( self : str , UpperCamelCase__ : int ) -> bool: """simple docstring""" snake_case : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
83
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'width_multiplier' ) ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=64 , lowerCAmelCase=2 , lowerCAmelCase=3 , lowerCAmelCase="swish" , lowerCAmelCase=3 , lowerCAmelCase=32 , lowerCAmelCase=0.1 , lowerCAmelCase=0.02 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=10 , lowerCAmelCase=None , lowerCAmelCase=0.25 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , ) -> List[str]: '''simple docstring''' _lowercase =parent _lowercase =batch_size _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =make_divisible(512 * width_multiplier , divisor=8 ) _lowercase =hidden_act _lowercase =conv_kernel_size _lowercase =output_stride _lowercase =classifier_dropout_prob _lowercase =use_labels _lowercase =is_training _lowercase =num_labels _lowercase =initializer_range _lowercase =scope _lowercase =width_multiplier _lowercase =ffn_dropout _lowercase =attn_dropout def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.num_labels ) _lowercase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowercase =self.get_config() return config, pixel_values, labels, pixel_labels def A__ ( self ) -> int: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Any: '''simple docstring''' _lowercase =MobileViTVaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() _lowercase =model(lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' _lowercase =self.num_labels _lowercase =MobileViTVaForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() _lowercase =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.num_labels _lowercase =MobileViTVaForSemanticSegmentation(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() _lowercase =model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowercase =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase =config_and_inputs _lowercase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _a = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =MobileViTVaModelTester(self ) _lowercase =MobileViTVaConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def A__ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def A__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def A__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A__ ( self ) -> int: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(lowerCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowercase =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) _lowercase =outputs.hidden_states _lowercase =5 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase =2 for i in range(len(lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase ) @slow def A__ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =MobileViTVaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def a ( ) -> Any: """simple docstring""" _lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def A__ ( self ) -> Tuple: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( lowerCAmelCase ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(**lowerCAmelCase ) # verify the logits _lowercase =torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) _lowercase =torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) ) @slow def A__ ( self ) -> str: '''simple docstring''' _lowercase =MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowercase =model.to(lowerCAmelCase ) _lowercase =MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowercase =prepare_img() _lowercase =image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(**lowerCAmelCase ) _lowercase =outputs.logits # verify the logits _lowercase =torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCAmelCase ) _lowercase =torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase , atol=1e-4 ) ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowercase =model.to(lowerCAmelCase ) _lowercase =MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowercase =prepare_img() _lowercase =image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(**lowerCAmelCase ) _lowercase =outputs.logits.detach().cpu() _lowercase =image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase , target_sizes=[(50, 60)] ) _lowercase =torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase ) _lowercase =image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase ) _lowercase =torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase )
205
import os def a ( ) -> Any: """simple docstring""" with open(os.path.dirname(A__ ) + '/p022_names.txt' ) as file: _lowercase =str(file.readlines()[0] ) _lowercase =names.replace('"' , '' ).split(',' ) names.sort() _lowercase =0 _lowercase =0 for i, name in enumerate(A__ ): for letter in name: name_score += ord(A__ ) - 64 total_score += (i + 1) * name_score _lowercase =0 return total_score if __name__ == "__main__": print(solution())
205
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowercase__ = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __snake_case ( __UpperCamelCase ): a__ = """albert""" def __init__( self , lowercase=3_00_00 , lowercase=1_28 , lowercase=40_96 , lowercase=12 , lowercase=1 , lowercase=64 , lowercase=1_63_84 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_12 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase) a__: Tuple = vocab_size a__: Optional[int] = embedding_size a__: str = hidden_size a__: Any = num_hidden_layers a__: List[str] = num_hidden_groups a__: Tuple = num_attention_heads a__: str = inner_group_num a__: int = hidden_act a__: List[str] = intermediate_size a__: Optional[int] = hidden_dropout_prob a__: Dict = attention_probs_dropout_prob a__: Optional[Any] = max_position_embeddings a__: List[Any] = type_vocab_size a__: List[str] = initializer_range a__: List[Any] = layer_norm_eps a__: Any = classifier_dropout_prob a__: Any = position_embedding_type class __snake_case ( __UpperCamelCase ): @property def lowerCamelCase_ ( self) -> Any: '''simple docstring''' if self.task == "multiple-choice": a__: int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: a__: List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
356
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = PriorTransformer a__ = """hidden_states""" @property def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Union[str, Any] = 4 a__: Any = 8 a__: Optional[Any] = 7 a__: Tuple = floats_tensor((batch_size, embedding_dim)).to(lowercase) a__: Optional[int] = floats_tensor((batch_size, embedding_dim)).to(lowercase) a__: List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase_ ( self , lowercase=0) -> str: '''simple docstring''' torch.manual_seed(lowercase) a__: Optional[Any] = 4 a__: Optional[Any] = 8 a__: Union[str, Any] = 7 a__: Optional[Any] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: List[str] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: Tuple = torch.randn((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return (4, 8) @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return (4, 8) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: int = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } a__: Union[str, Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__: Union[str, Any] = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowercase) self.assertIsNotNone(lowercase) self.assertEqual(len(loading_info['missing_keys']) , 0) model.to(lowercase) a__: Any = model(**self.dummy_input)[0] assert hidden_states is not None, "Make sure output is not None" def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__ , a__: Tuple = self.prepare_init_args_and_inputs_for_common() a__: Any = self.model_class(**lowercase) a__: str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: Tuple = [*signature.parameters.keys()] a__: List[Any] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowercase) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy') a__: str = model.to(lowercase) if hasattr(lowercase , 'set_default_attn_processor'): model.set_default_attn_processor() a__: Dict = self.get_dummy_seed_input() with torch.no_grad(): a__: str = model(**lowercase)[0] a__: str = output[0, :5].flatten().cpu() print(lowercase) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. a__: Any = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239]) self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-2)) @slow class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self , lowercase=1 , lowercase=7_68 , lowercase=77 , lowercase=0) -> int: '''simple docstring''' torch.manual_seed(lowercase) a__: Union[str, Any] = batch_size a__: List[str] = embedding_dim a__: str = num_embeddings a__: Tuple = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: List[str] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: str = torch.randn((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ]) def lowerCamelCase_ ( self , lowercase , lowercase) -> str: '''simple docstring''' a__: Tuple = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior') model.to(lowercase) a__: Optional[Any] = self.get_dummy_seed_input(seed=lowercase) with torch.no_grad(): a__: Optional[int] = model(**lowercase)[0] assert list(sample.shape) == [1, 7_68] a__: List[str] = sample[0, :8].flatten().cpu() print(lowercase) a__: Union[str, Any] = torch.tensor(lowercase) assert torch_all_close(lowercase , lowercase , atol=1e-3)
203
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __A = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :List[str] = list(s_dict.keys() ) for key in keys: lowerCAmelCase__ :List[str] = r'.*/layers_(\d+)' lowerCAmelCase__ :Optional[int] = key if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = re.sub(r'layers_(\d+)' , r'block/\1/layer' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = r'(encoder|decoder)\/' if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).groups() if groups[0] == "encoder": lowerCAmelCase__ :Tuple = re.sub(r'/mlp/' , r'/1/mlp/' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = re.sub(r'/pre_mlp_layer_norm/' , r'/1/layer_norm/' , _SCREAMING_SNAKE_CASE ) elif groups[0] == "decoder": lowerCAmelCase__ :int = re.sub(r'/mlp/' , r'/2/mlp/' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = re.sub(r'/pre_mlp_layer_norm/' , r'/2/layer_norm/' , _SCREAMING_SNAKE_CASE ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCAmelCase__ :Tuple = new_key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F"{key} -> {new_key}" ) lowerCAmelCase__ :List[str] = s_dict.pop(_SCREAMING_SNAKE_CASE ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase__ :Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase__ :Dict = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCAmelCase__ :Optional[Any] = s_dict[key].shape[0] lowerCAmelCase__ :Optional[int] = s_dict[key] for idx in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Tuple = expert_weihts[idx] print(F"{key} -> {key.replace('expert/' , 'nested fstring' )}" ) s_dict.pop(_SCREAMING_SNAKE_CASE ) return s_dict __A = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" import regex as re with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: lowerCAmelCase__ :Tuple = f.read() lowerCAmelCase__ :Any = re.findall(r'(.*) = ([0-9.]*)' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Tuple = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCAmelCase__ :int = float(_SCREAMING_SNAKE_CASE ) if '.' in value else int(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = re.findall(r'(.*activations) = \(\'(.*)\',\)' , _SCREAMING_SNAKE_CASE )[0] lowerCAmelCase__ :str = str(activation[1] ) lowerCAmelCase__ :Optional[Any] = num_experts lowerCAmelCase__ :Tuple = SwitchTransformersConfig(**_SCREAMING_SNAKE_CASE ) return config def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="./" , _SCREAMING_SNAKE_CASE=8 ) ->Tuple: """simple docstring""" print(F"Loading flax weights from : {flax_checkpoint_path}" ) lowerCAmelCase__ :Tuple = checkpoints.load_tax_checkpoint(_SCREAMING_SNAKE_CASE ) if gin_file is not None: lowerCAmelCase__ :int = convert_gin_to_config(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ :Optional[int] = SwitchTransformersConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = SwitchTransformersForConditionalGeneration(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = flax_params['target'] lowerCAmelCase__ :Union[str, Any] = flatten_dict(_SCREAMING_SNAKE_CASE , sep='/' ) lowerCAmelCase__ :int = rename_keys(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Union[str, Any] = unflatten_dict(_SCREAMING_SNAKE_CASE , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") __A = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
293
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" lowerCAmelCase__ :List[str] = np.max(_outputs , axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Any = """sigmoid""" __magic_name__ :Optional[Any] = """softmax""" __magic_name__ :Optional[Any] = """none""" @add_end_docstrings( a , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = False __magic_name__ :Dict = ClassificationFunction.NONE def __init__( self , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = tokenizer_kwargs lowerCAmelCase__ :List[Any] = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: lowerCAmelCase__ :List[Any] = self.model.config.return_all_scores if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or top_k is None: lowerCAmelCase__ :int = top_k lowerCAmelCase__ :Dict = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , __UpperCAmelCase , ) if return_all_scores: lowerCAmelCase__ :List[Any] = None else: lowerCAmelCase__ :Union[str, Any] = 1 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowerCAmelCase__ :List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowerCAmelCase__ :Optional[Any] = 'top_k' not in kwargs if isinstance(args[0] , __UpperCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = self.framework if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.tokenizer(**__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1 and isinstance(inputs[0] , __UpperCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.model(**__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowerCAmelCase__ :str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowerCAmelCase__ :int = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: lowerCAmelCase__ :Optional[Any] = self.model.config.function_to_apply else: lowerCAmelCase__ :Dict = ClassificationFunction.NONE lowerCAmelCase__ :int = model_outputs['logits'][0] lowerCAmelCase__ :Union[str, Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowerCAmelCase__ :Dict = sigmoid(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowerCAmelCase__ :int = softmax(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: lowerCAmelCase__ :Tuple = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowerCAmelCase__ :Any = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(__UpperCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase ) if top_k is not None: lowerCAmelCase__ :List[str] = dict_scores[:top_k] return dict_scores
293
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : Optional[int]=False ) -> int: '''simple docstring''' try: UpperCAmelCase_= os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_= default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_= strtobool(lowerCAmelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __A = parse_flag_from_env('''RUN_SLOW''', default=False) __A = parse_flag_from_env('''RUN_REMOTE''', default=False) __A = parse_flag_from_env('''RUN_LOCAL''', default=True) __A = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __A = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __A = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __A = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __A = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __A = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __A = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __A = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def __a ( lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' try: import faiss # noqa except ImportError: UpperCAmelCase_= unittest.skip("""test requires faiss""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' try: import regex # noqa except ImportError: UpperCAmelCase_= unittest.skip("""test requires regex""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' try: import elasticsearch # noqa except ImportError: UpperCAmelCase_= unittest.skip("""test requires elasticsearch""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: UpperCAmelCase_= unittest.skip("""test requires sqlalchemy""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' if not config.TORCH_AVAILABLE: UpperCAmelCase_= unittest.skip("""test requires PyTorch""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : str ) -> Any: '''simple docstring''' if not config.TF_AVAILABLE: UpperCAmelCase_= unittest.skip("""test requires TensorFlow""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' if not config.JAX_AVAILABLE: UpperCAmelCase_= unittest.skip("""test requires JAX""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' if not config.PIL_AVAILABLE: UpperCAmelCase_= unittest.skip("""test requires Pillow""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : int ) -> Any: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(lowerCAmelCase_ ) else: return test_case def __a ( lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(lowerCAmelCase_ ) else: return test_case def __a ( lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(lowerCAmelCase_ ) else: return test_case def __a ( lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' def _require_spacy_model(lowerCAmelCase_ : str ): try: import spacy # noqa F401 spacy.load(lowerCAmelCase_ ) except ImportError: return unittest.skip("""test requires spacy""" )(lowerCAmelCase_ ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(lowerCAmelCase_ ) )(lowerCAmelCase_ ) else: return test_case return _require_spacy_model def __a ( lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(lowerCAmelCase_ ) else: return test_case def __a ( lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(lowerCAmelCase_ ) else: return test_case def __a ( lowerCAmelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: UpperCAmelCase_= unittest.skip("""test is slow""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : Any ) -> int: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: UpperCAmelCase_= unittest.skip("""test is local""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: UpperCAmelCase_= unittest.skip("""test is packaged""" )(lowerCAmelCase_ ) return test_case def __a ( lowerCAmelCase_ : Optional[Any] ) -> str: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: UpperCAmelCase_= unittest.skip("""test requires remote""" )(lowerCAmelCase_ ) return test_case def __a ( *lowerCAmelCase_ : int ) -> Any: '''simple docstring''' def decorate(cls : Optional[int] ): for name, fn in cls.__dict__.items(): if callable(lowerCAmelCase_ ) and name.startswith("""test""" ): for decorator in decorators: UpperCAmelCase_= decorator(lowerCAmelCase_ ) setattr(cls ,lowerCAmelCase_ ,lowerCAmelCase_ ) return cls return decorate class lowercase ( snake_case__): """simple docstring""" pass class lowercase ( snake_case__): """simple docstring""" a__ : List[Any] = 0 a__ : Tuple = 1 a__ : List[Any] = 2 @contextmanager def __a ( lowerCAmelCase_ : Optional[Any]=OfflineSimulationMode.CONNECTION_FAILS ,lowerCAmelCase_ : Any=1E-16 ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= requests.Session().request def timeout_request(lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : int ,lowerCAmelCase_ : Optional[Any] ,**lowerCAmelCase_ : Tuple ): # Change the url to an invalid url so that the connection hangs UpperCAmelCase_= """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) UpperCAmelCase_= timeout try: return online_request(lowerCAmelCase_ ,lowerCAmelCase_ ,**lowerCAmelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCAmelCase_= url UpperCAmelCase_= e.args[0] UpperCAmelCase_= (max_retry_error.args[0].replace("""10.255.255.1""" ,F"""OfflineMock[{url}]""" ),) UpperCAmelCase_= (max_retry_error,) raise def raise_connection_error(lowerCAmelCase_ : Dict ,lowerCAmelCase_ : str ,**lowerCAmelCase_ : Optional[int] ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=lowerCAmelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,lowerCAmelCase_ ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def __a ( *lowerCAmelCase_ : List[Any] ,**lowerCAmelCase_ : Optional[int] ) -> str: '''simple docstring''' UpperCAmelCase_= str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCAmelCase_ ,**lowerCAmelCase_ ) as tmp_dir: try: os.chdir(lowerCAmelCase_ ) yield finally: os.chdir(lowerCAmelCase_ ) @contextmanager def __a ( ) -> List[str]: '''simple docstring''' import gc gc.collect() UpperCAmelCase_= pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __a ( ) -> Dict: '''simple docstring''' import gc gc.collect() UpperCAmelCase_= pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __a ( lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' return deepcopy(lowerCAmelCase_ ).integers(0 ,1_00 ,10 ).tolist() == deepcopy(lowerCAmelCase_ ).integers(0 ,1_00 ,10 ).tolist() def __a ( lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(lowerCAmelCase_ : Optional[int] ,*lowerCAmelCase_ : List[Any] ,**lowerCAmelCase_ : Optional[Any] ): try: return func(*lowerCAmelCase_ ,**lowerCAmelCase_ ) except HTTPError as err: if str(lowerCAmelCase_ ).startswith("""500""" ) or str(lowerCAmelCase_ ).startswith("""502""" ): pytest.xfail(str(lowerCAmelCase_ ) ) raise err return decorator.decorator(_wrapper ,lowerCAmelCase_ ) class lowercase : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any ) -> List[Any]: UpperCAmelCase_= returncode UpperCAmelCase_= stdout UpperCAmelCase_= stderr async def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : List[str] ) -> str: '''simple docstring''' while True: UpperCAmelCase_= await stream.readline() if line: callback(lowerCAmelCase_ ) else: break async def __a ( lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : int=None ,lowerCAmelCase_ : Union[str, Any]=None ,lowerCAmelCase_ : Tuple=None ,lowerCAmelCase_ : int=False ,lowerCAmelCase_ : Dict=False ) -> _RunOutput: '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(lowerCAmelCase_ ) ) UpperCAmelCase_= await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=lowerCAmelCase_ ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=lowerCAmelCase_ ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_= [] UpperCAmelCase_= [] def tee(lowerCAmelCase_ : Any ,lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : Any="" ): UpperCAmelCase_= line.decode("""utf-8""" ).rstrip() sink.append(lowerCAmelCase_ ) if not quiet: print(lowerCAmelCase_ ,lowerCAmelCase_ ,file=lowerCAmelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda lowerCAmelCase_ : tee(lowerCAmelCase_ ,lowerCAmelCase_ ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda lowerCAmelCase_ : tee(lowerCAmelCase_ ,lowerCAmelCase_ ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=lowerCAmelCase_ ,) return _RunOutput(await p.wait() ,lowerCAmelCase_ ,lowerCAmelCase_ ) def __a ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : int=None ,lowerCAmelCase_ : int=None ,lowerCAmelCase_ : str=1_80 ,lowerCAmelCase_ : Dict=False ,lowerCAmelCase_ : Any=True ) -> _RunOutput: '''simple docstring''' UpperCAmelCase_= asyncio.get_event_loop() UpperCAmelCase_= loop.run_until_complete( _stream_subprocess(lowerCAmelCase_ ,env=lowerCAmelCase_ ,stdin=lowerCAmelCase_ ,timeout=lowerCAmelCase_ ,quiet=lowerCAmelCase_ ,echo=lowerCAmelCase_ ) ) UpperCAmelCase_= """ """.join(lowerCAmelCase_ ) if result.returncode > 0: UpperCAmelCase_= """\n""".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def __a ( ) -> int: '''simple docstring''' UpperCAmelCase_= os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) UpperCAmelCase_= re.sub(r"""^gw""" ,"""""" ,lowerCAmelCase_ ,0 ,re.M ) return int(lowerCAmelCase_ ) def __a ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_= 2_95_00 UpperCAmelCase_= pytest_xdist_worker_id() return port + uniq_delta
277
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A = 16 __A = 32 def __a ( lowerCAmelCase_ : Accelerator ,lowerCAmelCase_ : int = 16 ,lowerCAmelCase_ : str = "bert-base-cased" ) -> Tuple: '''simple docstring''' UpperCAmelCase_= AutoTokenizer.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_= load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowerCAmelCase_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_= tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_= datasets.map( lowerCAmelCase_ ,batched=lowerCAmelCase_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_= tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowerCAmelCase_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ ,padding="""max_length""" ,max_length=1_28 ,return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. UpperCAmelCase_= DataLoader( tokenized_datasets["""train"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) UpperCAmelCase_= DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_= Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_= config["""lr"""] UpperCAmelCase_= int(config["""num_epochs"""] ) UpperCAmelCase_= int(config["""seed"""] ) UpperCAmelCase_= int(config["""batch_size"""] ) UpperCAmelCase_= args.model_name_or_path set_seed(lowerCAmelCase_ ) UpperCAmelCase_, UpperCAmelCase_= get_dataloaders(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_= AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ ,return_dict=lowerCAmelCase_ ) # Instantiate optimizer UpperCAmelCase_= ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_= optimizer_cls(params=model.parameters() ,lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_= accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase_= 1 UpperCAmelCase_= (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_= get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ ,num_warmup_steps=0 ,num_training_steps=lowerCAmelCase_ ,) else: UpperCAmelCase_= DummyScheduler(lowerCAmelCase_ ,total_num_steps=lowerCAmelCase_ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_= 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_= 0 # Now we train the model UpperCAmelCase_= evaluate.load("""glue""" ,"""mrpc""" ) UpperCAmelCase_= 0 UpperCAmelCase_= {} for epoch in range(lowerCAmelCase_ ,lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): UpperCAmelCase_= model(**lowerCAmelCase_ ) UpperCAmelCase_= outputs.loss UpperCAmelCase_= loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase_= 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_= model(**lowerCAmelCase_ ) UpperCAmelCase_= outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_, UpperCAmelCase_= accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: UpperCAmelCase_= predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_= references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_ ,references=lowerCAmelCase_ ,) UpperCAmelCase_= metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,lowerCAmelCase_ ) UpperCAmelCase_= eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCAmelCase_= eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""all_results.json""" ) ,"""w""" ) as f: json.dump(lowerCAmelCase_ ,lowerCAmelCase_ ) def __a ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=lowerCAmelCase_ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=lowerCAmelCase_ ,) parser.add_argument( """--output_dir""" ,type=lowerCAmelCase_ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--performance_lower_bound""" ,type=lowerCAmelCase_ ,default=lowerCAmelCase_ ,help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" ,) parser.add_argument( """--num_epochs""" ,type=lowerCAmelCase_ ,default=3 ,help="""Number of train epochs.""" ,) UpperCAmelCase_= parser.parse_args() UpperCAmelCase_= {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ ,lowerCAmelCase_ ) if __name__ == "__main__": main()
277
1
"""simple docstring""" import json import sys def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ): with open(__SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: lowercase_ : Union[str, Any] = json.load(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = results[benchmark_name] lowercase_ : Optional[Any] = benchmark_name.split('/' )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) lowercase_ : Any = '| metric |' lowercase_ : List[str] = '|--------|' lowercase_ : Any = '| new / old (diff) |' for metric_name in sorted(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = benchmark_res[metric_name] lowercase_ : Any = metric_vals['new'] lowercase_ : List[Any] = metric_vals.get('old' , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = metric_vals.get('diff' , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = F''' {new_val:f}''' if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) else 'None' if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =sys.argv[1] __SCREAMING_SNAKE_CASE =sys.argv[2] format_json_to_md(input_json_file, output_md_file)
213
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 0.9 ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 1 / 255 ,__UpperCamelCase = True ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : Optional[int] = size if size is not None else {'shortest_edge': 224} lowercase_ : Union[str, Any] = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase_ : Optional[int] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : List[str] = do_resize lowercase_ : List[Any] = size lowercase_ : int = crop_pct lowercase_ : Dict = resample lowercase_ : List[str] = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : List[Any] = do_rescale lowercase_ : Tuple = rescale_factor lowercase_ : Tuple = do_normalize lowercase_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : Any = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: lowercase_ : Union[str, Any] = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase_ : Tuple = int(size['height'] / crop_pct ) else: lowercase_ : Dict = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) lowercase_ : int = get_resize_output_image_size(__UpperCamelCase ,size=__UpperCamelCase ,default_to_square=__UpperCamelCase ) else: if "shortest_edge" in size: lowercase_ : Optional[int] = get_resize_output_image_size(__UpperCamelCase ,size=size['shortest_edge'] ,default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: lowercase_ : Dict = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) return resize(__UpperCamelCase ,size=__UpperCamelCase ,resample=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : List[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCamelCase ,size=(size['height'], size['width']) ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> str: '''simple docstring''' return rescale(__UpperCamelCase ,scale=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image: '''simple docstring''' lowercase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct lowercase_ : List[str] = resample if resample is not None else self.resample lowercase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : str = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Tuple = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : List[str] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : str = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase_ : Optional[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: lowercase_ : str = [self.resize(image=__UpperCamelCase ,size=__UpperCamelCase ,crop_pct=__UpperCamelCase ,resample=__UpperCamelCase ) for image in images] if do_center_crop: lowercase_ : str = [self.center_crop(image=__UpperCamelCase ,size=__UpperCamelCase ) for image in images] if do_rescale: lowercase_ : Any = [self.rescale(image=__UpperCamelCase ,scale=__UpperCamelCase ) for image in images] if do_normalize: lowercase_ : int = [self.normalize(image=__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ) for image in images] lowercase_ : Dict = [to_channel_dimension_format(__UpperCamelCase ,__UpperCamelCase ) for image in images] lowercase_ : Any = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase ,tensor_type=__UpperCamelCase )
213
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __a ( lowerCamelCase__ ): def __init__( self , a__ , a__ ): super().__init__() # make sure scheduler can always be converted to DDIM _lowerCamelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a__ , scheduler=a__ ) @torch.no_grad() def __call__( self , a__ = 1 , a__ = None , a__ = 0.0 , a__ = 50 , a__ = None , a__ = "pil" , a__ = True , ): if isinstance(self.unet.config.sample_size , a__ ): _lowerCamelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowerCamelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(a__ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _lowerCamelCase = randn_tensor(a__ , generator=a__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCamelCase = self.unet(a__ , a__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCamelCase = self.scheduler.step( a__ , a__ , a__ , eta=a__ , use_clipped_model_output=a__ , generator=a__ ).prev_sample _lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
356
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def SCREAMING_SNAKE_CASE_ ( )-> List[Any]: _lowerCamelCase = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=snake_case ) _lowerCamelCase = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=snake_case ) env_command_parser(subparsers=snake_case ) launch_command_parser(subparsers=snake_case ) tpu_command_parser(subparsers=snake_case ) test_command_parser(subparsers=snake_case ) # Let's go _lowerCamelCase = parser.parse_args() if not hasattr(snake_case , 'func' ): parser.print_help() exit(1 ) # Run args.func(snake_case ) if __name__ == "__main__": main()
80
0
'''simple docstring''' def lowercase__ ( __lowercase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __UpperCamelCase = abs(UpperCAmelCase_ ) __UpperCamelCase = 0 while n > 0: res += n % 10 n //= 10 return res def lowercase__ ( __lowercase : Dict ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = abs(UpperCAmelCase_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowercase__ ( __lowercase : str ) -> int: """simple docstring""" return sum(int(UpperCAmelCase_ ) for c in str(abs(UpperCAmelCase_ ) ) ) def lowercase__ ( ) -> str: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowercase : Dict , __lowercase : int ) -> None: __UpperCamelCase = F'''{func.__name__}({value})''' __UpperCamelCase = timeit(F'''__main__.{call}''' , setup='import __main__' ) print(F'''{call:56} = {func(UpperCAmelCase_ )} -- {timing:.4f} seconds''' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
53
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if num < 0: return False _UpperCamelCase : int = num _UpperCamelCase : int = 0 while num > 0: _UpperCamelCase : str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
83
0
from math import sqrt def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_0_0_0_0 ): '''simple docstring''' __snake_case : int = 0 __snake_case : int = 0 __snake_case : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_a , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'''{solution() = }''')
364
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __snake_case = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __lowerCAmelCase ( lowercase : Any ) -> Union[str, Any]: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __lowerCAmelCase ( lowercase : int , lowercase : Dict ) -> Tuple: """simple docstring""" if args.student_type == "roberta": snake_case : List[str] = False elif args.student_type == "gpt2": snake_case : Optional[int] = False def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" if args.student_type == "roberta": snake_case : Optional[Any] = False def __lowerCAmelCase ( ) -> int: """simple docstring""" snake_case : Any = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=lowercase , required=lowercase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=lowercase , required=lowercase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=lowercase , choices=["distilbert", "roberta", "gpt2"] , required=lowercase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=lowercase , required=lowercase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=lowercase , type=lowercase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=lowercase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=lowercase , required=lowercase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=lowercase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=lowercase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=lowercase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=lowercase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=lowercase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=lowercase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=lowercase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=lowercase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=lowercase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=lowercase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=lowercase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=lowercase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=lowercase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=lowercase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=lowercase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=lowercase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=lowercase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=lowercase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=lowercase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=lowercase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=lowercase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=lowercase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=lowercase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=lowercase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=lowercase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=lowercase , default=4000 , help="Checkpoint interval." ) snake_case : str = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(F'Param: {args}' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) snake_case ,snake_case ,snake_case : int = MODEL_CLASSES[args.student_type] snake_case ,snake_case ,snake_case : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # snake_case : int = teacher_tokenizer_class.from_pretrained(args.teacher_name ) snake_case : Any = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): snake_case : List[str] = tokenizer.all_special_tokens.index(lowercase ) snake_case : Optional[int] = tokenizer.all_special_ids[idx] logger.info(F'Special tokens {special_tok_ids}' ) snake_case : Any = special_tok_ids snake_case : Dict = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'Loading data from {args.data_file}' ) with open(args.data_file , "rb" ) as fp: snake_case : Optional[int] = pickle.load(lowercase ) if args.mlm: logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , "rb" ) as fp: snake_case : Dict = pickle.load(lowercase ) snake_case : str = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): snake_case : str = 0.0 # do not predict special tokens snake_case : Dict = torch.from_numpy(lowercase ) else: snake_case : Tuple = None snake_case : str = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info("Data loader created." ) # STUDENT # logger.info(F'Loading student config from {args.student_config}' ) snake_case : str = student_config_class.from_pretrained(args.student_config ) snake_case : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' ) snake_case : Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: snake_case : Union[str, Any] = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F'cuda:{args.local_rank}' ) logger.info("Student loaded." ) # TEACHER # snake_case : List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F'cuda:{args.local_rank}' ) logger.info(F'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() snake_case : Optional[Any] = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
203
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=2, UpperCamelCase__=3, UpperCamelCase__=4, UpperCamelCase__=2, UpperCamelCase__=7, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=99, UpperCamelCase__=36, UpperCamelCase__=3, UpperCamelCase__=4, UpperCamelCase__=37, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=512, UpperCamelCase__=16, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=6, UpperCamelCase__=6, UpperCamelCase__=3, UpperCamelCase__=4, UpperCamelCase__=None, UpperCamelCase__=1000, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = text_seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = coordinate_size lowerCAmelCase_ = shape_size lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope lowerCAmelCase_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase_ = text_seq_length lowerCAmelCase_ = (image_size // patch_size) ** 2 + 1 lowerCAmelCase_ = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase_ = bbox[i, j, 3] lowerCAmelCase_ = bbox[i, j, 1] lowerCAmelCase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase_ = bbox[i, j, 2] lowerCAmelCase_ = bbox[i, j, 0] lowerCAmelCase_ = t lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) lowerCAmelCase_ = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image lowerCAmelCase_ = model(UpperCamelCase__, pixel_values=UpperCamelCase__ ) lowerCAmelCase_ = model( UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, token_type_ids=UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase_ = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model( UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__, labels=UpperCamelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model( UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__, labels=UpperCamelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model( UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__, start_positions=UpperCamelCase__, end_positions=UpperCamelCase__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = False __snake_case = False __snake_case = False __snake_case = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __snake_case = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return True def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaModelTester(self ) lowerCAmelCase_ = ConfigTester(self, config_class=UpperCamelCase__, hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" lowerCAmelCase_ = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): lowerCAmelCase_ = { k: v.unsqueeze(1 ).expand(-1, self.model_tester.num_choices, -1 ).contiguous() if isinstance(UpperCamelCase__, torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): lowerCAmelCase_ = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: lowerCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=UpperCamelCase__, ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCamelCase ( ): lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(UpperCamelCase__ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=UpperCamelCase__, return_tensors='''pt''' ).pixel_values.to(UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([[1, 2]] ) lowerCAmelCase_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase_ = model( input_ids=input_ids.to(UpperCamelCase__ ), bbox=bbox.to(UpperCamelCase__ ), pixel_values=pixel_values.to(UpperCamelCase__ ), ) # verify the logits lowerCAmelCase_ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCamelCase__, atol=1E-4 ) )
167
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _A = logging.get_logger(__name__) def __UpperCamelCase ( _A , _A , _A , _A=False ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowerCAmelCase_ = os.path.abspath(_A ) logger.info(f"Loading PyTorch weights from {pt_path}" ) lowerCAmelCase_ = torch.load(_A , map_location='''cpu''' ) logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) lowerCAmelCase_ = convert_pytorch_state_dict_to_flax(_A , _A ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCAmelCase_ = convert_pytorch_sharded_state_dict_to_flax(_A , _A ) return flax_state_dict def __UpperCamelCase ( _A , _A , _A , _A , ): def is_key_or_prefix_key_in_dict(_A ) -> bool: return len(set(_A ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCAmelCase_ = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCAmelCase_ = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCAmelCase_ = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCAmelCase_ = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_A ): lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_A ): lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCAmelCase_ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCAmelCase_ = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCAmelCase_ = pt_tuple_key[-2] + '''_v''' if name is not None: lowerCAmelCase_ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase ( _A , _A ): # convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCAmelCase_ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCAmelCase_ = flax_model.params['''params'''] else: lowerCAmelCase_ = flax_model.params lowerCAmelCase_ = flatten_dict(_A ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCAmelCase_ = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(_A ) lowerCAmelCase_ = {} lowerCAmelCase_ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCAmelCase_ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCAmelCase_ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase_ = pt_tuple_key[1:] # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor( _A , _A , _A , _A ) # add model prefix if necessary lowerCAmelCase_ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase_ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCAmelCase_ = jnp.asarray(_A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_A , _A ) continue # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(_A ) else: # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(_A ) return unflatten_dict(_A ) def __UpperCamelCase ( _A , _A ): import torch # Load the index lowerCAmelCase_ = {} for shard_file in shard_filenames: # load using msgpack utils lowerCAmelCase_ = torch.load(_A ) lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCAmelCase_ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCAmelCase_ = flax_model.params['''params'''] lowerCAmelCase_ = flatten_dict(_A ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowerCAmelCase_ = flax_model.params lowerCAmelCase_ = flatten_dict(_A ) lowerCAmelCase_ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCAmelCase_ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCAmelCase_ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase_ = pt_tuple_key[1:] # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor( _A , _A , _A , _A ) # add model prefix if necessary lowerCAmelCase_ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase_ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCAmelCase_ = jnp.asarray(_A ) continue if "var" in flax_key[-1]: lowerCAmelCase_ = jnp.asarray(_A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_A , _A ) continue # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(_A ) else: # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(_A ) return unflatten_dict(_A ) def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = os.path.abspath(_A ) logger.info(f"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class lowerCAmelCase_ = getattr(_A , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(_A , '''rb''' ) as state_f: try: lowerCAmelCase_ = from_bytes(_A , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(_A , _A ) def __UpperCamelCase ( _A , _A ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowerCAmelCase_ = flatten_dict(jax.tree_util.tree_map(lambda _A : x.dtype == jnp.bfloataa , _A ) ).values() if any(_A ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowerCAmelCase_ = jax.tree_util.tree_map( lambda _A : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _A ) lowerCAmelCase_ = flatten_dict(_A ) lowerCAmelCase_ = pt_model.state_dict() lowerCAmelCase_ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowerCAmelCase_ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCAmelCase_ = [] lowerCAmelCase_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase_ = flax_key_tuple[0] == pt_model.base_model_prefix lowerCAmelCase_ = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase_ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase_ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_A ) not in pt_model_dict: # conv layer lowerCAmelCase_ = flax_key_tuple[:-1] + ('''weight''',) lowerCAmelCase_ = jnp.transpose(_A , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_A ) not in pt_model_dict: # linear layer lowerCAmelCase_ = flax_key_tuple[:-1] + ('''weight''',) lowerCAmelCase_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCAmelCase_ = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCAmelCase_ = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowerCAmelCase_ = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowerCAmelCase_ = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCAmelCase_ = '''.'''.join(_A ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCAmelCase_ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCAmelCase_ = key.split('''.''' ) lowerCAmelCase_ = None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCAmelCase_ = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCAmelCase_ = key_components[-2] + '''_v''' if name is not None: lowerCAmelCase_ = key_components[:-3] + [name] lowerCAmelCase_ = '''.'''.join(_A ) lowerCAmelCase_ = key if flax_key in special_pt_names: lowerCAmelCase_ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict lowerCAmelCase_ = np.asarray(_A ) if not isinstance(_A , np.ndarray ) else flax_tensor lowerCAmelCase_ = torch.from_numpy(_A ) # remove from missing keys missing_keys.remove(_A ) else: # weight is not expected by PyTorch model unexpected_keys.append(_A ) pt_model.load_state_dict(_A ) # re-transform missing_keys to list lowerCAmelCase_ = list(_A ) if len(_A ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(_A ) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ''' use it for predictions and inference.''' ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
167
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ :Dict = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Tuple = ["YolosFeatureExtractor"] a_ :List[str] = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a_ :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ :Dict = logging.get_logger(__name__) def lowercase_ (A : Optional[Any] , A : Any=False ): snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): snake_case__ : str = 'segformer.encoder.' + key if key.startswith('backbone' ): snake_case__ : str = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case__ : Optional[int] = key[key.find('patch_embed' ) + len('patch_embed' )] snake_case__ : int = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(A )-1}''' ) if "norm" in key: snake_case__ : Optional[int] = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case__ : Tuple = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] snake_case__ : Union[str, Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(A )-1}''' ) if "layer_norm1" in key: snake_case__ : List[Any] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: snake_case__ : List[Any] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 snake_case__ : List[Any] = key[key.find('block' ) + len('block' )] snake_case__ : List[Any] = key.replace(F'''block{idx}''' , F'''block.{int(A )-1}''' ) if "attn.q" in key: snake_case__ : int = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: snake_case__ : str = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: snake_case__ : Optional[int] = key.replace('attn' , 'attention.self' ) if "fc1" in key: snake_case__ : str = key.replace('fc1' , 'dense1' ) if "fc2" in key: snake_case__ : Dict = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: snake_case__ : Union[str, Any] = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: snake_case__ : List[str] = key.replace('linear_fuse.conv' , 'linear_fuse' ) snake_case__ : List[Any] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case__ : Optional[int] = key[key.find('linear_c' ) + len('linear_c' )] snake_case__ : Tuple = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(A )-1}''' ) if key.startswith('head' ): snake_case__ : Tuple = key.replace('head' , 'classifier' ) snake_case__ : Optional[int] = value return new_state_dict def lowercase_ (A : Tuple , A : Optional[int] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case__ : List[str] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) snake_case__ : Optional[Any] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict snake_case__ : str = kv_weight[ : config.hidden_sizes[i], : ] snake_case__ : Dict = kv_bias[: config.hidden_sizes[i]] snake_case__ : List[str] = kv_weight[ config.hidden_sizes[i] :, : ] snake_case__ : List[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowercase_ (): snake_case__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A , stream=A ).raw ) return image @torch.no_grad() def lowercase_ (A : Any , A : Union[str, Any] , A : Optional[Any] ): snake_case__ : List[str] = SegformerConfig() snake_case__ : Dict = False # set attributes based on model_name snake_case__ : Optional[int] = 'huggingface/label-files' if "segformer" in model_name: snake_case__ : str = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: snake_case__ : Optional[int] = 1_5_0 snake_case__ : int = 'ade20k-id2label.json' snake_case__ : List[Any] = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: snake_case__ : str = 1_9 snake_case__ : List[str] = 'cityscapes-id2label.json' snake_case__ : Optional[Any] = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: snake_case__ : str = True snake_case__ : Union[str, Any] = model_name[4:6] snake_case__ : Optional[Any] = 1_0_0_0 snake_case__ : Optional[int] = 'imagenet-1k-id2label.json' snake_case__ : List[Any] = (1, 1_0_0_0) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes snake_case__ : str = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A ): v for k, v in idalabel.items()} snake_case__ : Union[str, Any] = idalabel snake_case__ : Tuple = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case__ : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : Tuple = 2_5_6 elif size == "b2": snake_case__ : List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : int = 7_6_8 snake_case__ : List[Any] = [3, 4, 6, 3] elif size == "b3": snake_case__ : Optional[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : int = 7_6_8 snake_case__ : Optional[Any] = [3, 4, 1_8, 3] elif size == "b4": snake_case__ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : Optional[Any] = 7_6_8 snake_case__ : Union[str, Any] = [3, 8, 2_7, 3] elif size == "b5": snake_case__ : List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case__ : Optional[Any] = 7_6_8 snake_case__ : Any = [3, 6, 4_0, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) snake_case__ : Dict = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Dict = image_processor(images=A , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: snake_case__ : Tuple = torch.load(A , map_location=torch.device('cpu' ) ) else: snake_case__ : int = torch.load(A , map_location=torch.device('cpu' ) )['state_dict'] # rename keys snake_case__ : List[Any] = rename_keys(A , encoder_only=A ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A , A ) # create HuggingFace model and load state dict if encoder_only: snake_case__ : str = False snake_case__ : List[Any] = SegformerForImageClassification(A ) else: snake_case__ : Dict = SegformerForSemanticSegmentation(A ) model.load_state_dict(A ) model.eval() # forward pass snake_case__ : int = model(A ) snake_case__ : Any = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case__ : Dict = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": snake_case__ : Optional[int] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": snake_case__ : List[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": snake_case__ : Union[str, Any] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": snake_case__ : Dict = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": snake_case__ : List[Any] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case__ : str = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": snake_case__ : Tuple = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": snake_case__ : Any = torch.tensor( [ [ [-1.1_372e01, -1.2_787e01, -1.3_477e01], [-1.2_536e01, -1.4_194e01, -1.4_409e01], [-1.3_217e01, -1.4_888e01, -1.5_327e01], ], [ [-1.4_791e01, -1.7_122e01, -1.8_277e01], [-1.7_163e01, -1.9_192e01, -1.9_533e01], [-1.7_897e01, -1.9_991e01, -2.0_315e01], ], [ [7.6_723e-01, 4.1_921e-01, -7.7_878e-02], [4.7_772e-01, 9.5_557e-03, -2.8_082e-01], [3.6_032e-01, -2.4_826e-01, -5.1_168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": snake_case__ : Optional[int] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case__ : Union[str, Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case__ : List[str] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case__ : List[Any] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case__ : str = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case__ : List[str] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: snake_case__ : Tuple = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) a_ :Union[str, Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
277
1
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ="The Nymphenburg Palace is a beautiful palace in Munich!" def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): A__ = { "attention_cell": "multi_head", "num_layers": 4, "units": 10_24, "hidden_size": 7_68, "max_length": 5_12, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 10_24, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } A__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py A__ = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=_lowerCamelCase , output_all_encodings=_lowerCamelCase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , _lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later A__ = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab A__ = os.path.join(get_home_dir() , "models" ) A__ = _load_vocab(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , cls=_lowerCamelCase ) A__ = nlp.model.BERTModel( _lowerCamelCase , len(_lowerCamelCase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=_lowerCamelCase , use_token_type_embed=_lowerCamelCase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=_lowerCamelCase , use_decoder=_lowerCamelCase , ) original_bort.load_parameters(_lowerCamelCase , cast_dtype=_lowerCamelCase , ignore_extra=_lowerCamelCase ) A__ = original_bort._collect_params_with_prefix() # Build our config 🤗 A__ = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.0_2, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(_lowerCamelCase ), } A__ = BertConfig.from_dict(_lowerCamelCase ) A__ = BertForMaskedLM(_lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_lowerCamelCase : List[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict ): A__ = hf_param.shape A__ = to_torch(params[gluon_param] ) A__ = gluon_param.shape assert ( shape_hf == shape_gluon ), F"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param A__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) A__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): A__ = hf_bort_model.bert.encoder.layer[i] # self attention A__ = layer.attention.self A__ = check_and_map_params( self_attn.key.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) A__ = check_and_map_params( self_attn.key.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) A__ = check_and_map_params( self_attn.query.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) A__ = check_and_map_params( self_attn.query.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) A__ = check_and_map_params( self_attn.value.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) A__ = check_and_map_params( self_attn.value.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output A__ = layer.attention.output A__ = check_and_map_params( self_output.dense.bias , F"encoder.transformer_cells.{i}.proj.bias" ) A__ = check_and_map_params( self_output.dense.weight , F"encoder.transformer_cells.{i}.proj.weight" ) A__ = check_and_map_params( self_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.layer_norm.beta" ) A__ = check_and_map_params( self_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate A__ = layer.intermediate A__ = check_and_map_params( intermediate.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) A__ = check_and_map_params( intermediate.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output A__ = layer.output A__ = check_and_map_params( bert_output.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) A__ = check_and_map_params( bert_output.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) A__ = check_and_map_params( bert_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) A__ = check_and_map_params( bert_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models A__ = RobertaTokenizer.from_pretrained("roberta-base" ) A__ = tokenizer.encode_plus(_lowerCamelCase )["input_ids"] # Get gluon output A__ = mx.nd.array([input_ids] ) A__ = original_bort(inputs=_lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_lowerCamelCase ) A__ = BertModel.from_pretrained(_lowerCamelCase ) hf_bort_model.eval() A__ = tokenizer.encode_plus(_lowerCamelCase , return_tensors="pt" ) A__ = hf_bort_model(**_lowerCamelCase )[0] A__ = output_gluon[0].asnumpy() A__ = output_hf[0].detach().numpy() A__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() A__ = np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , _lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Tuple =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
371
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : Optional[Any] ="\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : Union[str, Any] ="\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCAmelCase : str ="\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCamelCase ( _lowerCamelCase : List[Any] ): def remove_articles(_lowerCamelCase : Dict ): A__ = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCamelCase , " " , _lowerCamelCase ) def white_space_fix(_lowerCamelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase : int ): A__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : List[Any] ): A__ = [any(compute_exact(_lowerCamelCase , _lowerCamelCase ) for ref in refs ) for pred, refs in zip(_lowerCamelCase , _lowerCamelCase )] return (sum(_lowerCamelCase ) / len(_lowerCamelCase )) * 1_00 def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ): A__ = [rgram for rgrams in rgramslist for rgram in rgrams] A__ = Counter(_lowerCamelCase ) A__ = Counter(_lowerCamelCase ) A__ = Counter() for sgram, scount in sgramcounter.items(): A__ = scount * numref A__ = Counter(_lowerCamelCase ) A__ = Counter() for cgram, ccount in cgramcounter.items(): A__ = ccount * numref # KEEP A__ = sgramcounter_rep & cgramcounter_rep A__ = keepgramcounter_rep & rgramcounter A__ = sgramcounter_rep & rgramcounter A__ = 0 A__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(_lowerCamelCase ) > 0: A__ = keeptmpscorea / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) A__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) A__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: A__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION A__ = sgramcounter_rep - cgramcounter_rep A__ = delgramcounter_rep - rgramcounter A__ = sgramcounter_rep - rgramcounter A__ = 0 A__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 if len(_lowerCamelCase ) > 0: A__ = deltmpscorea / len(_lowerCamelCase ) # ADDITION A__ = set(_lowerCamelCase ) - set(_lowerCamelCase ) A__ = set(_lowerCamelCase ) & set(_lowerCamelCase ) A__ = set(_lowerCamelCase ) - set(_lowerCamelCase ) A__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(_lowerCamelCase ) > 0: A__ = addtmpscore / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: A__ = addtmpscore / len(_lowerCamelCase ) A__ = 0 if addscore_precision > 0 or addscore_recall > 0: A__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): A__ = len(_lowerCamelCase ) A__ = ssent.split(" " ) A__ = csent.split(" " ) A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] for rsent in rsents: A__ = rsent.split(" " ) A__ = [] A__ = [] A__ = [] ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 A__ = sum([delascore, delascore, delascore, delascore] ) / 4 A__ = sum([addascore, addascore, addascore, addascore] ) / 4 A__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : bool = True , _lowerCamelCase : str = "13a" , _lowerCamelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: A__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: A__ = sacrebleu.metrics.bleu._get_tokenizer(_lowerCamelCase )()(_lowerCamelCase ) else: A__ = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCamelCase ) elif tokenizer == "moses": A__ = sacremoses.MosesTokenizer().tokenize(_lowerCamelCase , return_str=_lowerCamelCase , escape=_lowerCamelCase ) elif tokenizer == "penn": A__ = sacremoses.MosesTokenizer().penn_tokenize(_lowerCamelCase , return_str=_lowerCamelCase ) else: A__ = sentence if not return_str: A__ = normalized_sent.split() return normalized_sent def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): if not (len(_lowerCamelCase ) == len(_lowerCamelCase ) == len(_lowerCamelCase )): raise ValueError("Sources length must match predictions and references lengths." ) A__ = 0 for src, pred, refs in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): sari_score += SARIsent(normalize(_lowerCamelCase ) , normalize(_lowerCamelCase ) , [normalize(_lowerCamelCase ) for sent in refs] ) A__ = sari_score / len(_lowerCamelCase ) return 1_00 * sari_score def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]="exp" , _lowerCamelCase : int=None , _lowerCamelCase : str=False , _lowerCamelCase : List[str]=False , _lowerCamelCase : Dict=False , ): A__ = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A__ = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] A__ = sacrebleu.corpus_bleu( _lowerCamelCase , _lowerCamelCase , smooth_method=_lowerCamelCase , smooth_value=_lowerCamelCase , force=_lowerCamelCase , lowercase=_lowerCamelCase , use_effective_order=_lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def UpperCAmelCase_ ( self :str , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :int )-> int: A__ = {} result.update({"sari": compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=lowercase_ , references=lowercase_ )} ) result.update({"exact": compute_em(predictions=lowercase_ , references=lowercase_ )} ) return result
123
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Union[str, Any] = XLMRobertaTokenizer lowerCamelCase : Dict = XLMRobertaTokenizerFast lowerCamelCase : str = True lowerCamelCase : Optional[int] = True def __UpperCAmelCase ( self : Dict ) -> str: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = XLMRobertaTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase = '<pad>' lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCAmelCase__ ) , 1_0_0_2 ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = XLMRobertaTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __UpperCAmelCase ( self : List[Any] ) -> str: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase__ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) @cached_property def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase__ , f.name ) lowerCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=UpperCAmelCase__ ) lowerCAmelCase = pickle.dumps(UpperCAmelCase__ ) pickle.loads(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> Dict: if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = 'I was born in 92000, and this is falsé.' lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Any: lowerCAmelCase = 'Hello World!' lowerCAmelCase = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: lowerCAmelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCAmelCase = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def __UpperCAmelCase ( self : str ) -> Tuple: # fmt: off lowerCAmelCase = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
4
'''simple docstring''' from ....utils import logging a__ : Optional[Any] = logging.get_logger(__name__) class lowercase_ ( a__ ): def __init__( self , a , a=None , a=20_48 ): UpperCamelCase__ = config.__dict__ UpperCamelCase__ = modal_hidden_size if num_labels: UpperCamelCase__ = num_labels
80
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCAmelCase_ : Optional[Any] = get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class UpperCamelCase : @add_start_docstrings(UpperCAmelCase__ ) def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCamelCase : @add_start_docstrings(UpperCAmelCase__ ) def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCamelCase ( _UpperCAmelCase ): @add_start_docstrings(UpperCAmelCase__ ) def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): for processor in self: A__ = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) A__ = processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) else: A__ = processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) A__ = temperature def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = scores / self.temperature return scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = -float("Inf" ) , UpperCAmelCase__ = 1 ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) A__ = top_p A__ = filter_value A__ = min_tokens_to_keep def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ , A__ = lax.top_k(UpperCAmelCase__ , scores.shape[-1] ) A__ = jnp.full_like(UpperCAmelCase__ , self.filter_value ) A__ = jax.nn.softmax(UpperCAmelCase__ , axis=-1 ).cumsum(axis=-1 ) A__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well A__ = jnp.roll(UpperCAmelCase__ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase__ ) # min tokens to keep A__ = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase__ ) A__ = jnp.where(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = jax.lax.sort_key_val(UpperCAmelCase__ , UpperCAmelCase__ )[-1] return next_scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = -float("Inf" ) , UpperCAmelCase__ = 1 ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) A__ = max(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = filter_value def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ , A__ = scores.shape A__ = jnp.full(batch_size * vocab_size , self.filter_value ) A__ = min(self.top_k , scores.shape[-1] ) # Safety check A__ , A__ = lax.top_k(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = jnp.broadcast_to((jnp.arange(UpperCAmelCase__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A__ = topk_scores.flatten() A__ = topk_indices.flatten() + shift A__ = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase__ ) A__ = next_scores_flat.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) return next_scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ ): A__ = bos_token_id def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = jnp.full(scores.shape , -float("inf" ) ) A__ = 1 - jnp.bool_(cur_len - 1 ) A__ = jnp.where(UpperCAmelCase__ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase__ ) return scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = max_length A__ = eos_token_id def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = jnp.full(scores.shape , -float("inf" ) ) A__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A__ = jnp.where(UpperCAmelCase__ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase__ ) return scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) A__ = min_length A__ = eos_token_id def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): # create boolean flag to decide if min length penalty should be applied A__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A__ = jnp.where(UpperCAmelCase__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase__ ) return scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = list(UpperCAmelCase__ ) A__ = begin_index def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = 1 - jnp.bool_(cur_len - self.begin_index ) A__ = jnp.where(UpperCAmelCase__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase__ ) return scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ ): A__ = list(UpperCAmelCase__ ) def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ ): A__ = dict(UpperCAmelCase__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A__ = force_token_array.at[index].set(UpperCAmelCase__ ) A__ = jnp.intaa(UpperCAmelCase__ ) def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): def _force_token(UpperCAmelCase__ ): A__ = scores.shape[0] A__ = self.force_token_array[generation_idx] A__ = jnp.ones_like(UpperCAmelCase__ , dtype=scores.dtype ) * -float("inf" ) A__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A__ = lax.dynamic_update_slice(UpperCAmelCase__ , UpperCAmelCase__ , (0, current_token) ) return new_scores A__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase__ ) , lambda: scores , ) , ) return scores class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = generate_config.eos_token_id A__ = generate_config.no_timestamps_token_id A__ = generate_config.no_timestamps_token_id + 1 A__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase__ , "max_initial_timestamp_index" ): A__ = generate_config.max_initial_timestamp_index else: A__ = model_config.vocab_size if self.max_initial_timestamp_index is None: A__ = model_config.vocab_size def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): # suppress <|notimestamps|> which is handled by without_timestamps A__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase__ , UpperCAmelCase__ ): A__ = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase__ , ) A__ = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase__ , UpperCAmelCase__ , ) return jnp.where( UpperCAmelCase__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase__ , ) A__ = jax.vmap(UpperCAmelCase__ )(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = jnp.where(cur_len == self.begin_index , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase__ , ) A__ = self.timestamp_begin + self.max_initial_timestamp_index A__ = jnp.where( UpperCAmelCase__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase__ , ) # if sum of probability over timestamps is above any other token, sample timestamp A__ = jax.nn.log_softmax(UpperCAmelCase__ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase__ , UpperCAmelCase__ ): A__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase__ , ) A__ = jax.vmap(UpperCAmelCase__ )(UpperCAmelCase__ , UpperCAmelCase__ ) return scores
198
import datasets from .evaluate import evaluate UpperCAmelCase_ : List[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" UpperCAmelCase_ : Any = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" UpperCAmelCase_ : Tuple = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=UpperCAmelCase__ , predictions=UpperCAmelCase__ ) return score
198
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) ->List[Any]: _SCREAMING_SNAKE_CASE = original_name.split(""".""" )[0] _SCREAMING_SNAKE_CASE = key.split(""".""" ) _SCREAMING_SNAKE_CASE = int(key_list[key_list.index(__lowerCamelCase ) - 2] ) _SCREAMING_SNAKE_CASE = int(key_list[key_list.index(__lowerCamelCase ) - 1] ) _SCREAMING_SNAKE_CASE = orig_block_num - offset _SCREAMING_SNAKE_CASE = key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def lowerCamelCase ( __lowerCamelCase : Optional[Any] ) ->Any: _SCREAMING_SNAKE_CASE = OrderedDict() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): _SCREAMING_SNAKE_CASE = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 _SCREAMING_SNAKE_CASE = key[: key.find("""proj""" )] _SCREAMING_SNAKE_CASE = key.replace(__lowerCamelCase , F'patch_embeddings.{total_embed_found}.' ) _SCREAMING_SNAKE_CASE = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: _SCREAMING_SNAKE_CASE = """poolformer.encoder.""" + key if "mlp.fc1" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """norm1""" , """before_norm""" ) if "norm2" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: _SCREAMING_SNAKE_CASE = replace_key_with_offset(__lowerCamelCase , __lowerCamelCase , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: _SCREAMING_SNAKE_CASE = key.replace("""head""" , """classifier""" ) _SCREAMING_SNAKE_CASE = value return new_state_dict def lowerCamelCase ( ) ->int: _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : int ) ->Optional[Any]: _SCREAMING_SNAKE_CASE = PoolFormerConfig() # set attributes based on model_name _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = model_name[-3:] _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = (1, 1000) # set config attributes _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if size == "s12": _SCREAMING_SNAKE_CASE = [2, 2, 6, 2] _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 0.9 elif size == "s24": _SCREAMING_SNAKE_CASE = [4, 4, 12, 4] _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 0.9 elif size == "s36": _SCREAMING_SNAKE_CASE = [6, 6, 18, 6] _SCREAMING_SNAKE_CASE = [64, 128, 320, 512] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 1e-6 _SCREAMING_SNAKE_CASE = 0.9 elif size == "m36": _SCREAMING_SNAKE_CASE = [6, 6, 18, 6] _SCREAMING_SNAKE_CASE = [96, 192, 384, 768] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 1e-6 _SCREAMING_SNAKE_CASE = 0.95 elif size == "m48": _SCREAMING_SNAKE_CASE = [8, 8, 24, 8] _SCREAMING_SNAKE_CASE = [96, 192, 384, 768] _SCREAMING_SNAKE_CASE = 4.0 _SCREAMING_SNAKE_CASE = 1e-6 _SCREAMING_SNAKE_CASE = 0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor _SCREAMING_SNAKE_CASE = PoolFormerImageProcessor(crop_pct=__lowerCamelCase ) # Prepare image _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) # rename keys _SCREAMING_SNAKE_CASE = rename_keys(__lowerCamelCase ) # create HuggingFace model and load state dict _SCREAMING_SNAKE_CASE = PoolFormerForImageClassification(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Define image processor _SCREAMING_SNAKE_CASE = PoolFormerImageProcessor(crop_pct=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.logits # define expected logit slices for different models if size == "s12": _SCREAMING_SNAKE_CASE = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _SCREAMING_SNAKE_CASE = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _SCREAMING_SNAKE_CASE = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _SCREAMING_SNAKE_CASE = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _SCREAMING_SNAKE_CASE = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowercase_ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
58
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[int] = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def a__ ( a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ): """simple docstring""" if attention_mask is None: __SCREAMING_SNAKE_CASE = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __SCREAMING_SNAKE_CASE = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : str=0.02 , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = initializer_range def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __SCREAMING_SNAKE_CASE = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __SCREAMING_SNAKE_CASE = shift_tokens_right(__SCREAMING_SNAKE_CASE , 1 , 2 ) __SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = prepare_blenderbot_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = model_class_name(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = model_class_name(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = 99 def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __SCREAMING_SNAKE_CASE = input_ids.shape[0] __SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._get_config_and_data() __SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = lm_model(input_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = lm_model(input_ids=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = shift_tokens_right(__SCREAMING_SNAKE_CASE , 1 , 2 ) __SCREAMING_SNAKE_CASE = np.equal(__SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() __SCREAMING_SNAKE_CASE = np.equal(__SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__SCREAMING_SNAKE_CASE , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase__ ( a , unittest.TestCase , a ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxBlenderbotModelTester(self ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : Optional[Any] ): return model.encode(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __SCREAMING_SNAKE_CASE = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ): return model.decode( decoder_input_ids=__SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , encoder_outputs=__SCREAMING_SNAKE_CASE , ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __SCREAMING_SNAKE_CASE = np.ones((1, 1) ) * model.config.eos_token_id __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} __SCREAMING_SNAKE_CASE = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} __SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) __SCREAMING_SNAKE_CASE = ["""Sam"""] __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""jax""" ) __SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """Sam is a great name. It means \"sun\" in Gaelic.""" __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) assert generated_txt[0].strip() == tgt_text
331
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]="None" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = position_biased_input __SCREAMING_SNAKE_CASE = pos_att_type __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
331
1
"""simple docstring""" import re def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = re.compile(r'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(_UpperCAmelCase , _UpperCAmelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
167
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = ['model.decoder.embed_positions.weights'] def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if "emb" in name: A_ : Tuple = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: A_ : Optional[int] = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: A_ : Optional[Any] = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: A_ : int = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: A_ : Optional[int] = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: A_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: A_ : Any = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: A_ : Dict = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: A_ : Tuple = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: A_ : Union[str, Any] = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: A_ : Tuple = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = list(state_dict.keys() ) A_ : List[Any] = {} for key in keys: A_ : List[str] = state_dict.pop(_UpperCAmelCase ) A_ : Tuple = rename_keys(_UpperCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj A_ : Any = val[:hidden_size, :] A_ : Optional[int] = val[hidden_size : 2 * hidden_size, :] A_ : Union[str, Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A_ : List[str] = val else: A_ : int = val return state_dict, enc_dec_proj_state_dict def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if checkpoint == "small": # default config values A_ : Optional[Any] = 1024 A_ : Tuple = 24 A_ : int = 16 elif checkpoint == "medium": A_ : Any = 1536 A_ : Union[str, Any] = 48 A_ : List[Any] = 24 elif checkpoint == "large": A_ : Optional[int] = 2048 A_ : Optional[int] = 48 A_ : Tuple = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) A_ : Tuple = MusicgenDecoderConfig( hidden_size=_UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , ) return config @torch.no_grad() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="cpu" ): """simple docstring""" A_ : Any = MusicGen.get_pretrained(_UpperCAmelCase , device=_UpperCAmelCase ) A_ : str = decoder_config_from_checkpoint(_UpperCAmelCase ) A_ : Optional[int] = fairseq_model.lm.state_dict() A_ , A_ : str = rename_state_dict( _UpperCAmelCase , hidden_size=decoder_config.hidden_size ) A_ : List[str] = TaEncoderModel.from_pretrained('''t5-base''' ) A_ : Tuple = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) A_ : Union[str, Any] = MusicgenForCausalLM(_UpperCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A_ , A_ : Tuple = decoder.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_UpperCAmelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model A_ : Tuple = MusicgenForConditionalGeneration(text_encoder=_UpperCAmelCase , audio_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_UpperCAmelCase ) # check we can do a forward pass A_ : List[str] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A_ : Tuple = model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor A_ : str = AutoTokenizer.from_pretrained('''t5-base''' ) A_ : int = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) A_ : Optional[int] = MusicgenProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # set the appropriate bos/pad token ids A_ : Tuple = 2048 A_ : Union[str, Any] = 2048 # set other default generation config params A_ : Union[str, Any] = int(30 * audio_encoder.config.frame_rate ) A_ : List[str] = True A_ : List[str] = 3.0 if pytorch_dump_folder is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_UpperCAmelCase ) processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
167
1
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _UpperCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0522, type=int) _UpperCamelCase = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, '''rb''') as fp: _UpperCamelCase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _UpperCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _UpperCamelCase = [0] * args.vocab_size for k, v in counter.items(): _UpperCamelCase = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
362
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __A : Optional[Any] = OpenAIGPTTokenizer __A : Union[str, Any] = OpenAIGPTTokenizerFast __A : Optional[int] = True __A : str = False def _snake_case ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCamelCase : Optional[int] = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : int = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__A ) ) def _snake_case ( self , __A ): """simple docstring""" return "lower newer", "lower newer" def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase : List[str] = "lower" lowerCamelCase : int = ["low", "er</w>"] lowerCamelCase : Any = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCamelCase : Optional[int] = tokens + ["<unk>"] lowerCamelCase : Optional[int] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def _snake_case ( self , __A=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained(__A , **__A ) # Simple input lowerCamelCase : Optional[Any] = "This is a simple input" lowerCamelCase : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") lowerCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="max_length" ) # Simple input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="max_length" ) # Simple input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="max_length" , ) # Pair input self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="max_length" ) # Pair input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="max_length" ) # Pair input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="max_length" , ) def _snake_case ( self ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class UpperCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' pass
283
from importlib import import_module from .logging import get_logger _snake_case : Optional[int] = get_logger(__name__) class a : """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=None ) -> Any: __snake_case : Dict = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) __snake_case : int = module._original_module if isinstance(lowerCamelCase , _PatchedModuleObj ) else module class a : """simple docstring""" __UpperCAmelCase : List[Any] = [] def __init__( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=None ) -> List[Any]: __snake_case : Union[str, Any] = obj __snake_case : Dict = target __snake_case : Any = new __snake_case : List[str] = target.split("." )[0] __snake_case : Union[str, Any] = {} __snake_case : int = attrs or [] def __enter__( self : List[Any] ) -> Tuple: *__snake_case , __snake_case : int = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCamelCase ) ): try: __snake_case : Any = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __snake_case : Union[str, Any] = getattr(self.obj , lowerCamelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __snake_case : List[Any] = obj_attr # patch at top level setattr(self.obj , lowerCamelCase , _PatchedModuleObj(lowerCamelCase , attrs=self.attrs ) ) __snake_case : Optional[int] = getattr(self.obj , lowerCamelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCamelCase , lowerCamelCase , _PatchedModuleObj(getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , attrs=self.attrs ) ) __snake_case : List[Any] = getattr(lowerCamelCase , lowerCamelCase ) # finally set the target attribute setattr(lowerCamelCase , lowerCamelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __snake_case : Union[str, Any] = getattr(import_module(".".join(lowerCamelCase ) ) , lowerCamelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCamelCase ) is attr_value: __snake_case : Tuple = getattr(self.obj , lowerCamelCase ) setattr(self.obj , lowerCamelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __snake_case : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCamelCase , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Any , *lowerCamelCase : Any ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCamelCase , self.original.pop(lowerCamelCase ) ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: self.__enter__() self._active_patches.append(self ) def __snake_case ( self : Any ) -> List[str]: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
123
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) class __magic_name__ ( snake_case ): def __init__( self , *_lowercase , **_lowercase )-> None: warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
60
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCamelCase_ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=_lowercase , cache_dir=_lowercase ) UpperCamelCase_ = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , "snapshots" ) )] UpperCamelCase_ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=_lowercase ) UpperCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCamelCase_ = jax.random.PRNGKey(0 ) UpperCamelCase_ = 4 UpperCamelCase_ = jax.device_count() UpperCamelCase_ = num_samples * [prompt] UpperCamelCase_ = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng UpperCamelCase_ = replicate(_lowercase ) UpperCamelCase_ = jax.random.split(_lowercase , _lowercase ) UpperCamelCase_ = shard(_lowercase ) UpperCamelCase_ = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 UpperCamelCase_ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=_lowercase ) UpperCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCamelCase_ = jax.random.PRNGKey(0 ) UpperCamelCase_ = 50 UpperCamelCase_ = jax.device_count() UpperCamelCase_ = num_samples * [prompt] UpperCamelCase_ = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng UpperCamelCase_ = replicate(_lowercase ) UpperCamelCase_ = jax.random.split(_lowercase , _lowercase ) UpperCamelCase_ = shard(_lowercase ) UpperCamelCase_ = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ , UpperCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_lowercase ) UpperCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCamelCase_ = jax.random.PRNGKey(0 ) UpperCamelCase_ = 50 UpperCamelCase_ = jax.device_count() UpperCamelCase_ = num_samples * [prompt] UpperCamelCase_ = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng UpperCamelCase_ = replicate(_lowercase ) UpperCamelCase_ = jax.random.split(_lowercase , _lowercase ) UpperCamelCase_ = shard(_lowercase ) UpperCamelCase_ = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ , UpperCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCamelCase_ = jax.random.PRNGKey(0 ) UpperCamelCase_ = 50 UpperCamelCase_ = jax.device_count() UpperCamelCase_ = num_samples * [prompt] UpperCamelCase_ = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng UpperCamelCase_ = replicate(_lowercase ) UpperCamelCase_ = jax.random.split(_lowercase , _lowercase ) UpperCamelCase_ = shard(_lowercase ) UpperCamelCase_ = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=_lowercase , steps_offset=1 , ) UpperCamelCase_ , UpperCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) UpperCamelCase_ = scheduler.create_state() UpperCamelCase_ = scheduler_state UpperCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCamelCase_ = jax.random.PRNGKey(0 ) UpperCamelCase_ = 50 UpperCamelCase_ = jax.device_count() UpperCamelCase_ = num_samples * [prompt] UpperCamelCase_ = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng UpperCamelCase_ = replicate(_lowercase ) UpperCamelCase_ = jax.random.split(_lowercase , _lowercase ) UpperCamelCase_ = shard(_lowercase ) UpperCamelCase_ = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCamelCase_ = jax.device_count() UpperCamelCase_ = num_samples * [prompt] UpperCamelCase_ = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) UpperCamelCase_ , UpperCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_lowercase , ) UpperCamelCase_ = replicate(_lowercase ) UpperCamelCase_ = pipeline.prepare_inputs(_lowercase ) UpperCamelCase_ = shard(_lowercase ) UpperCamelCase_ = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCamelCase_ = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCamelCase_ , UpperCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) UpperCamelCase_ = replicate(_lowercase ) UpperCamelCase_ = pipeline.prepare_inputs(_lowercase ) UpperCamelCase_ = shard(_lowercase ) UpperCamelCase_ = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCamelCase_ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
60
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Optional[Any] = logging.get_logger(__name__) __a: str = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "transfo-xl" SCREAMING_SNAKE_CASE = ["mems"] SCREAMING_SNAKE_CASE = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __lowerCAmelCase=267735 , __lowerCAmelCase=[20000, 40000, 200000] , __lowerCAmelCase=1024 , __lowerCAmelCase=1024 , __lowerCAmelCase=16 , __lowerCAmelCase=64 , __lowerCAmelCase=4096 , __lowerCAmelCase=4 , __lowerCAmelCase=False , __lowerCAmelCase=18 , __lowerCAmelCase=1600 , __lowerCAmelCase=1000 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=-1 , __lowerCAmelCase=True , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="normal" , __lowerCAmelCase=0.0_1 , __lowerCAmelCase=0.0_1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0 , **__lowerCAmelCase , ) -> Dict: lowercase__ : List[Any] = vocab_size lowercase__ : str = [] self.cutoffs.extend(__lowerCAmelCase ) if proj_share_all_but_first: lowercase__ : str = [False] + [True] * len(self.cutoffs ) else: lowercase__ : List[str] = [False] + [False] * len(self.cutoffs ) lowercase__ : str = d_model lowercase__ : List[str] = d_embed lowercase__ : List[str] = d_head lowercase__ : List[str] = d_inner lowercase__ : str = div_val lowercase__ : Optional[Any] = pre_lnorm lowercase__ : List[Any] = n_layer lowercase__ : Union[str, Any] = n_head lowercase__ : Dict = mem_len lowercase__ : Tuple = same_length lowercase__ : Any = attn_type lowercase__ : Dict = clamp_len lowercase__ : Any = sample_softmax lowercase__ : Any = adaptive lowercase__ : Any = dropout lowercase__ : Tuple = dropatt lowercase__ : Optional[Any] = untie_r lowercase__ : Any = init lowercase__ : Dict = init_range lowercase__ : List[Any] = proj_init_std lowercase__ : Tuple = init_std lowercase__ : List[Any] = layer_norm_epsilon super().__init__(eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCAmelCase( self ) -> List[str]: # Message copied from Transformer-XL documentation logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowerCAmelCase( self , __lowerCAmelCase ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
198
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase = 1 , UpperCAmelCase = 1000 ): lowercase__ : Dict = 1 lowercase__ : Dict = 0 for divide_by_number in range(UpperCAmelCase , digit + 1 ): lowercase__ : list[int] = [] lowercase__ : Union[str, Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase ): lowercase__ : Dict = len(UpperCAmelCase ) lowercase__ : Optional[Any] = divide_by_number else: has_been_divided.append(UpperCAmelCase ) lowercase__ : int = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
198
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
256
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase ( _lowerCamelCase ): A : Any = [] for line in lines: A : List[str] = re.sub(R"#.*" , "" , _lowerCamelCase ) # remove comments if line: filtered_lines.append(_lowerCamelCase ) A : str = "\n".join(_lowerCamelCase ) # Make a hash from all this code A : Any = full_str.encode("utf-8" ) return shaaaa(_lowerCamelCase ).hexdigest() # get importable module names and hash for caching __SCREAMING_SNAKE_CASE = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __SCREAMING_SNAKE_CASE = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __SCREAMING_SNAKE_CASE = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __SCREAMING_SNAKE_CASE = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
256
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase :Optional[int] = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : int , lowerCAmelCase : str=None , lowerCAmelCase : int=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , ): """simple docstring""" if attention_mask is None: __magic_name__ : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __magic_name__ : Dict = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __magic_name__ : List[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCamelCase : '''simple docstring''' def __init__( self : str , _A : List[Any] , _A : Any=13 , _A : Dict=7 , _A : Tuple=True , _A : Dict=False , _A : int=99 , _A : str=16 , _A : Union[str, Any]=2 , _A : Tuple=4 , _A : int=4 , _A : Optional[int]="gelu" , _A : Tuple=0.1 , _A : Union[str, Any]=0.1 , _A : Tuple=32 , _A : List[Any]=2 , _A : Optional[Any]=1 , _A : Any=0 , _A : Dict=0.02 , ) -> Optional[Any]: __magic_name__ : int = parent __magic_name__ : List[Any] = batch_size __magic_name__ : List[Any] = seq_length __magic_name__ : int = is_training __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Dict = vocab_size __magic_name__ : Dict = hidden_size __magic_name__ : Any = num_hidden_layers __magic_name__ : Any = num_attention_heads __magic_name__ : Dict = intermediate_size __magic_name__ : Optional[Any] = hidden_act __magic_name__ : str = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : int = max_position_embeddings __magic_name__ : str = eos_token_id __magic_name__ : Any = pad_token_id __magic_name__ : Any = bos_token_id __magic_name__ : Any = initializer_range def __lowerCAmelCase ( self : Tuple ) -> List[Any]: __magic_name__ : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __magic_name__ : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __magic_name__ : Optional[Any] = shift_tokens_right(_A , 1 , 2 ) __magic_name__ : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_A , ) __magic_name__ : Optional[int] = prepare_blenderbot_inputs_dict(_A , _A , _A ) return config, inputs_dict def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__ , __magic_name__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self : List[str] , _A : Any , _A : Dict , _A : Tuple ) -> Dict: __magic_name__ : str = 20 __magic_name__ : List[Any] = model_class_name(_A ) __magic_name__ : Union[str, Any] = model.encode(inputs_dict['input_ids'] ) __magic_name__ , __magic_name__ : Any = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __magic_name__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) __magic_name__ : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __magic_name__ : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ : List[Any] = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) __magic_name__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __magic_name__ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) __magic_name__ : str = model.decode(_A , _A ) __magic_name__ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def __lowerCAmelCase ( self : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Optional[Any] ) -> List[str]: __magic_name__ : Union[str, Any] = 20 __magic_name__ : Optional[Any] = model_class_name(_A ) __magic_name__ : Optional[Any] = model.encode(inputs_dict['input_ids'] ) __magic_name__ , __magic_name__ : str = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __magic_name__ : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __magic_name__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) __magic_name__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ : Any = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) __magic_name__ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __magic_name__ : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) __magic_name__ : Dict = model.decode(_A , _A , decoder_attention_mask=_A ) __magic_name__ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : List[Any] = 99 def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Tuple = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __magic_name__ : Optional[Any] = input_ids.shape[0] __magic_name__ : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __lowerCAmelCase ( self : str ) -> Dict: __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = self._get_config_and_data() __magic_name__ : Tuple = FlaxBlenderbotForConditionalGeneration(_A ) __magic_name__ : Union[str, Any] = lm_model(input_ids=_A ) __magic_name__ : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _A ) def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __magic_name__ : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_A ) __magic_name__ : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __magic_name__ : Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __magic_name__ : List[Any] = lm_model(input_ids=_A , decoder_input_ids=_A ) __magic_name__ : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _A ) def __lowerCAmelCase ( self : str ) -> str: __magic_name__ : Tuple = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __magic_name__ : int = shift_tokens_right(_A , 1 , 2 ) __magic_name__ : List[str] = np.equal(_A , 1 ).astype(np.floataa ).sum() __magic_name__ : List[str] = np.equal(_A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCamelCase ( lowercase__ , unittest.TestCase , lowercase__ ): '''simple docstring''' A_ : int = True A_ : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A_ : List[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Any = FlaxBlenderbotModelTester(self ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ , __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ : Union[str, Any] = self._prepare_for_class(_A , _A ) __magic_name__ : Any = model_class(_A ) @jax.jit def encode_jitted(_A : Tuple , _A : Tuple=None , **_A : List[Any] ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest('JIT Enabled' ): __magic_name__ : List[Any] = encode_jitted(**_A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __magic_name__ : List[str] = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: __magic_name__ , __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ : List[str] = model_class(_A ) __magic_name__ : List[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __magic_name__ : Tuple = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_A : List[str] , _A : Any , _A : int ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest('JIT Enabled' ): __magic_name__ : Tuple = decode_jitted(**_A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __magic_name__ : Any = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCAmelCase ( self : Any ) -> int: for model_class_name in self.all_model_classes: __magic_name__ : List[Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __magic_name__ : List[str] = np.ones((1, 1) ) * model.config.eos_token_id __magic_name__ : List[str] = model(_A ) self.assertIsNotNone(_A ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} __magic_name__ : List[str] = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __magic_name__ : int = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_A ) __magic_name__ : List[Any] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) __magic_name__ : str = ['Sam'] __magic_name__ : List[Any] = tokenizer(_A , return_tensors='jax' ) __magic_name__ : Optional[Any] = model.generate(**_A , **_A ) __magic_name__ : Tuple = 'Sam is a great name. It means "sun" in Gaelic.' __magic_name__ : List[str] = tokenizer.batch_decode(_A , **_A ) assert generated_txt[0].strip() == tgt_text
331
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
1
"""simple docstring""" def _snake_case ( _snake_case : int = 10**9 ): lowerCAmelCase : Tuple = 1 lowerCAmelCase : List[Any] = 2 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : str = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( A_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = XLMTokenizer _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCAmelCase_ : Tuple = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) lowerCAmelCase_ : Any = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowerCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_snake_case ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : List[str] = '''lower newer''' lowerCAmelCase_ : Optional[int] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : str = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase_ : Tuple = '''lower''' lowerCAmelCase_ : List[Any] = ['''low''', '''er</w>'''] lowerCAmelCase_ : str = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase_ : Optional[int] = tokens + ['''<unk>'''] lowerCAmelCase_ : Optional[int] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Optional[int] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) lowerCAmelCase_ : str = tokenizer.encode('sequence builders' , add_special_tokens=_snake_case ) lowerCAmelCase_ : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=_snake_case ) lowerCAmelCase_ : Any = tokenizer.build_inputs_with_special_tokens(_snake_case ) lowerCAmelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
224
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
0
from __future__ import annotations from random import random class A__ : def __init__( self : Any , a : Union[str, Any] = None ): '''simple docstring''' lowerCAmelCase__ : Dict = value lowerCAmelCase__ : Optional[int] = random() lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : str = None def __repr__( self : Union[str, Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = str(self.value ) + ' ' lowerCAmelCase__ : int = str(self.left or '' ) lowerCAmelCase__ : str = str(self.right or '' ) return value + left + right def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = split(root.left , lowercase_ ) return left, root else: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = split(root.right , lowercase_ ) return root, right def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase__ : Tuple = merge(left.right , lowercase_ ) return left else: lowerCAmelCase__ : Optional[Any] = merge(lowercase_ , right.left ) return right def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Node | None: lowerCAmelCase__ : Optional[Any] = Node(lowercase_ ) lowerCAmelCase__ , lowerCAmelCase__ : Any = split(lowercase_ , lowercase_ ) return merge(merge(lowercase_ , lowercase_ ) , lowercase_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Node | None: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = split(lowercase_ , value - 1 ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = split(lowercase_ , lowercase_ ) return merge(lowercase_ , lowercase_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Node | None: for arg in args.split(): if arg[0] == "+": lowerCAmelCase__ : List[str] = insert(lowercase_ , int(arg[1:] ) ) elif arg[0] == "-": lowerCAmelCase__ : int = erase(lowercase_ , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCAmelCase__ ( ) -> None: lowerCAmelCase__ : List[Any] = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) lowerCAmelCase__ : Optional[int] = input() while args != "q": lowerCAmelCase__ : Union[str, Any] = interact_treap(lowercase_ , lowercase_ ) print(lowercase_ ) lowerCAmelCase__ : Optional[Any] = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case_( a__ ): __UpperCamelCase = '''dandelin/vilt-b32-finetuned-vqa''' __UpperCamelCase = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) __UpperCamelCase = '''image_qa''' __UpperCamelCase = AutoProcessor __UpperCamelCase = AutoModelForVisualQuestionAnswering __UpperCamelCase = ['''image''', '''text'''] __UpperCamelCase = ['''text'''] def __init__( self : Optional[int] , *UpperCamelCase_ : int , **UpperCamelCase_ : str ): requires_backends(self , ['''vision'''] ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : "Image" , UpperCamelCase_ : str ): return self.pre_processor(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any ): with torch.no_grad(): return self.model(**UpperCamelCase_ ).logits def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : List[str] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
60
"""simple docstring""" import mpmath # for roots of unity import numpy as np class snake_case_: def __init__( self : str , UpperCamelCase_ : int=None , UpperCamelCase_ : List[str]=None ): # Input as list lowerCAmelCase : str = list(poly_a or [0] )[:] lowerCAmelCase : Any = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowerCAmelCase : Optional[int] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowerCAmelCase : Union[str, Any] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowerCAmelCase : str = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowerCAmelCase : int = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowerCAmelCase : int = self.__multiply() def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str ): lowerCAmelCase : Optional[Any] = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCamelCase_ ) <= 1: return dft[0] # lowerCAmelCase : Tuple = self.c_max_length // 2 while next_ncol > 0: lowerCAmelCase : Dict = [[] for i in range(UpperCamelCase_ )] lowerCAmelCase : List[Any] = self.root**next_ncol # First half of next step lowerCAmelCase : Dict = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowerCAmelCase : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowerCAmelCase : Optional[Any] = new_dft lowerCAmelCase : Union[str, Any] = next_ncol // 2 return dft[0] def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.__dft('''A''' ) lowerCAmelCase : Optional[int] = self.__dft('''B''' ) lowerCAmelCase : Any = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowerCAmelCase : str = 2 while next_ncol <= self.c_max_length: lowerCAmelCase : Union[str, Any] = [[] for i in range(UpperCamelCase_ )] lowerCAmelCase : Optional[Any] = self.root ** (next_ncol // 2) lowerCAmelCase : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowerCAmelCase : Any = new_inverse_c next_ncol *= 2 # Unpack lowerCAmelCase : Optional[int] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : int ): lowerCAmelCase : int = '''A = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowerCAmelCase : str = '''B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowerCAmelCase : int = '''A*B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
60
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = ["model.decoder.embed_positions.weights"] def A ( lowercase ) -> List[Any]: '''simple docstring''' if "emb" in name: UpperCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: UpperCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: UpperCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: UpperCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: UpperCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: UpperCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: UpperCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: UpperCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: UpperCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: UpperCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = list(state_dict.keys() ) UpperCamelCase = {} for key in keys: UpperCamelCase = state_dict.pop(__a ) UpperCamelCase = rename_keys(__a ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase = val[:hidden_size, :] UpperCamelCase = val[hidden_size : 2 * hidden_size, :] UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase = val else: UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A ( lowercase ) -> Optional[int]: '''simple docstring''' if checkpoint == "small": # default config values UpperCamelCase = 1_024 UpperCamelCase = 24 UpperCamelCase = 16 elif checkpoint == "medium": UpperCamelCase = 1_536 UpperCamelCase = 48 UpperCamelCase = 24 elif checkpoint == "large": UpperCamelCase = 2_048 UpperCamelCase = 48 UpperCamelCase = 32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) UpperCamelCase = MusicgenDecoderConfig( hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , ) return config @torch.no_grad() def A ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> str: '''simple docstring''' UpperCamelCase = MusicGen.get_pretrained(__a , device=__a ) UpperCamelCase = decoder_config_from_checkpoint(__a ) UpperCamelCase = fairseq_model.lm.state_dict() UpperCamelCase = rename_state_dict( __a , hidden_size=decoder_config.hidden_size ) UpperCamelCase = TaEncoderModel.from_pretrained('t5-base' ) UpperCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) UpperCamelCase = MusicgenForCausalLM(__a ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase = decoder.load_state_dict(__a , strict=__a ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__a ) if len(__a ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(__a ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__a ) # check we can do a forward pass UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCamelCase = model(input_ids=__a , decoder_input_ids=__a ).logits if logits.shape != (8, 1, 2_048): raise ValueError('Incorrect shape for logits' ) # now construct the processor UpperCamelCase = AutoTokenizer.from_pretrained('t5-base' ) UpperCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) UpperCamelCase = MusicgenProcessor(feature_extractor=__a , tokenizer=__a ) # set the appropriate bos/pad token ids UpperCamelCase = 2_048 UpperCamelCase = 2_048 # set other default generation config params UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase = True UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(__a ).mkdir(exist_ok=__a ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(__a ) processor.push_to_hub(__a ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _UpperCAmelCase : List[str] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
355
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = LlamaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = True UpperCamelCase = LlamaModel(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) UpperCamelCase = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> str: """simple docstring""" UpperCamelCase = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = True UpperCamelCase = True UpperCamelCase = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0] UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : str = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __lowercase : str = (LlamaForCausalLM,) if is_torch_available() else () __lowercase : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : int = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = LlamaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'single_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'multi_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = LlamaModel(A_ ) original_model.to(A_ ) original_model.eval() UpperCamelCase = original_model(A_ ).last_hidden_state UpperCamelCase = original_model(A_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = {'type': scaling_type, 'factor': 10.0} UpperCamelCase = LlamaModel(A_ ) scaled_model.to(A_ ) scaled_model.eval() UpperCamelCase = scaled_model(A_ ).last_hidden_state UpperCamelCase = scaled_model(A_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A_ , A_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) UpperCamelCase = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # fmt: off UpperCamelCase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' UpperCamelCase = 'Simply put, the theory of relativity states that ' UpperCamelCase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) UpperCamelCase = tokenizer.encode(A_ , return_tensors='pt' ) UpperCamelCase = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=A_ ) # greedy generation outputs UpperCamelCase = model.generate(A_ , max_new_tokens=64 , top_p=A_ , temperature=1 , do_sample=A_ ) UpperCamelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ )
110
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''imagegpt''' snake_case__ = ['''past_key_values'''] snake_case__ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , __UpperCamelCase : List[Any]=512 + 1 , __UpperCamelCase : List[str]=32 * 32 , __UpperCamelCase : int=512 , __UpperCamelCase : Any=24 , __UpperCamelCase : List[str]=8 , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[Any]="quick_gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Dict=1E-5 , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : List[str]=False , __UpperCamelCase : List[str]=False , __UpperCamelCase : Union[str, Any]=False , **__UpperCamelCase : List[Any] , ) -> Union[str, Any]: _UpperCamelCase = vocab_size _UpperCamelCase = n_positions _UpperCamelCase = n_embd _UpperCamelCase = n_layer _UpperCamelCase = n_head _UpperCamelCase = n_inner _UpperCamelCase = activation_function _UpperCamelCase = resid_pdrop _UpperCamelCase = embd_pdrop _UpperCamelCase = attn_pdrop _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_range _UpperCamelCase = scale_attn_weights _UpperCamelCase = use_cache _UpperCamelCase = scale_attn_by_inverse_layer_idx _UpperCamelCase = reorder_and_upcast_attn _UpperCamelCase = tie_word_embeddings super().__init__(tie_word_embeddings=__UpperCamelCase , **__UpperCamelCase ) class UpperCAmelCase_ ( _lowercase): @property def _UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : "FeatureExtractionMixin" , __UpperCamelCase : int = 1 , __UpperCamelCase : int = -1 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional["TensorType"] = None , __UpperCamelCase : int = 3 , __UpperCamelCase : int = 32 , __UpperCamelCase : int = 32 , ) -> Mapping[str, Any]: _UpperCamelCase = self._generate_dummy_images(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = dict(preprocessor(images=__UpperCamelCase , return_tensors=__UpperCamelCase ) ) return inputs
256
"""simple docstring""" def lowercase ( a__ : float , a__ : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
256
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) a =tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" a =model(__A )['''last_hidden_state'''] a =tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __A ) # compare the actual values for a slice. a =tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
215
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _A ( lowercase ): """simple docstring""" a ={} a =tokenizer(example['''content'''] , truncation=lowercase )['''input_ids'''] a =len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowerCamelCase_ : Optional[int] = HfArgumentParser(PretokenizationArguments) lowerCamelCase_ : Optional[Any] = parser.parse_args() if args.num_workers is None: lowerCamelCase_ : Tuple = multiprocessing.cpu_count() lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCamelCase_ : Any = time.time() lowerCamelCase_ : int = load_dataset(args.dataset_name, split="""train""") print(F'Dataset loaded in {time.time()-t_start:.2f}s') lowerCamelCase_ : List[str] = time.time() lowerCamelCase_ : str = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') lowerCamelCase_ : Union[str, Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
215
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : int ): '''simple docstring''' lowercase = torch.load(_A , map_location='cpu' ) lowercase = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowercase = {} for k, v in state_dict.items(): if "pred_layer" in k: lowercase = v else: lowercase = v lowercase = chkpt['params'] lowercase = {n: v for n, v in config.items() if not isinstance(_A , (torch.FloatTensor, numpy.ndarray) )} lowercase = chkpt['dico_word2id'] lowercase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowercase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowercase = pytorch_dump_folder_path + '/' + CONFIG_NAME lowercase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(_A , _A ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_A , indent=2 ) + '\n' ) print(f'Save vocab file to {pytorch_config_dump_path}' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_A , indent=2 ) + '\n' ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
220
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) a = jnp.array([[0, 1, 2, 3, 4, 5]] ) a = model(__magic_name__ )[0] a = 5_0000 a = (1, 6, vocab_size) self.assertEqual(output.shape , __magic_name__ ) a = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
351
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: a = [F'<extra_id_{i}>' for i in range(__magic_name__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token super().__init__( eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , ) a = extra_ids a = 2**8 # utf is 8 bits # define special tokens dict a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } a = len(self.special_tokens_encoder ) a = len(__magic_name__ ) for i, token in enumerate(__magic_name__ ): a = self.vocab_size + i - n a = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__magic_name__ )) + [1] return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1] def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ): '''simple docstring''' if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ): '''simple docstring''' a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ): '''simple docstring''' a = self._add_eos_if_not_present(__magic_name__ ) if token_ids_a is None: return token_ids_a else: a = self._add_eos_if_not_present(__magic_name__ ) return token_ids_a + token_ids_a def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ): '''simple docstring''' a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )] return tokens def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ): '''simple docstring''' if token in self.special_tokens_encoder: a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: a = self.added_tokens_encoder[token] elif len(__magic_name__ ) != 1: a = self.unk_token_id else: a = ord(__magic_name__ ) + self._num_special_tokens return token_id def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ): '''simple docstring''' if index in self.special_tokens_decoder: a = self.special_tokens_decoder[index] else: a = chr(index - self._num_special_tokens ) return token def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ): '''simple docstring''' a = b"""""" for token in tokens: if token in self.special_tokens_decoder: a = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: a = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: a = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: a = token.encode("""utf-8""" ) else: a = bytes([ord(__magic_name__ )] ) bstring += tok_string a = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ): '''simple docstring''' return ()
347
0
"""simple docstring""" def A_ ( _lowercase = 3, _lowercase = 7, _lowercase = 1000000 ): '''simple docstring''' snake_case_ :List[Any] = 0 snake_case_ :Any = 1 for current_denominator in range(1, limit + 1 ): snake_case_ :int = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case_ :List[str] = current_numerator snake_case_ :Any = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
66
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase__ : List[str] = 10 def __lowercase ( self , **_a ) -> Optional[int]: _a : Any = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_a ) return config def __lowercase ( self ) -> Union[str, Any]: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> Tuple: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __lowercase ( self ) -> Optional[int]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def __lowercase ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> Optional[Any]: _a : int = self.scheduler_classes[0] _a : Dict = self.get_scheduler_config(prediction_type='''v_prediction''' ) _a : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _a : Optional[Any] = self.dummy_model() _a : str = self.dummy_sample_deter * scheduler.init_noise_sigma _a : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _a : Tuple = scheduler.scale_model_input(_a , _a ) _a : Dict = model(_a , _a ) _a : str = scheduler.step(_a , _a , _a ) _a : Dict = output.prev_sample _a : Optional[Any] = torch.sum(torch.abs(_a ) ) _a : Any = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def __lowercase ( self ) -> Dict: if torch_device == "mps": return _a : Optional[int] = self.scheduler_classes[0] _a : int = self.get_scheduler_config() _a : Optional[int] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _a : Any = self.dummy_model() _a : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _a : Optional[Any] = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _a : Optional[Any] = scheduler.scale_model_input(_a , _a ) _a : List[Any] = model(_a , _a ) _a : Optional[Any] = scheduler.step(_a , _a , _a ) _a : Optional[Any] = output.prev_sample _a : Dict = torch.sum(torch.abs(_a ) ) _a : Tuple = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def __lowercase ( self ) -> Dict: if torch_device == "mps": return _a : List[str] = self.scheduler_classes[0] _a : str = self.get_scheduler_config() _a : List[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _a : Union[str, Any] = self.dummy_model() _a : Tuple = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _a : str = scheduler.scale_model_input(_a , _a ) _a : int = model(_a , _a ) _a : int = scheduler.step(_a , _a , _a ) _a : Dict = output.prev_sample _a : Tuple = torch.sum(torch.abs(_a ) ) _a : Union[str, Any] = torch.mean(torch.abs(_a ) ) if str(_a ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
15
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : Any = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = KandinskyVaaImgaImgPipeline _lowercase : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowercase : Any = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowercase : Union[str, Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : Optional[Any] = False @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" return self.time_input_dim @property def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" return 100 @property def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase__ = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase__ = DDIMScheduler(**UpperCamelCase_ ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=0 ) -> Optional[int]: """simple docstring""" lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase_ ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((256, 256) ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ = '''A red cartoon frog, 4k''' lowercase__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) lowercase__ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase__ = pipeline( image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
110
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Any = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "blenderbot-small" A : Union[str, Any] = ["past_key_values"] A : List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , UpperCAmelCase_ : List[Any]=5_0_2_6_5 , UpperCAmelCase_ : Any=5_1_2 , UpperCAmelCase_ : Optional[Any]=8 , UpperCAmelCase_ : Tuple=2_0_4_8 , UpperCAmelCase_ : Optional[int]=1_6 , UpperCAmelCase_ : str=8 , UpperCAmelCase_ : Optional[int]=2_0_4_8 , UpperCAmelCase_ : Tuple=1_6 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Any=5_1_2 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Union[str, Any]=2 , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : List[Any] = vocab_size a : Optional[Any] = max_position_embeddings a : Optional[Any] = d_model a : Dict = encoder_ffn_dim a : List[Any] = encoder_layers a : Dict = encoder_attention_heads a : Optional[int] = decoder_ffn_dim a : Optional[int] = decoder_layers a : Tuple = decoder_attention_heads a : List[str] = dropout a : List[Any] = attention_dropout a : Dict = activation_dropout a : Tuple = activation_function a : Union[str, Any] = init_std a : Tuple = encoder_layerdrop a : List[str] = decoder_layerdrop a : Optional[int] = use_cache a : str = encoder_layers a : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) class UpperCamelCase ( a_ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: a : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: a : Any = {0: 'batch'} a : Union[str, Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: a : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} a : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. a : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: a , a : Any = self.num_layers for i in range(UpperCAmelCase_): a : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} a : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: a : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: a : Dict = super().outputs else: a : Union[str, Any] = super(UpperCAmelCase_ , self).outputs if self.use_past: a , a : Optional[Any] = self.num_layers for i in range(UpperCAmelCase_): a : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} a : Dict = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" a : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Generate decoder inputs a : Optional[Any] = seq_length if not self.use_past else 1 a : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) a : Optional[int] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} a : Union[str, Any] = dict(**UpperCAmelCase_ , **UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch a , a : int = common_inputs['input_ids'].shape a : Optional[int] = common_inputs['decoder_input_ids'].shape[1] a , a : Tuple = self.num_attention_heads a : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a : List[Any] = decoder_seq_length + 3 a : Optional[int] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a : Dict = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_)] , dim=1) a : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a , a : List[Any] = self.num_layers a : Union[str, Any] = min(UpperCAmelCase_ , UpperCAmelCase_) a : Optional[int] = max(UpperCAmelCase_ , UpperCAmelCase_) - min_num_layers a : Tuple = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCAmelCase_): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), )) # TODO: test this. a : Dict = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCAmelCase_ , UpperCAmelCase_): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_))) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" a : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch a , a : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values a : Any = seqlen + 2 a , a : Optional[int] = self.num_layers a , a : int = self.num_attention_heads a : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a : Dict = common_inputs['attention_mask'].dtype a : Tuple = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_)] , dim=1) a : Dict = [ (torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_)) for _ in range(UpperCAmelCase_) ] return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" a : Optional[int] = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a : List[str] = tokenizer.num_special_tokens_to_add(UpperCAmelCase_) a : Any = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_) # Generate dummy inputs according to compute batch and sequence a : Optional[Any] = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size a : List[str] = dict(tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_)) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: a : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) elif self.task == "causal-lm": a : str = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) else: a : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: a : Optional[Any] = super()._flatten_past_key_values_(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) else: a : Any = super(UpperCAmelCase_ , self)._flatten_past_key_values_( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def snake_case_ ( lowerCAmelCase_ )-> typing.Counter[int]: '''simple docstring''' _UpperCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ): _UpperCAmelCase : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def snake_case_ ( lowerCAmelCase_ = 1000 )-> int: '''simple docstring''' _UpperCAmelCase : int = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
215
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self ) -> List[str]: _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[int] = {} def _snake_case ( self ,a_ ) -> Optional[Any]: if vertex not in self.adjacency: _UpperCAmelCase : int = {} self.num_vertices += 1 def _snake_case ( self ,a_ ,a_ ,a_ ) -> int: self.add_vertex(a_ ) self.add_vertex(a_ ) if head == tail: return _UpperCAmelCase : List[Any] = weight _UpperCAmelCase : Dict = weight def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = self.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = edge edges.remove((tail, head, weight) ) for i in range(len(a_ ) ): _UpperCAmelCase : str = list(edges[i] ) edges.sort(key=lambda a_ : e[2] ) for i in range(len(a_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _UpperCAmelCase : Optional[Any] = edges[i][2] + 1 for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = edge _UpperCAmelCase : str = weight _UpperCAmelCase : List[str] = weight def __str__( self ) -> Any: _UpperCAmelCase : List[Any] = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _UpperCAmelCase : List[str] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _snake_case ( self ) -> Optional[int]: return self.adjacency.keys() @staticmethod def _snake_case ( a_=None ,a_=None ) -> Tuple: _UpperCAmelCase : List[Any] = Graph() if vertices is None: _UpperCAmelCase : List[str] = [] if edges is None: _UpperCAmelCase : Optional[Any] = [] for vertex in vertices: g.add_vertex(a_ ) for edge in edges: g.add_edge(*a_ ) return g class lowercase : """simple docstring""" def __init__( self ) -> int: _UpperCAmelCase : List[str] = {} _UpperCAmelCase : int = {} def __len__( self ) -> Tuple: return len(self.parent ) def _snake_case ( self ,a_ ) -> str: if item in self.parent: return self.find(a_ ) _UpperCAmelCase : Optional[Any] = item _UpperCAmelCase : List[Any] = 0 return item def _snake_case ( self ,a_ ) -> List[str]: if item not in self.parent: return self.make_set(a_ ) if item != self.parent[item]: _UpperCAmelCase : List[Any] = self.find(self.parent[item] ) return self.parent[item] def _snake_case ( self ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Any = self.find(a_ ) _UpperCAmelCase : List[str] = self.find(a_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _UpperCAmelCase : List[str] = roota return roota return None @staticmethod def _snake_case ( a_ ) -> List[Any]: _UpperCAmelCase : int = graph.num_vertices _UpperCAmelCase : int = Graph.UnionFind() _UpperCAmelCase : Optional[int] = [] while num_components > 1: _UpperCAmelCase : int = {} for vertex in graph.get_vertices(): _UpperCAmelCase : Union[str, Any] = -1 _UpperCAmelCase : Tuple = graph.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = edge edges.remove((tail, head, weight) ) for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = edge _UpperCAmelCase : Any = union_find.find(a_ ) _UpperCAmelCase : Any = union_find.find(a_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : Tuple = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = cheap_edge[vertex] if union_find.find(a_ ) != union_find.find(a_ ): union_find.union(a_ ,a_ ) mst_edges.append(cheap_edge[vertex] ) _UpperCAmelCase : Tuple = num_components - 1 _UpperCAmelCase : Optional[int] = Graph.build(edges=a_ ) return mst
215
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : Dict = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( __a :str ) -> Optional[int]: """simple docstring""" A__ = {} A__ = job["""started_at"""] A__ = job["""completed_at"""] A__ = date_parser.parse(__a ) A__ = date_parser.parse(__a ) A__ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) A__ = start A__ = end A__ = duration_in_min return job_info def __lowerCamelCase ( __a :Optional[Any] , __a :List[str]=None ) -> List[Any]: """simple docstring""" A__ = None if token is not None: A__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'Bearer {token}'} A__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' A__ = requests.get(__a , headers=__a ).json() A__ = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(__a ) for job in result["""jobs"""]} ) A__ = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(__a ): A__ = requests.get(url + F'&page={i + 2}' , headers=__a ).json() job_time.update({job["""name"""]: extract_time_from_single_job(__a ) for job in result["""jobs"""]} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') A : Dict = parser.parse_args() A : List[Any] = get_job_time(args.workflow_run_id) A : int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
276
0
_A = tuple[float, float, float] _A = tuple[float, float, float] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =end_pointa[0] - end_pointa[0] __UpperCamelCase =end_pointa[1] - end_pointa[1] __UpperCamelCase =end_pointa[2] - end_pointa[2] return (x, y, z) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =ab[1] * ac[2] - ab[2] * ac[1] # *i __UpperCamelCase =(ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __UpperCamelCase =ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ): return tuple(round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in vector ) == (0, 0, 0) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] = 10 ): __UpperCamelCase =create_vector(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase =create_vector(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return is_zero_vector(get_ad_vectors_cross(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
62
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : str = tf.data.AUTOTUNE def _a ( ) -> List[str]: snake_case_ = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=_SCREAMING_SNAKE_CASE , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=_SCREAMING_SNAKE_CASE , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=_SCREAMING_SNAKE_CASE , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=_SCREAMING_SNAKE_CASE , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=_SCREAMING_SNAKE_CASE , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=_SCREAMING_SNAKE_CASE , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=_SCREAMING_SNAKE_CASE , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=_SCREAMING_SNAKE_CASE , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=_SCREAMING_SNAKE_CASE , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=_SCREAMING_SNAKE_CASE , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=_SCREAMING_SNAKE_CASE , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=_SCREAMING_SNAKE_CASE , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=_SCREAMING_SNAKE_CASE , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=_SCREAMING_SNAKE_CASE , help="""Model ID to upload to on the Hugging Face Hub.""" ) snake_case_ = parser.parse_args() return args def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: try: if args.tpu_name: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(_SCREAMING_SNAKE_CASE ) tf.tpu.experimental.initialize_tpu_system(_SCREAMING_SNAKE_CASE ) return tpu def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = 0 for file in file_list: snake_case_ = file.split("""/""" )[-1] snake_case_ = re.search(r"""-\d+-(\d+)\.tfrecord""" , _SCREAMING_SNAKE_CASE ).group(1 ) snake_case_ = int(_SCREAMING_SNAKE_CASE ) num_samples += sample_count return num_samples def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: snake_case_ = count_samples(_SCREAMING_SNAKE_CASE ) snake_case_ = tf.data.Dataset.from_tensor_slices(_SCREAMING_SNAKE_CASE ) if shuffle: snake_case_ = dataset.shuffle(len(_SCREAMING_SNAKE_CASE ) ) snake_case_ = tf.data.TFRecordDataset(_SCREAMING_SNAKE_CASE , num_parallel_reads=_SCREAMING_SNAKE_CASE ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case_ = dataset.apply(tf.data.experimental.assert_cardinality(_SCREAMING_SNAKE_CASE ) ) snake_case_ = dataset.map(_SCREAMING_SNAKE_CASE , num_parallel_calls=_SCREAMING_SNAKE_CASE ) if shuffle: assert shuffle_buffer_size is not None snake_case_ = dataset.shuffle(args.shuffle_buffer_size ) snake_case_ = dataset.batch(_SCREAMING_SNAKE_CASE , drop_remainder=_SCREAMING_SNAKE_CASE ) snake_case_ = dataset.map(_SCREAMING_SNAKE_CASE , num_parallel_calls=_SCREAMING_SNAKE_CASE ) snake_case_ = dataset.prefetch(_SCREAMING_SNAKE_CASE ) return dataset def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: if not args.no_tpu: snake_case_ = initialize_tpu(_SCREAMING_SNAKE_CASE ) snake_case_ = tf.distribute.TPUStrategy(_SCREAMING_SNAKE_CASE ) else: snake_case_ = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) snake_case_ = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case_ = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case_ = tokenizer.vocab_size snake_case_ = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) snake_case_ = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) snake_case_ = count_samples(_SCREAMING_SNAKE_CASE ) snake_case_ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case_ = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case_ = TFAutoModelForMaskedLM.from_config(_SCREAMING_SNAKE_CASE ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case_ , snake_case_ = create_optimizer( num_train_steps=_SCREAMING_SNAKE_CASE , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_SCREAMING_SNAKE_CASE , metrics=["""accuracy"""] ) def decode_fn(_SCREAMING_SNAKE_CASE ): snake_case_ = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case_ = DataCollatorForLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , mlm_probability=args.mlm_probability , mlm=_SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) def mask_with_collator(_SCREAMING_SNAKE_CASE ): # TF really needs an isin() function snake_case_ = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) snake_case_ , snake_case_ = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(_SCREAMING_SNAKE_CASE ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_SCREAMING_SNAKE_CASE , ) return batch snake_case_ = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case_ = prepare_dataset( _SCREAMING_SNAKE_CASE , decode_fn=_SCREAMING_SNAKE_CASE , mask_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case_ = prepare_dataset( _SCREAMING_SNAKE_CASE , decode_fn=_SCREAMING_SNAKE_CASE , mask_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , ) snake_case_ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_SCREAMING_SNAKE_CASE ) ) model.fit( _SCREAMING_SNAKE_CASE , validation_data=_SCREAMING_SNAKE_CASE , epochs=args.num_epochs , callbacks=_SCREAMING_SNAKE_CASE , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = parse_args() main(args)
347
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : Any = MODEL_FOR_MASKED_LM_MAPPING A__ : Union[str, Any] = TF_MODEL_FOR_MASKED_LM_MAPPING def A__ ( self: Tuple ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def A__ ( self: Any ) -> int: UpperCAmelCase_ : List[str] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,top_k=2 ,framework="""tf""" ) UpperCAmelCase_ : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 38015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 25506, """token_str""": """ accuser"""}, ] ,) UpperCAmelCase_ : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 38015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 25506, """token_str""": """ accuser""", }, ] ,) UpperCAmelCase_ : List[str] = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] ,) @require_torch def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,top_k=2 ,framework="""pt""" ) UpperCAmelCase_ : Tuple = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 35676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 16416, """token_str""": """ELS"""}, ] ,) UpperCAmelCase_ : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 35676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 16416, """token_str""": """ELS"""}, ] ,) UpperCAmelCase_ : Tuple = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 13606, """token_str""": """ Clara"""}, ] ,) UpperCAmelCase_ : List[str] = unmasker("""My name is <mask> <mask>""" ,top_k=2 ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ [ { """score""": 2.2e-05, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] ,) @require_torch_gpu def A__ ( self: Dict ) -> int: UpperCAmelCase_ : Any = pipeline("""fill-mask""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,device=0 ,framework="""pt""" ) # convert model to fp16 pipe.model.half() UpperCAmelCase_ : Any = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__a ,__a ) @slow @require_torch def A__ ( self: Dict ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = pipeline(task="""fill-mask""" ,model="""distilroberta-base""" ,top_k=2 ,framework="""pt""" ) self.run_large_test(__a ) @slow @require_tf def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ : int = pipeline(task="""fill-mask""" ,model="""distilroberta-base""" ,top_k=2 ,framework="""tf""" ) self.run_large_test(__a ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__a ) ,[ {"""sequence""": """My name is John""", """score""": 0.0_0_8, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.0_0_7, """token""": 1573, """token_str""": """ Chris"""}, ] ,) UpperCAmelCase_ : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__a ) ,[ { """sequence""": """The largest city in France is Paris""", """score""": 0.2_5_1, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.2_1_4, """token""": 12790, """token_str""": """ Lyon""", }, ] ,) UpperCAmelCase_ : str = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(__a ) ,[ {"""sequence""": """My name is Patrick""", """score""": 0.0_0_5, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.0_0_0, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.0_0_0, """token""": 2941, """token_str""": """ Te"""}, ] ,) @require_torch def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ : Union[str, Any] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,framework="""pt""" ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None self.run_pipeline_test(__a ,[] ) @require_tf def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Dict = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,framework="""tf""" ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None self.run_pipeline_test(__a ,[] ) def A__ ( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Tuple: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) UpperCAmelCase_ : Optional[Any] = FillMaskPipeline(model=__a ,tokenizer=__a ) UpperCAmelCase_ : str = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def A__ ( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ) -> str: UpperCAmelCase_ : Tuple = fill_masker.tokenizer UpperCAmelCase_ : Any = fill_masker.model UpperCAmelCase_ : Union[str, Any] = fill_masker( F'''This is a {tokenizer.mask_token}''' ,) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) UpperCAmelCase_ : int = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) UpperCAmelCase_ : str = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( __a ,[ [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], ] ,) with self.assertRaises(__a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__a ): fill_masker("""This is""" ) self.run_test_top_k(__a ,__a ) self.run_test_targets(__a ,__a ) self.run_test_top_k_targets(__a ,__a ) self.fill_mask_with_duplicate_targets_and_top_k(__a ,__a ) self.fill_mask_with_multiple_masks(__a ,__a ) def A__ ( self: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Dict ) -> List[Any]: UpperCAmelCase_ : Optional[int] = tokenizer.get_vocab() UpperCAmelCase_ : Optional[int] = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase_ : Dict = FillMaskPipeline(model=__a ,tokenizer=__a ,targets=__a ) UpperCAmelCase_ : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) UpperCAmelCase_ : Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} ,__a ) UpperCAmelCase_ : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} ,set(__a ) ) # Call argument UpperCAmelCase_ : Dict = FillMaskPipeline(model=__a ,tokenizer=__a ) UpperCAmelCase_ : int = fill_masker(F'''This is a {tokenizer.mask_token}''' ,targets=__a ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) UpperCAmelCase_ : Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} ,__a ) UpperCAmelCase_ : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} ,set(__a ) ) # Score equivalence UpperCAmelCase_ : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ,targets=__a ) UpperCAmelCase_ : List[Any] = [top_mask["""token_str"""] for top_mask in outputs] UpperCAmelCase_ : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__a ) == set(__a ): UpperCAmelCase_ : List[str] = fill_masker(F'''This is a {tokenizer.mask_token}''' ,targets=__a ) UpperCAmelCase_ : Dict = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__a ) ,nested_simplify(__a ) ) # Raises with invalid with self.assertRaises(__a ): UpperCAmelCase_ : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__a ): UpperCAmelCase_ : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ,targets=[""""""] ) with self.assertRaises(__a ): UpperCAmelCase_ : Dict = fill_masker(F'''This is a {tokenizer.mask_token}''' ,targets="""""" ) def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]: UpperCAmelCase_ : Any = FillMaskPipeline(model=__a ,tokenizer=__a ,top_k=2 ) UpperCAmelCase_ : List[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) UpperCAmelCase_ : Union[str, Any] = FillMaskPipeline(model=__a ,tokenizer=__a ) UpperCAmelCase_ : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) self.assertEqual(nested_simplify(__a ) ,nested_simplify(__a ) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ) -> Any: UpperCAmelCase_ : List[str] = tokenizer.get_vocab() UpperCAmelCase_ : Dict = FillMaskPipeline(model=__a ,tokenizer=__a ) # top_k=2, ntargets=3 UpperCAmelCase_ : Any = sorted(vocab.keys() )[:3] UpperCAmelCase_ : List[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' ,top_k=2 ,targets=__a ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase_ : Tuple = [el["""token_str"""] for el in sorted(__a ,key=lambda lowerCamelCase_ : x["score"] ,reverse=__a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__a ).issubset(__a ): UpperCAmelCase_ : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' ,top_k=3 ,targets=__a ) # They should yield exactly the same result self.assertEqual(nested_simplify(__a ) ,nested_simplify(__a ) ) def A__ ( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: str ) -> Dict: UpperCAmelCase_ : Tuple = FillMaskPipeline(model=__a ,tokenizer=__a ) UpperCAmelCase_ : Union[str, Any] = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase_ : int = sorted(vocab.keys() )[:3] UpperCAmelCase_ : Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase_ : Optional[int] = fill_masker(F'''My name is {tokenizer.mask_token}''' ,targets=__a ,top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__a ) ,3 ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: int ) -> Any: UpperCAmelCase_ : Optional[int] = FillMaskPipeline(model=__a ,tokenizer=__a ) UpperCAmelCase_ : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( __a ,[ [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], ] ,)
361
from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase_ = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' UpperCamelCase_ = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' UpperCamelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): '''simple docstring''' def A__ ( self: Any ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) ,reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] ,) def A__ ( self: List[str] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any]=None ) -> int: return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_ ,lowerCamelCase_ ,sample_weight=lowerCamelCase_ ) ), }
59
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = (KDPMaDiscreteScheduler,) snake_case_ = 10 def UpperCamelCase_ ( self : Optional[int] ,**A : int ): __A = { "num_train_timesteps": 11_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**A ) return config def UpperCamelCase_ ( self : Dict ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A ) def UpperCamelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] ,[0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=A ,beta_end=A ) def UpperCamelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def UpperCamelCase_ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def UpperCamelCase_ ( self : str ): __A = self.scheduler_classes[0] __A = self.get_scheduler_config(prediction_type="v_prediction" ) __A = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) __A = self.dummy_model() __A = self.dummy_sample_deter * scheduler.init_noise_sigma __A = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): __A = scheduler.scale_model_input(A ,A ) __A = model(A ,A ) __A = scheduler.step(A ,A ,A ) __A = output.prev_sample __A = torch.sum(torch.abs(A ) ) __A = torch.mean(torch.abs(A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def UpperCamelCase_ ( self : Optional[Any] ): if torch_device == "mps": return __A = self.scheduler_classes[0] __A = self.get_scheduler_config() __A = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) __A = self.dummy_model() __A = self.dummy_sample_deter * scheduler.init_noise_sigma __A = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): __A = scheduler.scale_model_input(A ,A ) __A = model(A ,A ) __A = scheduler.step(A ,A ,A ) __A = output.prev_sample __A = torch.sum(torch.abs(A ) ) __A = torch.mean(torch.abs(A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def UpperCamelCase_ ( self : Dict ): if torch_device == "mps": return __A = self.scheduler_classes[0] __A = self.get_scheduler_config() __A = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ,device=A ) __A = self.dummy_model() __A = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __A = scheduler.scale_model_input(A ,A ) __A = model(A ,A ) __A = scheduler.step(A ,A ,A ) __A = output.prev_sample __A = torch.sum(torch.abs(A ) ) __A = torch.mean(torch.abs(A ) ) if str(A ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
15
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return lst __A = 1 while i < len(a_ ): if lst[i - 1] <= lst[i]: i += 1 else: __A , __A = lst[i], lst[i - 1] i -= 1 if i == 0: __A = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE :List[Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
15
1
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : Tuple = 0 for i in range(1, int(sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE__ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE__ ): total += i return total - n def __UpperCAmelCase ( a_: str = 10_000 ): _UpperCAmelCase : Optional[Any] = sum( i for i in range(1, SCREAMING_SNAKE_CASE__ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE__ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Tuple = "blenderbot-small" A__ : List[str] = ["past_key_values"] A__ : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self: str ,lowerCamelCase_: List[Any]=50265 ,lowerCamelCase_: Any=512 ,lowerCamelCase_: Any=8 ,lowerCamelCase_: str=2048 ,lowerCamelCase_: Any=16 ,lowerCamelCase_: List[Any]=8 ,lowerCamelCase_: Union[str, Any]=2048 ,lowerCamelCase_: List[Any]=16 ,lowerCamelCase_: Tuple=0.0 ,lowerCamelCase_: Dict=0.0 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Any=512 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Any=0.0 ,lowerCamelCase_: Dict=0.0 ,lowerCamelCase_: List[Any]=0.0_2 ,lowerCamelCase_: str=1 ,lowerCamelCase_: str=False ,lowerCamelCase_: int=0 ,lowerCamelCase_: Any=1 ,lowerCamelCase_: int=2 ,lowerCamelCase_: Dict=2 ,**lowerCamelCase_: Optional[Any] ,) -> Any: UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : Dict = d_model UpperCAmelCase_ : Optional[int] = encoder_ffn_dim UpperCAmelCase_ : str = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Tuple = decoder_ffn_dim UpperCAmelCase_ : Optional[int] = decoder_layers UpperCAmelCase_ : List[Any] = decoder_attention_heads UpperCAmelCase_ : str = dropout UpperCAmelCase_ : Dict = attention_dropout UpperCAmelCase_ : int = activation_dropout UpperCAmelCase_ : Optional[Any] = activation_function UpperCAmelCase_ : int = init_std UpperCAmelCase_ : int = encoder_layerdrop UpperCAmelCase_ : List[Any] = decoder_layerdrop UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : List[Any] = encoder_layers UpperCAmelCase_ : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,is_encoder_decoder=lowerCamelCase_ ,decoder_start_token_id=lowerCamelCase_ ,forced_eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) class _snake_case ( __snake_case ): '''simple docstring''' @property def A__ ( self: int ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ : str = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase_ : Union[str, Any] = {0: """batch"""} UpperCAmelCase_ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCAmelCase_ : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} UpperCAmelCase_ : int = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ ,direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase_ : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.num_layers for i in range(lowerCamelCase_ ): UpperCAmelCase_ : Any = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase_ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCAmelCase_ : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def A__ ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ : Dict = super().outputs else: UpperCAmelCase_ : Union[str, Any] = super(lowerCamelCase_ ,self ).outputs if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.num_layers for i in range(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase_ : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def A__ ( self: List[Any] ,lowerCamelCase_: PreTrainedTokenizer ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional[TensorType] = None ,) -> Mapping[str, Any]: UpperCAmelCase_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # Generate decoder inputs UpperCAmelCase_ : Union[str, Any] = seq_length if not self.use_past else 1 UpperCAmelCase_ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase_ : Tuple = dict(**lowerCamelCase_ ,**lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ : int = common_inputs["""input_ids"""].shape UpperCAmelCase_ : Union[str, Any] = common_inputs["""decoder_input_ids"""].shape[1] UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.num_attention_heads UpperCAmelCase_ : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ : List[str] = decoder_seq_length + 3 UpperCAmelCase_ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase_ : Union[str, Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCamelCase_ ,lowerCamelCase_ )] ,dim=1 ) UpperCAmelCase_ : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.num_layers UpperCAmelCase_ : Dict = min(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = max(lowerCamelCase_ ,lowerCamelCase_ ) - min_num_layers UpperCAmelCase_ : str = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. UpperCAmelCase_ : Any = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCamelCase_ ,lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def A__ ( self: Optional[int] ,lowerCamelCase_: PreTrainedTokenizer ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional[TensorType] = None ,) -> Mapping[str, Any]: UpperCAmelCase_ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCAmelCase_ : Union[str, Any] = seqlen + 2 UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.num_layers UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.num_attention_heads UpperCAmelCase_ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ : Optional[Any] = common_inputs["""attention_mask"""].dtype UpperCAmelCase_ : Union[str, Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCamelCase_ ,lowerCamelCase_ ,dtype=lowerCamelCase_ )] ,dim=1 ) UpperCAmelCase_ : Optional[int] = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def A__ ( self: str ,lowerCamelCase_: PreTrainedTokenizer ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional[TensorType] = None ,) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : Union[str, Any] = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Dict = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase_ : List[str] = dict(tokenizer(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ) ) return common_inputs def A__ ( self: Optional[Any] ,lowerCamelCase_: PreTrainedTokenizer ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional[TensorType] = None ,) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_ ,batch_size=lowerCamelCase_ ,seq_length=lowerCamelCase_ ,is_pair=lowerCamelCase_ ,framework=lowerCamelCase_ ) elif self.task == "causal-lm": UpperCAmelCase_ : Optional[int] = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_ ,batch_size=lowerCamelCase_ ,seq_length=lowerCamelCase_ ,is_pair=lowerCamelCase_ ,framework=lowerCamelCase_ ) else: UpperCAmelCase_ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ ,batch_size=lowerCamelCase_ ,seq_length=lowerCamelCase_ ,is_pair=lowerCamelCase_ ,framework=lowerCamelCase_ ) return common_inputs def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ) -> Dict: if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ : List[str] = super()._flatten_past_key_values_(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) else: UpperCAmelCase_ : Optional[Any] = super(lowerCamelCase_ ,self )._flatten_past_key_values_( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
345
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCAmelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCAmelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu' def snake_case( __magic_name__ , __magic_name__=1_00 , __magic_name__=" " ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] = text.split(__magic_name__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__magic_name__ ) , __magic_name__ )] def snake_case( __magic_name__ ) -> dict: '''simple docstring''' lowercase , lowercase : str = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__magic_name__ ): titles.append(title if title is not None else '''''' ) texts.append(__magic_name__ ) return {"title": titles, "text": texts} def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> dict: '''simple docstring''' lowercase : Tuple = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__magic_name__ , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] lowercase : List[Any] = ctx_encoder(input_ids.to(device=__magic_name__ ) , return_dict=__magic_name__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , ) -> Optional[int]: '''simple docstring''' logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase : Optional[int] = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase : Union[str, Any] = dataset.map(__magic_name__ , batched=__magic_name__ , num_proc=processing_args.num_proc ) # And compute the embeddings lowercase : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__magic_name__ ) lowercase : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowercase : int = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space lowercase : Union[str, Any] = dataset.map( partial(__magic_name__ , ctx_encoder=__magic_name__ , ctx_tokenizer=__magic_name__ ) , batched=__magic_name__ , batch_size=processing_args.batch_size , features=__magic_name__ , ) # And finally save your dataset lowercase : List[str] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__magic_name__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase : int = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__magic_name__ ) # And save the index lowercase : List[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__magic_name__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _A : _UpperCamelCase : str = field( default=str(Path(_lowerCamelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) _UpperCamelCase : Optional[str] = field( default=_lowerCamelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) _UpperCamelCase : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) _UpperCamelCase : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) _UpperCamelCase : Optional[str] = field( default=str(Path(_lowerCamelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class _A : _UpperCamelCase : Optional[int] = field( default=_lowerCamelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) _UpperCamelCase : int = field( default=1_6 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class _A : _UpperCamelCase : int = field( default=7_6_8 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) _UpperCamelCase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCAmelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
116
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCAmelCase_ = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } lowerCAmelCase_ = '▁' class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , _A : Optional[int] , _A : List[str]="<s>" , _A : Tuple="</s>" , _A : Dict="</s>" , _A : Dict="<s>" , _A : List[str]="<unk>" , _A : str="<pad>" , _A : Any="<mask>" , _A : Optional[Dict[str, Any]] = None , **_A : Union[str, Any] , ) -> None: """simple docstring""" lowercase : List[str] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token lowercase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) lowercase : Any = vocab_file lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) lowercase : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase : Tuple = len(self.sp_model ) - 1 lowercase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __a ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Any = [self.cls_token_id] lowercase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __a ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : List[str] = [self.sep_token_id] lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : Union[str, Any] , _A : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def __a ( self : Optional[int] , _A : str ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : Optional[int] = self.sp_model.PieceToId(_A ) return spm_id if spm_id else self.unk_token_id def __a ( self : Any , _A : List[str] ) -> List[str]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_A ) def __a ( self : Any , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Dict = [] lowercase : Any = '''''' lowercase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token lowercase : int = True lowercase : Optional[Any] = [] else: current_sub_tokens.append(_A ) lowercase : List[str] = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __getstate__( self : int ) -> Optional[Any]: """simple docstring""" lowercase : str = self.__dict__.copy() lowercase : Any = None return state def __setstate__( self : Optional[int] , _A : Tuple ) -> str: """simple docstring""" lowercase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : Union[str, Any] = {} lowercase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Any = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: lowercase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
116
1
import sys from collections import defaultdict class lowercase_ : """simple docstring""" def __init__( self ) ->List[str]: lowerCAmelCase = [] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->str: lowerCAmelCase = pos def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase = 2 * start + 1 else: lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase = heap[smallest_child], positions[smallest_child] lowerCAmelCase = ( heap[start], positions[start], ) lowerCAmelCase = temp, tempa lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __SCREAMING_SNAKE_CASE ) self.top_to_bottom(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Dict: lowerCAmelCase = position[index] while index != 0: lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase = heap[parent] lowerCAmelCase = position[parent] self.set_position(position[parent] , __SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = val lowerCAmelCase = temp self.set_position(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) break lowerCAmelCase = parent else: lowerCAmelCase = val lowerCAmelCase = temp self.set_position(__SCREAMING_SNAKE_CASE , 0 ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->List[str]: lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) // 2 - 1 for i in range(__SCREAMING_SNAKE_CASE , -1 , -1 ): self.top_to_bottom(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]: lowerCAmelCase = positions[0] lowerCAmelCase = sys.maxsize self.top_to_bottom(__SCREAMING_SNAKE_CASE , 0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) return temp def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]: lowerCAmelCase = Heap() lowerCAmelCase = [0] * len(_UpperCAmelCase ) lowerCAmelCase = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase = [] for vertex in range(len(_UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCAmelCase ) heap.node_position.append(_UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = 1 lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase = 0 lowerCAmelCase = distance heap.heapify(_UpperCAmelCase , _UpperCAmelCase ) for _ in range(1 , len(_UpperCAmelCase ) ): lowerCAmelCase = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCAmelCase )] ): lowerCAmelCase = distance heap.bottom_to_top( _UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase__ : List[str] = int(input('''Enter number of edges: ''').strip()) lowercase__ : List[Any] = defaultdict(list) for _ in range(edges_number): lowercase__ : Union[str, Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
338
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A__ : def __init__( self :Tuple , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[int]=1_3 , SCREAMING_SNAKE_CASE :Optional[int]=7 , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Optional[int]=False , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :List[str]=3_3 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Tuple=5 , SCREAMING_SNAKE_CASE :int=4 , SCREAMING_SNAKE_CASE :Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE :List[str]="gelu" , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :Tuple=0.1 , SCREAMING_SNAKE_CASE :str=5_1_2 , SCREAMING_SNAKE_CASE :Dict=1_6 , SCREAMING_SNAKE_CASE :Dict=2 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :str=3 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :List[str]=None , ) -> Union[str, Any]: '''simple docstring''' _a : Union[str, Any] =parent _a : List[Any] =batch_size _a : Optional[int] =seq_length _a : Union[str, Any] =is_training _a : List[Any] =use_input_mask _a : Optional[int] =use_token_type_ids _a : int =use_labels _a : List[str] =vocab_size _a : List[Any] =hidden_size _a : int =num_hidden_layers _a : Tuple =num_attention_heads _a : Any =intermediate_size _a : str =hidden_act _a : Union[str, Any] =hidden_dropout_prob _a : Union[str, Any] =attention_probs_dropout_prob _a : str =max_position_embeddings _a : Dict =type_vocab_size _a : Tuple =type_sequence_label_size _a : Dict =initializer_range _a : List[str] =num_labels _a : Tuple =num_choices _a : int =scope def __UpperCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' _a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : List[Any] =None if self.use_input_mask: _a : Any =random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[int] =None _a : str =None _a : Dict =None if self.use_labels: _a : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[str] =ids_tensor([self.batch_size] , self.num_choices ) _a : List[Any] =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :int ) -> Tuple: '''simple docstring''' _a : Any =EsmModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Optional[Any] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =model(SCREAMING_SNAKE_CASE ) _a : str =model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict: '''simple docstring''' _a : str =EsmForMaskedLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Union[str, Any] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _a : int =self.num_labels _a : Tuple =EsmForTokenClassification(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Tuple =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' _a : Optional[Any] =self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Any =config_and_inputs _a : List[Any] ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Any = False __UpperCamelCase : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase : str = () __UpperCamelCase : List[str] = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : Union[str, Any] = True def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' _a : Dict =EsmModelTester(self ) _a : Optional[Any] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCAmelCase ( self :Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' _a : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' _a : List[str] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Dict =type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' _a : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' _a : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :str ) -> Dict: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] =EsmModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' _a : Optional[Any] =self.model_tester.prepare_config_and_inputs()[0] _a : Dict =EsmEmbeddings(config=SCREAMING_SNAKE_CASE ) _a : Tuple =torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] ) _a : Optional[Any] =torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _a : Any =create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' _a : List[Any] =self.model_tester.prepare_config_and_inputs()[0] _a : Optional[int] =EsmEmbeddings(config=SCREAMING_SNAKE_CASE ) _a : Tuple =torch.empty(2 , 4 , 3_0 ) _a : str =[ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _a : int =torch.as_tensor([expected_single_positions, expected_single_positions] ) _a : Any =embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def __UpperCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def __UpperCAmelCase ( self :str ) -> Any: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCAmelCase ( self :Dict ) -> Any: '''simple docstring''' pass @require_torch class A__ ( UpperCAmelCase__ ): @slow def __UpperCAmelCase ( self :List[Any] ) -> str: '''simple docstring''' with torch.no_grad(): _a : Optional[int] =EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _a : Any =torch.tensor([[0, 1, 2, 3, 4, 5]] ) _a : Tuple =model(SCREAMING_SNAKE_CASE )[0] _a : int =3_3 _a : Tuple =torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' with torch.no_grad(): _a : Any =EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _a : Any =torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _a : int =model(SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. _a : str =torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
276
0
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( snake_case :Optional[Any] ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = tokenizer(example['content'] , truncation=snake_case )['input_ids'] __UpperCamelCase = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase : Tuple = HfArgumentParser(PretokenizationArguments) UpperCamelCase : Union[str, Any] = parser.parse_args() if args.num_workers is None: UpperCamelCase : Optional[Any] = multiprocessing.cpu_count() UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase : Optional[int] = time.time() UpperCamelCase : Optional[int] = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase : List[Any] = time.time() UpperCamelCase : Tuple = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase : Tuple = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
361
"""simple docstring""" UpperCamelCase : Union[str, Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def A ( snake_case :Dict , snake_case :Tuple , snake_case :str , snake_case :Optional[int] ) -> Union[str, Any]: # Return True if there is node that has not iterated. __UpperCamelCase = [False] * len(snake_case ) __UpperCamelCase = [s] __UpperCamelCase = True while queue: __UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) __UpperCamelCase = True __UpperCamelCase = u return visited[t] def A ( snake_case :int , snake_case :Any , snake_case :Union[str, Any] ) -> Optional[int]: __UpperCamelCase = [-1] * (len(snake_case )) __UpperCamelCase = 0 __UpperCamelCase = [] __UpperCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case , snake_case , snake_case , snake_case ): __UpperCamelCase = float('Inf' ) __UpperCamelCase = sink while s != source: # Find the minimum value in select path __UpperCamelCase = min(snake_case , graph[parent[s]][s] ) __UpperCamelCase = parent[s] max_flow += path_flow __UpperCamelCase = sink while v != source: __UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase = parent[v] for i in range(len(snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
263
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "gptsan-japanese" snake_case__ = [ "past_key_values", ] snake_case__ = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Tuple ,lowerCamelCase__ : List[Any]=36_000 ,lowerCamelCase__ : Optional[int]=1_280 ,lowerCamelCase__ : int=1_024 ,lowerCamelCase__ : List[str]=8_192 ,lowerCamelCase__ : List[str]=4_096 ,lowerCamelCase__ : Tuple=128 ,lowerCamelCase__ : List[str]=10 ,lowerCamelCase__ : int=0 ,lowerCamelCase__ : Optional[int]=16 ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : int=128 ,lowerCamelCase__ : int=0.0 ,lowerCamelCase__ : List[str]=1e-5 ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : Optional[int]=0.0 ,lowerCamelCase__ : int="float32" ,lowerCamelCase__ : int=False ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : Any=False ,lowerCamelCase__ : List[Any]=0.0_0_2 ,lowerCamelCase__ : str=False ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Dict=35_998 ,lowerCamelCase__ : Optional[Any]=35_995 ,lowerCamelCase__ : Any=35_999 ,**lowerCamelCase__ : Optional[int] ,): UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = d_model UpperCAmelCase__ = d_ff UpperCAmelCase__ = d_ext UpperCAmelCase__ = d_spout UpperCAmelCase__ = num_switch_layers UpperCAmelCase__ = num_ext_layers UpperCAmelCase__ = num_switch_layers + num_ext_layers UpperCAmelCase__ = num_heads UpperCAmelCase__ = num_experts UpperCAmelCase__ = expert_capacity UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = router_bias UpperCAmelCase__ = router_jitter_noise UpperCAmelCase__ = router_dtype UpperCAmelCase__ = router_ignore_padding_tokens UpperCAmelCase__ = output_hidden_states UpperCAmelCase__ = output_attentions UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = output_router_logits UpperCAmelCase__ = use_cache super().__init__( separator_token_id=lowerCamelCase__ ,pad_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,)
98
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' snake_case : int = tempfile.mkdtemp() # fmt: off snake_case : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) snake_case : int = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } snake_case : Optional[Any] = os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , **snake_case__ : str ) -> Optional[int]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , **snake_case__ : List[str] ) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.get_tokenizer() snake_case : Optional[Any] = self.get_image_processor() snake_case : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) snake_case : Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : str = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case : Tuple = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) snake_case : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' snake_case : str = self.get_image_processor() snake_case : Optional[int] = self.get_tokenizer() snake_case : List[Any] = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = self.prepare_image_inputs() snake_case : str = image_processor(snake_case__ , return_tensors="np" ) snake_case : Any = processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = self.get_image_processor() snake_case : int = self.get_tokenizer() snake_case : Any = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Tuple = "lower newer" snake_case : Tuple = processor(text=snake_case__ ) snake_case : Union[str, Any] = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = self.get_image_processor() snake_case : Dict = self.get_tokenizer() snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : int = "lower newer" snake_case : Dict = self.prepare_image_inputs() snake_case : Union[str, Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(snake_case__ ): processor() def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.get_image_processor() snake_case : Optional[Any] = self.get_tokenizer() snake_case : Tuple = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : List[Any] = processor.batch_decode(snake_case__ ) snake_case : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : str = self.get_image_processor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : Any = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = "lower newer" snake_case : List[Any] = self.prepare_image_inputs() snake_case : Tuple = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
59
0
__UpperCAmelCase = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __UpperCAmelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] __UpperCAmelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
145
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Tuple = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 0, 0, 0 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 2 UpperCAmelCase_ : Tuple = ugly_nums[ia] * 3 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 5 for _ in range(1 , __snake_case ): UpperCAmelCase_ : Tuple = min(__snake_case , __snake_case , __snake_case ) ugly_nums.append(__snake_case ) if next_num == next_a: ia += 1 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ : List[str] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'{ugly_numbers(200) = }')
145
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase__ ( lowercase ): lowercase__ = """openai/whisper-base""" lowercase__ = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) lowercase__ = """transcriber""" lowercase__ = WhisperProcessor lowercase__ = WhisperForConditionalGeneration lowercase__ = ["""audio"""] lowercase__ = ["""text"""] def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase__ ,return_tensors='pt' ).input_features def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Tuple ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ )[0]
83
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
import warnings from ..trainer import Trainer from ..utils import logging SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__=None, **lowerCamelCase__ ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""", lowerCamelCase__, ) super().__init__(args=lowerCamelCase__, **lowerCamelCase__ )
116
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" while second != 0: A : int = first & second first ^= second A : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_:int = int(input("""Enter the first number: """).strip()) SCREAMING_SNAKE_CASE_:Optional[int] = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
116
1
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 SCREAMING_SNAKE_CASE : int = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 2048-bit 1_4: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 3072-bit 1_5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 4096-bit 1_6: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 6144-bit 1_7: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 8192-bit 1_8: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, } class __lowerCamelCase : def __init__(self , lowerCamelCase = 14 ): '''simple docstring''' if group not in primes: raise ValueError("""Unsupported Group""" ) _lowerCAmelCase = primes[group]["""prime"""] _lowerCAmelCase = primes[group]["""generator"""] _lowerCAmelCase = int(hexlify(urandom(32 ) ) , base=16 ) def A__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def A__ (self ): '''simple docstring''' _lowerCAmelCase = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCamelCase )[2:] def A__ (self , lowerCamelCase ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = int(lowerCamelCase , base=16 ) if not self.is_valid_public_key(lowerCamelCase ): raise ValueError("""Invalid public key""" ) _lowerCAmelCase = pow(lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() @staticmethod def A__ (lowerCamelCase , lowerCamelCase ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase , (prime - 1) // 2 , lowerCamelCase ) == 1 ) @staticmethod def A__ (lowerCamelCase , lowerCamelCase , lowerCamelCase = 14 ): '''simple docstring''' _lowerCAmelCase = int(lowerCamelCase , base=16 ) _lowerCAmelCase = int(lowerCamelCase , base=16 ) _lowerCAmelCase = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase , lowerCamelCase ): raise ValueError("""Invalid public key""" ) _lowerCAmelCase = pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: __lowercase : List[Any] = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) __lowercase : Any = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int: __lowercase : List[Any] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) __lowercase : Optional[int] = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , '''dataset_info.json''' ) ) def UpperCAmelCase_ ( ) -> Dict: __lowercase : Optional[int] = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) __lowercase : Union[str, Any] = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __lowercase : Any = yaml.safe_dump(UpperCamelCase__ ) __lowercase : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase_ ( ) -> List[Any]: __lowercase : Any = DatasetInfo() __lowercase : Optional[int] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1_337 ), } ), ] , ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: __lowercase : Union[str, Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) __lowercase : Optional[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __lowercase : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __lowercase : str = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , '''README.md''' ) )
156
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowerCAmelCase :Any = False @skip_mps class _UpperCAmelCase ( a ,a ,a ,unittest.TestCase ): '''simple docstring''' a__ =StableDiffusionAttendAndExcitePipeline a__ =False a__ =TEXT_TO_IMAGE_PARAMS a__ =TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) a__ =TEXT_TO_IMAGE_IMAGE_PARAMS a__ =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __lowerCAmelCase ( cls ) -> List[str]: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=A , ) _UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) _UpperCAmelCase : List[str] = CLIPTextModel(A ) _UpperCAmelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , A , A=0 ) -> List[Any]: if str(A ).startswith('''mps''' ): _UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : List[str] = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : List[str] = '''cpu''' _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : int = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : Dict = self.get_dummy_inputs(A ) _UpperCAmelCase : Union[str, Any] = pipe(**A ).images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) _UpperCAmelCase : int = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) _UpperCAmelCase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1E-3 ) def __lowerCAmelCase ( self ) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __lowerCAmelCase ( self ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __lowerCAmelCase ( self ) -> str: super().test_save_load_local(expected_max_difference=5E-4 ) def __lowerCAmelCase ( self ) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: super().setUpClass() torch.use_deterministic_algorithms(A ) @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: super().tearDownClass() torch.use_deterministic_algorithms(A ) def __lowerCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Any = torch.manual_seed(5_1 ) _UpperCAmelCase : Optional[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=A , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _UpperCAmelCase : Optional[int] = '''a painting of an elephant with glasses''' _UpperCAmelCase : int = [5, 7] _UpperCAmelCase : Dict = pipe( prompt=A , token_indices=A , guidance_scale=7.5 , generator=A , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] _UpperCAmelCase : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
263
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _lowercase ( ) -> Dict: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowerCamelCase ="""__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , _A ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _lowercase ( ) -> Optional[int]: assert _test_patching.open is open lowerCamelCase ="""__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , _A ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _lowercase ( ) -> List[str]: lowerCamelCase ="""__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , _A ): pass def _lowercase ( ) -> Optional[int]: lowerCamelCase ="""__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , _A ) is None with patch_submodule(_test_patching , """len""" , _A ): assert _test_patching.len is mock assert _test_patching.len is len def _lowercase ( ) -> Optional[Any]: lowerCamelCase ="""__test_patch_submodule_start_and_stop_mock__""" lowerCamelCase =patch_submodule(_test_patching , """open""" , _A ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _lowercase ( ) -> Dict: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowerCamelCase ="""__test_patch_submodule_successive_join__""" lowerCamelCase ="""__test_patch_submodule_successive_dirname__""" lowerCamelCase ="""__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , _A ): with patch_submodule(_test_patching , """os.rename""" , _A ): with patch_submodule(_test_patching , """os.path.dirname""" , _A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , _A ): with patch_submodule(_test_patching , """os.path.join""" , _A ): with patch_submodule(_test_patching , """os.path.dirname""" , _A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _lowercase ( ) -> Union[str, Any]: lowerCamelCase ="""__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , _A ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , _A ): pass
355
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ : Union[str, Any] =16 UpperCAmelCase__ : Any =32 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase = 16 ) -> int: lowerCamelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase =datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase =16 elif accelerator.mixed_precision != "no": lowerCamelCase =8 else: lowerCamelCase =None return tokenizer.pad( _UpperCAmelCase , padding="""longest""" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase =DataLoader( tokenized_datasets["""train"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase =DataLoader( tokenized_datasets["""validation"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ : Dict =mocked_dataloaders # noqa: F811 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _UpperCAmelCase ) == "1": lowerCamelCase =2 # New Code # lowerCamelCase =int(args.gradient_accumulation_steps ) lowerCamelCase =int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase =config["""lr"""] lowerCamelCase =int(config["""num_epochs"""] ) lowerCamelCase =int(config["""seed"""] ) lowerCamelCase =int(config["""batch_size"""] ) lowerCamelCase =evaluate.load("""glue""" , """mrpc""" ) set_seed(_UpperCAmelCase ) lowerCamelCase , lowerCamelCase =get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase =AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler lowerCamelCase =get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() with LocalSGD( accelerator=_UpperCAmelCase , model=_UpperCAmelCase , local_sgd_steps=_UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): lowerCamelCase =model(**_UpperCAmelCase ) lowerCamelCase =output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase =model(**_UpperCAmelCase ) lowerCamelCase =outputs.logits.argmax(dim=-1 ) lowerCamelCase , lowerCamelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) lowerCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _UpperCAmelCase ) def _lowercase ( ) -> Any: lowerCamelCase =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_UpperCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=_UpperCAmelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCamelCase =parser.parse_args() lowerCamelCase ={"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
262
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
145
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) _UpperCAmelCase : int = VideoClassificationPipeline(model=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , top_k=2 ) _UpperCAmelCase : int = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ) -> int: """simple docstring""" for example in examples: _UpperCAmelCase : List[str] = video_classifier(lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ {"score": ANY(lowerCAmelCase__ ), "label": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "label": ANY(lowerCAmelCase__ )}, ] , ) @require_torch def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" _UpperCAmelCase : Optional[int] = VideoMAEFeatureExtractor( size={"shortest_edge": 1_0} , crop_size={"height": 1_0, "width": 1_0} ) _UpperCAmelCase : List[str] = pipeline( "video-classification" , model=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , frame_sampling_rate=4 ) _UpperCAmelCase : Tuple = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) _UpperCAmelCase : Tuple = video_classifier(lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) _UpperCAmelCase : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass
145
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __magic_name__ ( snake_case__ ): """simple docstring""" __UpperCamelCase = """blenderbot-small""" __UpperCamelCase = ["""past_key_values"""] __UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Tuple , snake_case :Optional[Any]=50_265 , snake_case :Any=512 , snake_case :Optional[int]=8 , snake_case :Union[str, Any]=2_048 , snake_case :Tuple=16 , snake_case :List[str]=8 , snake_case :Union[str, Any]=2_048 , snake_case :List[Any]=16 , snake_case :List[str]=0.0 , snake_case :Any=0.0 , snake_case :Tuple=True , snake_case :List[str]=True , snake_case :str="gelu" , snake_case :Any=512 , snake_case :str=0.1 , snake_case :Optional[Any]=0.0 , snake_case :Optional[Any]=0.0 , snake_case :Dict=0.02 , snake_case :Optional[int]=1 , snake_case :List[str]=False , snake_case :Optional[Any]=0 , snake_case :Optional[int]=1 , snake_case :Optional[Any]=2 , snake_case :str=2 , **snake_case :List[Any] , ): '''simple docstring''' A_ : Tuple = vocab_size A_ : Optional[int] = max_position_embeddings A_ : Optional[Any] = d_model A_ : List[str] = encoder_ffn_dim A_ : Tuple = encoder_layers A_ : List[Any] = encoder_attention_heads A_ : Optional[int] = decoder_ffn_dim A_ : Optional[Any] = decoder_layers A_ : Dict = decoder_attention_heads A_ : Optional[int] = dropout A_ : str = attention_dropout A_ : List[Any] = activation_dropout A_ : Optional[Any] = activation_function A_ : Optional[int] = init_std A_ : int = encoder_layerdrop A_ : str = decoder_layerdrop A_ : int = use_cache A_ : str = encoder_layers A_ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) class __magic_name__ ( snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: A_ : int = {0: "batch"} A_ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: A_ : List[Any] = {0: "batch", 1: "decoder_sequence"} A_ : Dict = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_A , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: A_ , A_ : List[Any] = self.num_layers for i in range(_A ): A_ : List[str] = {0: "batch", 2: "past_sequence + sequence"} A_ : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} else: A_ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A_ : List[str] = super().outputs else: A_ : Dict = super(_A , self ).outputs if self.use_past: A_ , A_ : Union[str, Any] = self.num_layers for i in range(_A ): A_ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} A_ : List[str] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :List[str] , snake_case :Any = -1 , snake_case :int = -1 , snake_case :Dict = False , snake_case :List[Any] = None , ): '''simple docstring''' A_ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) # Generate decoder inputs A_ : Optional[int] = seq_length if not self.use_past else 1 A_ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) A_ : str = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} A_ : List[str] = dict(**_A , **_A ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A_ , A_ : List[Any] = common_inputs["input_ids"].shape A_ : List[Any] = common_inputs["decoder_input_ids"].shape[1] A_ , A_ : List[Any] = self.num_attention_heads A_ : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Dict = decoder_seq_length + 3 A_ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : str = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_A , _A )] , dim=1 ) A_ : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_ , A_ : Optional[Any] = self.num_layers A_ : List[str] = min(_A , _A ) A_ : Any = max(_A , _A ) - min_num_layers A_ : List[str] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. A_ : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_A , _A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :List[str] = -1 , snake_case :List[str] = -1 , snake_case :Any = False , snake_case :Dict = None , ): '''simple docstring''' A_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A_ , A_ : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values A_ : Dict = seqlen + 2 A_ , A_ : Union[str, Any] = self.num_layers A_ , A_ : str = self.num_attention_heads A_ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Union[str, Any] = common_inputs["attention_mask"].dtype A_ : int = torch.cat( [common_inputs["attention_mask"], torch.ones(_A , _A , dtype=_A )] , dim=1 ) A_ : Optional[int] = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Optional[int] , snake_case :Optional[int] = -1 , snake_case :Dict = -1 , snake_case :str = False , snake_case :List[str] = None , ): '''simple docstring''' A_ : Dict = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : List[Any] = tokenizer.num_special_tokens_to_add(_A ) A_ : Tuple = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence A_ : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : List[str] = dict(tokenizer(_A , return_tensors=_A ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[Any] , snake_case :str = -1 , snake_case :Dict = -1 , snake_case :str = False , snake_case :Optional[Any] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) elif self.task == "causal-lm": A_ : Dict = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) else: A_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) return common_inputs def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Optional[Any] , snake_case :str , snake_case :Optional[int] , snake_case :Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A_ : List[Any] = super()._flatten_past_key_values_(_A , _A , _A , _A ) else: A_ : Dict = super(_A , self )._flatten_past_key_values_( _A , _A , _A , _A )
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _lowerCAmelCase : int = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
0
def __snake_case ( _UpperCAmelCase ): __a = len(_UpperCAmelCase ) for i in range(length - 1 ): __a = i for k in range(i + 1 , _UpperCAmelCase ): if collection[k] < collection[least]: __a = k if least != i: __a , __a = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case :int = input('''Enter numbers separated by a comma:\n''').strip() __snake_case :Optional[int] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
49
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : str = KandinskyVaaPipeline snake_case_ : str = [ """image_embeds""", """negative_image_embeds""", ] snake_case_ : List[Any] = ["""image_embeds""", """negative_image_embeds"""] snake_case_ : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ : Any = False @property def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]: """simple docstring""" return 32 @property def UpperCamelCase_ ( self : Tuple) -> Union[str, Any]: """simple docstring""" return 32 @property def UpperCamelCase_ ( self : Dict) -> Dict: """simple docstring""" return self.time_input_dim @property def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Tuple) -> int: """simple docstring""" return 100 @property def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" torch.manual_seed(0) _snake_case : Any = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _snake_case : Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase) return model @property def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self : Tuple) -> str: """simple docstring""" torch.manual_seed(0) _snake_case : int = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : Optional[int] = self.dummy_unet _snake_case : Union[str, Any] = self.dummy_movq _snake_case : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCAmelCase , ) _snake_case : Dict = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=0) -> Optional[Any]: """simple docstring""" _snake_case : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase)).to(lowerCAmelCase) _snake_case : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase) if str(lowerCAmelCase).startswith("""mps"""): _snake_case : Tuple = torch.manual_seed(lowerCAmelCase) else: _snake_case : int = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : Optional[int] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]: """simple docstring""" _snake_case : Tuple = """cpu""" _snake_case : List[str] = self.get_dummy_components() _snake_case : Any = self.pipeline_class(**lowerCAmelCase) _snake_case : List[str] = pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase)) _snake_case : Any = output.images _snake_case : List[str] = pipe( **self.get_dummy_inputs(lowerCAmelCase) , return_dict=lowerCAmelCase , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : int = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any]) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Any) -> str: """simple docstring""" _snake_case : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""") _snake_case : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase) _snake_case : Any = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) _snake_case : Optional[int] = pipeline.to(lowerCAmelCase) pipeline.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Optional[Any] = """red cat, 4k photo""" _snake_case : int = torch.Generator(device="""cuda""").manual_seed(0) _snake_case , _snake_case : Dict = pipe_prior( lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _snake_case : str = torch.Generator(device="""cuda""").manual_seed(0) _snake_case : Dict = pipeline( image_embeds=lowerCAmelCase , negative_image_embeds=lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=100 , output_type="""np""" , ) _snake_case : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase)
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.0 , lowercase=0.1 , lowercase=True , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : Any = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Optional[Any] = use_input_mask _lowerCamelCase : Any = use_token_type_ids _lowerCamelCase : int = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Dict = intermediate_multiple_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : int = weight_tying _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[str] = num_labels _lowerCamelCase : str = num_choices _lowerCamelCase : List[str] = scope def A_ ( self ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Any = None if self.use_input_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Any = self.get_config() return config, input_ids, input_mask, token_labels def A_ ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase : str = True return config, input_ids, input_mask, token_labels def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = GPTNeoXJapaneseModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[int] = model(lowercase , attention_mask=lowercase ) _lowerCamelCase : Tuple = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = True _lowerCamelCase : str = GPTNeoXJapaneseModel(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Dict = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : str = GPTNeoXJapaneseForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : List[Any] = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Optional[Any] = GPTNeoXJapaneseForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() # first forward pass _lowerCamelCase : List[Any] = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCamelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCamelCase : Tuple = model(lowercase , attention_mask=lowercase , output_hidden_states=lowercase ) _lowerCamelCase : Any = output_from_no_past['hidden_states'][0] _lowerCamelCase : Optional[Any] = model( lowercase , attention_mask=lowercase , past_key_values=lowercase , output_hidden_states=lowercase , )['hidden_states'][0] # select random slice _lowerCamelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def A_ ( self ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Tuple = GPTNeoXJapaneseModelTester(self ) _lowerCamelCase : Optional[int] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase , lowercase , lowercase ) def A_ ( self ): # This regression test was failing with PyTorch < 1.3 _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCamelCase : int = None self.model_tester.create_and_check_model_as_decoder(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase ) @slow def A_ ( self ): _lowerCamelCase : Union[str, Any] = 'abeja/gpt-neox-japanese-2.7b' _lowerCamelCase : List[str] = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] _lowerCamelCase : Any = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] _lowerCamelCase : List[Any] = GPTNeoXJapaneseTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Any = GPTNeoXJapaneseForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : str = [] for prompt in prompts: _lowerCamelCase : Union[str, Any] = tokenizer(lowercase , return_tensors='pt' ).input_ids _lowerCamelCase : Tuple = model.generate(lowercase , max_length=50 ) _lowerCamelCase : str = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def lowerCamelCase ( self , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(lowerCAmelCase_ ) ) _snake_case = np.random.RandomState(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) _snake_case = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # warmup pass to apply optimizations _snake_case = pipe(**self.get_dummy_inputs() ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _snake_case = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = ort.SessionOptions() _snake_case = False return options def lowerCamelCase ( self ): """simple docstring""" _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _snake_case = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A fantasy landscape, trending on artstation' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase_ , output_type='np' , ) _snake_case = output.images _snake_case = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) _snake_case = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _snake_case = init_image.resize((7_68, 5_12) ) _snake_case = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A fantasy landscape, trending on artstation' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase_ , output_type='np' , ) _snake_case = output.images _snake_case = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) _snake_case = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
42
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCAmelCase ( )-> int: lowerCAmelCase_ : int = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) lowerCAmelCase_ : Dict = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go lowerCAmelCase_ : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run lowerCAmelCase_ : List[Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
262
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None ): """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowercase__ : lowercase__ = OPTConfig lowercase__ = {} lowercase__ = """gelu""" def __init__( self : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any]=13 ,lowerCamelCase__ : Optional[int]=7 ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Dict=99 ,lowerCamelCase__ : Dict=16 ,lowerCamelCase__ : Dict=2 ,lowerCamelCase__ : Any=4 ,lowerCamelCase__ : Any=4 ,lowerCamelCase__ : int="gelu" ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : str=0.1 ,lowerCamelCase__ : List[str]=20 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : Tuple=1 ,lowerCamelCase__ : int=0 ,lowerCamelCase__ : List[Any]=16 ,lowerCamelCase__ : List[Any]=16 ,): '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : Optional[int] = seq_length _UpperCamelCase : List[str] = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : List[str] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : List[Any] = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : Any = eos_token_id _UpperCamelCase : Union[str, Any] = pad_token_id _UpperCamelCase : Union[str, Any] = bos_token_id _UpperCamelCase : Tuple = embed_dim _UpperCamelCase : List[Any] = word_embed_proj_dim _UpperCamelCase : Optional[Any] = False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) _UpperCamelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) _UpperCamelCase : List[Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) _UpperCamelCase : str = self.config_cls( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,embed_dim=self.embed_dim ,word_embed_proj_dim=self.word_embed_proj_dim ,is_encoder_decoder=lowerCamelCase__ ,**self.config_updates ,) _UpperCamelCase : Optional[int] = prepare_opt_inputs_dict(lowerCamelCase__ ,lowerCamelCase__ ) return config, inputs_dict def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Any = TFOPTModel(config=lowerCamelCase__ ) _UpperCamelCase : List[str] = inputs_dict['input_ids'] _UpperCamelCase : Any = input_ids[:1, :] _UpperCamelCase : Optional[Any] = inputs_dict['attention_mask'][:1, :] _UpperCamelCase : Dict = 1 # first forward pass _UpperCamelCase : int = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,use_cache=lowerCamelCase__ ) _UpperCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Optional[int] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _UpperCamelCase : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and _UpperCamelCase : Tuple = tf.concat([input_ids, next_tokens] ,axis=-1 ) _UpperCamelCase : Tuple = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) _UpperCamelCase : List[Any] = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ )[0] _UpperCamelCase : Dict = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,past_key_values=lowerCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice _UpperCamelCase : Optional[int] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) _UpperCamelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase__ ,lowerCamelCase__ ,rtol=1E-3 ) @require_tf class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 10 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : Dict = TFOPTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self ,config_class=lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : int ): if hasattr(lowerCamelCase__ ,'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCamelCase__ ,'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _UpperCamelCase : Dict = model_class(config=lowerCamelCase__ ) _UpperCamelCase : Dict = _get_word_embedding_weight(lowerCamelCase__ ,model.get_input_embeddings() ) _UpperCamelCase : List[Any] = _get_word_embedding_weight(lowerCamelCase__ ,model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = _get_word_embedding_weight(lowerCamelCase__ ,model.get_input_embeddings() ) _UpperCamelCase : Dict = _get_word_embedding_weight(lowerCamelCase__ ,model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _UpperCamelCase : List[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] ,lowerCamelCase__ ) # check that weights remain the same after resizing _UpperCamelCase : Union[str, Any] = True for pa, pa in zip(old_input_embeddings.value() ,new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCamelCase : Dict = False self.assertTrue(lowerCamelCase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] ,lowerCamelCase__ ) _UpperCamelCase : Any = True for pa, pa in zip(old_output_embeddings.value() ,new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCamelCase : Optional[int] = False self.assertTrue(lowerCamelCase__ ) def A__ ( UpperCAmelCase_ ): """simple docstring""" return tf.constant(UpperCAmelCase_ , dtype=tf.intaa ) @require_tf class lowercase__ ( unittest.TestCase ): lowercase__ = 99 def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[int] = tf.ones((4, 1) ,dtype=tf.intaa ) * 2 _UpperCamelCase : List[Any] = tf.concat([ids_tensor((4, 6) ,self.vocab_size - 3 ) + 3, eos_column_vector] ,axis=1 ) _UpperCamelCase : Optional[int] = input_ids.shape[0] _UpperCamelCase : str = OPTConfig( vocab_size=self.vocab_size ,hidden_size=24 ,num_hidden_layers=2 ,num_attention_heads=2 ,ffn_dim=32 ,max_position_embeddings=48 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : int = TFOPTModel.from_pretrained('facebook/opt-350m' ) _UpperCamelCase : Union[str, Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _UpperCamelCase : Tuple = tf.not_equal(lowerCamelCase__ ,model.config.pad_token_id ) with tf.GradientTape(): _UpperCamelCase : str = model(input_ids=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ).last_hidden_state _UpperCamelCase : Any = (1, 11, 512) self.assertEqual(output.shape ,lowerCamelCase__ ) _UpperCamelCase : List[str] = tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] ,lowerCamelCase__ ,atol=4E-3 ) ) _UpperCamelCase : List[Any] = tf.function(lowerCamelCase__ ,jit_compile=lowerCamelCase__ ) _UpperCamelCase : Optional[int] = xla_generate(lowerCamelCase__ ,lowerCamelCase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] ,lowerCamelCase__ ,atol=4E-2 ) ) @require_tf @slow class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() _UpperCamelCase : Optional[int] = 'facebook/opt-350m' def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) _UpperCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(self.path_model ) _UpperCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _UpperCamelCase : Dict = tokenizer(lowerCamelCase__ ,return_tensors='tf' ,padding=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) _UpperCamelCase : List[str] = tf.math.reduce_mean(model(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) _UpperCamelCase : List[Any] = tf.constant( [ [1.3_8_5_1, -13.8923, -10.5229, -10.7533, -0.2_3_0_9, -10.2384, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -10.6276, -3.9_4_1_5, -21.5242, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -14.1650, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -10.7926, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-4 ) ) _UpperCamelCase : int = tf.function(lowerCamelCase__ ,jit_compile=lowerCamelCase__ ) _UpperCamelCase : Any = tf.math.reduce_mean(xla_generate(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1E-4 ) ) @require_tf @slow class lowercase__ ( unittest.TestCase ): @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Optional[int] = 'facebook/opt-125m' _UpperCamelCase : int = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _UpperCamelCase : List[Any] = [] _UpperCamelCase : str = GPTaTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : List[str] = TFOPTForCausalLM.from_pretrained(lowerCamelCase__ ) for prompt in self.prompts: _UpperCamelCase : List[Any] = tokenizer(lowerCamelCase__ ,return_tensors='tf' ).input_ids _UpperCamelCase : Any = model.generate(lowerCamelCase__ ,max_length=10 ) _UpperCamelCase : Dict = tokenizer.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Dict = 'facebook/opt-350m' _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : List[Any] = TFOPTForCausalLM.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Dict = 'left' # use different length sentences to test batching _UpperCamelCase : List[Any] = [ 'Hello, my dog is a little', 'Today, I', ] _UpperCamelCase : List[str] = tokenizer(lowerCamelCase__ ,return_tensors='tf' ,padding=lowerCamelCase__ ) _UpperCamelCase : Optional[int] = inputs['input_ids'] _UpperCamelCase : List[Any] = model.generate(input_ids=lowerCamelCase__ ,attention_mask=inputs['attention_mask'] ) _UpperCamelCase : Dict = tokenizer(sentences[0] ,return_tensors='tf' ).input_ids _UpperCamelCase : Union[str, Any] = model.generate(input_ids=lowerCamelCase__ ) _UpperCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] ,tf.intaa ) ) _UpperCamelCase : Union[str, Any] = tokenizer(sentences[1] ,return_tensors='tf' ).input_ids _UpperCamelCase : Any = model.generate(input_ids=lowerCamelCase__ ,max_length=model.config.max_length - num_paddings ) _UpperCamelCase : Optional[int] = tokenizer.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Dict = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=lowerCamelCase__ ) _UpperCamelCase : List[Any] = tokenizer.decode(output_padded[0] ,skip_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,[non_padded_sentence, padded_sentence] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Dict = 'facebook/opt-350m' _UpperCamelCase : Any = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Any = TFOPTForCausalLM.from_pretrained(lowerCamelCase__ ) for prompt in self.prompts: _UpperCamelCase : Union[str, Any] = tokenizer(lowerCamelCase__ ,return_tensors='tf' ).input_ids _UpperCamelCase : str = model.generate(lowerCamelCase__ ,max_length=10 ) _UpperCamelCase : Tuple = tokenizer.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
353
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = DanceDiffusionPipeline lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase__ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : str = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=16000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=lowerCamelCase__ ,use_timestep_embedding=lowerCamelCase__ ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _UpperCamelCase : int = IPNDMScheduler() _UpperCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): _UpperCamelCase : Union[str, Any] = torch.manual_seed(lowerCamelCase__ ) else: _UpperCamelCase : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCamelCase : str = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : List[str] = self.get_dummy_components() _UpperCamelCase : int = DanceDiffusionPipeline(**lowerCamelCase__ ) _UpperCamelCase : List[str] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCamelCase : List[Any] = pipe(**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = output.audios _UpperCamelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCamelCase : Dict = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = torch_device _UpperCamelCase : Dict = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _UpperCamelCase : str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Optional[int] = output.audios _UpperCamelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Tuple = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = torch_device _UpperCamelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _UpperCamelCase : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Any = output.audios _UpperCamelCase : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Any = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
236
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __magic_name__ = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __magic_name__ = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __magic_name__ = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def snake_case_ ( self): if version.parse(scb.__version__) < version.parse("""1.4.12"""): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""), }) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = CHRF.CHAR_ORDER , lowerCAmelCase__ = CHRF.WORD_ORDER , lowerCAmelCase__ = CHRF.BETA , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ): __SCREAMING_SNAKE_CASE = len(references[0]) if any(len(lowerCAmelCase__) != references_per_prediction for refs in references): raise ValueError("""Sacrebleu requires the same number of references for each prediction""") __SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(lowerCAmelCase__)] __SCREAMING_SNAKE_CASE = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
100
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[Any] ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys A__ : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
0
class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = val __lowerCAmelCase = None __lowerCAmelCase = None def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> str: if self.val: if val < self.val: if self.left is None: __lowerCAmelCase = Node(lowerCAmelCase_ ) else: self.left.insert(lowerCAmelCase_ ) elif val > self.val: if self.right is None: __lowerCAmelCase = Node(lowerCAmelCase_ ) else: self.right.insert(lowerCAmelCase_ ) else: __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # Recursive traversal if root: inorder(root.left, _lowerCAmelCase ) res.append(root.val ) inorder(root.right, _lowerCAmelCase ) def a_ ( lowerCAmelCase_ : Any ): # Build BST if len(_lowerCAmelCase ) == 0: return arr __lowerCAmelCase = Node(arr[0] ) for i in range(1, len(_lowerCAmelCase ) ): root.insert(arr[i] ) # Traverse BST in order. __lowerCAmelCase = [] inorder(_lowerCAmelCase, _lowerCAmelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case : Optional[Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
0