code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["MobileViTFeatureExtractor"] UpperCAmelCase__ = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
def __lowercase ( _SCREAMING_SNAKE_CASE = 10 ) -> str: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or n < 0: raise ValueError("""Invalid input""" ) SCREAMING_SNAKE_CASE = 10**n SCREAMING_SNAKE_CASE = 2_84_33 * (pow(2 , 7_83_04_57 , _SCREAMING_SNAKE_CASE )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(1_0) = }''')
296
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("RGB" ) return image def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = dct.pop(lowercase ) SCREAMING_SNAKE_CASE : List[str] = val def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) SCREAMING_SNAKE_CASE : List[Any] = qkv_bias def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 364 if "coco" in model_name else 224 SCREAMING_SNAKE_CASE : str = InstructBlipVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: SCREAMING_SNAKE_CASE : Tuple = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 SCREAMING_SNAKE_CASE : List[str] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() SCREAMING_SNAKE_CASE : Any = InstructBlipConfig(vision_config=lowercase , text_config=lowercase , qformer_config=lowercase ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase=None , lowercase=False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: SCREAMING_SNAKE_CASE : Any = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) SCREAMING_SNAKE_CASE : List[Any] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_blipa_config(lowercase ) SCREAMING_SNAKE_CASE : List[str] = InstructBlipForConditionalGeneration(lowercase ).eval() SCREAMING_SNAKE_CASE : int = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = model_name_to_original[model_name] # load original model print("Loading original model..." ) SCREAMING_SNAKE_CASE : Optional[int] = "cuda:1" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE : Any = "cuda:2" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print("Done!" ) # update state dict keys SCREAMING_SNAKE_CASE : Optional[int] = original_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowercase ) if key.startswith("Qformer.bert" ): SCREAMING_SNAKE_CASE : str = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: SCREAMING_SNAKE_CASE : Any = key.replace("self" , "attention" ) if "llm_proj" in key: SCREAMING_SNAKE_CASE : Optional[Any] = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: SCREAMING_SNAKE_CASE : int = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): SCREAMING_SNAKE_CASE : Optional[Any] = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): SCREAMING_SNAKE_CASE : List[str] = key.replace("t5" , "language" ) SCREAMING_SNAKE_CASE : Dict = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowercase , strict=lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = load_demo_image() SCREAMING_SNAKE_CASE : Any = "What is unusual about this image?" # create processor SCREAMING_SNAKE_CASE : List[str] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=lowercase , image_std=lowercase ) SCREAMING_SNAKE_CASE : List[str] = InstructBlipProcessor( image_processor=lowercase , tokenizer=lowercase , qformer_tokenizer=lowercase , ) SCREAMING_SNAKE_CASE : int = processor(images=lowercase , text=lowercase , return_tensors="pt" ).to(lowercase ) # make sure processor creates exact same pixel values SCREAMING_SNAKE_CASE : Optional[Any] = vis_processors["eval"](lowercase ).unsqueeze(0 ).to(lowercase ) SCREAMING_SNAKE_CASE : int = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "vicuna" in model_name: SCREAMING_SNAKE_CASE : List[Any] = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits SCREAMING_SNAKE_CASE : List[Any] = hf_model(**lowercase ).logits else: SCREAMING_SNAKE_CASE : Tuple = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits SCREAMING_SNAKE_CASE : Any = tokenizer("\n" , return_tensors="pt" ).input_ids.to(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) SCREAMING_SNAKE_CASE : Optional[int] = hf_model(**lowercase , labels=lowercase ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape SCREAMING_SNAKE_CASE : Union[str, Any] = 1E-4 if "vicuna" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , lowercase , atol=lowercase ) print("Looks ok!" ) print("Generating with original model..." ) SCREAMING_SNAKE_CASE : int = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) SCREAMING_SNAKE_CASE : str = hf_model.generate( **lowercase , do_sample=lowercase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? SCREAMING_SNAKE_CASE : Dict = 2 print("Original generation:" , lowercase ) SCREAMING_SNAKE_CASE : Dict = processor.batch_decode(lowercase , skip_special_tokens=lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print("HF generation:" , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() snake_case = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case : Union[str, Any] = logging.getLogger(__name__) _snake_case : Tuple = 'pytorch_model.bin' @dataclasses.dataclass class _UpperCAmelCase : """simple docstring""" a_ = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) a_ = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class _UpperCAmelCase : """simple docstring""" a_ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) a_ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) a_ = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a_ = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """The name of the task to train on."""} , ) a_ = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class _UpperCAmelCase : """simple docstring""" a_ = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) a_ = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) a_ = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) a_ = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) a_ = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) a_ = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) a_ = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) a_ = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) a_ = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) a_ = dataclasses.field( default=1_00 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) a_ = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Random seed for initialization."""} , ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : str, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = datasets.concatenate_datasets([infer_input, infer_output], axis=1 ) if args.do_filter_by_confidence: __lowerCAmelCase = dataset.filter(lambda lowerCAmelCase_ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __lowerCAmelCase = int(eval_result * len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) __lowerCAmelCase = dataset.sort('probability', reverse=lowerCAmelCase_ ) __lowerCAmelCase = dataset.select(range(lowerCAmelCase_ ) ) __lowerCAmelCase = dataset.remove_columns(['label', 'probability'] ) __lowerCAmelCase = dataset.rename_column('prediction', 'label' ) __lowerCAmelCase = dataset.map(lambda lowerCAmelCase_ : {"label": idalabel[example["label"]]} ) __lowerCAmelCase = dataset.shuffle(seed=args.seed ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(lowerCAmelCase_, index=lowerCAmelCase_ ) else: dataset.to_json(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[int], **lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __lowerCAmelCase = STModelArguments(model_name_or_path=lowerCAmelCase_ ) __lowerCAmelCase = STDataArguments(train_file=lowerCAmelCase_, infer_file=lowerCAmelCase_ ) __lowerCAmelCase = STTrainingArguments(output_dir=lowerCAmelCase_ ) __lowerCAmelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCAmelCase_ ).items(): setattr(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) for key, value in kwargs.items(): if hasattr(lowerCAmelCase_, lowerCAmelCase_ ): setattr(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Sanity checks __lowerCAmelCase = {} __lowerCAmelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __lowerCAmelCase = args.train_file __lowerCAmelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __lowerCAmelCase = args.eval_file for key in data_files: __lowerCAmelCase = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: __lowerCAmelCase = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __lowerCAmelCase = F"""{args.output_dir}/self-train_iter-{{}}""".format __lowerCAmelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) accelerator.wait_for_everyone() __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = False # Show the progress bar __lowerCAmelCase = tqdm(range(args.max_selftrain_iterations ), disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0, int(args.max_selftrain_iterations ) ): __lowerCAmelCase = data_dir_format(lowerCAmelCase_ ) assert os.path.exists(lowerCAmelCase_ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'stage-1' ) __lowerCAmelCase = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCAmelCase_, lowerCAmelCase_ ): arguments_dict.update({key: value} ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'best-checkpoint', lowerCAmelCase_ ) if os.path.exists(lowerCAmelCase_ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.', lowerCAmelCase_, lowerCAmelCase_, ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****', lowerCAmelCase_ ) finetune(**lowerCAmelCase_ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase_ ) logger.info('Self-training job completed: iteration: %d, stage: 1.', lowerCAmelCase_ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'best-checkpoint' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'stage-2' ) # Update arguments_dict __lowerCAmelCase = model_path __lowerCAmelCase = data_files['train'] __lowerCAmelCase = current_output_dir __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'best-checkpoint', lowerCAmelCase_ ) if os.path.exists(lowerCAmelCase_ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.', lowerCAmelCase_, lowerCAmelCase_, ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****', lowerCAmelCase_ ) finetune(**lowerCAmelCase_ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase_ ) logger.info('Self-training job completed: iteration: %d, stage: 2.', lowerCAmelCase_ ) __lowerCAmelCase = iteration __lowerCAmelCase = data_dir_format(iteration + 1 ) __lowerCAmelCase = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase_, 'best-checkpoint' ) ) __lowerCAmelCase = config.idalabel __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'eval_results_best-checkpoint.json' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'test_results_best-checkpoint.json' ) assert os.path.exists(lowerCAmelCase_ ) with open(lowerCAmelCase_, 'r' ) as f: __lowerCAmelCase = float(json.load(lowerCAmelCase_ )[args.eval_metric] ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'infer_output_best-checkpoint.csv' ) assert os.path.exists(lowerCAmelCase_ ) # Loading the dataset from local csv or json files. __lowerCAmelCase = load_dataset(args.data_file_extension, data_files={'data': data_files['infer']} )['data'] __lowerCAmelCase = load_dataset('csv', data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) shutil.copy(lowerCAmelCase_, os.path.join(lowerCAmelCase_, F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(lowerCAmelCase_ ): shutil.copy(lowerCAmelCase_, os.path.join(lowerCAmelCase_, F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) accelerator.wait_for_everyone() __lowerCAmelCase = os.path.join(lowerCAmelCase_, F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: __lowerCAmelCase = eval_result if best_iteration is None: __lowerCAmelCase = new_iteration __lowerCAmelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __lowerCAmelCase = new_iteration __lowerCAmelCase = new_eval_result __lowerCAmelCase = 0 else: if new_eval_result == best_eval_result: __lowerCAmelCase = new_iteration __lowerCAmelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __lowerCAmelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d', lowerCAmelCase_ ) logger.info('Best evaluation result: %s = %f', args.eval_metric, lowerCAmelCase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase_, F"""eval_results_iter-{iteration}.json""" ), os.path.join(lowerCAmelCase_, 'eval_results_best-iteration.json' ), ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d', args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f', args.eval_metric, lowerCAmelCase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase_, F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ), os.path.join(lowerCAmelCase_, 'eval_results_best-iteration.json' ), )
284
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Dict, lowerCAmelCase_ : Tuple=1024, lowerCAmelCase_ : Optional[Any]=1024, lowerCAmelCase_ : Tuple=False, **lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = SeqaSeqDataset(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, type_path='train', **lowerCAmelCase_ ) __lowerCAmelCase = tok.pad_token_id def get_lens(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = tqdm( DataLoader(lowerCAmelCase_, batch_size=512, num_workers=8, shuffle=lowerCAmelCase_, collate_fn=ds.collate_fn ), desc=str(ds.len_file ), ) __lowerCAmelCase = [] for batch in dl: __lowerCAmelCase = batch['input_ids'].ne(lowerCAmelCase_ ).sum(1 ).tolist() __lowerCAmelCase = batch['labels'].ne(lowerCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase_, lowerCAmelCase_ ): max_lens.append(max(lowerCAmelCase_, lowerCAmelCase_ ) ) else: max_lens.extend(lowerCAmelCase_ ) return max_lens __lowerCAmelCase = get_lens(lowerCAmelCase_ ) __lowerCAmelCase = SeqaSeqDataset(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, type_path='val', **lowerCAmelCase_ ) __lowerCAmelCase = get_lens(lowerCAmelCase_ ) pickle_save(lowerCAmelCase_, train_ds.len_file ) pickle_save(lowerCAmelCase_, val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
284
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} _lowercase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } _lowercase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } _lowercase = { '''ernie-m-base''': 5_14, '''ernie-m-large''': 5_14, } _lowercase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ["input_ids"] _lowerCamelCase: Any = VOCAB_FILES_NAMES _lowerCamelCase: Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = RESOURCE_FILES_NAMES def __init__( self : List[Any] ,A_ : int ,A_ : Tuple=None ,A_ : List[str]=False ,A_ : Union[str, Any]="utf8" ,A_ : List[Any]="[UNK]" ,A_ : Optional[int]="[SEP]" ,A_ : str="[PAD]" ,A_ : int="[CLS]" ,A_ : str="[MASK]" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : str ,) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A_ ,unk_token=A_ ,sep_token=A_ ,pad_token=A_ ,cls_token=A_ ,mask_token=A_ ,vocab_file=A_ ,encoding=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = do_lower_case A = sentencepiece_model_ckpt A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: A = self.load_vocab(filepath=A_ ) else: A = {self.sp_model.id_to_piece(A_ ): id for id in range(self.sp_model.get_piece_size() )} A = {v: k for k, v in self.vocab.items()} def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[str] ) -> Any: if text is None: return None A = self.tokenize(A_ ) A , A = '', [] for i, ch in enumerate(A_ ): if ch in self.SP_CHAR_MAPPING: A = self.SP_CHAR_MAPPING.get(A_ ) else: A = unicodedata.normalize('NFKC' ,A_ ) if self.is_whitespace(A_ ): continue normalized_text += ch char_mapping.extend([i] * len(A_ ) ) A , A , A = normalized_text, [], 0 if self.do_lower_case: A = text.lower() for token in split_tokens: if token[:1] == "▁": A = token[1:] A = text[offset:].index(A_ ) + offset A = start + len(A_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) A = end return token_mapping @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: return len(self.vocab ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: return dict(self.vocab ,**self.added_tokens_encoder ) def __getstate__( self : Optional[int] ) -> Optional[int]: A = self.__dict__.copy() A = None return state def __setstate__( self : Any ,A_ : Any ) -> Optional[int]: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Union[str, Any] ) -> int: return "".join((self.SP_CHAR_MAPPING.get(A_ ,A_ ) for c in text) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Any=64 ,A_ : int=0.1 ) -> str: if self.sp_model_kwargs.get('enable_sampling' ) is True: A = True if self.sp_model_kwargs.get('alpha' ) is not None: A = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: A = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: A = self.sp_model.EncodeAsPieces(A_ ) else: A = self.sp_model.SampleEncodeAsPieces(A_ ,A_ ,A_ ) A = [] for pi, piece in enumerate(A_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A_ ) and pi != 0: new_pieces.append(A_ ) continue else: continue A = 0 for i, chunk in enumerate(A_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A_ ) or self.is_punct(A_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A_ ) A = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A = i if len(A_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Dict ) -> Tuple: A = ''.join(A_ ).replace(A_ ,' ' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ) -> List[Any]: A = self.convert_ids_to_tokens(A_ ) A = ''.join(A_ ).replace(A_ ,' ' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : str ) -> List[Any]: return self.vocab.get(A_ ,self.vocab.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : int ) -> Optional[Any]: return self.reverse_vocab.get(A_ ,self.unk_token ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : int ,A_ : int=None ) -> List[str]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ,A_ : Dict=None ) -> List[Any]: if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ,A_ : List[str]=None ,A_ : Tuple=False ) -> Union[str, Any]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(A_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A_ ) + 1) + [1] * (len(A_ ) + 3) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Optional[int] ) -> Optional[int]: if "\u4e00" <= char <= "\u9fff": return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : int ) -> Dict: if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[Any] ) -> List[Any]: if char in ",;:.?!~,;:。?!《》【】": return True return False def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ) -> Optional[int]: if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A_ ) == 1: A = unicodedata.category(A_ ) if cat == "Zs": return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Tuple ) -> Any: A = {} with io.open(A_ ,'r' ,encoding='utf-8' ) as f: for index, line in enumerate(A_ ): A = line.rstrip('\n' ) A = int(A_ ) return token_to_idx def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: A = 0 if os.path.isdir(A_ ): A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: A = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(A_ ,'w' ,encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() ,key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) A = token_index writer.write(token + '\n' ) index += 1 A = os.path.join(A_ ,'sentencepiece.bpe.model' ) with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (vocab_file,)
74
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ : int = logging.getLogger(__name__) a_ : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a_ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : _lowercase : Optional[str] = field( default=A__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A__ )} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _snake_case : _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''The input training data file (a text file).'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) _lowercase : bool = field(default=A__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) _lowercase : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _lowercase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) _lowercase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) _lowercase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ): def _dataset(_UpperCAmelCase , _UpperCAmelCase=None): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask') return LineByLineWithRefDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , ) return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size) else: return TextDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCAmelCase) for f in glob(args.train_data_files)]) else: return _dataset(args.train_data_file , args.train_ref_file) def lowerCamelCase__ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.') if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.') # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: SCREAMING_SNAKE_CASE = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.') if model_args.tokenizer_name: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name') if model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch') SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_config(_UpperCAmelCase) model.resize_token_embeddings(len(_UpperCAmelCase)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).') if data_args.block_size <= 0: SCREAMING_SNAKE_CASE = tokenizer.max_len # Our input block size will be the max possible for the model else: SCREAMING_SNAKE_CASE = min(data_args.block_size , tokenizer.max_len) # Get datasets SCREAMING_SNAKE_CASE = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_train else None ) SCREAMING_SNAKE_CASE = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_eval else None ) if config.model_type == "xlnet": SCREAMING_SNAKE_CASE = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: SCREAMING_SNAKE_CASE = DataCollatorForWholeWordMask( tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability) else: SCREAMING_SNAKE_CASE = DataCollatorForLanguageModeling( tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability) # Initialize our Trainer SCREAMING_SNAKE_CASE = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=_UpperCAmelCase) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info('*** Evaluate ***') SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = math.exp(eval_output['eval_loss']) SCREAMING_SNAKE_CASE = {'perplexity': perplexity} SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , 'eval_results_lm.txt') if trainer.is_world_master(): with open(_UpperCAmelCase , 'w') as writer: logger.info('***** Eval results *****') for key in sorted(result.keys()): logger.info(' %s = %s' , _UpperCAmelCase , str(result[key])) writer.write('%s = %s\n' % (key, str(result[key]))) results.update(_UpperCAmelCase) return results def lowerCamelCase__ (_UpperCAmelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
137
0
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = k_size // 2 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _SCREAMING_SNAKE_CASE : List[str] = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE__ ) + square(SCREAMING_SNAKE_CASE__ )) / (2 * square(SCREAMING_SNAKE_CASE__ )) ) return g def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = image.shape[0], image.shape[1] # dst image height and width _SCREAMING_SNAKE_CASE : Optional[int] = height - k_size + 1 _SCREAMING_SNAKE_CASE : Optional[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _SCREAMING_SNAKE_CASE : Any = zeros((dst_height * dst_width, k_size * k_size) ) _SCREAMING_SNAKE_CASE : Any = 0 for i, j in product(range(SCREAMING_SNAKE_CASE__ ) , range(SCREAMING_SNAKE_CASE__ ) ): _SCREAMING_SNAKE_CASE : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) _SCREAMING_SNAKE_CASE : List[Any] = window row += 1 # turn the kernel into shape(k*k, 1) _SCREAMING_SNAKE_CASE : Optional[Any] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = ravel(SCREAMING_SNAKE_CASE__ ) # reshape and get the dst image _SCREAMING_SNAKE_CASE : Optional[Any] = dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).astype(SCREAMING_SNAKE_CASE__ ) return dst if __name__ == "__main__": # read original image UpperCAmelCase_ : str = imread(r'../image_data/lena.jpg') # turn image in gray scale value UpperCAmelCase_ : Tuple = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size UpperCAmelCase_ : Dict = gaussian_filter(gray, 3, sigma=1) UpperCAmelCase_ : Dict = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
200
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = 0 for ch in input_str: _SCREAMING_SNAKE_CASE : Optional[Any] = ord(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pow(2 , SCREAMING_SNAKE_CASE__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
200
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ): """simple docstring""" UpperCamelCase = 'laion/clap-htsat-unfused' UpperCamelCase = tempfile.mkdtemp() def A ( self : Any , **UpperCamelCase__ : List[Any] ): """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase__ ) def A ( self : Any , **UpperCamelCase__ : Optional[Any] ): """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_feature_extractor() UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_feature_extractor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCamelCase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_feature_extractor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) UpperCamelCase = floats_list((3, 1_0_0_0) ) UpperCamelCase = feature_extractor(UpperCamelCase__ , return_tensors='np' ) UpperCamelCase = processor(audios=UpperCamelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_feature_extractor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) UpperCamelCase = 'This is a test string' UpperCamelCase = processor(text=UpperCamelCase__ ) UpperCamelCase = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.get_feature_extractor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(UpperCamelCase__ ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.get_feature_extractor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
249
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Tuple = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["ConvNextFeatureExtractor"] _lowerCamelCase : Optional[Any] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
249
1
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def snake_case_ ( A_ : Union[str, Any], A_ : Dict, A_ : Any, A_ : Optional[int] ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _lowerCamelCase : List[str] = TOKENIZER_CLASSES else: _lowerCamelCase : List[str] = {tokenizer_name: getattr(A_, tokenizer_name + '''Fast''' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _lowerCamelCase : Optional[int] = TOKENIZER_CLASSES[tokenizer_name] _lowerCamelCase : List[str] = True if checkpoint_name is None: _lowerCamelCase : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: _lowerCamelCase : List[str] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _lowerCamelCase : int = tokenizer_class.from_pretrained(A_, force_download=A_ ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = checkpoint.split('''/''' ) _lowerCamelCase : Dict = os.path.join(A_, A_ ) elif add_prefix: _lowerCamelCase : List[Any] = checkpoint _lowerCamelCase : str = dump_path else: _lowerCamelCase : str = None _lowerCamelCase : List[str] = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _lowerCamelCase : int = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _lowerCamelCase : Union[str, Any] = file_path.split(A_ )[-1][0] if next_char == "/": _lowerCamelCase : Any = os.path.join(A_, A_ ) _lowerCamelCase : Union[str, Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _lowerCamelCase : Union[str, Any] = tokenizer.save_pretrained( A_, legacy_format=A_, filename_prefix=A_ ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(A_ ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowerCAmelCase__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
72
'''simple docstring''' import heapq import sys import numpy as np UpperCamelCase = tuple[int, int] class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> str: '''simple docstring''' A: Any = [] A: int = set() def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' return len(self.elements ) == 0 def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE_ ) else: # update # print("update", item) A: Optional[int] = [] ((A) , (A)): str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((A) , (A)): int = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any: '''simple docstring''' if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE_ ) A: str = [] ((A) , (A)): List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((A) , (A)): Any = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.elements[0][1] def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' ((A) , (A)): Dict = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE_ ) return (priority, item) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: # euclidean distance A: List[str] = np.array(__lowercase ) A: Optional[int] = np.array(__lowercase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int: # integer division by time variable return consistent_heuristic(__lowercase , __lowercase ) // t def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase ) return ans def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]: A: Union[str, Any] = np.chararray((n, n) ) for i in range(__lowercase ): for j in range(__lowercase ): A: Union[str, Any] = '''*''' for i in range(__lowercase ): for j in range(__lowercase ): if (j, (n - 1) - i) in blocks: A: Optional[Any] = '''#''' A: Tuple = '''-''' A: List[str] = back_pointer[goal] while x != start: ((A) , (A)): Tuple = x # print(x) A: List[str] = '''-''' A: str = back_pointer[x] A: Dict = '''-''' for i in range(__lowercase ): for j in range(__lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A: List[str] = back_pointer[goal] while x != start: print(__lowercase , end=''' ''' ) A: Optional[int] = back_pointer[x] print(__lowercase ) sys.exit() def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]: for itera in range(__lowercase ): open_list[itera].remove_element(__lowercase ) # print("s", s) # print("j", j) ((A) , (A)): Tuple = s A: Optional[Any] = (x - 1, y) A: str = (x + 1, y) A: List[Any] = (x, y + 1) A: int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowercase ) A: int = -1 A: int = float('''inf''' ) if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1: A: List[str] = g_function[s] + 1 A: List[str] = s if neighbours not in close_list_anchor: open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowercase ): if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key( __lowercase , 0 , __lowercase , __lowercase ): open_list[j].put( __lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( ) -> Tuple: A: str = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCamelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCamelCase = make_common_ground() UpperCamelCase = blocks_blk # hyper parameters UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 20 UpperCamelCase = 3 # one consistent and two other inconsistent # start and end destination UpperCamelCase = (0, 0) UpperCamelCase = (n - 1, n - 1) UpperCamelCase = 1 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: int = {start: 0, goal: float('''inf''' )} A: Union[str, Any] = {start: -1, goal: -1} A: List[Any] = [] A: Union[str, Any] = set() for i in range(__lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) A: list[int] = [] A: list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A , A: Union[str, Any] = open_list[i].top_show() visited.add(__lowercase ) expand_state( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_inad.append(__lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A: Union[str, Any] = open_list[0].top_show() visited.add(__lowercase ) expand_state( __lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_anchor.append(__lowercase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowercase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
319
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "switch_transformers" UpperCAmelCase__ : Optional[Any] = ["past_key_values"] UpperCAmelCase__ : int = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , A_=32128 , A_=768 , A_=64 , A_=2048 , A_=64 , A_=12 , A_=3 , A_=12 , A_=3 , A_=12 , A_=8 , A_=False , A_=0.01 , A_="float32" , A_=False , A_=32 , A_=128 , A_=0.1 , A_=1E-6 , A_=0.001 , A_=0.001 , A_=1.0 , A_="relu" , A_=True , A_=False , A_=True , A_=0 , A_=1 , **A_ , ) -> Optional[int]: __UpperCamelCase =vocab_size __UpperCamelCase =d_model __UpperCamelCase =d_kv __UpperCamelCase =d_ff __UpperCamelCase =num_sparse_encoder_layers __UpperCamelCase =num_layers __UpperCamelCase =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCamelCase =num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __UpperCamelCase =self.num_layers // self.num_sparse_encoder_layers else: __UpperCamelCase =self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __UpperCamelCase =self.num_decoder_layers // self.num_sparse_decoder_layers else: __UpperCamelCase =self.num_decoder_layers # HACK: this will create 0 sparse layers __UpperCamelCase =num_heads __UpperCamelCase =num_experts __UpperCamelCase =expert_capacity __UpperCamelCase =router_bias __UpperCamelCase =router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) __UpperCamelCase =router_dtype __UpperCamelCase =router_ignore_padding_tokens __UpperCamelCase =relative_attention_num_buckets __UpperCamelCase =relative_attention_max_distance __UpperCamelCase =dropout_rate __UpperCamelCase =layer_norm_epsilon __UpperCamelCase =initializer_factor __UpperCamelCase =feed_forward_proj __UpperCamelCase =use_cache __UpperCamelCase =add_router_probs __UpperCamelCase =router_z_loss_coef __UpperCamelCase =router_aux_loss_coef __UpperCamelCase =self.feed_forward_proj.split('-' ) __UpperCamelCase =act_info[-1] __UpperCamelCase =act_info[0] == 'gated' if len(A_ ) > 1 and act_info[0] != "gated" or len(A_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCamelCase ='gelu_new' super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , **A_ , )
117
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : torch.FloatTensor UpperCAmelCase__ : Optional[torch.FloatTensor] = None def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=0.999 , SCREAMING_SNAKE_CASE__ : str="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __UpperCamelCase =[] for i in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =i / num_diffusion_timesteps __UpperCamelCase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class UpperCAmelCase__ ( A_ , A_ ): """simple docstring""" @register_to_config def __init__( self , A_ = 1000 , A_ = "fixed_small_log" , A_ = True , A_ = 1.0 , A_ = "epsilon" , A_ = "squaredcos_cap_v2" , ) -> Tuple: if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __UpperCamelCase =betas_for_alpha_bar(A_ ) __UpperCamelCase =1.0 - self.betas __UpperCamelCase =torch.cumprod(self.alphas , dim=0 ) __UpperCamelCase =torch.tensor(1.0 ) # standard deviation of the initial noise distribution __UpperCamelCase =1.0 # setable values __UpperCamelCase =None __UpperCamelCase =torch.from_numpy(np.arange(0 , A_ )[::-1].copy() ) __UpperCamelCase =variance_type def _a ( self , A_ , A_ = None ) -> torch.FloatTensor: return sample def _a ( self , A_ , A_ = None ) -> Tuple: __UpperCamelCase =num_inference_steps __UpperCamelCase =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __UpperCamelCase =(np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __UpperCamelCase =torch.from_numpy(A_ ).to(A_ ) def _a ( self , A_ , A_=None , A_=None , A_=None ) -> List[Any]: if prev_timestep is None: __UpperCamelCase =t - 1 __UpperCamelCase =self.alphas_cumprod[t] __UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase =1 - alpha_prod_t __UpperCamelCase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase =self.betas[t] else: __UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCamelCase =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __UpperCamelCase =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __UpperCamelCase =torch.log(torch.clamp(A_ , min=1E-20 ) ) __UpperCamelCase =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __UpperCamelCase =variance.log() __UpperCamelCase =beta.log() __UpperCamelCase =(predicted_variance + 1) / 2 __UpperCamelCase =frac * max_log + (1 - frac) * min_log return variance def _a ( self , A_ , A_ , A_ , A_ = None , A_=None , A_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __UpperCamelCase =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __UpperCamelCase , __UpperCamelCase =torch.split(A_ , sample.shape[1] , dim=1 ) else: __UpperCamelCase =None # 1. compute alphas, betas if prev_timestep is None: __UpperCamelCase =t - 1 __UpperCamelCase =self.alphas_cumprod[t] __UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase =1 - alpha_prod_t __UpperCamelCase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase =self.betas[t] __UpperCamelCase =self.alphas[t] else: __UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev __UpperCamelCase =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCamelCase =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCamelCase =model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCamelCase =torch.clamp( A_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __UpperCamelCase =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __UpperCamelCase =0 if t > 0: __UpperCamelCase =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A_ , device=model_output.device ) __UpperCamelCase =self._get_variance( A_ , predicted_variance=A_ , prev_timestep=A_ , ) if self.variance_type == "fixed_small_log": __UpperCamelCase =variance elif self.variance_type == "learned_range": __UpperCamelCase =(0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' ' for the UnCLIPScheduler.' ) __UpperCamelCase =variance * variance_noise __UpperCamelCase =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A_ , pred_original_sample=A_ ) def _a ( self , A_ , A_ , A_ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __UpperCamelCase =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __UpperCamelCase =timesteps.to(original_samples.device ) __UpperCamelCase =alphas_cumprod[timesteps] ** 0.5 __UpperCamelCase =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase =sqrt_alpha_prod.unsqueeze(-1 ) __UpperCamelCase =(1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCamelCase =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __UpperCamelCase =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
117
1
"""simple docstring""" _a = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def __a ( __lowerCamelCase ): assert type(__lowerCamelCase ) in (int, float) and decimal == int(__lowerCamelCase ) UpperCAmelCase_ : Any = int(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : Union[str, Any] = False if decimal < 0: UpperCAmelCase_ : Optional[int] = True decimal *= -1 while decimal > 0: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(__lowerCamelCase, 16 ) UpperCAmelCase_ : Optional[int] = values[remainder] + hexadecimal UpperCAmelCase_ : List[Any] = "0x" + hexadecimal if negative: UpperCAmelCase_ : Any = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a_ = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case__ : a_ = field( default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) a_ = field( default=UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."}) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]: def _dataset(A : Dict , A : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase_ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase_ : str = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : Any = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : Any = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: UpperCAmelCase_ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Dict = trainer.evaluate() UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity} UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(A ) return results def __UpperCAmelCase ( A : Tuple ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
304
0
"""simple docstring""" from datetime import datetime import requests def a__ ( lowerCAmelCase ) -> bytes: UpperCAmelCase__ : Dict = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" UpperCAmelCase__ : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase ).content if __name__ == "__main__": _A = input("""Enter Video/IGTV url: """).strip() _A = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
166
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ): """simple docstring""" UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Tuple = patch_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : str = scope UpperCAmelCase__ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : Tuple = num_patches + 2 def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels def _a (self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Tuple = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ : str = 1 UpperCAmelCase__ : List[str] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.type_sequence_label_size UpperCAmelCase__ : List[str] = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : int = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Tuple = config_and_inputs UpperCAmelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DeiTModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a (self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_lowerCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): """simple docstring""" UpperCAmelCase__ : Optional[int] = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a (self ): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase__ : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : int = model(**_lowerCamelCase ).loss loss.backward() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : Tuple = model(**_lowerCamelCase ).loss loss.backward() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): UpperCAmelCase__ : List[str] = problem_type["""title"""] UpperCAmelCase__ : List[Any] = problem_type["""num_labels"""] UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: UpperCAmelCase__ : Optional[int] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) UpperCAmelCase__ : str = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: UpperCAmelCase__ : Any = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _a (self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def a__ ( ) -> int: UpperCAmelCase__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a (self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : int = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : Tuple = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**_lowerCamelCase ) # verify the logits UpperCAmelCase__ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCAmelCase__ : Dict = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : int = prepare_img() UpperCAmelCase__ : str = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) UpperCAmelCase__ : Dict = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase__ : int = model(_lowerCamelCase )
166
1
import fire from utils import calculate_rouge, save_json def lowerCAmelCase_ ( __a , __a , __a=None , **__a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Any =[x.strip() for x in open(__a ).readlines()] lowerCamelCase__: Dict =[x.strip() for x in open(__a ).readlines()][: len(__a )] lowerCamelCase__: str =calculate_rouge(__a , __a , **__a ) if save_path is not None: save_json(__a , __a , indent=__a ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" UpperCamelCase = int(A__ ) assert noofclusters < len(A__ ) # Find out the dimensionality UpperCamelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase = list(range(len(A__ ) ) ) shuffle(A__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(A__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase = tf.placeholder('float64' , [dim] ) UpperCamelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(A__ , A__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase = [tf.Variable(0 ) for i in range(len(A__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase = tf.placeholder('int32' ) UpperCamelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(A__ , A__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase = tf.reduce_mean(A__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A__ , A__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase = tf.placeholder('float' , [noofclusters] ) UpperCamelCase = tf.argmin(A__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase = tf.initialize_all_variables() # Initialize all variables sess.run(A__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase = 100 for _ in range(A__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(A__ ) ): UpperCamelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase = [ sess.run(A__ , feed_dict={va: vect, va: sess.run(A__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase = sess.run( A__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(A__ ): # Collect all the vectors assigned to this cluster UpperCamelCase = [ vectors[i] for i in range(len(A__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase = sess.run( A__ , feed_dict={mean_input: array(A__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase = sess.run(A__ ) UpperCamelCase = sess.run(A__ ) return centroids, assignments
363
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" # Load configuration defined in the metadata file with open(A__ ) as metadata_file: UpperCamelCase = json.load(A__ ) UpperCamelCase = LukeConfig(use_entity_aware_attention=A__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase = torch.load(A__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase = load_original_entity_vocab(A__ ) # add an entry for [MASK2] UpperCamelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase = AddedToken('<ent>' , lstrip=A__ , rstrip=A__ ) UpperCamelCase = AddedToken('<ent2>' , lstrip=A__ , rstrip=A__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(A__ ) with open(os.path.join(A__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase = json.load(A__ ) UpperCamelCase = 'MLukeTokenizer' with open(os.path.join(A__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(A__ , A__ ) with open(os.path.join(A__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(A__ , A__ ) UpperCamelCase = MLukeTokenizer.from_pretrained(A__ ) # Initialize the embeddings of the special tokens UpperCamelCase = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase = state_dict[bias_name] UpperCamelCase = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase = F"""encoder.layer.{layer_index}.attention.self.""" UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase = state_dict['entity_predictions.bias'] UpperCamelCase = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase = LukeForMaskedLM(config=A__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase = state_dict[key] else: UpperCamelCase = state_dict[key] UpperCamelCase , UpperCamelCase = model.load_state_dict(A__ , strict=A__ ) if set(A__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(A__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase = MLukeTokenizer.from_pretrained(A__ , task='entity_classification' ) UpperCamelCase = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase = (0, 9) UpperCamelCase = tokenizer(A__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase = model(**A__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase = torch.Size((1, 33, 768) ) UpperCamelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase = torch.Size((1, 1, 768) ) UpperCamelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase = MLukeTokenizer.from_pretrained(A__ ) UpperCamelCase = 'Tokyo is the capital of <mask>.' UpperCamelCase = (24, 30) UpperCamelCase = tokenizer(A__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase = model(**A__ ) UpperCamelCase = encoding['input_ids'][0].tolist() UpperCamelCase = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A__ ) UpperCamelCase = outputs.entity_logits[0][0].argmax().item() UpperCamelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(A__ ) ) model.save_pretrained(A__ ) def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase = [json.loads(A__ ) for line in open(A__ )] UpperCamelCase = {} for entry in data: UpperCamelCase = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase = entity_id break UpperCamelCase = F"""{language}:{entity_name}""" UpperCamelCase = entity_id return new_mapping if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
249
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return int(input_a == input_a == 0 ) def __UpperCAmelCase ( ): print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
249
"""simple docstring""" from __future__ import annotations a_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): __lowercase : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) ) ] # the reference grid __lowercase : Optional[int] = 1 __lowercase : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) ) ] # the action grid __lowercase : List[str] = init[0] __lowercase : Optional[Any] = init[1] __lowercase : int = 0 __lowercase : List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell __lowercase : Optional[Any] = [[f, g, x, y]] __lowercase : Union[str, Any] = False # flag that is set when search is complete __lowercase : List[Any] = False # flag set if we can't find expand while not found and not resign: if len(__UpperCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowercase : str = cell.pop() __lowercase : List[Any] = next_cell[2] __lowercase : Optional[int] = next_cell[3] __lowercase : Dict = next_cell[1] if x == goal[0] and y == goal[1]: __lowercase : List[Any] = True else: for i in range(len(__UpperCamelCase ) ): # to try out different valid actions __lowercase : Union[str, Any] = x + DIRECTIONS[i][0] __lowercase : Optional[int] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowercase : str = g + cost __lowercase : Optional[int] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowercase : Dict = 1 __lowercase : List[Any] = i __lowercase : Dict = [] __lowercase : List[Any] = goal[0] __lowercase : Tuple = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowercase : Any = x - DIRECTIONS[action[x][y]][0] __lowercase : Dict = y - DIRECTIONS[action[x][y]][1] __lowercase : List[Any] = xa __lowercase : Optional[Any] = ya invpath.append([x, y] ) __lowercase : Optional[int] = [] for i in range(len(__UpperCamelCase ) ): path.append(invpath[len(__UpperCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": a_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] a_ = [0, 0] # all coordinates are given in format [y,x] a_ = [len(grid) - 1, len(grid[0]) - 1] a_ = 1 # the cost map which pushes the path closer to the goal a_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): a_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map a_ = 9_9 a_ , a_ = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
249
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , **lowercase ): """simple docstring""" super().__init__(**lowercase ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type(lowercase ) def __call__( self , lowercase , lowercase = None , **lowercase , ): """simple docstring""" if "text_queries" in kwargs: A_ : Dict = kwargs.pop('text_queries' ) if isinstance(lowercase , (str, Image.Image) ): A_ : Optional[int] = {'image': image, 'candidate_labels': candidate_labels} else: A_ : Optional[Any] = image A_ : Dict = super().__call__(lowercase , **lowercase ) return results def lowerCAmelCase_ ( self , **lowercase ): """simple docstring""" A_ : Optional[Any] = {} if "threshold" in kwargs: A_ : int = kwargs['threshold'] if "top_k" in kwargs: A_ : Any = kwargs['top_k'] return {}, {}, postprocess_params def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[int] = load_image(inputs['image'] ) A_ : List[Any] = inputs['candidate_labels'] if isinstance(lowercase , lowercase ): A_ : Dict = candidate_labels.split(',' ) A_ : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase ): A_ : Dict = self.tokenizer(lowercase , return_tensors=self.framework ) A_ : List[Any] = self.image_processor(lowercase , return_tensors=self.framework ) yield { "is_last": i == len(lowercase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[Any] = model_inputs.pop('target_size' ) A_ : str = model_inputs.pop('candidate_label' ) A_ : Dict = model_inputs.pop('is_last' ) A_ : Optional[Any] = self.model(**lowercase ) A_ : Any = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def lowerCAmelCase_ ( self , lowercase , lowercase=0.1 , lowercase=None ): """simple docstring""" A_ : Optional[int] = [] for model_output in model_outputs: A_ : List[str] = model_output['candidate_label'] A_ : Union[str, Any] = BaseModelOutput(lowercase ) A_ : Optional[int] = self.image_processor.post_process_object_detection( outputs=lowercase , threshold=lowercase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): A_ : Tuple = outputs['scores'][index].item() A_ : List[str] = self._get_bounding_box(outputs['boxes'][index][0] ) A_ : int = {'score': score, 'label': label, 'box': box} results.append(lowercase ) A_ : str = sorted(lowercase , key=lambda lowercase : x["score"] , reverse=lowercase ) if top_k: A_ : List[str] = results[:top_k] return results def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) A_ , A_ , A_ , A_ : List[Any] = box.int().tolist() A_ : Tuple = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
192
from __future__ import annotations import requests _UpperCAmelCase = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCamelCase ( __lowercase : str ,__lowercase : int = 1 ,__lowercase : str = "new" ,__lowercase : list | None = None ): '''simple docstring''' A_ : Tuple = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__lowercase ) - valid_terms ) ): A_ : int = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(__lowercase ) A_ : Optional[int] = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' ,headers={'User-agent': 'A random string'} ,) if response.status_code == 4_29: raise requests.HTTPError A_ : Optional[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__lowercase )} A_ : Union[str, Any] = {} for id_ in range(__lowercase ): A_ : List[str] = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
192
1
def _a ( lowerCamelCase: int ) -> int: '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
117
from __future__ import annotations def _a ( lowerCamelCase: list[float] , lowerCamelCase: Tuple ) -> List[str]: '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowerCamelCase ): print(F"""{i}\t\t{d}""" ) def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: list[float] , lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: int ) -> list[float]: '''simple docstring''' __A = [float('''inf''' )] * vertex_count __A = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __A = distance[u] + w __A = check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Dict = int(input('Enter number of vertices: ').strip()) snake_case__ : Optional[int] = int(input('Enter number of edges: ').strip()) snake_case__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) snake_case__ , snake_case__ , snake_case__ : Dict = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) snake_case__ : List[Any] = {'src': src, 'dst': dest, 'weight': weight} snake_case__ : Union[str, Any] = int(input('\nEnter shortest path source:').strip()) snake_case__ : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
117
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase=7 ,__UpperCamelCase=3 ,__UpperCamelCase=10 ,__UpperCamelCase=18 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=None ,) -> Optional[int]: '''simple docstring''' lowercase_ : Any = size if size is not None else {'shortest_edge': 18} lowercase_ : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowercase_ : List[str] = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[int] = num_channels lowercase_ : Union[str, Any] = num_frames lowercase_ : Union[str, Any] = image_size lowercase_ : List[str] = min_resolution lowercase_ : int = max_resolution lowercase_ : Union[str, Any] = do_resize lowercase_ : Optional[int] = size lowercase_ : str = do_normalize lowercase_ : Tuple = image_mean lowercase_ : Any = image_std lowercase_ : Tuple = crop_size def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = VivitImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = VivitImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase ,'image_mean' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'image_std' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'do_normalize' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'do_center_crop' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'size' ) ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowercase_ : Any = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ) for video in video_inputs: self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) self.assertIsInstance(video[0] ,Image.Image ) # Test not batched input lowercase_ : Any = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched lowercase_ : List[Any] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,numpify=__UpperCamelCase ) for video in video_inputs: self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) self.assertIsInstance(video[0] ,np.ndarray ) # Test not batched input lowercase_ : Tuple = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched lowercase_ : List[str] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,torchify=__UpperCamelCase ) for video in video_inputs: self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) self.assertIsInstance(video[0] ,torch.Tensor ) # Test not batched input lowercase_ : Optional[int] = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched lowercase_ : Tuple = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
321
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __SCREAMING_SNAKE_CASE ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BlenderbotTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Any = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase ) lowercase_ : int = add_prefix_space lowercase_ : Any = 'post_processor' lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : Union[str, Any] = tuple(state['cls'] ) lowercase_ : str = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Dict = add_prefix_space lowercase_ : int = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : Optional[Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : str = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' lowercase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) lowercase_ : Dict = ' '.join(__UpperCamelCase ) lowercase_ : str = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: lowercase_ : List[str] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
321
1
'''simple docstring''' def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __lowercase =str(bin(_lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __lowercase =str(bin(_lowerCAmelCase ) )[2:] if shift_amount >= len(_lowerCAmelCase ): return "0b0" __lowercase =binary_number[: len(_lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if number >= 0: # Get binary representation of positive number __lowercase ='0' + str(bin(_lowerCAmelCase ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number __lowercase =len(bin(_lowerCAmelCase )[3:] ) # Find 2's complement of number __lowercase =bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:] __lowercase =( '1' + '0' * (binary_number_length - len(_lowerCAmelCase )) + binary_number ) if shift_amount >= len(_lowerCAmelCase ): return "0b" + binary_number[0] * len(_lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
166
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if (ksize % 2) == 0: __lowercase =ksize + 1 __lowercase =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCAmelCase ): for x in range(_lowerCAmelCase ): # distance from center __lowercase =x - ksize // 2 __lowercase =y - ksize // 2 # degree to radiant __lowercase =theta / 180 * np.pi __lowercase =np.cos(_theta ) __lowercase =np.sin(_theta ) # get kernel x __lowercase =cos_theta * px + sin_theta * py # get kernel y __lowercase =-sin_theta * px + cos_theta * py # fill kernel __lowercase =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCamelCase = out / out.max() * 255 lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
166
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : str =XLNetTokenizer lowerCamelCase : Union[str, Any] =XLNetTokenizerFast lowerCamelCase : List[Any] =True lowerCamelCase : str =True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XLNetTokenizer(a , keep_accents=a ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = '''<s>''' __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(a ) , 10_06 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = XLNetTokenizer(a , keep_accents=a ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [2_85, 46, 10, 1_70, 3_82] ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = XLNetTokenizer(a , do_lower_case=a ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = XLNetTokenizer(a , do_lower_case=a ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = {'''input_ids''': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
237
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __lowerCamelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCamelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
237
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __a = logging.get_logger(__name__) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Tuple = ["""input_features""", """attention_mask"""] def __init__( self: Optional[Any] , snake_case: str=80 , snake_case: int=16_000 , snake_case: Tuple=80 , snake_case: Tuple=0.0 , snake_case: Union[str, Any]=True , snake_case: str=True , snake_case: List[str]=True , **snake_case: Optional[Any] , ) -> List[Any]: super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) snake_case_ :int = num_mel_bins snake_case_ :List[Any] = do_ceptral_normalize snake_case_ :str = normalize_means snake_case_ :Optional[int] = normalize_vars snake_case_ :Optional[Any] = True def lowerCAmelCase_ ( self: List[Any] , snake_case: Tuple , ) -> np.ndarray: snake_case_ :Dict = waveform * (2**15) # Kaldi compliance: 16-bit signed integers snake_case_ :Dict = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ) snake_case_ :int = ta_kaldi.fbank(UpperCamelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCAmelCase_ ( snake_case: Any , snake_case: Optional[Any] , snake_case: Union[str, Any] = True , snake_case: List[str] = True , snake_case: int = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: snake_case_ :Tuple = x[:input_length].mean(axis=0 ) snake_case_ :Any = np.subtract(UpperCamelCase_ , UpperCamelCase_ ) if normalize_vars: snake_case_ :str = x[:input_length].std(axis=0 ) snake_case_ :Dict = np.divide(UpperCamelCase_ , UpperCamelCase_ ) if input_length < x.shape[0]: snake_case_ :Any = padding_value # make sure array is in float32 snake_case_ :int = x.astype(np.floataa ) return x def lowerCAmelCase_ ( self: int , snake_case: Dict , snake_case: List[str] = None ) -> List[np.ndarray]: snake_case_ :Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase_ , UpperCamelCase_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase_ , UpperCamelCase_ ) ] def __call__( self: Dict , snake_case: str , snake_case: Dict = False , snake_case: Any = None , snake_case: Optional[Any] = False , snake_case: str = None , snake_case: List[Any] = None , snake_case: Union[str, Any] = None , snake_case: Any = None , **snake_case: Tuple , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) snake_case_ :Any = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) snake_case_ :str = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ :Optional[int] = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): snake_case_ :Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ :Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ :Optional[Any] = [raw_speech] # extract fbank features snake_case_ :Optional[int] = [self._extract_fbank_features(UpperCamelCase_ ) for waveform in raw_speech] # convert into correct format for padding snake_case_ :int = BatchFeature({"""input_features""": features} ) snake_case_ :Tuple = self.pad( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) # make sure list is in array format snake_case_ :int = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , UpperCamelCase_ ): snake_case_ :Union[str, Any] = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features] snake_case_ :List[str] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: snake_case_ :List[Any] = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: snake_case_ :Optional[Any] = ( np.array(UpperCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case_ :Any = self.normalize( padded_inputs["""input_features"""] , attention_mask=UpperCamelCase_ ) if return_tensors is not None: snake_case_ :Optional[Any] = padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
66
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
249
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _UpperCamelCase = getLogger(__name__) _UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCamelCase_( snake_case__: List[str] , snake_case__: str , snake_case__: str , snake_case__: int = 8 , snake_case__: str = DEFAULT_DEVICE , snake_case__: Tuple=False , snake_case__: Tuple="summarization" , snake_case__: List[Any]=None , **snake_case__: Optional[int] , ) -> Dict: UpperCAmelCase__ = Path(snake_case__ ).open('w' , encoding='utf-8' ) UpperCAmelCase__ = str(snake_case__ ) UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).to(snake_case__ ) if fpaa: UpperCAmelCase__ = model.half() UpperCAmelCase__ = AutoTokenizer.from_pretrained(snake_case__ ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. UpperCAmelCase__ = time.time() # update config with task specific params use_task_specific_params(snake_case__ , snake_case__ ) if prefix is None: UpperCAmelCase__ = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(snake_case__ , snake_case__ ) ) ): UpperCAmelCase__ = [prefix + text for text in examples_chunk] UpperCAmelCase__ = tokenizer(snake_case__ , return_tensors='pt' , truncation=snake_case__ , padding='longest' ).to(snake_case__ ) UpperCAmelCase__ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case__ , ) UpperCAmelCase__ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() UpperCAmelCase__ = int(time.time() - start_time ) # seconds UpperCAmelCase__ = len(snake_case__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def UpperCamelCase_( ) -> int: return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def UpperCamelCase_( snake_case__: Dict=True ) -> List[Any]: UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('model_name' , type=snake_case__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=snake_case__ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=snake_case__ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=snake_case__ , required=snake_case__ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=snake_case__ , required=snake_case__ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=snake_case__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=snake_case__ , default=8 , required=snake_case__ , help='batch size' ) parser.add_argument( '--n_obs' , type=snake_case__ , default=-1 , required=snake_case__ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=snake_case__ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_known_args() UpperCAmelCase__ = parse_numeric_n_bool_cl_kwargs(snake_case__ ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) UpperCAmelCase__ = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: UpperCAmelCase__ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) UpperCAmelCase__ = generate_summaries_or_translations( snake_case__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case__ , ) if args.reference_path is None: return {} # Compute scores UpperCAmelCase__ = calculate_bleu if 'translation' in args.task else calculate_rouge UpperCAmelCase__ = [x.rstrip() for x in open(args.save_path ).readlines()] UpperCAmelCase__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case__ )] UpperCAmelCase__ = score_fn(snake_case__ , snake_case__ ) scores.update(snake_case__ ) if args.dump_args: scores.update(snake_case__ ) if args.info: UpperCAmelCase__ = args.info if verbose: print(snake_case__ ) if args.score_path is not None: json.dump(snake_case__ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A_ : Any = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class _a (unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(A__ ) @classmethod def __A ( cls ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def __A ( self ): A__ : Tuple = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A__ : Union[str, Any] = FlaxBertModel(A__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) A__ : Union[str, Any] = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) A__ : Dict = flatten_dict(unfreeze(model.params ) ) A__ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A__ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(A__ , 1e-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A__ , repo_id="""test-model-flax""" , push_to_hub=A__ , use_auth_token=self._token ) A__ : List[str] = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) A__ : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) A__ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A__ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(A__ , 1e-3 , msg=F"""{key} not identical""" ) def __A ( self ): A__ : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A__ : Tuple = FlaxBertModel(A__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) A__ : List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A__ : List[str] = flatten_dict(unfreeze(model.params ) ) A__ : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A__ : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(A__ , 1e-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( A__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=A__ , use_auth_token=self._token ) A__ : Dict = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A__ : List[Any] = flatten_dict(unfreeze(model.params ) ) A__ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A__ : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(A__ , 1e-3 , msg=F"""{key} not identical""" ) def UpperCamelCase (lowercase_: Optional[int] , lowercase_: str ) -> List[str]: A__ : Dict = True A__ : Tuple = flatten_dict(modela.params ) A__ : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A__ : List[Any] = False return models_are_equal @require_flax class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Optional[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A__ : Any = FlaxBertModel(A__ ) A__ : Optional[int] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(A__ , A__ ) ) with self.assertRaises(A__ ): A__ : Tuple = FlaxBertModel.from_pretrained(A__ ) A__ : int = FlaxBertModel.from_pretrained(A__ , subfolder=A__ ) self.assertTrue(check_models_equal(A__ , A__ ) ) def __A ( self ): A__ : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A__ : Union[str, Any] = FlaxBertModel(A__ ) A__ : Tuple = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(A__ , A__ ) , max_shard_size="""10KB""" ) with self.assertRaises(A__ ): A__ : Dict = FlaxBertModel.from_pretrained(A__ ) A__ : Dict = FlaxBertModel.from_pretrained(A__ , subfolder=A__ ) self.assertTrue(check_models_equal(A__ , A__ ) ) def __A ( self ): A__ : Optional[int] = """bert""" A__ : List[str] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(A__ ): A__ : Optional[Any] = FlaxBertModel.from_pretrained(A__ ) A__ : List[Any] = FlaxBertModel.from_pretrained(A__ , subfolder=A__ ) self.assertIsNotNone(A__ ) def __A ( self ): A__ : Tuple = """bert""" A__ : List[str] = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(A__ ): A__ : str = FlaxBertModel.from_pretrained(A__ ) A__ : List[str] = FlaxBertModel.from_pretrained(A__ , subfolder=A__ ) self.assertIsNotNone(A__ )
192
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCamelCase (lowercase_: str ) -> Dict: A__ : int = int(lowercase_ ) A__ , A__ , A__ : Tuple = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Tuple , lowercase_: Any=300 ) -> Optional[int]: # docstyle-ignore return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def UpperCamelCase (lowercase_: Tuple ) -> Optional[int]: A__ : Tuple = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: A__ : str = f"""{elt:.6f}""" if isinstance(lowercase_ , lowercase_ ) else str(lowercase_ ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _a : '''simple docstring''' UpperCAmelCase__: str = 5 UpperCAmelCase__: int = 0.2 def __init__( self , A__ , A__ = None , A__ = True , A__ = None , A__ = 300 , ): A__ : Optional[int] = total A__ : Tuple = """""" if prefix is None else prefix A__ : str = leave A__ : str = parent A__ : int = width A__ : Dict = None A__ : List[str] = None A__ : Optional[int] = None def __A ( self , A__ , A__ = False , A__ = None ): A__ : Tuple = value if comment is not None: A__ : Any = comment if self.last_value is None: A__ : int = time.time() A__ : Dict = value A__ : int = None A__ : int = self.warmup A__ : str = 1 self.update_bar(A__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 A__ : Any = time.time() A__ : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: A__ : Dict = self.elapsed_time / (value - self.start_value) else: A__ : List[str] = None if value >= self.total: A__ : Optional[Any] = self.total A__ : List[Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: A__ : List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(A__ ) A__ : Any = value A__ : List[str] = current_time if self.average_time_per_item is None: A__ : str = 1 else: A__ : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __A ( self , A__ , A__=None ): A__ : Tuple = """ """ * (len(str(self.total ) ) - len(str(A__ ) )) + str(A__ ) if self.elapsed_time is None: A__ : Union[str, Any] = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: A__ : Tuple = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: A__ : Optional[int] = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __A ( self ): A__ : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: A__ : str = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__=None ): super().__init__(A__ ) A__ : Optional[Any] = None if column_names is None else [column_names] A__ : Optional[Any] = None def __A ( self ): A__ : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: A__ : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self , A__ ): if self.inner_table is None: A__ : List[str] = [list(values.keys() ), list(values.values() )] else: A__ : Optional[Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(A__ ) A__ : Any = columns self.inner_table.append([values[c] for c in columns] ) def __A ( self , A__ , A__=None , A__=300 ): A__ : Optional[Any] = NotebookProgressBar(A__ , prefix=A__ , parent=self , width=A__ ) return self.child_bar def __A ( self ): A__ : List[str] = None self.display() class _a (__magic_name__ ): '''simple docstring''' def __init__( self ): A__ : int = None A__ : List[str] = None A__ : Union[str, Any] = False def __A ( self , A__ , A__ , A__ , **A__ ): A__ : List[str] = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" A__ : Dict = 0 A__ : Tuple = 0 A__ : Optional[int] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) A__ : Union[str, Any] = NotebookTrainingTracker(state.max_steps , A__ ) def __A ( self , A__ , A__ , A__ , **A__ ): A__ : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) A__ : str = False def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): if not has_length(A__ ): return if self.prediction_bar is None: if self.training_tracker is not None: A__ : Union[str, Any] = self.training_tracker.add_child(len(A__ ) ) else: A__ : Tuple = NotebookProgressBar(len(A__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __A ( self , A__ , A__ , A__ , **A__ ): if self.prediction_bar is not None: self.prediction_bar.close() A__ : List[str] = None def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: A__ : Dict = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy A__ : List[Any] = state.global_step self.training_tracker.write_line(A__ ) def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): if self.training_tracker is not None: A__ : Tuple = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: A__ : Dict = log["""loss"""] break if self.first_column == "Epoch": A__ : List[Any] = int(state.epoch ) else: A__ : Optional[Any] = state.global_step A__ : Optional[Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): A__ : Optional[int] = re.sub(r"""\_loss$""" , """""" , A__ ) A__ : int = metrics.pop("""total_flos""" , A__ ) A__ : int = metrics.pop("""epoch""" , A__ ) A__ : Optional[int] = metrics.pop(F"""{metric_key_prefix}_runtime""" , A__ ) A__ : Any = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , A__ ) A__ : List[Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , A__ ) A__ : Optional[Any] = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , A__ ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": A__ : Any = v else: A__ : Optional[Any] = k.split("""_""" ) A__ : Any = """ """.join([part.capitalize() for part in splits[1:]] ) A__ : List[str] = v self.training_tracker.write_line(A__ ) self.training_tracker.remove_child() A__ : Dict = None # Evaluation takes a long time so we should force the next update. A__ : Union[str, Any] = True def __A ( self , A__ , A__ , A__ , **A__ ): self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=A__ ) A__ : Optional[int] = None
192
1
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _a ( unittest.TestCase ): '''simple docstring''' A : Any = inspect.getfile(accelerate.test_utils ) A : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) A : List[Any] = ['''accelerate''', '''launch'''] A : Dict = Path.home() / '''.cache/huggingface/accelerate''' A : Optional[int] = '''default_config.yaml''' A : Optional[int] = config_folder / config_file A : Union[str, Any] = config_folder / '''_default_config.yaml''' A : Union[str, Any] = Path('''tests/test_configs''' ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=A ): execute_subprocess_async( self.base_cmd + ['--config_file', str(A ), self.test_file_path], env=os.environ.copy() ) def UpperCamelCase_ ( self ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'], env=os.environ.copy() ) class _a ( unittest.TestCase ): '''simple docstring''' A : str = '''test-tpu''' A : Union[str, Any] = '''us-central1-a''' A : Optional[int] = '''ls''' A : Tuple = ['''accelerate''', '''tpu-config'''] A : str = '''cd /usr/share''' A : List[str] = '''tests/test_samples/test_command_file.sh''' A : Optional[int] = '''Running gcloud compute tpus tpu-vm ssh''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'], return_stdout=A ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all", A, ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ], return_stdout=A, ) self.assertIn( F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
351
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : Optional[int] = 1 while repunit: SCREAMING_SNAKE_CASE : List[str] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__UpperCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
246
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase__ ( )-> Tuple: UpperCamelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCamelCase ) return parser.parse_args() def lowercase__ ( )-> Optional[int]: UpperCamelCase = parse_args() # Import training_script as a module. UpperCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase = script_fpath.stem UpperCamelCase = importlib.import_module(__UpperCamelCase ) # Patch sys.argv UpperCamelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
321
'''simple docstring''' def lowercase__ ( __UpperCamelCase = 4000000 )-> int: UpperCamelCase = [] UpperCamelCase ,UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = b, a + b return sum(__UpperCamelCase ) if __name__ == "__main__": print(f'{solution() = }')
321
1
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowercase : Tuple = logging.getLogger(__name__) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Any = "sequence-classification" def __init__( self : str , _lowercase : int ): if type(_lowercase ) == dict: __UpperCAmelCase = Namespace(**_lowercase ) __UpperCAmelCase = glue_output_modes[hparams.task] __UpperCAmelCase = glue_tasks_num_labels[hparams.task] super().__init__(_lowercase , _lowercase , self.mode ) def a ( self : Tuple , **_lowercase : List[str] ): return self.model(**_lowercase ) def a ( self : List[Any] , _lowercase : int , _lowercase : Any ): __UpperCAmelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __UpperCAmelCase = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None __UpperCAmelCase = self(**_lowercase ) __UpperCAmelCase = outputs[0] __UpperCAmelCase = self.trainer.lr_schedulers[0]['''scheduler'''] __UpperCAmelCase = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def a ( self : Tuple ): __UpperCAmelCase = self.hparams __UpperCAmelCase = processors[args.task]() __UpperCAmelCase = processor.get_labels() for mode in ["train", "dev"]: __UpperCAmelCase = self._feature_file(_lowercase ) if os.path.exists(_lowercase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , _lowercase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) __UpperCAmelCase = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) __UpperCAmelCase = convert_examples_to_features( _lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , _lowercase ) torch.save(_lowercase , _lowercase ) def a ( self : int , _lowercase : str , _lowercase : int , _lowercase : bool = False ): __UpperCAmelCase = '''dev''' if mode == '''test''' else mode __UpperCAmelCase = self._feature_file(_lowercase ) logger.info('''Loading features from cached file %s''' , _lowercase ) __UpperCAmelCase = torch.load(_lowercase ) __UpperCAmelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __UpperCAmelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __UpperCAmelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __UpperCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __UpperCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_lowercase , _lowercase , _lowercase , _lowercase ) , batch_size=_lowercase , shuffle=_lowercase , ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Any ): __UpperCAmelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __UpperCAmelCase = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None __UpperCAmelCase = self(**_lowercase ) __UpperCAmelCase , __UpperCAmelCase = outputs[:2] __UpperCAmelCase = logits.detach().cpu().numpy() __UpperCAmelCase = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def a ( self : str , _lowercase : int ): __UpperCAmelCase = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() __UpperCAmelCase = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __UpperCAmelCase = np.argmax(_lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": __UpperCAmelCase = np.squeeze(_lowercase ) __UpperCAmelCase = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) __UpperCAmelCase = [[] for _ in range(out_label_ids.shape[0] )] __UpperCAmelCase = [[] for _ in range(out_label_ids.shape[0] )] __UpperCAmelCase = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , _lowercase , _lowercase )} __UpperCAmelCase = dict(results.items() ) __UpperCAmelCase = results return ret, preds_list, out_label_list def a ( self : int , _lowercase : list ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._eval_end(_lowercase ) __UpperCAmelCase = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def a ( self : List[str] , _lowercase : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._eval_end(_lowercase ) __UpperCAmelCase = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def a ( _lowercase : Union[str, Any] , _lowercase : Dict ): BaseTransformer.add_model_specific_args(_lowercase , _lowercase ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=_lowercase , required=_lowercase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=_lowercase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser() add_generic_args(snake_case_ , os.getcwd() ) __UpperCAmelCase = GLUETransformer.add_model_specific_args(snake_case_ , os.getcwd() ) __UpperCAmelCase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __UpperCAmelCase = os.path.join( '''./results''' , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __UpperCAmelCase = GLUETransformer(snake_case_ ) __UpperCAmelCase = generic_train(snake_case_ , snake_case_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=snake_case_ ) ) __UpperCAmelCase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(snake_case_ ) if __name__ == "__main__": main()
86
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : int = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "bloom" a__ : List[Any] = ["past_key_values"] a__ : Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , _lowercase : Dict=25_08_80 , _lowercase : str=64 , _lowercase : int=2 , _lowercase : Union[str, Any]=8 , _lowercase : Optional[Any]=1E-5 , _lowercase : Dict=0.02 , _lowercase : Optional[int]=True , _lowercase : Any=1 , _lowercase : Dict=2 , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=0.0 , _lowercase : str=0.0 , _lowercase : str=1 , _lowercase : int=False , **_lowercase : List[str] , ): __UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __UpperCAmelCase = kwargs.pop('''n_embed''' , _lowercase ) __UpperCAmelCase = hidden_size if n_embed is None else n_embed __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = pretraining_tp __UpperCAmelCase = apply_residual_connection_post_layernorm __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id __UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = version.parse("1.12" ) def __init__( self : Optional[int] , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[int] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_lowercase , direction='''inputs''' , inverted_values_shape=_lowercase ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Any ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head @property def a ( self : Dict ): return 1E-3 def a ( self : List[str] , _lowercase : "PreTrainedTokenizer" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional["TensorType"] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = self._config.hidden_size // self.num_attention_heads __UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
86
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): A__ = 3_84 A__ = 7 if "tiny" in model_name: A__ = 96 A__ = (2, 2, 6, 2) A__ = (3, 6, 12, 24) elif "small" in model_name: A__ = 96 A__ = (2, 2, 18, 2) A__ = (3, 6, 12, 24) elif "base" in model_name: A__ = 1_28 A__ = (2, 2, 18, 2) A__ = (4, 8, 16, 32) A__ = 12 A__ = 5_12 elif "large" in model_name: A__ = 1_92 A__ = (2, 2, 18, 2) A__ = (6, 12, 24, 48) A__ = 12 A__ = 7_68 # set label information A__ = 1_50 A__ = "huggingface/label-files" A__ = "ade20k-id2label.json" A__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = SwinConfig( embed_dim=_lowerCamelCase , depths=_lowerCamelCase , num_heads=_lowerCamelCase , window_size=_lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) A__ = UperNetConfig( backbone_config=_lowerCamelCase , auxiliary_in_channels=_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def UpperCamelCase ( _lowerCamelCase : Tuple ): A__ = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.stages.{i}.downsample.reduction.weight", F"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.stages.{i}.downsample.norm.weight", F"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.stages.{i}.downsample.norm.bias", F"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] ): A__ = dct.pop(_lowerCamelCase ) A__ = val def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : str ): A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) A__ = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:dim, :] A__ = in_proj_bias[: dim] A__ = in_proj_weight[ dim : dim * 2, : ] A__ = in_proj_bias[ dim : dim * 2 ] A__ = in_proj_weight[ -dim :, : ] A__ = in_proj_bias[-dim :] # fmt: on def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): A__, A__ = x.shape A__ = x.reshape(_lowerCamelCase , 4 , in_channel // 4 ) A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_lowerCamelCase , _lowerCamelCase ) return x def UpperCamelCase ( _lowerCamelCase : Any ): A__, A__ = x.shape A__ = x.reshape(_lowerCamelCase , in_channel // 4 , 4 ) A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_lowerCamelCase , _lowerCamelCase ) return x def UpperCamelCase ( _lowerCamelCase : Optional[int] ): A__ = x.shape[0] A__ = x.reshape(4 , in_channel // 4 ) A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_lowerCamelCase ) return x def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): A__ = x.shape[0] A__ = x.reshape(in_channel // 4 , 4 ) A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_lowerCamelCase ) return x def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): A__ = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" , file_name=_lowerCamelCase )[ "state_dict" ] for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) A__ = get_upernet_config(_lowerCamelCase ) A__ = UperNetForSemanticSegmentation(_lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ = state_dict.pop(_lowerCamelCase ) if "bn" in key: A__ = key.replace("bn" , "batch_norm" ) A__ = val # rename keys A__ = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A__ = reverse_correct_unfold_reduction_order(_lowerCamelCase ) if "norm" in key: A__ = reverse_correct_unfold_norm_order(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # verify on image A__ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) A__ = SegformerImageProcessor() A__ = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values with torch.no_grad(): A__ = model(_lowerCamelCase ) A__ = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A__ = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": A__ = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": A__ = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": A__ = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __lowerCAmelCase : List[str] =parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
237
'''simple docstring''' import functools def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): A__ = len(_lowerCamelCase ) A__ = len(_lowerCamelCase ) @functools.cache def min_distance(_lowerCamelCase : int , _lowerCamelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCamelCase ) , 1 + min_distance(_lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
237
1
from __future__ import annotations _lowercase : Tuple = tuple[int, int, int] _lowercase : str = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _lowercase : str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- _lowercase : Any = "EGZWVONAHDCLFQMSIPJBYUKXTR" _lowercase : Any = "FOBHMDKEXQNRAULPGSJVTYICZW" _lowercase : Dict = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- _lowercase : Dict = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- _lowercase : Union[str, Any] = "RMDJXFUWGISLHVTCQNKYPBEZOA" _lowercase : Dict = "SGLCPQWZHKXAREONTFBVIYJUDM" _lowercase : Union[str, Any] = "HVSICLTYKQUBXDWAJZOMFGPREN" _lowercase : Any = "RZWQHFMVDBKICJLNTUXAGYPSOE" _lowercase : List[Any] = "LFKIJODBEGAMQPXVUHYSTCZRWN" _lowercase : int = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def snake_case_ ( __SCREAMING_SNAKE_CASE : RotorPositionT , __SCREAMING_SNAKE_CASE : RotorSelectionT , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" if (unique_rotsel := len(set(__SCREAMING_SNAKE_CASE ) )) < 3: lowercase_ : Any = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(__SCREAMING_SNAKE_CASE ) # Checks if rotor positions are valid lowercase_ : Dict = rotpos if not 0 < rotorposa <= len(__SCREAMING_SNAKE_CASE ): lowercase_ : str = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(__SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(__SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(__SCREAMING_SNAKE_CASE ): lowercase_ : str = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(__SCREAMING_SNAKE_CASE ) # Validates string and returns dict lowercase_ : str = _plugboard(__SCREAMING_SNAKE_CASE ) return rotpos, rotsel, pbdict def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = F'''Plugboard setting isn\'t type string ({type(__SCREAMING_SNAKE_CASE )})''' raise TypeError(__SCREAMING_SNAKE_CASE ) elif len(__SCREAMING_SNAKE_CASE ) % 2 != 0: lowercase_ : Dict = F'''Odd number of symbols ({len(__SCREAMING_SNAKE_CASE )})''' raise Exception(__SCREAMING_SNAKE_CASE ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique lowercase_ : Any = set() for i in pbstring: if i not in abc: lowercase_ : Dict = F'''\'{i}\' not in list of symbols''' raise Exception(__SCREAMING_SNAKE_CASE ) elif i in tmppbl: lowercase_ : Any = F'''Duplicate symbol ({i})''' raise Exception(__SCREAMING_SNAKE_CASE ) else: tmppbl.add(__SCREAMING_SNAKE_CASE ) del tmppbl # Created the dictionary lowercase_ : Dict = {} for j in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 , 2 ): lowercase_ : str = pbstring[j + 1] lowercase_ : Optional[Any] = pbstring[j] return pb def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : RotorPositionT , __SCREAMING_SNAKE_CASE : RotorSelectionT = (rotora, rotora, rotora) , __SCREAMING_SNAKE_CASE : str = "" , ): """simple docstring""" lowercase_ : Optional[int] = text.upper() lowercase_ : int = _validator( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , plugb.upper() ) lowercase_ : Tuple = rotor_position lowercase_ : str = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase_ : Tuple = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase_ : Tuple = plugboard[symbol] # rotor ra -------------------------- lowercase_ : str = abc.index(__SCREAMING_SNAKE_CASE ) + rotorposa lowercase_ : str = rotora[index % len(__SCREAMING_SNAKE_CASE )] # rotor rb -------------------------- lowercase_ : Any = abc.index(__SCREAMING_SNAKE_CASE ) + rotorposa lowercase_ : Optional[int] = rotora[index % len(__SCREAMING_SNAKE_CASE )] # rotor rc -------------------------- lowercase_ : str = abc.index(__SCREAMING_SNAKE_CASE ) + rotorposa lowercase_ : Any = rotora[index % len(__SCREAMING_SNAKE_CASE )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase_ : Optional[Any] = reflector[symbol] # 2nd rotors lowercase_ : List[str] = abc[rotora.index(__SCREAMING_SNAKE_CASE ) - rotorposa] lowercase_ : Dict = abc[rotora.index(__SCREAMING_SNAKE_CASE ) - rotorposa] lowercase_ : Optional[int] = abc[rotora.index(__SCREAMING_SNAKE_CASE ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase_ : str = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = 0 rotorposa += 1 if rotorposa >= len(__SCREAMING_SNAKE_CASE ): lowercase_ : str = 0 rotorposa += 1 if rotorposa >= len(__SCREAMING_SNAKE_CASE ): lowercase_ : int = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowercase : Tuple = "This is my Python script that emulates the Enigma machine from WWII." _lowercase : Union[str, Any] = (1, 1, 1) _lowercase : Optional[int] = "pictures" _lowercase : List[Any] = (rotora, rotora, rotora) _lowercase : Dict = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
350
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = (DDPMScheduler,) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def _snake_case ( self ): """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.scheduler_classes[0] lowercase_ : int = self.get_scheduler_config() lowercase_ : str = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = self.scheduler_classes[0] lowercase_ : Any = self.get_scheduler_config() lowercase_ : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Any = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.dummy_model() lowercase_ : Any = self.dummy_sample_deter lowercase_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowercase_ : Optional[int] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowercase_ : Union[str, Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase_ : List[str] = pred_prev_sample lowercase_ : str = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : Tuple = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase_ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = len(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.dummy_model() lowercase_ : int = self.dummy_sample_deter lowercase_ : str = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowercase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowercase_ : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase_ : int = pred_prev_sample lowercase_ : str = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : int = self.get_scheduler_config() lowercase_ : int = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : int = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : str = -1 else: lowercase_ : Any = timesteps[i + 1] lowercase_ : Optional[Any] = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) lowercase_ : int = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config() lowercase_ : str = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [1_00, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : str = self.get_scheduler_config() lowercase_ : Tuple = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = [1_00, 87, 50, 1, 0] lowercase_ : List[str] = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
264
0
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ : List[Any] = getLogger(__name__) SCREAMING_SNAKE_CASE_ : str = 'cuda' if torch.cuda.is_available() else 'cpu' def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : str = DEFAULT_DEVICE , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict="summarization" , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ): A__ = Path(UpperCAmelCase_ ).open("""w""" , encoding="""utf-8""" ) A__ = str(UpperCAmelCase_ ) A__ = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ ) if fpaa: A__ = model.half() A__ = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. A__ = time.time() # update config with task specific params use_task_specific_params(UpperCAmelCase_ , UpperCAmelCase_ ) if prefix is None: A__ = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(UpperCAmelCase_ , UpperCAmelCase_ ) ) ): A__ = [prefix + text for text in examples_chunk] A__ = tokenizer(UpperCAmelCase_ , return_tensors="""pt""" , truncation=UpperCAmelCase_ , padding="""longest""" ).to(UpperCAmelCase_ ) A__ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **UpperCAmelCase_ , ) A__ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() A__ = int(time.time() - start_time ) # seconds A__ = len(UpperCAmelCase_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _snake_case ( ): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def _snake_case ( UpperCAmelCase_ : Any=True ): A__ = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=UpperCAmelCase_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=UpperCAmelCase_ , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=UpperCAmelCase_ , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , default=UpperCAmelCase_ , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , default=UpperCAmelCase_ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=UpperCAmelCase_ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=UpperCAmelCase_ , default=8 , required=UpperCAmelCase_ , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=UpperCAmelCase_ , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate A__ , A__ = parser.parse_known_args() A__ = parse_numeric_n_bool_cl_kwargs(UpperCAmelCase_ ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) A__ = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: A__ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=UpperCAmelCase_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) A__ = generate_summaries_or_translations( UpperCAmelCase_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **UpperCAmelCase_ , ) if args.reference_path is None: return {} # Compute scores A__ = calculate_bleu if """translation""" in args.task else calculate_rouge A__ = [x.rstrip() for x in open(args.save_path ).readlines()] A__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(UpperCAmelCase_ )] A__ = score_fn(UpperCAmelCase_ , UpperCAmelCase_ ) scores.update(UpperCAmelCase_ ) if args.dump_args: scores.update(UpperCAmelCase_ ) if args.info: A__ = args.info if verbose: print(UpperCAmelCase_ ) if args.score_path is not None: json.dump(UpperCAmelCase_ , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
335
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = 1 A__ = 3 A__ = (32, 32) A__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase ) return image @property def UpperCamelCase ( self: int ): """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def UpperCamelCase ( self: Tuple ): """simple docstring""" torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCamelCase ( self: List[Any] ): """simple docstring""" torch.manual_seed(0 ) A__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(UpperCamelCase ) @property def UpperCamelCase ( self: str ): """simple docstring""" def extract(*UpperCamelCase: List[str] , **UpperCamelCase: Any ): class a : """simple docstring""" def __init__( self: Any ): """simple docstring""" A__ = torch.ones([0] ) def UpperCamelCase ( self: Dict , UpperCamelCase: Optional[Any] ): """simple docstring""" self.pixel_values.to(UpperCamelCase ) return self return Out() return extract def UpperCamelCase ( self: str ): """simple docstring""" A__ = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ = self.dummy_cond_unet A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase ) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A__ = 77 A__ = self.dummy_image.to(UpperCamelCase ) A__ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk A__ = AltDiffusionImgaImgPipeline( unet=UpperCamelCase , scheduler=UpperCamelCase , vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=self.dummy_extractor , ) A__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase ) A__ = alt_pipe.to(UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = """A painting of a squirrel eating a burger""" A__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) A__ = alt_pipe( [prompt] , generator=UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase , ) A__ = output.images A__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) A__ = alt_pipe( [prompt] , generator=UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase , return_dict=UpperCamelCase , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.dummy_cond_unet A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase ) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A__ = 77 A__ = self.dummy_image.to(UpperCamelCase ) # put models in fp16 A__ = unet.half() A__ = vae.half() A__ = bert.half() # make sure here that pndm scheduler skips prk A__ = AltDiffusionImgaImgPipeline( unet=UpperCamelCase , scheduler=UpperCamelCase , vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=self.dummy_extractor , ) A__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase ) A__ = alt_pipe.to(UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = """A painting of a squirrel eating a burger""" A__ = torch.manual_seed(0 ) A__ = alt_pipe( [prompt] , generator=UpperCamelCase , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 A__ = init_image.resize((7_60, 5_04) ) A__ = """BAAI/AltDiffusion""" A__ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase , safety_checker=UpperCamelCase , ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() A__ = """A fantasy landscape, trending on artstation""" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=UpperCamelCase , image=UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase , output_type="""np""" , ) A__ = output.images[0] A__ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) A__ = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A__ = init_image.resize((7_68, 5_12) ) A__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) A__ = """BAAI/AltDiffusion""" A__ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase , safety_checker=UpperCamelCase , ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() A__ = """A fantasy landscape, trending on artstation""" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=UpperCamelCase , image=UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase , output_type="""np""" , ) A__ = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
335
1
"""simple docstring""" import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed a :Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) a :Dict = "sshleifer/student_marian_en_ro_6_1" a :Optional[Any] = "sshleifer/tiny-mbart" @require_torch class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a=False , _a=None , _a=True , _a=True , _a=True , _a=True , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_a , num_train_epochs=1 , distributed=_a , extra_args_str=_a , predict_with_generate=_a , do_train=_a , do_eval=_a , do_predict=_a , ) SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(os.path.join(_a , """trainer_state.json""" ) ).log_history if not do_eval: return SCREAMING_SNAKE_CASE__ : int = [log for log in logs if """eval_loss""" in log.keys()] SCREAMING_SNAKE_CASE__ : Dict = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats SCREAMING_SNAKE_CASE__ : List[str] = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , _a ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _a ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def _a ( self ) -> Optional[int]: """simple docstring""" self.run_seqaseq_quick(distributed=_a ) @require_torch_multi_gpu def _a ( self ) -> str: """simple docstring""" self.run_seqaseq_quick(distributed=_a ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _a ( self ) -> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _a ( self ) -> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _a ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=_a ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _a ( self ) -> List[Any]: """simple docstring""" self.run_seqaseq_quick( distributed=_a , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=_a ) @require_apex @require_torch_gpu def _a ( self ) -> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_a , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_a , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } SCREAMING_SNAKE_CASE__ : List[str] = experiments[experiment_id] SCREAMING_SNAKE_CASE__ : List[Any] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} SCREAMING_SNAKE_CASE__ : Optional[Any] = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**_a , extra_args_str=data["""extra_args_str"""] ) SCREAMING_SNAKE_CASE__ : Any = len(re.findall(_a , cl.err ) ) self.assertEqual(_a , data["""n_matches"""] ) @slow def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_a , learning_rate=3E-4 , num_train_epochs=10 , distributed=_a , ) # Check metrics SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(os.path.join(_a , """trainer_state.json""" ) ).log_history SCREAMING_SNAKE_CASE__ : str = [log for log in logs if """eval_loss""" in log.keys()] SCREAMING_SNAKE_CASE__ : int = eval_metrics[0] SCREAMING_SNAKE_CASE__ : Optional[int] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , _a ) # test if do_predict saves generations and metrics SCREAMING_SNAKE_CASE__ : List[Any] = os.listdir(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = {os.path.basename(_a ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _a ( self ) -> List[Any]: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(_a ) -> Tuple[int, float]: SCREAMING_SNAKE_CASE__ : Optional[Any] = """--skip_memory_metrics 0""" SCREAMING_SNAKE_CASE__ : Any = self.run_trainer( max_len=128 , model_name=_a , learning_rate=3E-4 , num_train_epochs=1 , optim=_a , distributed=_a , extra_args_str=_a , do_eval=_a , do_predict=_a , n_gpus_to_use=1 , ) # Check metrics SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(Path(_a , """trainer_state.json""" ) ).log_history SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) SCREAMING_SNAKE_CASE__ : Tuple = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) SCREAMING_SNAKE_CASE__ : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb SCREAMING_SNAKE_CASE__ : Union[str, Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig SCREAMING_SNAKE_CASE__ : int = gpu_peak_mem_bnb + gpu_alloc_mem_bnb SCREAMING_SNAKE_CASE__ : List[Any] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings SCREAMING_SNAKE_CASE__ : Any = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _a , _a , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( _a , _a , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( _a , _a , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def _a ( self , _a , _a , _a , _a = 3E-3 , _a = "adafactor" , _a = False , _a = None , _a = 0 , _a = True , _a = True , _a = True , _a = True , _a = None , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" SCREAMING_SNAKE_CASE__ : List[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Union[str, Any] = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(_a )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(_a )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() SCREAMING_SNAKE_CASE__ : str = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(_a )} '''.split() SCREAMING_SNAKE_CASE__ : int = """ --do_predict """.split() SCREAMING_SNAKE_CASE__ : List[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_gpu_count() SCREAMING_SNAKE_CASE__ : List[Any] = get_torch_dist_unique_port() SCREAMING_SNAKE_CASE__ : int = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() SCREAMING_SNAKE_CASE__ : Optional[int] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_a , env=self.get_env() ) else: SCREAMING_SNAKE_CASE__ : Dict = ["""run_translation.py"""] + args with patch.object(_a , """argv""" , _a ): main() return output_dir
56
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a (metaclass=UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self , *_a , **_a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _a ( cls , *_a , **_a ) -> int: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
56
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _A : List[str] =get_tests_dir('''fixtures''') class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Union[str, Any] = mock.Mock() lowerCamelCase__ : Optional[Any] = 500 lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : List[Any] = HTTPError lowerCamelCase__ : Tuple = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Tuple = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=_A ) as mock_head: lowerCamelCase__ : List[Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[str] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCamelCase_ ( self: Union[str, Any] ): with self.assertRaises(_A ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) lowerCamelCase__ : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(_A ) @is_staging_test class _lowercase ( unittest.TestCase ): @classmethod def lowerCamelCase_ ( cls: Optional[Any] ): lowerCamelCase__ : Optional[int] = TOKEN HfFolder.save_token(_A ) @classmethod def lowerCamelCase_ ( cls: Optional[int] ): try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCamelCase_ ( self: str ): lowerCamelCase__ : List[Any] = ViTImageProcessor.from_pretrained(_A ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _A , repo_id="""test-image-processor""" , push_to_hub=_A , use_auth_token=self._token ) lowerCamelCase__ : List[str] = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[str] = ViTImageProcessor.from_pretrained(_A ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) lowerCamelCase__ : Any = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _A , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=_A , use_auth_token=self._token ) lowerCamelCase__ : Optional[Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) def lowerCamelCase_ ( self: List[Any] ): CustomImageProcessor.register_for_auto_class() lowerCamelCase__ : Optional[Any] = CustomImageProcessor.from_pretrained(_A ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) lowerCamelCase__ : Any = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=_A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
41
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase__ : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int, _lowerCAmelCase : Optional[int] ) -> Dict: _UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = val def UpperCamelCase ( _lowerCAmelCase : List[Any] ) -> List[str]: _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCAmelCase : Tuple = key.replace("""backbone.0.body""", """backbone.conv_encoder.model""" ) _UpperCAmelCase : Any = value else: _UpperCAmelCase : List[Any] = value return new_state_dict def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Tuple=False ) -> Optional[Any]: _UpperCAmelCase : int = """""" if is_panoptic: _UpperCAmelCase : str = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[:256, :] _UpperCAmelCase : Tuple = in_proj_bias[:256] _UpperCAmelCase : Optional[int] = in_proj_weight[256:512, :] _UpperCAmelCase : str = in_proj_bias[256:512] _UpperCAmelCase : int = in_proj_weight[-256:, :] _UpperCAmelCase : List[Any] = in_proj_bias[-256:] def UpperCamelCase ( ) -> Any: _UpperCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Dict = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ) -> List[Any]: _UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _UpperCAmelCase : Dict = """resnet101""" if "dc5" in model_name: _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Optional[Any] = """panoptic""" in model_name if is_panoptic: _UpperCAmelCase : Optional[int] = 250 else: _UpperCAmelCase : str = 91 _UpperCAmelCase : Optional[int] = """huggingface/label-files""" _UpperCAmelCase : str = """coco-detection-id2label.json""" _UpperCAmelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase, _lowerCAmelCase, repo_type="""dataset""" ), """r""" ) ) _UpperCAmelCase : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} # load image processor _UpperCAmelCase : Optional[int] = """coco_panoptic""" if is_panoptic else """coco_detection""" _UpperCAmelCase : int = ConditionalDetrImageProcessor(format=_lowerCAmelCase ) # prepare image _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : Any = image_processor(images=_lowerCAmelCase, return_tensors="""pt""" ) _UpperCAmelCase : Any = encoding["""pixel_values"""] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub _UpperCAmelCase : Tuple = torch.hub.load("""DeppMeng/ConditionalDETR""", _lowerCAmelCase, pretrained=_lowerCAmelCase ).eval() _UpperCAmelCase : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _UpperCAmelCase : Optional[int] = """conditional_detr.""" + src rename_key(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = rename_backbone_keys(_lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCAmelCase, is_panoptic=_lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Any = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase : Optional[Any] = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Any = val # finally, create HuggingFace model and load state dict _UpperCAmelCase : Union[str, Any] = ConditionalDetrForSegmentation(_lowerCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() model.push_to_hub(repo_id=_lowerCAmelCase, organization="""DepuMeng""", commit_message="""Add model""" ) # verify our conversion _UpperCAmelCase : Any = conditional_detr(_lowerCAmelCase ) _UpperCAmelCase : int = model(_lowerCAmelCase ) assert torch.allclose(outputs.logits, original_outputs["""pred_logits"""], atol=1E-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs["""pred_boxes"""], atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs["""pred_masks"""], atol=1E-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCamelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
246
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCamelCase : '''simple docstring''' __snake_case = BlenderbotConfig __snake_case = {} __snake_case = 'gelu' def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[int]=99 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[Any]=37 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=20 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Union[str, Any]=0 , ) -> Any: '''simple docstring''' A__ : Optional[int] =parent A__ : int =batch_size A__ : Union[str, Any] =seq_length A__ : Optional[Any] =is_training A__ : Any =use_labels A__ : Union[str, Any] =vocab_size A__ : Any =hidden_size A__ : Optional[int] =num_hidden_layers A__ : Tuple =num_attention_heads A__ : Tuple =intermediate_size A__ : Union[str, Any] =hidden_dropout_prob A__ : Optional[int] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : Any =eos_token_id A__ : List[Any] =pad_token_id A__ : List[str] =bos_token_id def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Dict =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ : Tuple =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ : Optional[int] =tf.concat([input_ids, eos_tensor] , axis=1 ) A__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Union[str, Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ : Any =prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def lowercase__ ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =TFBlenderbotModel(config=lowerCAmelCase_ ).get_decoder() A__ : Union[str, Any] =inputs_dict["""input_ids"""] A__ : Any =input_ids[:1, :] A__ : str =inputs_dict["""attention_mask"""][:1, :] A__ : Any =inputs_dict["""head_mask"""] A__ : Tuple =1 # first forward pass A__ : str =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) A__ , A__ : Optional[Any] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ : Tuple =ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Optional[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ : List[str] =tf.concat([input_ids, next_tokens] , axis=-1 ) A__ : Any =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ : Union[str, Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] A__ : List[Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ : Tuple =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ : Optional[int] =output_from_no_past[:, -3:, random_slice_idx] A__ : Optional[Any] =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Union[str, Any], __snake_case : Union[str, Any], __snake_case : List[Any]=None, __snake_case : Tuple=None, __snake_case : List[Any]=None, __snake_case : str=None, __snake_case : Any=None, ) -> List[Any]: """simple docstring""" if attention_mask is None: A__ : List[str] =tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: A__ : Dict =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: A__ : Dict =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ : Any =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ : List[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __snake_case = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' A__ : Tuple =TFBlenderbotModelTester(self ) A__ : int =ConfigTester(self , config_class=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_tokenizers @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = ['My friends are cool but they eat too many carbs.'] __snake_case = 'facebook/blenderbot-400M-distill' @cached_property def lowercase__ ( self : str ) -> Any: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' A__ : str =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : Optional[Any] =self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ : Dict =self.model.generate( model_inputs.input_ids , ) A__ : List[Any] =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
136
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" A__ : List[Any] =prime_factors(__snake_case ) if is_square_free(__snake_case ): return -1 if len(__snake_case ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
136
1
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCamelCase__ = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = """cpu""" lowerCamelCase__ = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" lowerCamelCase__ = """path-to-your-trained-model""" lowerCamelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCamelCase__ = pipe.to(device) # to channels last lowerCamelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCamelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCamelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCamelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCamelCase__ = torch.randn(2, 4, 64, 64) lowerCamelCase__ = torch.rand(1) * 999 lowerCamelCase__ = torch.randn(2, 77, 768) lowerCamelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCamelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCamelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCamelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCamelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCamelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCamelCase__ = 666 lowerCamelCase__ = torch.Generator(device).manual_seed(seed) lowerCamelCase__ = {"""generator""": generator} if args.steps is not None: lowerCamelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCamelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
86
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Union[str, Any] = BarthezTokenizer A_ : Tuple = BarthezTokenizerFast A_ : Dict = True A_ : List[str] = True def __lowerCamelCase ( self ): super().setUp() __lowerCAmelCase : str = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = tokenizer def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = '<pad>' __lowerCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 10_11_22 ) def __lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCAmelCase : Optional[Any] = [0, 57, 30_18, 7_03_07, 91, 2] __lowerCAmelCase : Optional[int] = self.tokenizer( _SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __lowerCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __lowerCAmelCase : Tuple = self.get_tokenizer() __lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() __lowerCAmelCase : List[str] = 'I was born in 92000, and this is falsé.' __lowerCAmelCase : Optional[int] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # fmt: off __lowerCAmelCase : str = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __lowerCAmelCase : Union[str, Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_SCREAMING_SNAKE_CASE , )
86
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : List[str] = StableDiffusionDiffEditPipeline UpperCamelCase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} UpperCamelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} UpperCamelCase__ : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ : Union[str, Any] = frozenset([] ) def _A ( self ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) __SCREAMING_SNAKE_CASE = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_zero=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _A ( self , _A , _A=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _A ( self , _A , _A=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _A ( self , _A , _A=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def _A ( self ): '''simple docstring''' if not hasattr(self.pipeline_class , '_optional_components' ): return __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = pipe(**SCREAMING_SNAKE_CASE_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) pipe_loaded.to(SCREAMING_SNAKE_CASE_ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = pipe_loaded(**SCREAMING_SNAKE_CASE_ )[0] __SCREAMING_SNAKE_CASE = np.abs(output - output_loaded ).max() self.assertLess(SCREAMING_SNAKE_CASE_ , 1e-4 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = pipe.generate_mask(**SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __SCREAMING_SNAKE_CASE = np.array([0] * 9 ) __SCREAMING_SNAKE_CASE = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = pipe.invert(**SCREAMING_SNAKE_CASE_ ).images __SCREAMING_SNAKE_CASE = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __SCREAMING_SNAKE_CASE = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __SCREAMING_SNAKE_CASE = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 ) def _A ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""} __SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = pipe.invert(**SCREAMING_SNAKE_CASE_ ).images __SCREAMING_SNAKE_CASE = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __SCREAMING_SNAKE_CASE = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __SCREAMING_SNAKE_CASE = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _A ( cls ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) __SCREAMING_SNAKE_CASE = raw_image.convert('RGB' ).resize((768, 768) ) __SCREAMING_SNAKE_CASE = raw_image def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = DDIMScheduler.from_config(pipe.scheduler.config ) __SCREAMING_SNAKE_CASE = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = """a bowl of fruit""" __SCREAMING_SNAKE_CASE = """a bowl of pears""" __SCREAMING_SNAKE_CASE = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ) __SCREAMING_SNAKE_CASE = pipe.invert( prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ ).latents __SCREAMING_SNAKE_CASE = pipe( prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , output_type='numpy' , ).images[0] __SCREAMING_SNAKE_CASE = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __SCREAMING_SNAKE_CASE = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = """a bowl of fruit""" __SCREAMING_SNAKE_CASE = """a bowl of pears""" __SCREAMING_SNAKE_CASE = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ) __SCREAMING_SNAKE_CASE = pipe.invert( prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , ).latents __SCREAMING_SNAKE_CASE = pipe( prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] __SCREAMING_SNAKE_CASE = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
355
def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = [[0 for _ in range(a__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __SCREAMING_SNAKE_CASE = 1 for n in range(m + 1 ): for k in range(1 , a__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCAmelCase__ : Optional[Any] =int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowerCAmelCase__ : str =int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
118
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A__ : Dict =logging.get_logger(__name__) A__ : Optional[int] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED A__ : List[str] ={ '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } A__ : List[str] ={ '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) _lowerCAmelCase = bs[:] _lowerCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = set() _lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase = char return pairs class UpperCAmelCase ( lowerCAmelCase__ ): _lowercase: List[str] = VOCAB_FILES_NAMES _lowercase: Any = PRETRAINED_VOCAB_FILES_MAP _lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int="replace" , __snake_case : Any="<s>" , __snake_case : List[str]="</s>" , __snake_case : int="</s>" , __snake_case : List[str]="<s>" , __snake_case : Tuple="<unk>" , __snake_case : Optional[int]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Dict=False , **__snake_case : Optional[Any] , ) -> List[str]: _lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token _lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token _lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token _lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token _lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token _lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase = json.load(lowercase_ ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = errors # how to handle errors in decoding _lowerCAmelCase = bytes_to_unicode() _lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) _lowerCAmelCase = {} _lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase = re.compile(R"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase__ ( self : Union[str, Any] ) -> str: return len(self.encoder ) def lowercase__ ( self : Optional[Any] ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Tuple , __snake_case : Tuple ) -> Optional[int]: if token in self.cache: return self.cache[token] _lowerCAmelCase = tuple(lowercase_ ) _lowerCAmelCase = get_pairs(lowercase_ ) if not pairs: return token while True: _lowerCAmelCase = min(lowercase_ , key=lambda __snake_case : self.bpe_ranks.get(lowercase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase = bigram _lowerCAmelCase = [] _lowerCAmelCase = 0 while i < len(lowercase_ ): try: _lowerCAmelCase = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase = tuple(lowercase_ ) _lowerCAmelCase = new_word if len(lowercase_ ) == 1: break else: _lowerCAmelCase = get_pairs(lowercase_ ) _lowerCAmelCase = ''' '''.join(lowercase_ ) _lowerCAmelCase = word return word def lowercase__ ( self : Any , __snake_case : Union[str, Any] ) -> Optional[int]: _lowerCAmelCase = [] for token in re.findall(self.pat , lowercase_ ): _lowerCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(""" """ ) ) return bpe_tokens def lowercase__ ( self : List[Any] , __snake_case : List[str] ) -> Any: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Union[str, Any] , __snake_case : Dict ) -> Tuple: return self.decoder.get(lowercase_ ) def lowercase__ ( self : Tuple , __snake_case : Union[str, Any] ) -> Union[str, Any]: _lowerCAmelCase = ''''''.join(lowercase_ ) _lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowercase__ ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Any: if not os.path.isdir(lowercase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + """\n""" ) _lowerCAmelCase = 0 with open(lowercase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase = token_index writer.write(""" """.join(lowercase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowercase__ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> Tuple: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def lowercase__ ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> Tuple: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Union[str, Any] , __snake_case : str , __snake_case : str=False , **__snake_case : Dict ) -> str: _lowerCAmelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): _lowerCAmelCase = ''' ''' + text return (text, kwargs) def lowercase__ ( self : Any , __snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ) -> Any: _lowerCAmelCase = super()._pad( encoded_inputs=lowercase_ , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) # Load from model defaults if return_attention_mask is None: _lowerCAmelCase = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCAmelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowercase_ ) if needs_to_be_padded: _lowerCAmelCase = len(lowercase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCAmelCase = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _lowerCAmelCase = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
70
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __lowercase ( ): snake_case_ : Optional[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case_ : Any = g.get_repo('''huggingface/diffusers''' ) snake_case_ : Any = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case_ : str = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) snake_case_ : Dict = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
264
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=6 , __a=17 , __a=23 , __a=11 , __a=True , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = act_dim _UpperCamelCase = state_dim _UpperCamelCase = hidden_size _UpperCamelCase = max_length _UpperCamelCase = is_training def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00) _UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length)) _UpperCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = DecisionTransformerModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , __a , __a , __a , __a , __a) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (DecisionTransformerModel,) if is_torch_available() else () lowercase__ = () lowercase__ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowercase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DecisionTransformerModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DecisionTransformerModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(__a)] , __a) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform _UpperCamelCase = 10 # defined by the RL environment, may be normalized _UpperCamelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''') _UpperCamelCase = model.to(__a) _UpperCamelCase = model.config torch.manual_seed(0) _UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=__a , dtype=torch.floataa) # env.reset() _UpperCamelCase = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=__a) _UpperCamelCase = torch.tensor(__a , device=__a , dtype=torch.floataa).reshape(1 , 1 , 1) _UpperCamelCase = state _UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=__a , dtype=torch.floataa) _UpperCamelCase = torch.zeros(1 , 0 , device=__a , dtype=torch.floataa) _UpperCamelCase = torch.tensor(0 , device=__a , dtype=torch.long).reshape(1 , 1) for step in range(__a): _UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__a)] , dim=1) _UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=__a)] , dim=1) _UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model( states=__a , actions=__a , rewards=__a , returns_to_go=__a , timesteps=__a , attention_mask=__a , return_dict=__a , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=__a , dtype=torch.floataa), 1.0, False, {}, ) _UpperCamelCase = action_pred[0, -1] _UpperCamelCase = torch.cat([states, state] , dim=1) _UpperCamelCase = returns_to_go[0, -1] - reward _UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) _UpperCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=__a , dtype=torch.long) * (step + 1)] , dim=1)
353
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'xlm-roberta-xl' def __init__( self , __a=25_08_80 , __a=25_60 , __a=36 , __a=32 , __a=1_02_40 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=0.02 , __a=1e-05 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
100
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' while b: snake_case_ ,snake_case_ = b, a % b return a def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(__UpperCAmelCase, a % b ) def __magic_name__ ( ) -> Any: '''simple docstring''' print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}" ) if __name__ == "__main__": main()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Tuple = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
56
1
import math import qiskit def a__ ( __UpperCamelCase = 1 , __UpperCamelCase = 1 , __UpperCamelCase = 1 ): if ( isinstance(__UpperCamelCase , __UpperCamelCase ) or isinstance(__UpperCamelCase , __UpperCamelCase ) or isinstance(__UpperCamelCase , __UpperCamelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(__UpperCamelCase ) != input_a) or (math.floor(__UpperCamelCase ) != input_a) or (math.floor(__UpperCamelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers SCREAMING_SNAKE_CASE_ = qiskit.QuantumRegister(4 , "qr" ) SCREAMING_SNAKE_CASE_ = qiskit.ClassicalRegister(2 , "cr" ) # list the entries SCREAMING_SNAKE_CASE_ = [input_a, input_a, carry_in] SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__UpperCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__UpperCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__UpperCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __UpperCamelCase ) # measure the last two qbits SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend("aer_simulator" ) SCREAMING_SNAKE_CASE_ = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1_0_0_0 ) return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
305
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = 42 lowercase__ = 42 lowercase__ = None class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ): lowercase__ = 2 @register_to_config def __init__( self : Dict , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 1_0_0 , lowerCAmelCase_ : float = 1.007 , lowerCAmelCase_ : float = 8_0 , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 5_0 , ): """simple docstring""" lowercase_ = sigma_max # setable values lowercase_ = None lowercase_ = None lowercase_ = None # sigma(t_i) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[int] = None): """simple docstring""" return sample def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None): """simple docstring""" lowercase_ = num_inference_steps lowercase_ = np.arange(0 , self.num_inference_steps)[::-1].copy() lowercase_ = torch.from_numpy(lowerCAmelCase_).to(lowerCAmelCase_) lowercase_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowercase_ = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa , device=lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[torch.Generator] = None): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowercase_ = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1) else: lowercase_ = 0 # sample eps ~ N(0, S_noise^2 * I) lowercase_ = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCAmelCase_).to(sample.device) lowercase_ = sigma + gamma * sigma lowercase_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ): """simple docstring""" lowercase_ = sample_hat + sigma_hat * model_output lowercase_ = (sample_hat - pred_original_sample) / sigma_hat lowercase_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ): """simple docstring""" lowercase_ = sample_prev + sigma_prev * model_output lowercase_ = (sample_prev - pred_original_sample) / sigma_prev lowercase_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str): """simple docstring""" raise NotImplementedError()
136
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : Union[str, Any] = TypeVar("T") UpperCAmelCase : Dict = Union[List[T], Tuple[T, ...]] UpperCAmelCase : int = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Tuple = Union[str, bytes, os.PathLike]
136
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _snake_case ( unittest.TestCase ): lowerCAmelCase :Tuple = JukeboxTokenizer lowerCAmelCase :Optional[int] = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def snake_case__ ( self): import torch UpperCAmelCase__ : str = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""") UpperCAmelCase__ : Optional[int] = tokenizer(**self.metas)["""input_ids"""] # fmt: off UpperCAmelCase__ : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 1069, 11]]), torch.tensor([[0, 0, 0, 1069, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2])) @require_torch def snake_case__ ( self): import torch UpperCAmelCase__ : List[str] = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""") UpperCAmelCase__ : Union[str, Any] = tokenizer(**self.metas)["""input_ids"""] # fmt: off UpperCAmelCase__ : List[Any] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
283
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = '''''' lowerCAmelCase :str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCAmelCase :str = None # compression type in fsspec. ex: "gzip" lowerCAmelCase :str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase): super().__init__(self , **_lowerCamelCase) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ : Optional[Any] = fsspec.open( _lowerCamelCase , mode="""rb""" , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase__ : List[Any] = os.path.basename(self.file.path.split("""::""")[0]) UpperCAmelCase__ : Dict = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) UpperCAmelCase__ : Tuple = None @classmethod def snake_case__ ( cls , _lowerCamelCase): # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase).lstrip("""/""") def snake_case__ ( self): if self.dir_cache is None: UpperCAmelCase__ : Optional[Any] = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} UpperCAmelCase__ : Union[str, Any] = {f["""name"""]: f} def snake_case__ ( self , _lowerCamelCase): return self.file.open().read() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCAmelCase__ : List[str] = self._strip_protocol(_lowerCamelCase) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _snake_case ( a__ ): lowerCAmelCase :Dict = '''bz2''' lowerCAmelCase :List[str] = '''bz2''' lowerCAmelCase :Dict = '''.bz2''' class _snake_case ( a__ ): lowerCAmelCase :int = '''gzip''' lowerCAmelCase :Tuple = '''gzip''' lowerCAmelCase :str = '''.gz''' class _snake_case ( a__ ): lowerCAmelCase :List[str] = '''lz4''' lowerCAmelCase :Any = '''lz4''' lowerCAmelCase :int = '''.lz4''' class _snake_case ( a__ ): lowerCAmelCase :Union[str, Any] = '''xz''' lowerCAmelCase :int = '''xz''' lowerCAmelCase :List[Any] = '''.xz''' class _snake_case ( a__ ): lowerCAmelCase :Tuple = '''zstd''' lowerCAmelCase :List[str] = '''zstd''' lowerCAmelCase :Union[str, Any] = '''.zst''' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , ): super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ : Dict = self.file.__enter__ class _snake_case : def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = file_ def __enter__( self): self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase): self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase) def __iter__( self): return iter(self._file) def snake_case__ ( self): return next(self._file) def __getattr__( self , _lowerCamelCase): return getattr(self._file , _lowerCamelCase) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase)) UpperCAmelCase__ : List[Any] = fixed_enter
283
1
def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __snake_case = set() # Replace all the whitespace in our sentence __snake_case = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(snake_case_ ) == 26 def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __snake_case = [False] * 26 for char in input_str: if char.islower(): __snake_case = True elif char.isupper(): __snake_case = True return all(snake_case_ ) def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowerCamelCase__ ( ) -> None: from timeit import timeit __snake_case = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=snake_case_ ) ) print(timeit('''is_pangram_faster()''' , setup=snake_case_ ) ) print(timeit('''is_pangram_fastest()''' , setup=snake_case_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = DebertaTokenizer lowerCamelCase__ = True lowerCamelCase__ = DebertaTokenizerFast def __A ( self : List[Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ = {"unk_token": "[UNK]"} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : str , __magic_name__ : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = "lower newer" return input_text, output_text def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer("Hello" , "World" ) SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , __magic_name__ ) @slow def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( "sequence builders" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __A ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained("microsoft/deberta-base" ) SCREAMING_SNAKE_CASE_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["input_ids"]] # fmt: off SCREAMING_SNAKE_CASE_ = { "input_ids": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on SCREAMING_SNAKE_CASE_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , __magic_name__ ) for expected, decoded in zip(__magic_name__ , __magic_name__ ): self.assertEqual(__magic_name__ , __magic_name__ )
118
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _SCREAMING_SNAKE_CASE = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=16 , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=14 , lowerCAmelCase_=10 , lowerCAmelCase_=19 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=True , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=[1, 2, 3, 4, 5] , lowerCAmelCase_=25 , lowerCAmelCase_=5 , ) -> Union[str, Any]: _A = d_model _A = parent _A = batch_size _A = prediction_length _A = context_length _A = cardinality _A = num_time_features _A = lags_sequence _A = embedding_dimension _A = is_training _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = context_length _A = prediction_length + label_length _A = label_length _A = moving_average _A = autocorrelation_factor def UpperCAmelCase ( self ) -> Optional[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Dict: _A = config.context_length + max(config.lags_sequence ) _A = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _A = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _A = floats_tensor([self.batch_size, _past_length] ) _A = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _A = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _A = floats_tensor([self.batch_size, config.prediction_length] ) _A = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_config() _A = self.prepare_autoformer_inputs_dict(lowerCAmelCase_ ) return config, inputs_dict def UpperCAmelCase ( self ) -> str: _A , _A = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = AutoformerModel(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval() _A = model(**lowerCAmelCase_ ) _A = outputs.encoder_last_hidden_state _A = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _A = model.get_encoder() encoder.save_pretrained(lowerCAmelCase_ ) _A = AutoformerEncoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _A , _A , _A , _A , _A = model.create_network_inputs(**lowerCAmelCase_ ) _A , _A = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _A = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _A = encoder(inputs_embeds=lowerCAmelCase_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _A = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _A = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _A = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _A = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _A = model.get_decoder() decoder.save_pretrained(lowerCAmelCase_ ) _A = AutoformerDecoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _A = decoder( trend=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCamelCase :List[Any] = (AutoformerForPrediction,) if is_torch_available() else () lowerCamelCase :Optional[int] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} lowerCamelCase :Any = False lowerCamelCase :Optional[int] = False lowerCamelCase :Dict = False lowerCamelCase :Any = False lowerCamelCase :str = False lowerCamelCase :Any = False def UpperCAmelCase ( self ) -> Any: _A = AutoformerModelTester(self ) _A = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> str: _A , _A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _A = model_class(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) _A , _A = model_class.from_pretrained(lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) self.assertEqual(info["""missing_keys"""] , [] ) def UpperCAmelCase ( self ) -> int: _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> str: _A = inspect.signature(getattr(lowerCAmelCase_ , """forward""" ) ) # The main input is the name of the argument after `self` _A = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(lowerCAmelCase_ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> str: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True _A = getattr(self.model_tester , """seq_length""" , lowerCAmelCase_ ) _A = getattr(self.model_tester , """decoder_seq_length""" , lowerCAmelCase_ ) _A = getattr(self.model_tester , """encoder_seq_length""" , lowerCAmelCase_ ) _A = getattr(self.model_tester , """d_model""" , lowerCAmelCase_ ) _A = getattr(self.model_tester , """num_attention_heads""" , lowerCAmelCase_ ) _A = d_model // num_attention_heads for model_class in self.all_model_classes: _A = True _A = False _A = True _A = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A = True _A = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A = outputs.encoder_attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _A = len(lowerCAmelCase_ ) _A = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # decoder attentions _A = outputs.decoder_attentions self.assertIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _A = outputs.cross_attentions self.assertIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 2 , len(lowerCAmelCase_ ) ) _A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase ( self ) -> Union[str, Any]: super().test_retain_grad_hidden_states_attentions() def snake_case ( snake_case__ :str="train-batch.pt") -> Optional[Any]: _A = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=snake_case__ , repo_type="""dataset""") _A = torch.load(snake_case__ , map_location=snake_case__) return batch @require_torch @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: _A = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ ) _A = prepare_batch() with torch.no_grad(): _A = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _A = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ ) _A = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _A = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _A = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) ) def UpperCAmelCase ( self ) -> Dict: _A = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ ) _A = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _A = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _A = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCAmelCase_ ) _A = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=lowerCAmelCase_ ) _A = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCAmelCase_ , rtol=1E-1 ) )
351
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = (UnCLIPScheduler,) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[Any]: _A = { """num_train_timesteps""": 10_00, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**lowerCAmelCase_ ) return config def UpperCAmelCase ( self ) -> Union[str, Any]: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[Any]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Any: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[int]: for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config(variance_type="""fixed_small_log""" ) _A = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def UpperCAmelCase ( self ) -> Optional[int]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config(variance_type="""learned_range""" ) _A = scheduler_class(**lowerCAmelCase_ ) _A = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_ ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=lowerCAmelCase_ ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=lowerCAmelCase_ ) - -0.001_0011 < 1E-5 def UpperCAmelCase ( self ) -> List[Any]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**lowerCAmelCase_ ) _A = scheduler.timesteps _A = self.dummy_model() _A = self.dummy_sample_deter _A = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual _A = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A = pred_prev_sample _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def UpperCAmelCase ( self ) -> Optional[int]: _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(25 ) _A = scheduler.timesteps _A = self.dummy_model() _A = self.dummy_sample_deter _A = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual _A = model(lowerCAmelCase_ , lowerCAmelCase_ ) if i + 1 == timesteps.shape[0]: _A = None else: _A = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _A = scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A = pred_prev_sample _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> List[Any]: pass
81
0
from math import pow def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : int, lowerCAmelCase_ : List[str], lowerCAmelCase_ : str, lowerCAmelCase_ : Dict, ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __lowerCAmelCase = int(pow(UpperCamelCase_, UpperCamelCase_ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __lowerCAmelCase , __lowerCAmelCase = backtrack( UpperCamelCase_, UpperCamelCase_, current_number + 1, UpperCamelCase_, UpperCamelCase_ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __lowerCAmelCase , __lowerCAmelCase = backtrack( UpperCamelCase_, UpperCamelCase_, current_number + 1, UpperCamelCase_, UpperCamelCase_ ) return current_sum, solutions_count def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Any ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(UpperCamelCase_, UpperCamelCase_, 1, 0, 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
284
"""simple docstring""" __magic_name__ = "Tobias Carryer" from time import time class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=int(time())): # noqa: B008 __SCREAMING_SNAKE_CASE = multiplier __SCREAMING_SNAKE_CASE = increment __SCREAMING_SNAKE_CASE = modulo __SCREAMING_SNAKE_CASE = seed def snake_case_ ( self): __SCREAMING_SNAKE_CASE = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __magic_name__ = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
100
0
from string import ascii_lowercase, ascii_uppercase def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if not sentence: return "" a = dict(zip(snake_case_, snake_case_ ) ) return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
import math A : Optional[Any] = 1_0 A : List[str] = 7 A : str = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( __magic_name__ : int = 20 ) -> str: """simple docstring""" lowercase__ = math.comb(__magic_name__ , __magic_name__ ) lowercase__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __magic_name__ ) lowercase__ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
305
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__magic_name__ ) ) ] def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase__ = len(__magic_name__ ) lowercase__ = matrix_length // 2 lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [ [a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ ) ] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )] lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]: """simple docstring""" return len(__magic_name__ ), len(matrix[0] ) def UpperCamelCase ( __magic_name__ : list ) -> None: """simple docstring""" print("""\n""".join(str(__magic_name__ ) for line in matrix ) ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ ) == (2, 2): return default_matrix_multiplication(__magic_name__ , __magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) ) lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_addition(__magic_name__ , __magic_name__ ) lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ ) # construct the new matrix from our 4 quadrants lowercase__ = [] for i in range(len(__magic_name__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__magic_name__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]: lowercase__ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) lowercase__ = matrix_dimensions(__magic_name__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase__ = max(*__magic_name__ , *__magic_name__ ) lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) ) lowercase__ = matrixa lowercase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase__ = actual_strassen(__magic_name__ , __magic_name__ ) # Removing the additional zeros for i in range(0 , __magic_name__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __magic_name__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Optional[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
305
1
"""simple docstring""" from __future__ import annotations def A_ ( A__ ) -> list[int]: # This function is recursive a__ : str = len(A__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ : List[Any] = array[0] a__ : List[Any] = False a__ : str = 1 a__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: a__ : Optional[Any] = True a__ : Optional[int] = [element for element in array[i:] if element >= array[i]] a__ : Union[str, Any] = longest_subsequence(A__ ) if len(A__ ) > len(A__ ): a__ : Optional[Any] = temp_array else: i += 1 a__ : Any = [element for element in array[1:] if element >= pivot] a__ : Tuple = [pivot, *longest_subsequence(A__ )] if len(A__ ) > len(A__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
357
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase : Optional[int] = data_utils.TransfoXLCorpus lowercase : List[Any] = data_utils lowercase : Tuple = data_utils def A_ ( A__ , A__ , A__ , A__ ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A__ , 'rb' ) as fp: a__ : int = pickle.load(A__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a__ : int = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) a__ : List[Any] = corpus.vocab.__dict__ torch.save(A__ , A__ ) a__ : Dict = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A__ ) a__ : Optional[int] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(A__ , A__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a__ : Union[str, Any] = os.path.abspath(A__ ) a__ : Optional[Any] = os.path.abspath(A__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": a__ : Dict = TransfoXLConfig() else: a__ : Dict = TransfoXLConfig.from_json_file(A__ ) print(F'Building PyTorch model from configuration: {config}' ) a__ : Optional[int] = TransfoXLLMHeadModel(A__ ) a__ : int = load_tf_weights_in_transfo_xl(A__ , A__ , A__ ) # Save pytorch-model a__ : Any = os.path.join(A__ , A__ ) a__ : Dict = os.path.join(A__ , A__ ) print(F'Save PyTorch model to {os.path.abspath(A__ )}' ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {os.path.abspath(A__ )}' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowercase : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
225
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} _snake_case = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } _snake_case = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as f: lowerCamelCase : Dict = json.loads(f.read() ) lowerCamelCase : List[Any] = collections.OrderedDict() lowerCamelCase : Tuple = collections.OrderedDict() lowerCamelCase : Tuple = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as f: lowerCamelCase : Union[str, Any] = f.readlines() lowerCamelCase : Any = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Union[str, Any] = b lowerCamelCase : Optional[int] = idx for wd in b: lowerCamelCase : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : List[Any] = VOCAB_FILES_NAMES __A : Dict = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["input_ids", "attention_mask"] def __init__( self , __A , __A , __A="<|endoftext|>" , __A="<|endoftext|>" , __A="<|startoftext|>" , __A="<|endoftext|>" , __A=False , **__A , ): """simple docstring""" super().__init__( unk_token=__A , pad_token=__A , bos_token=__A , eos_token=__A , do_clean_text=__A , **__A , ) if not os.path.isfile(__A ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__A ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) lowerCamelCase : List[Any] = do_clean_text lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Dict = load_vocab_and_emoji(__A , __A ) lowerCamelCase : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _snake_case ( self ): """simple docstring""" return len(self.raw_vocab ) def _snake_case ( self ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def _snake_case ( self , __A ): """simple docstring""" return self.subword_tokenizer.tokenize(__A , clean=self.do_clean_text ) def _snake_case ( self , __A ): """simple docstring""" return self.vocab.get(__A , self.vocab.get(self.unk_token ) ) def _snake_case ( self , __A ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__A ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Union[str, Any] = "".join(__A ).strip() return out_string def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A , add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: lowerCamelCase : List[str] = input_ids[-self.model_max_length :] return input_ids def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : Optional[Any] = 0 if os.path.isdir(__A ): lowerCamelCase : Union[str, Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : Optional[int] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: lowerCamelCase : Optional[Any] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : Tuple = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__A , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) lowerCamelCase : Union[str, Any] = token_index writer.write(",".join(__A ) + "\n" ) index += 1 with open(__A , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __A ) return vocab_file, emoji_file class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Any = vocab # same as swe lowerCamelCase : Optional[int] = ids_to_tokens # same as bpe lowerCamelCase : str = emoji lowerCamelCase : Optional[Any] = np.max([len(__A ) for w in self.vocab.keys()] ) lowerCamelCase : int = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) lowerCamelCase : Optional[int] = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) lowerCamelCase : Dict = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) lowerCamelCase : List[str] = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCamelCase : Any = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCamelCase : str = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) lowerCamelCase : Optional[int] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" lowerCamelCase : List[Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" lowerCamelCase : Dict = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self ): """simple docstring""" return len(self.ids_to_tokens ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<URL>" , __A ) lowerCamelCase : Dict = self.content_repattera.sub("<EMAIL>" , __A ) lowerCamelCase : int = self.content_repattera.sub("<TEL>" , __A ) lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<DATE>" , __A ) lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<DATE>" , __A ) lowerCamelCase : int = self.content_repattera.sub("<PRICE>" , __A ) lowerCamelCase : Any = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCamelCase : Any = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _snake_case ( self , __A , __A=False ): """simple docstring""" lowerCamelCase : List[str] = text.replace(" " , "<SP>" ) lowerCamelCase : Dict = text.replace(" " , "<SP>" ) lowerCamelCase : Dict = text.replace("\r\n" , "<BR>" ) lowerCamelCase : Tuple = text.replace("\n" , "<BR>" ) lowerCamelCase : Dict = text.replace("\r" , "<BR>" ) lowerCamelCase : Dict = text.replace("\t" , "<TAB>" ) lowerCamelCase : str = text.replace("—" , "ー" ) lowerCamelCase : Any = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCamelCase : Tuple = text.replace(__A , __A ) if clean: lowerCamelCase : str = self.clean_text(__A ) def check_simbol(__A ): lowerCamelCase : List[Any] = x.encode() if len(__A ) == 1 and len(__A ) == 2: lowerCamelCase : List[Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2_A1 and c <= 0xC2_BF) or (c >= 0xC7_80 and c <= 0xC7_83) or (c >= 0xCA_B9 and c <= 0xCB_BF) or (c >= 0xCC_80 and c <= 0xCD_A2) ): return True return False def checkuae(__A ): lowerCamelCase : Optional[Any] = x.encode() if len(__A ) == 1 and len(__A ) == 3: lowerCamelCase : Optional[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_80_80 and c <= 0xE2_B0_7F: return True return False lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Optional[Any] = [] while pos < len(__A ): lowerCamelCase : Any = min(len(__A ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 lowerCamelCase : Optional[Any] = [] # (token_id, token, pos) for e in range(__A , __A , -1 ): lowerCamelCase : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__A ) > 2: lowerCamelCase : Dict = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__A ) > 0: # the smallest token_id is adopted lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = sorted(__A , key=lambda __A : x[0] )[0] result.append(__A ) lowerCamelCase : Optional[Any] = e else: lowerCamelCase : Union[str, Any] = pos + 1 lowerCamelCase : Union[str, Any] = text[pos:end] if check_simbol(__A ): result.append("<KIGOU>" ) elif checkuae(__A ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) lowerCamelCase : int = end return result def _snake_case ( self , __A , __A="\n" ): """simple docstring""" lowerCamelCase : List[Any] = [] lowerCamelCase : Optional[Any] = [] lowerCamelCase : Optional[int] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__A ) > 0: words.append(bytearray(__A ).decode("utf-8" , errors="replace" ) ) lowerCamelCase : Any = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__A ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__A ) if len(__A ) > 0: words.append(bytearray(__A ).decode("utf-8" , errors="replace" ) ) lowerCamelCase : Optional[int] = "".join(__A ) return text
283
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = tempfile.mkdtemp() # fmt: off lowerCamelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase : List[Any] = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"} lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) lowerCamelCase : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase : str = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__A , __A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Tuple = self.get_image_processor() lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __A ) self.assertIsInstance(processor_fast.tokenizer , __A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __A ) self.assertIsInstance(processor_fast.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = self.prepare_image_inputs() lowerCamelCase : int = image_processor(__A , return_tensors="np" ) lowerCamelCase : Union[str, Any] = processor(images=__A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = "lower newer" lowerCamelCase : Union[str, Any] = processor(text=__A , return_tensors="np" ) lowerCamelCase : List[Any] = tokenizer(__A , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : int = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[Any] = "lower newer" lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Any = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = "google/owlvit-base-patch32" lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Tuple = ["cat", "nasa badge"] lowerCamelCase : str = processor(text=__A ) lowerCamelCase : Union[str, Any] = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = "google/owlvit-base-patch32" lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Dict = [["cat", "nasa badge"], ["person"]] lowerCamelCase : int = processor(text=__A ) lowerCamelCase : Tuple = 16 lowerCamelCase : Any = len(__A ) lowerCamelCase : Optional[Any] = max([len(__A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = "google/owlvit-base-patch32" lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : List[Any] = ["cat", "nasa badge"] lowerCamelCase : Optional[Any] = processor(text=__A ) lowerCamelCase : int = 16 lowerCamelCase : List[str] = inputs["input_ids"] lowerCamelCase : int = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : str = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase : Any = processor(images=__A , query_images=__A ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase : List[Any] = processor.batch_decode(__A ) lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A )
283
1
"""simple docstring""" def lowerCamelCase_ (): for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def lowerCamelCase_ (UpperCamelCase__ : Dict ): _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : Tuple = 2 while i * i <= n: _UpperCAmelCase : List[str] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase_ (): return next(i for i in triangle_number_generator() if count_divisors(UpperCamelCase__ ) > 500 ) if __name__ == "__main__": print(solution())
354
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowerCAmelCase :int = get_logger(__name__) class _UpperCAmelCase ( enum.Enum ): '''simple docstring''' a__ ='''all_checks''' a__ ='''basic_checks''' a__ ='''no_checks''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict , UpperCamelCase__ : Tuple=None ): if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _UpperCAmelCase : Optional[Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase : str = ''' for ''' + verification_name if verification_name is not None else '''''' if len(UpperCamelCase__ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict ): if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _UpperCAmelCase : Dict = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase__ ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase__ ) ) logger.info('''All the splits matched successfully.''' ) def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : bool = True ): if record_checksum: _UpperCAmelCase : Any = shaaaa() with open(UpperCamelCase__ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(UpperCamelCase__ ) _UpperCAmelCase : int = m.hexdigest() else: _UpperCAmelCase : Union[str, Any] = None return {"num_bytes": os.path.getsize(UpperCamelCase__ ), "checksum": checksum} def lowerCamelCase_ (UpperCamelCase__ : List[str] ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
68
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = KandinskyVaaImgaImgPipeline _lowercase : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowercase : Any = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowercase : Union[str, Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : Optional[Any] = False @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" return self.time_input_dim @property def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" return 100 @property def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase__ = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase__ = DDIMScheduler(**UpperCamelCase_ ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=0 ) -> Optional[int]: """simple docstring""" lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase_ ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((256, 256) ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ = '''A red cartoon frog, 4k''' lowercase__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) lowercase__ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase__ = pipeline( image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
110
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = """▁""" lowerCamelCase_ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase_ : Any = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCamelCase_ : Tuple = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , __A , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A = None , **__A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) a =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a =1 a =len(self.sp_model ) + self.fairseq_offset a ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: a =self.__dict__.copy() a =None a =self.sp_model.serialized_model_proto() return state def __setstate__( self , __A ) -> List[Any]: a =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a ={} a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a =[self.cls_token_id] a =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a ={self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a =self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: a =''''''.join(__A ).replace(__A , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , '''wb''' ) as fi: a =self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
81
0
def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' return abs(__a ) if a == 0 else greatest_common_divisor(b % a , __a ) def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCamelCase__ , UpperCamelCase__ = y, x % y return abs(__a ) def __magic_name__ ( ): '''simple docstring''' try: UpperCamelCase__ = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) UpperCamelCase__ = int(nums[0] ) UpperCamelCase__ = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(__a , __a )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__a , __a )}" ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
178
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __magic_name__ ( __a : dict ): '''simple docstring''' return (data["data"], data["target"]) def __magic_name__ ( __a : np.ndarray , __a : np.ndarray , __a : np.ndarray ): '''simple docstring''' UpperCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__a , __a ) # Predict target for test data UpperCamelCase__ = xgb.predict(__a ) UpperCamelCase__ = predictions.reshape(len(__a ) , 1 ) return predictions def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = fetch_california_housing() UpperCamelCase__ , UpperCamelCase__ = data_handling(__a ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = train_test_split( __a , __a , test_size=0.25 , random_state=1 ) UpperCamelCase__ = xgboost(__a , __a , __a ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__a , __a )}" ) print(f"Mean Square Error : {mean_squared_error(__a , __a )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
178
1
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
1
def lowerCAmelCase__ ( a__ , a__ ) ->Any: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
362
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ) -> Tuple: """simple docstring""" _UpperCamelCase = path_or_paths _UpperCamelCase = split if split or isinstance(lowercase_ , lowercase_) else "train" _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def __UpperCAmelCase ( self : Any) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ) -> str: """simple docstring""" _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def __UpperCAmelCase ( self : Any) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
63
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case ( UpperCAmelCase_ : Optional[int] ): if isinstance(__UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class snake_case : """simple docstring""" def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase_ = TFVisionTextDualEncoderModel(_lowerCAmelCase ) lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase_ = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase_ = {"vision_model": vision_model, "text_model": text_model} lowerCamelCase_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase_ = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) lowerCamelCase_ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) lowerCamelCase_ = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) lowerCamelCase_ = after_output[0].numpy() lowerCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase_ = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) lowerCamelCase_ = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) lowerCamelCase_ = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = to_atuple(vision_model.config.image_size ) lowerCamelCase_ = to_atuple(vision_model.config.patch_size ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase_ = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.get_pretrained_model_and_inputs() lowerCamelCase_ = model_a(**_lowerCAmelCase ) lowerCamelCase_ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) lowerCamelCase_ = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) lowerCamelCase_ = model_a(**_lowerCAmelCase ) lowerCamelCase_ = after_outputs[0].numpy() lowerCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class snake_case ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) lowerCamelCase_ = 13 lowerCamelCase_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase_ = random_attention_mask([batch_size, 4] ) lowerCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFViTModel(_lowerCAmelCase , name="vision_model" ) lowerCamelCase_ = TFBertModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFViTModelTester(self ) lowerCamelCase_ = TFBertModelTester(self ) lowerCamelCase_ = vit_model_tester.prepare_config_and_inputs() lowerCamelCase_ = bert_model_tester.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = vision_config_and_inputs ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowerCamelCase_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) lowerCamelCase_ = 13 lowerCamelCase_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase_ = random_attention_mask([batch_size, 4] ) lowerCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase_ = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) lowerCamelCase_ = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) lowerCamelCase_ = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCamelCase_ = to_atuple(vision_model.config.image_size ) lowerCamelCase_ = to_atuple(vision_model.config.patch_size ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase_ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase_ = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFDeiTModel(_lowerCAmelCase , name="vision_model" ) lowerCamelCase_ = TFRobertaModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFDeiTModelTester(self ) lowerCamelCase_ = TFRobertaModelTester(self ) lowerCamelCase_ = vit_model_tester.prepare_config_and_inputs() lowerCamelCase_ = bert_model_tester.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = vision_config_and_inputs ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) lowerCamelCase_ = 13 lowerCamelCase_ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase_ = random_attention_mask([batch_size, 4] ) lowerCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFCLIPVisionModel(_lowerCAmelCase , name="vision_model" ) lowerCamelCase_ = TFBertModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFCLIPVisionModelTester(self ) lowerCamelCase_ = TFBertModelTester(self ) lowerCamelCase_ = clip_model_tester.prepare_config_and_inputs() lowerCamelCase_ = bert_model_tester.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ = vision_config_and_inputs ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCamelCase_ = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" ) lowerCamelCase_ = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCamelCase_ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
55
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_ ( __UpperCAmelCase : bytes , __UpperCAmelCase : int ) -> np.array: SCREAMING_SNAKE_CASE_ = f"{sampling_rate}" SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = 'f32le' SCREAMING_SNAKE_CASE_ = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__UpperCAmelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE_ = ffmpeg_process.communicate(__UpperCAmelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error SCREAMING_SNAKE_CASE_ = output_stream[0] SCREAMING_SNAKE_CASE_ = np.frombuffer(__UpperCAmelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : str = "f32le" , ) -> int: SCREAMING_SNAKE_CASE_ = f"{sampling_rate}" SCREAMING_SNAKE_CASE_ = '1' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE_ = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE_ = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) SCREAMING_SNAKE_CASE_ = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE_ = 'alsa' SCREAMING_SNAKE_CASE_ = 'default' elif system == "Darwin": SCREAMING_SNAKE_CASE_ = 'avfoundation' SCREAMING_SNAKE_CASE_ = ':0' elif system == "Windows": SCREAMING_SNAKE_CASE_ = 'dshow' SCREAMING_SNAKE_CASE_ = 'default' SCREAMING_SNAKE_CASE_ = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] SCREAMING_SNAKE_CASE_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE_ = _ffmpeg_stream(__UpperCAmelCase , __UpperCAmelCase ) for item in iterator: yield item def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[Union[Tuple[float, float], float]] = None , __UpperCAmelCase : str = "f32le" , ) -> Tuple: if stream_chunk_s is not None: SCREAMING_SNAKE_CASE_ = stream_chunk_s else: SCREAMING_SNAKE_CASE_ = chunk_length_s SCREAMING_SNAKE_CASE_ = ffmpeg_microphone(__UpperCAmelCase , __UpperCAmelCase , format_for_conversion=__UpperCAmelCase ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE_ = np.intaa SCREAMING_SNAKE_CASE_ = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE_ = np.floataa SCREAMING_SNAKE_CASE_ = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: SCREAMING_SNAKE_CASE_ = chunk_length_s / 6 SCREAMING_SNAKE_CASE_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCAmelCase , (int, float) ): SCREAMING_SNAKE_CASE_ = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE_ = datetime.datetime.now() SCREAMING_SNAKE_CASE_ = datetime.timedelta(seconds=__UpperCAmelCase ) for item in chunk_bytes_iter(__UpperCAmelCase , __UpperCAmelCase , stride=(stride_left, stride_right) , stream=__UpperCAmelCase ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE_ = np.frombuffer(item['raw'] , dtype=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) SCREAMING_SNAKE_CASE_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple[int, int] , __UpperCAmelCase : bool = False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = b'' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) SCREAMING_SNAKE_CASE_ = 0 for raw in iterator: acc += raw if stream and len(__UpperCAmelCase ) < chunk_len: SCREAMING_SNAKE_CASE_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCAmelCase ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE_ = (_stride_left, stride_right) SCREAMING_SNAKE_CASE_ = {'raw': acc[:chunk_len], 'stride': stride} if stream: SCREAMING_SNAKE_CASE_ = False yield item SCREAMING_SNAKE_CASE_ = stride_left SCREAMING_SNAKE_CASE_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCAmelCase ) > stride_left: SCREAMING_SNAKE_CASE_ = {'raw': acc, 'stride': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE_ = False yield item def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 2**24 # 16Mo try: with subprocess.Popen(__UpperCAmelCase , stdout=subprocess.PIPE , bufsize=__UpperCAmelCase ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE_ = ffmpeg_process.stdout.read(__UpperCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
225
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Dict = "\\n Text data.\n Second line of data." _lowerCAmelCase : Any = "file" @pytest.fixture(scope='session' ) def UpperCamelCase_( _snake_case : List[Any] ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') __a =bytes(_snake_case , 'utf-8' ) with zstd.open(_snake_case , 'wb' ) as f: f.write(_snake_case ) return path @pytest.fixture def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , _snake_case ) , 'w' ) as f: f.write(_snake_case ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : str ): """simple docstring""" __a ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} __a =input_paths[compression_format] __a =tmp_path / 'cache' __a =DownloadConfig(cache_dir=_snake_case , extract_compressed_file=_snake_case ) __a =cached_path(_snake_case , download_config=_snake_case ) with open(_snake_case ) as f: __a =f.read() with open(_snake_case ) as f: __a =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : str , _snake_case : Dict , _snake_case : Any , _snake_case : Tuple ): """simple docstring""" __a ='custom_cache' __a ='custom_extracted_dir' __a =tmp_path / 'custom_extracted_path' if default_extracted: __a =('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _snake_case ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_snake_case ) ) __a =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a =xz_file __a =( DownloadConfig(extract_compressed_file=_snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_snake_case ) ) __a =cached_path(_snake_case , download_config=_snake_case ) assert Path(_snake_case ).parent.parts[-2:] == expected def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =str(Path(_snake_case ).resolve() ) assert cached_path(_snake_case ) == text_file # relative path __a =str(Path(_snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_snake_case ) == text_file def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_snake_case ): cached_path(_snake_case ) # relative path __a ='./__missing_file__.txt' with pytest.raises(_snake_case ): cached_path(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_from_cache(F'tmp://{tmpfs_file}' ) with open(_snake_case ) as f: __a =f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( ): """simple docstring""" with pytest.raises(_snake_case ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): http_get('https://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): ftp_get('ftp://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): fsspec_get('s3://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): fsspec_head('s3://huggingface.co' )
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests A: List[Any] = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user A: List[str] = BASE_URL + "/user" # https://github.com/settings/tokens A: Optional[Any] = os.environ.get("USER_TOKEN", "") def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Optional[Any] = { """Authorization""": F"token {auth_token}", """Accept""": """application/vnd.github.v3+json""", } return requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
109
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> list: '''simple docstring''' A__ = int(SCREAMING_SNAKE_CASE_ ) if n_element < 1: A__ = ValueError("a should be a positive number" ) raise my_error A__ = [1] A__ , A__ , A__ = (0, 0, 0) A__ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase__ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase__ = hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
68
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = 0 def A ( self : Dict ): """simple docstring""" UpperCamelCase = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ).to_dict() config_dict.pop('image_processor_type' ) UpperCamelCase = CLIPImageProcessor(**UpperCamelCase__ ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) config.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'clip-base is not a local folder and is not a valid model identifier' ): UpperCamelCase = AutoImageProcessor.from_pretrained('clip-base' ) def A ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ , revision='aaaaaa' ) def A ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def A ( self : Tuple ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def A ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register('custom' , UpperCamelCase__ ) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json' UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) ) UpperCamelCase = CustomImageProcessor.from_pretrained(UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase__ ) UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A ( self : Optional[int] ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = True try: AutoConfig.register('custom' , UpperCamelCase__ ) AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(UpperCamelCase__ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
249
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @staticmethod @abstractmethod def A ( UpperCamelCase__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def A ( self : str ): """simple docstring""" raise NotImplementedError()
249
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 48000, "sample_size": 65536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 48000, "sample_size": 65536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 48000, "sample_size": 131072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 16000, "sample_size": 65536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 16000, "sample_size": 65536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 16000, "sample_size": 65536, }, } def __UpperCAmelCase ( a_ , a_): return torch.atana(a_ , a_) / math.pi * 2 def __UpperCAmelCase ( a_): snake_case_ = torch.sin(t * math.pi / 2) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(a_ , a_) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' pass class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , a ) -> Union[str, Any]: super().__init__() snake_case_ = DiffusionAttnUnetaD(a , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=a ) def __UpperCAmelCase ( a_): snake_case_ = MODELS_MAP[model_name]['url'] os.system(f'''wget {url} ./''') return f'''./{model_name}.ckpt''' lowercase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } lowercase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } lowercase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } lowercase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } lowercase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } lowercase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __UpperCAmelCase ( a_): if name.startswith('skip'): return name.replace('skip' , RES_CONV_MAP['skip']) # name has to be of format main.{digit} if not name.startswith('main.'): raise ValueError(f'''ResConvBlock error with {name}''') return name.replace(name[:6] , RES_CONV_MAP[name[:6]]) def __UpperCAmelCase ( a_): for key, value in ATTN_MAP.items(): if name.startswith(a_) and not isinstance(a_ , a_): return name.replace(a_ , a_) elif name.startswith(a_): return [name.replace(a_ , a_) for v in value] raise ValueError(f'''Attn error with {name}''') def __UpperCAmelCase ( a_ , a_=13): snake_case_ = input_string if string.split('.')[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj') snake_case_ = 0 if string.startswith('net.3.'): depth += 1 snake_case_ = string[6:] elif string.startswith('net.'): snake_case_ = string[4:] while string.startswith('main.7.'): depth += 1 snake_case_ = string[7:] if string.startswith('main.'): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = 'mid_block' elif depth > 0 and int(a_) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = f'''down_blocks.{depth}''' elif depth > 0 and int(a_) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = f'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = f'''up_blocks.{max_depth - 1}''' if int(a_) > 3 else 'down_blocks.0' if not string_left.startswith('.'): raise ValueError(f'''Naming error with {input_string} and string_left: {string_left}.''') snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(a_) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(a_) snake_case_ = new_string_left if not isinstance(a_ , a_): snake_case_ = prefix + '.' + new_layer + '.' + string_left else: snake_case_ = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def __UpperCAmelCase ( a_): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('kernel'): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(a_) # check if we need to transform from Conv => Linear for attention if isinstance(a_ , a_): snake_case_ = transform_conv_attns(a_ , a_ , a_) else: snake_case_ = v return new_state_dict def __UpperCAmelCase ( a_ , a_ , a_): if len(a_) == 1: if len(v.shape) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3): if len(v.shape) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __UpperCAmelCase ( a_): snake_case_ = torch.device('cuda' if torch.cuda.is_available() else 'cpu') snake_case_ = args.model_path.split('/')[-1].split('.')[0] if not os.path.isfile(args.model_path): assert ( model_name == args.model_path ), f'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(a_) snake_case_ = MODELS_MAP[model_name]['sample_rate'] snake_case_ = MODELS_MAP[model_name]['sample_size'] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=a_ , sample_rate=a_) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(a_) orig_model.load_state_dict(torch.load(args.model_path , map_location=a_)['state_dict']) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(a_) snake_case_ = set(renamed_state_dict.keys()) - set(diffusers_state_dict.keys()) snake_case_ = set(diffusers_state_dict.keys()) - set(renamed_state_dict.keys()) assert len(a_) == 0, f'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('kernel') for k in list(a_)), f'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(a_) snake_case_ = 1_00 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=a_) snake_case_ = torch.manual_seed(a_) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=a_).to(a_) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=a_)[:-1] snake_case_ = get_crash_schedule(a_) snake_case_ = DanceDiffusionPipeline(unet=a_ , scheduler=a_) snake_case_ = torch.manual_seed(33) snake_case_ = pipe(num_inference_steps=a_ , generator=a_).audios snake_case_ = sampling.iplms_sample(a_ , a_ , a_ , {}) snake_case_ = generated.clamp(-1 , 1) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path) print('Diff sum' , a_) print('Diff max' , a_) assert diff_max < 1E-3, f'''Diff max: {diff_max} is too much :-/''' print(f'''Conversion for {model_name} successful!''') if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") lowercase = parser.parse_args() main(args)
178
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def __UpperCAmelCase ( a_ , a_ , a_=8): snake_case_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a , a , ) -> Tuple: super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCamelCase ( self , a , a , a , a , a , a ) -> Any: if latents is None: snake_case_ = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) snake_case_ = latents.to(a ) snake_case_ = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self , a=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) snake_case_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def _UpperCamelCase ( self , a=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case_ , snake_case_ = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. snake_case_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCamelCase ( self ) -> Any: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(a , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self , a , a , a , a = 5_12 , a = 5_12 , a = 1_00 , a = 4.0 , a = 1 , a = None , a = None , a = "pil" , a = True , ) -> List[str]: snake_case_ = self._execution_device snake_case_ = guidance_scale > 1.0 if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) snake_case_ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: snake_case_ = image_embeds.repeat_interleave(a , dim=0 ) snake_case_ = negative_image_embeds.repeat_interleave(a , dim=0 ) snake_case_ = hint.repeat_interleave(a , dim=0 ) snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) snake_case_ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) snake_case_ = self.scheduler.timesteps snake_case_ = self.movq.config.latent_channels snake_case_ , snake_case_ = downscale_height_and_width(a , a , self.movq_scale_factor ) # create initial latent snake_case_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = {'image_embeds': image_embeds, 'hint': hint} snake_case_ = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ , snake_case_ = noise_pred.chunk(2 ) snake_case_ , snake_case_ = variance_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing snake_case_ = self.movq.decode(a , force_not_quantize=a )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ = image * 0.5 + 0.5 snake_case_ = image.clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
178
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowercase : Optional[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : int ): warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , "sklearn" ) return (preds == labels).mean() def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , "sklearn" ) __UpperCamelCase : Dict = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : int = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase_ (_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ): warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , "sklearn" ) __UpperCamelCase : int = pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0] __UpperCamelCase : List[Any] = spearmanr(_lowerCAmelCase , _lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , "sklearn" ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), F'''Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ): warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , "sklearn" ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase )
171
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Dict = logging.get_logger(__name__) def UpperCAmelCase_ (_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ): __UpperCamelCase : Optional[int] = b.T __UpperCamelCase : List[str] = np.sum(np.square(_lowerCAmelCase ) , axis=1 ) __UpperCamelCase : Union[str, Any] = np.sum(np.square(_lowerCAmelCase ) , axis=0 ) __UpperCamelCase : Dict = np.matmul(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Dict = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCAmelCase_ (_lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __UpperCamelCase : Tuple = x.reshape(-1 , 3 ) __UpperCamelCase : List[str] = squared_euclidean_distance(_lowerCAmelCase , _lowerCAmelCase ) return np.argmin(_lowerCAmelCase , axis=1 ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[int] = ['pixel_values'] def __init__( self , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = True , **__UpperCamelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) __UpperCamelCase : List[str] = size if size is not None else {"height": 2_56, "width": 2_56} __UpperCamelCase : Optional[Any] = get_size_dict(__UpperCamelCase ) __UpperCamelCase : Optional[int] = np.array(__UpperCamelCase ) if clusters is not None else None __UpperCamelCase : int = do_resize __UpperCamelCase : Optional[int] = size __UpperCamelCase : List[str] = resample __UpperCamelCase : Any = do_normalize __UpperCamelCase : List[str] = do_color_quantize def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , ) -> np.ndarray: '''simple docstring''' __UpperCamelCase : Any = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __UpperCamelCase , size=(size["height"], size["width"]) , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , ) -> np.ndarray: '''simple docstring''' __UpperCamelCase : List[str] = rescale(image=__UpperCamelCase , scale=1 / 127.5 , data_format=__UpperCamelCase ) __UpperCamelCase : int = image - 1 return image def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCamelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCamelCase : Union[str, Any] = size if size is not None else self.size __UpperCamelCase : Union[str, Any] = get_size_dict(__UpperCamelCase ) __UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample __UpperCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase : Union[str, Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCamelCase : List[str] = clusters if clusters is not None else self.clusters __UpperCamelCase : Any = np.array(__UpperCamelCase ) __UpperCamelCase : Tuple = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. __UpperCamelCase : Optional[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: __UpperCamelCase : int = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_normalize: __UpperCamelCase : Optional[int] = [self.normalize(image=__UpperCamelCase ) for image in images] if do_color_quantize: __UpperCamelCase : List[str] = [to_channel_dimension_format(__UpperCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCamelCase : str = np.array(__UpperCamelCase ) __UpperCamelCase : List[str] = color_quantize(__UpperCamelCase , __UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCamelCase : List[Any] = images.shape[0] __UpperCamelCase : List[Any] = images.reshape(__UpperCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCamelCase : Tuple = list(__UpperCamelCase ) else: __UpperCamelCase : List[Any] = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] __UpperCamelCase : int = {"input_ids": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
171
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] =parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to the HuggingFace Datasets folder.") train_parser.set_defaults(func=UpperCAmelCase_) def __init__(self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , *UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: str =get_logger("datasets-cli/converting") lowerCamelCase__: Tuple =tfds_path lowerCamelCase__: Union[str, Any] =datasets_directory def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' if os.path.isdir(self._tfds_path): lowerCamelCase__: Dict =os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): lowerCamelCase__: Any =os.path.dirname(self._tfds_path) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path.") lowerCamelCase__: Any =os.path.abspath(self._datasets_directory) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""") lowerCamelCase__: List[str] =[] lowerCamelCase__: Optional[int] =[] lowerCamelCase__: int ={} if os.path.isdir(self._tfds_path): lowerCamelCase__: Tuple =os.listdir(UpperCAmelCase_) else: lowerCamelCase__: int =[os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""") lowerCamelCase__: Tuple =os.path.join(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_) if not os.path.isfile(UpperCAmelCase_) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file") continue with open(UpperCAmelCase_ , encoding="utf-8") as f: lowerCamelCase__: Union[str, Any] =f.readlines() lowerCamelCase__: int =[] lowerCamelCase__: Any =False lowerCamelCase__: int =False lowerCamelCase__: int =[] for line in lines: lowerCamelCase__: List[Any] =line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowerCamelCase__: List[Any] ="import datasets\n" elif "import tensorflow" in out_line: # order is important here lowerCamelCase__: Union[str, Any] ="" continue elif "from absl import logging" in out_line: lowerCamelCase__: Tuple ="from datasets import logging\n" elif "getLogger" in out_line: lowerCamelCase__: List[str] =out_line.replace("getLogger" , "get_logger") elif any(expression in out_line for expression in TO_HIGHLIGHT): lowerCamelCase__: str =True lowerCamelCase__: List[Any] =list(filter(lambda UpperCAmelCase_: e in out_line , UpperCAmelCase_)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCAmelCase_) + "\n") out_lines.append(UpperCAmelCase_) out_lines.append(UpperCAmelCase_) continue else: for pattern, replacement in TO_CONVERT: lowerCamelCase__: Dict =re.sub(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowerCamelCase__: Any =re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , UpperCAmelCase_) tfds_imports.extend(imp.strip() for imp in match.group(1).split(",")) lowerCamelCase__: Any ="from . import " + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowerCamelCase__: Optional[int] =True out_lines.append(UpperCAmelCase_) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowerCamelCase__: Tuple =f_name.replace(".py" , "") lowerCamelCase__: Optional[int] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) self._logger.info(F"""Adding directory {output_dir}""") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(UpperCAmelCase_) if needs_manual_update: with_manual_update.append(UpperCAmelCase_) with open(UpperCAmelCase_ , "w" , encoding="utf-8") as f: f.writelines(UpperCAmelCase_) self._logger.info(F"""Converted in {output_file}""") for utils_file in utils_files: try: lowerCamelCase__: Union[str, Any] =os.path.basename(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =imports_to_builder_map[f_name.replace(".py" , "")] self._logger.info(F"""Moving {dest_folder} to {utils_file}""") shutil.copy(UpperCAmelCase_ , UpperCAmelCase_) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""") if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""")
10
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : int , lowercase : int=1024 , lowercase : int=1024 , lowercase : Tuple=False , **lowercase : Optional[int] ) -> Union[str, Any]: _a = AutoTokenizer.from_pretrained(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="train" , **lowercase ) _a = tok.pad_token_id def get_lens(lowercase : Optional[int] ): _a = tqdm( DataLoader(lowercase , batch_size=512 , num_workers=8 , shuffle=lowercase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _a = [] for batch in dl: _a = batch["input_ids"].ne(lowercase ).sum(1 ).tolist() _a = batch["labels"].ne(lowercase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase , lowercase ): max_lens.append(max(lowercase , lowercase ) ) else: max_lens.extend(lowercase ) return max_lens _a = get_lens(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="val" , **lowercase ) _a = get_lens(lowercase ) pickle_save(lowercase , train_ds.len_file ) pickle_save(lowercase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
63
0
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> int: if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase , lowercase ): raise TypeError("Input value must be a 'int' type" ) return bin(lowercase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : int = '▁' lowerCAmelCase_ : Optional[Any] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCAmelCase_ : Optional[int] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCAmelCase_ : List[str] = { 'facebook/s2t-small-librispeech-asr': 10_24, } lowerCAmelCase_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCAmelCase_ : Union[str, Any] = {'mustc': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =MAX_MODEL_INPUT_SIZES __a =['input_ids', 'attention_mask'] __a =[] def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Any="<s>" , __a : List[str]="</s>" , __a : str="<pad>" , __a : List[str]="<unk>" , __a : Union[str, Any]=False , __a : Any=False , __a : List[str]=None , __a : Optional[int]=None , __a : Optional[Dict[str, Any]] = None , **__a : int , ): _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _a = do_upper_case _a = do_lower_case _a = load_json(__a ) _a = {v: k for k, v in self.encoder.items()} _a = spm_file _a = load_spm(__a , self.sp_model_kwargs ) if lang_codes is not None: _a = lang_codes _a = LANGUAGES[lang_codes] _a = [f'<lang:{lang}>' for lang in self.langs] _a = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} _a = self.lang_tokens _a = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _a = {} @property def UpperCamelCase__ ( self : str ): return len(self.encoder ) @property def UpperCamelCase__ ( self : str ): return self._tgt_lang @tgt_lang.setter def UpperCamelCase__ ( self : Optional[int] , __a : Any ): _a = new_tgt_lang self.set_tgt_lang_special_tokens(__a ) def UpperCamelCase__ ( self : List[Any] , __a : str ): _a = self.lang_code_to_id[tgt_lang] _a = [lang_code_id] def UpperCamelCase__ ( self : Dict , __a : str ): return self.sp_model.encode(__a , out_type=__a ) def UpperCamelCase__ ( self : List[str] , __a : Any ): return self.encoder.get(__a , self.encoder[self.unk_token] ) def UpperCamelCase__ ( self : str , __a : int ): return self.decoder.get(__a , self.unk_token ) def UpperCamelCase__ ( self : str , __a : List[str] ): _a = [] _a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _a = self.sp_model.decode(__a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _a = [] else: current_sub_tokens.append(__a ) _a = self.sp_model.decode(__a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCamelCase__ ( self : int , __a : Any , __a : int=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) _a = [1] * len(self.prefix_tokens ) _a = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): _a = self.__dict__.copy() _a = None return state def __setstate__( self : str , __a : Dict ): _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ): _a = Path(__a ) assert save_dir.is_dir(), f'{save_directory} should be a directory' _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __a ) if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __a ) elif not os.path.isfile(self.spm_file ): with open(__a , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__a ) return (str(__a ), str(__a )) def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _a = sentencepiece.SentencePieceProcessor(**lowercase ) spm.Load(str(lowercase ) ) return spm def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]: with open(lowercase , "r" ) as f: return json.load(lowercase ) def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> None: with open(lowercase , "w" ) as f: json.dump(lowercase , lowercase , indent=2 )
346
1
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase_ ( __lowercase ): UpperCamelCase_ : Union[str, Any] = "naver-clova-ix/donut-base-finetuned-docvqa" UpperCamelCase_ : str = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) UpperCamelCase_ : str = "document_qa" UpperCamelCase_ : str = AutoProcessor UpperCamelCase_ : List[Any] = VisionEncoderDecoderModel UpperCamelCase_ : List[Any] = ["image", "text"] UpperCamelCase_ : Optional[Any] = ["text"] def __init__( self : List[str] , *A__ : str , **A__ : str ) -> Optional[Any]: if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*A__ , **A__ ) def UpperCamelCase_ ( self : Optional[int] , A__ : "Image" , A__ : str ) -> Optional[int]: _snake_case = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _snake_case = task_prompt.replace('''{user_input}''' , A__ ) _snake_case = self.pre_processor.tokenizer( A__ , add_special_tokens=A__ , return_tensors='''pt''' ).input_ids _snake_case = self.pre_processor(A__ , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase_ ( self : Optional[int] , A__ : Tuple ) -> Tuple: return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=A__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=A__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=A__ , ).sequences def UpperCamelCase_ ( self : Union[str, Any] , A__ : Dict ) -> List[str]: _snake_case = self.pre_processor.batch_decode(A__ )[0] _snake_case = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _snake_case = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _snake_case = re.sub(R'''<.*?>''' , '''''' , A__ , count=1 ).strip() # remove first task start token _snake_case = self.pre_processor.tokenajson(A__ ) return sequence["answer"]
278
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A = logging.get_logger(__name__) class lowercase_ ( __lowercase ): def __init__( self : Optional[Any] , *A__ : List[Any] , **A__ : int ) -> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , A__ , ) super().__init__(*A__ , **A__ )
278
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } a_ = { 'roberta-base': 5_1_2, 'roberta-large': 5_1_2, 'roberta-large-mnli': 5_1_2, 'distilroberta-base': 5_1_2, 'roberta-base-openai-detector': 5_1_2, 'roberta-large-openai-detector': 5_1_2, } class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =["input_ids", "attention_mask"] UpperCamelCase =RobertaTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , UpperCamelCase_=True , **UpperCamelCase_ , ) -> Optional[Any]: super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: __lowercase : Union[str, Any] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) __lowercase : Optional[int] = add_prefix_space __lowercase : Optional[int] = pre_tok_class(**UpperCamelCase_ ) __lowercase : int = add_prefix_space __lowercase : List[Any] = '''post_processor''' __lowercase : Union[str, Any] = getattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) if tokenizer_component_instance: __lowercase : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowercase : Tuple = tuple(state['''sep'''] ) if "cls" in state: __lowercase : Union[str, Any] = tuple(state['''cls'''] ) __lowercase : str = False if state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: __lowercase : Union[str, Any] = add_prefix_space __lowercase : Optional[Any] = True if state.get('''trim_offsets''' , UpperCamelCase_ ) != trim_offsets: __lowercase : Any = trim_offsets __lowercase : str = True if changes_to_apply: __lowercase : Any = getattr(UpperCamelCase_ , state.pop('''type''' ) ) __lowercase : Optional[Any] = component_class(**UpperCamelCase_ ) setattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) @property def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[Any]: __lowercase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else value __lowercase : List[str] = value def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> BatchEncoding: __lowercase : Optional[int] = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> BatchEncoding: __lowercase : int = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: __lowercase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ) -> Dict: __lowercase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: __lowercase : Optional[Any] = [self.sep_token_id] __lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
249
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase =StableDiffusionDiffEditPipeline UpperCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} UpperCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} UpperCamelCase =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase =frozenset([] ) def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) __lowercase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowercase : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) __lowercase : Optional[int] = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_zero=UpperCamelCase_ , ) torch.manual_seed(0 ) __lowercase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowercase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) __lowercase : Optional[int] = CLIPTextModel(UpperCamelCase_ ) __lowercase : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase : str = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Any: __lowercase : Any = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : List[Any] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : Any = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> int: __lowercase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : List[Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : List[str] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : int = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Union[str, Any]: __lowercase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : Any = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return __lowercase : Optional[int] = self.get_dummy_components() __lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __lowercase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ ) __lowercase : Any = pipe(**UpperCamelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase_ ) __lowercase : Tuple = self.pipeline_class.from_pretrained(UpperCamelCase_ ) pipe_loaded.to(UpperCamelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase_ , UpperCamelCase_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase : List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) __lowercase : Any = pipe_loaded(**UpperCamelCase_ )[0] __lowercase : Any = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase_ , 1E-4 ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : int = '''cpu''' __lowercase : Optional[int] = self.get_dummy_components() __lowercase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : str = self.get_dummy_mask_inputs(UpperCamelCase_ ) __lowercase : int = pipe.generate_mask(**UpperCamelCase_ ) __lowercase : Any = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __lowercase : List[Any] = np.array([0] * 9 ) __lowercase : str = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowerCamelCase ( self ) -> str: __lowercase : Optional[int] = '''cpu''' __lowercase : Dict = self.get_dummy_components() __lowercase : str = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : int = self.get_dummy_inversion_inputs(UpperCamelCase_ ) __lowercase : List[str] = pipe.invert(**UpperCamelCase_ ).images __lowercase : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowercase : Any = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __lowercase : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _lowerCamelCase ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _lowerCamelCase ( self ) -> str: __lowercase : Union[str, Any] = '''cpu''' __lowercase : str = self.get_dummy_components() __lowercase : Any = {'''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''beta_schedule''': '''scaled_linear'''} __lowercase : str = DPMSolverMultistepScheduler(**UpperCamelCase_ ) __lowercase : List[str] = DPMSolverMultistepInverseScheduler(**UpperCamelCase_ ) __lowercase : int = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : str = self.get_dummy_inversion_inputs(UpperCamelCase_ ) __lowercase : str = pipe.invert(**UpperCamelCase_ ).images __lowercase : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowercase : Union[str, Any] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __lowercase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowerCamelCase ( cls ) -> Optional[Any]: __lowercase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) __lowercase : Optional[int] = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) __lowercase : Any = raw_image def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : str = torch.manual_seed(0 ) __lowercase : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) __lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) __lowercase : Dict = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : Tuple = '''a bowl of fruit''' __lowercase : int = '''a bowl of pears''' __lowercase : str = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) __lowercase : Dict = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ ).latents __lowercase : Optional[int] = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] __lowercase : int = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _lowerCamelCase ( self ) -> Tuple: __lowercase : Union[str, Any] = torch.manual_seed(0 ) __lowercase : Dict = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) __lowercase : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : List[str] = '''a bowl of fruit''' __lowercase : Union[str, Any] = '''a bowl of pears''' __lowercase : int = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) __lowercase : List[Any] = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ , num_inference_steps=25 , ).latents __lowercase : Optional[int] = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] __lowercase : Union[str, Any] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
249
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _A = logging.getLogger() def lowercase_ ( ): lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowerCAmelCase__ : Any = parser.parse_args() return args.f class _lowerCamelCase ( a_ ): def _lowerCAmelCase ( self : List[str] ) -> None: """simple docstring""" lowerCAmelCase__ : str = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(lowercase_ , """argv""" , lowercase_ ): lowerCAmelCase__ : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.666 ) @slow @require_torch_non_multi_gpu def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = """\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n """.split() self.run_and_check(lowercase_ ) lowerCAmelCase__ : Optional[int] = """\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n """.split() self.run_and_check(lowercase_ ) lowerCAmelCase__ : Tuple = """\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n """.split() self.run_and_check(lowercase_ )
364
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
212
0
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=[0, 1, 2, 3] , ): """simple docstring""" UpperCAmelCase__ : Optional[int] = parent UpperCAmelCase__ : List[str] = 100 UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : Tuple = image_size UpperCAmelCase__ : Optional[Any] = patch_size UpperCAmelCase__ : Optional[int] = num_channels UpperCAmelCase__ : str = is_training UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = type_sequence_label_size UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Dict = scope UpperCAmelCase__ : Union[str, Any] = out_indices UpperCAmelCase__ : Any = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : Dict = (image_size // patch_size) ** 2 UpperCAmelCase__ : Dict = num_patches + 1 def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : int = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels, pixel_labels def _a (self ): """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = BeitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Any = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = BeitForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : str = self.type_sequence_label_size UpperCAmelCase__ : Optional[Any] = BeitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.num_labels UpperCAmelCase__ : Any = BeitForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : List[str] = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BeitModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a (self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def _a (self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : int = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) def _a (self ): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowerCamelCase ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Tuple = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : Any = model(**_lowerCamelCase ).loss loss.backward() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowerCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : Dict = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : Any = model(**_lowerCamelCase ).loss loss.backward() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _a (self ): """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Any = BeitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def a__ ( ) -> List[Any]: UpperCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a (self ): """simple docstring""" return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : int = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase ) # prepare bool_masked_pos UpperCAmelCase__ : Optional[int] = torch.ones((1, 196) , dtype=torch.bool ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : int = model(pixel_values=_lowerCamelCase , bool_masked_pos=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = outputs.logits # verify the logits UpperCAmelCase__ : Optional[int] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowerCamelCase , atol=1e-2 ) ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(_lowerCamelCase ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = outputs.logits # verify the logits UpperCAmelCase__ : Tuple = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCAmelCase__ : int = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) UpperCAmelCase__ : Union[str, Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( _lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : int = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**_lowerCamelCase ) UpperCAmelCase__ : List[str] = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 21841) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2396 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) UpperCAmelCase__ : Dict = model.to(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = BeitImageProcessor(do_resize=_lowerCamelCase , size=640 , do_center_crop=_lowerCamelCase ) UpperCAmelCase__ : int = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) UpperCAmelCase__ : Tuple = Image.open(ds[0]["""file"""] ) UpperCAmelCase__ : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase__ : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCAmelCase__ : Dict = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: UpperCAmelCase__ : Tuple = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=_lowerCamelCase , ) else: UpperCAmelCase__ : List[str] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) UpperCAmelCase__ : str = model.to(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = BeitImageProcessor(do_resize=_lowerCamelCase , size=640 , do_center_crop=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["""file"""] ) UpperCAmelCase__ : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_lowerCamelCase ) UpperCAmelCase__ : Dict = outputs.logits.detach().cpu() UpperCAmelCase__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(500, 300)] ) UpperCAmelCase__ : Union[str, Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase ) UpperCAmelCase__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ) UpperCAmelCase__ : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase )
171
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCAmelCase__ : int = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : int = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = """sgugger/tiny-distilbert-classification""" UpperCAmelCase__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , only_pretrain_model=_lowerCamelCase , ) UpperCAmelCase__ : Tuple = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , torchscript=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , fpaa=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : List[str] = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Dict = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : List[Any] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : int = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCamelCase , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : List[Any] = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Tuple = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = """sshleifer/tinier_bart""" UpperCAmelCase__ : str = AutoConfig.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : int = AutoConfig.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """sshleifer/tinier_bart""" UpperCAmelCase__ : int = AutoConfig.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Dict = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , save_to_csv=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCamelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_lowerCamelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_lowerCamelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_lowerCamelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(_lowerCamelCase , """env.csv""" ) , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Dict = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """env.csv""" ) ).exists() ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCamelCase ): self.assertTrue(hasattr(_lowerCamelCase , """sequential""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """cumulative""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """current""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCamelCase , """log.txt""" ) , log_print=_lowerCamelCase , trace_memory_line_by_line=_lowerCamelCase , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """log.txt""" ) ).exists() )
171
1
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
lowerCamelCase_ = 6_5_5_2_1 def lowerCamelCase ( a_ ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for plain_chr in plain_text: lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER lowerCAmelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""Input value must be a 'int' type""" ) return bin(SCREAMING_SNAKE_CASE__ ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) UpperCAmelCase__ = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples["""text"""] ) return fn def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = [] for i in range(len(tokenized_data["""input_ids"""] ) ): UpperCAmelCase__ = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE__ : int ): # Concatenate all texts. UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCAmelCase__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCAmelCase__ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size] UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase__ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = parse_args() main(args)
346
1
import numpy as np a__: Tuple = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class SCREAMING_SNAKE_CASE__ : def __init__( self ): A__ = np.array(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = np.where(letter == self.SQUARE ) A__ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCamelCase ( self,__lowerCamelCase ): A__ = message.lower() A__ = message.replace(''' ''','''''' ) A__ = message.replace('''j''','''i''' ) A__ = np.empty((2, len(__lowerCamelCase )) ) for letter_index in range(len(__lowerCamelCase ) ): A__ = self.letter_to_numbers(message[letter_index] ) A__ = numbers[0] A__ = numbers[1] A__ = first_step.reshape(2 * len(__lowerCamelCase ) ) A__ = '''''' for numbers_index in range(len(__lowerCamelCase ) ): A__ = int(second_step[numbers_index * 2] ) A__ = int(second_step[(numbers_index * 2) + 1] ) A__ = self.numbers_to_letter(__lowerCamelCase,__lowerCamelCase ) A__ = encoded_message + letter return encoded_message def UpperCamelCase ( self,__lowerCamelCase ): A__ = message.lower() message.replace(''' ''','''''' ) A__ = np.empty(2 * len(__lowerCamelCase ) ) for letter_index in range(len(__lowerCamelCase ) ): A__ = self.letter_to_numbers(message[letter_index] ) A__ = numbers[0] A__ = numbers[1] A__ = first_step.reshape((2, len(__lowerCamelCase )) ) A__ = '''''' for numbers_index in range(len(__lowerCamelCase ) ): A__ = int(second_step[0, numbers_index] ) A__ = int(second_step[1, numbers_index] ) A__ = self.numbers_to_letter(__lowerCamelCase,__lowerCamelCase ) A__ = decoded_message + letter return decoded_message
355
import os import sys a__: int = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) a__: Union[str, Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] )->Any: return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Any )->Dict: return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any] )->int: return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : int , **UpperCamelCase__ : Union[str, Any] )->Any: return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] )->int: return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Any )->Optional[Any]: return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase__( *UpperCamelCase__ : Any , **UpperCamelCase__ : Union[str, Any] )->Tuple: return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
39
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _A = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _A = { '''unc-nlp/lxmert-base-uncased''': 512, } _A = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class A ( __UpperCAmelCase ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = LxmertTokenizer def __init__( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=True, UpperCamelCase__="[UNK]", UpperCamelCase__="[SEP]", UpperCamelCase__="[PAD]", UpperCamelCase__="[CLS]", UpperCamelCase__="[MASK]", UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__( UpperCamelCase__, tokenizer_file=UpperCamelCase__, do_lower_case=UpperCamelCase__, unk_token=UpperCamelCase__, sep_token=UpperCamelCase__, pad_token=UpperCamelCase__, cls_token=UpperCamelCase__, mask_token=UpperCamelCase__, tokenize_chinese_chars=UpperCamelCase__, strip_accents=UpperCamelCase__, **UpperCamelCase__, ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', UpperCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''', UpperCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', UpperCamelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ = getattr(UpperCamelCase__, normalizer_state.pop('''type''' ) ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = strip_accents lowerCAmelCase_ = tokenize_chinese_chars lowerCAmelCase_ = normalizer_class(**UpperCamelCase__ ) lowerCAmelCase_ = do_lower_case def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = self._tokenizer.model.save(UpperCamelCase__, name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
278
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase ( _A ): lowerCAmelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] lowerCAmelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCAmelCase_ = [4, 4, 4, 4] lowerCAmelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] else: lowerCAmelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCAmelCase_ = 96 elif "small" in model_name: lowerCAmelCase_ = 96 elif "base" in model_name: lowerCAmelCase_ = 128 elif "large" in model_name: lowerCAmelCase_ = 192 elif "xlarge" in model_name: lowerCAmelCase_ = 256 elif "huge" in model_name: lowerCAmelCase_ = 352 # set label information lowerCAmelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCAmelCase_ = '''imagenet-22k-id2label.json''' else: lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = FocalNetConfig( embed_dim=_A , depths=_A , focal_levels=_A , focal_windows=_A , use_conv_embed=_A , idalabel=_A , labelaid=_A , use_post_layernorm=_A , use_layerscale=_A , ) return config def __UpperCamelCase ( _A ): if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowerCAmelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCAmelCase_ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowerCAmelCase_ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowerCAmelCase_ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCAmelCase_ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCAmelCase_ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCAmelCase_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowerCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ = '''layernorm.bias''' if "head" in name: lowerCAmelCase_ = name.replace('''head''' , '''classifier''' ) else: lowerCAmelCase_ = '''focalnet.''' + name return name def __UpperCamelCase ( _A , _A , _A=False ): # fmt: off lowerCAmelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCAmelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _A ) lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ = state_dict.pop(_A ) lowerCAmelCase_ = val lowerCAmelCase_ = get_focalnet_config(_A ) lowerCAmelCase_ = FocalNetForImageClassification(_A ) model.eval() # load state dict model.load_state_dict(_A ) # verify conversion lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = BitImageProcessor( do_resize=_A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_A , crop_size=224 , do_normalize=_A , image_mean=_A , image_std=_A , ) lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' ) lowerCAmelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCAmelCase_ = image_transforms(_A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _A , atol=1E-4 ) lowerCAmelCase_ = model(**_A ) lowerCAmelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCAmelCase_ = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowerCAmelCase_ = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowerCAmelCase_ = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowerCAmelCase_ = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowerCAmelCase_ = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowerCAmelCase_ = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) _A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
1
def UpperCamelCase ( _a , _a ) -> Union[str, Any]: '''simple docstring''' lowercase_ :List[Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase_ :Optional[Any] = n - k # Calculate C(n,k) for i in range(_a ): result *= n - i result //= i + 1 return result def UpperCamelCase ( _a ) -> str: '''simple docstring''' return binomial_coefficient(2 * node_count , _a ) // (node_count + 1) def UpperCamelCase ( _a ) -> int: '''simple docstring''' if n < 0: raise ValueError('''factorial() not defined for negative values''' ) lowercase_ :str = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase ( _a ) -> int: '''simple docstring''' return catalan_number(_a ) * factorial(_a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f"Given {node_count} nodes, there are {binary_tree_count(node_count)} " f"binary trees and {catalan_number(node_count)} binary search trees." )
356
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' return getitem, k def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' return setitem, k, v def UpperCamelCase ( _a ) -> int: '''simple docstring''' return delitem, k def UpperCamelCase ( _a , _a , *_a ) -> Any: '''simple docstring''' try: return fun(_a , *_a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : List[Any] = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) SCREAMING_SNAKE_CASE : Tuple = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] SCREAMING_SNAKE_CASE : Any = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] SCREAMING_SNAKE_CASE : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def UpperCamelCase ( _a ) -> List[str]: '''simple docstring''' lowercase_ :Optional[Any] = HashMap(initial_block_size=4 ) lowercase_ :Optional[int] = {} for _, (fun, *args) in enumerate(_a ): lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a ) lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a ) assert my_res == py_res assert str(_a ) == str(_a ) assert set(_a ) == set(_a ) assert len(_a ) == len(_a ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' def is_public(_a ) -> bool: return not name.startswith('''_''' ) lowercase_ :Dict = {name for name in dir({} ) if is_public(_a )} lowercase_ :Dict = {name for name in dir(HashMap() ) if is_public(_a )} assert dict_public_names > hash_public_names
252
0
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): # This function is recursive __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __SCREAMING_SNAKE_CASE : Dict = array[0] __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : Dict = [element for element in array[i:] if element >= array[i]] __SCREAMING_SNAKE_CASE : Optional[Any] = longest_subsequence(lowercase__ ) if len(lowercase__ ) > len(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = temp_array else: i += 1 __SCREAMING_SNAKE_CASE : Dict = [element for element in array[1:] if element >= pivot] __SCREAMING_SNAKE_CASE : Tuple = [pivot, *longest_subsequence(lowercase__ )] if len(lowercase__ ) > len(lowercase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
9
from __future__ import annotations import math lowerCamelCase__ = """2020.9.26""" lowerCamelCase__ = """xcodz-dot, cclaus, dhruvmanila""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[float, float]: if not all(isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ) for val in locals().values() ): lowerCAmelCase__ : List[str] = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = ((x * distance) / (z + distance)) * scale lowerCAmelCase__ : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[float, float, float]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('Axis must be a str' ) lowerCAmelCase__ : Optional[int] = locals() del input_variables["axis"] if not all(isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ) for val in input_variables.values() ): lowerCAmelCase__ : List[Any] = ( 'Input values except axis must either be float or int: ' F'''{list(input_variables.values() )}''' ) raise TypeError(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = (angle % 360) / 450 * 180 / math.pi if axis == "z": lowerCAmelCase__ : Tuple = x * math.cos(SCREAMING_SNAKE_CASE_ ) - y * math.sin(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = y * math.cos(SCREAMING_SNAKE_CASE_ ) + x * math.sin(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = z elif axis == "x": lowerCAmelCase__ : Dict = y * math.cos(SCREAMING_SNAKE_CASE_ ) - z * math.sin(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = z * math.cos(SCREAMING_SNAKE_CASE_ ) + y * math.sin(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = x elif axis == "y": lowerCAmelCase__ : str = x * math.cos(SCREAMING_SNAKE_CASE_ ) - z * math.sin(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = z * math.cos(SCREAMING_SNAKE_CASE_ ) + x * math.sin(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
212
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): a_ : Dict = """pixel_values""" a_ : Optional[int] = False a_ : str = TimmBackboneConfig def __init__( self , __UpperCAmelCase , **__UpperCAmelCase) ->List[Any]: requires_backends(self , "timm") super().__init__(__UpperCAmelCase) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''') if hasattr(__UpperCAmelCase , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(__UpperCAmelCase , "use_pretrained_backbone" , __UpperCAmelCase) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(__UpperCAmelCase , "out_indices" , __UpperCAmelCase) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=__UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCAmelCase , **__UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(__UpperCAmelCase) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(__UpperCAmelCase) @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) ->Union[str, Any]: requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , __UpperCAmelCase) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=__UpperCAmelCase , num_channels=__UpperCAmelCase , features_only=__UpperCAmelCase , use_pretrained_backbone=__UpperCAmelCase , out_indices=__UpperCAmelCase , ) return super()._from_config(__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[Any]: pass def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase) ->Union[BackboneOutput, Tuple[Tensor, ...]]: a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(__UpperCAmelCase , **__UpperCAmelCase) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(__UpperCAmelCase , **__UpperCAmelCase) a_ = None a_ = tuple(__UpperCAmelCase) a_ = tuple(__UpperCAmelCase) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=__UpperCAmelCase , hidden_states=__UpperCAmelCase , attentions=__UpperCAmelCase)
362
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
0
from __future__ import annotations import queue class UpperCamelCase_ : '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : str) ->Tuple: '''simple docstring''' A__ = data A__ = None A__ = None def SCREAMING_SNAKE_CASE ( ) -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) A__ = input('''Enter the value of the root node: ''' ).strip().lower() A__ = queue.Queue() A__ = TreeNode(int(lowercase_ ) ) q.put(lowercase_ ) while not q.empty(): A__ = q.get() A__ = f"""Enter the left node of {node_found.data}: """ A__ = input(lowercase_ ).strip().lower() or '''n''' if check == "n": return tree_node A__ = TreeNode(int(lowercase_ ) ) A__ = left_node q.put(lowercase_ ) A__ = f"""Enter the right node of {node_found.data}: """ A__ = input(lowercase_ ).strip().lower() or '''n''' if check == "n": return tree_node A__ = TreeNode(int(lowercase_ ) ) A__ = right_node q.put(lowercase_ ) raise def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = queue.Queue() q.put(lowercase_ ) while not q.empty(): A__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = queue.Queue() q.put(lowercase_ ) while not q.empty(): A__ = [] while not q.empty(): A__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = [] A__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(lowercase_ ) A__ = n.left # end of while means current node doesn't have left child A__ = stack.pop() # start to traverse its right child A__ = n.right def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = [] A__ = node while n or stack: while n: stack.append(lowercase_ ) A__ = n.left A__ = stack.pop() print(n.data , end=''',''' ) A__ = n.right def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ , A__ = [], [] A__ = node stacka.append(lowercase_ ) while stacka: # to find the reversed order of post order, store it in stack2 A__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def SCREAMING_SNAKE_CASE ( lowercase_ = "" , lowercase_=50 , lowercase_="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char A__ , A__ = divmod(width - len(lowercase_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) _lowerCamelCase : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
1
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def __lowerCAmelCase (_UpperCamelCase ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowerCAmelCase : Optional[Any] = k.replace(_UpperCamelCase , _UpperCamelCase ) if k.startswith('encoder' ): __lowerCAmelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) __lowerCAmelCase : str = k.replace('norm1' , 'self_attn_layer_norm' ) __lowerCAmelCase : List[Any] = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __lowerCAmelCase : int = k.replace('norm1' , 'self_attn_layer_norm' ) __lowerCAmelCase : List[Any] = k.replace('norm2' , 'encoder_attn_layer_norm' ) __lowerCAmelCase : List[Any] = k.replace('norm3' , 'final_layer_norm' ) return k def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Dict = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __lowerCAmelCase : Union[str, Any] = sd.pop(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __lowerCAmelCase : Tuple = v lowerCamelCase__ = ["""START"""] @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[int] = torch.load(_UpperCamelCase , map_location='cpu' ) __lowerCAmelCase : Optional[Any] = model['model'] __lowerCAmelCase : Optional[int] = BlenderbotConfig.from_json_file(_UpperCamelCase ) __lowerCAmelCase : Any = BlenderbotForConditionalGeneration(_UpperCamelCase ) __lowerCAmelCase : List[str] = m.model.state_dict().keys() __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowerCAmelCase : Optional[Any] = rename_state_dict_key(_UpperCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __lowerCAmelCase : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_UpperCamelCase ) m.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) m.half() m.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCamelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
362
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class A__ ( _lowerCamelCase): A_ : str = 'nllb-moe' A_ : Optional[Any] = ['past_key_values'] A_ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=12_81_12 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_28 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : int = vocab_size __lowerCAmelCase : str = max_position_embeddings __lowerCAmelCase : Dict = d_model __lowerCAmelCase : Tuple = encoder_ffn_dim __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Any = encoder_attention_heads __lowerCAmelCase : Tuple = decoder_ffn_dim __lowerCAmelCase : Dict = decoder_layers __lowerCAmelCase : str = decoder_attention_heads __lowerCAmelCase : str = dropout __lowerCAmelCase : List[str] = attention_dropout __lowerCAmelCase : Optional[int] = activation_dropout __lowerCAmelCase : List[Any] = activation_function __lowerCAmelCase : List[str] = init_std __lowerCAmelCase : Union[str, Any] = encoder_layerdrop __lowerCAmelCase : List[Any] = decoder_layerdrop __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : Union[str, Any] = router_z_loss_coef __lowerCAmelCase : Optional[Any] = router_aux_loss_coef __lowerCAmelCase : int = decoder_sparse_step __lowerCAmelCase : str = encoder_sparse_step __lowerCAmelCase : Tuple = num_experts __lowerCAmelCase : Dict = expert_capacity __lowerCAmelCase : Union[str, Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowerCAmelCase : Union[str, Any] = router_dtype __lowerCAmelCase : Any = router_ignore_padding_tokens __lowerCAmelCase : str = batch_prioritized_routing __lowerCAmelCase : Tuple = second_expert_policy __lowerCAmelCase : List[str] = normalize_router_prob_before_dropping __lowerCAmelCase : Dict = moe_eval_capacity_token_fraction __lowerCAmelCase : Union[str, Any] = moe_token_dropout __lowerCAmelCase : List[Any] = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
182
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[Any] = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' snake_case_ = 1 for i in range(1, num + 1 ): fact *= i return fact def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = 0 while number > 0: snake_case_ = number % 10 sum_of_digits += last_digit snake_case_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def __magic_name__ ( __UpperCAmelCase = 100 ) -> str: '''simple docstring''' snake_case_ = factorial(lowerCAmelCase__ ) snake_case_ = split_and_add(lowerCAmelCase__ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
365
'''simple docstring''' from datetime import datetime import requests def __magic_name__ ( __UpperCAmelCase ) -> bytes: '''simple docstring''' snake_case_ = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' snake_case_ = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(__UpperCAmelCase ).content if __name__ == "__main__": a : Optional[Any] = input('Enter Video/IGTV url: ').strip() a : Union[str, Any] = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
72
0
"""simple docstring""" import os import sys _a : List[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _a : Optional[Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : Optional[Any] ) -> Any: return AutoConfig.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : int ) -> List[str]: return AutoTokenizer.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Any ,**_lowerCamelCase : str ) -> Any: return AutoModel.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : List[Any] ) -> Dict: return AutoModelForCausalLM.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[Any] ,**_lowerCamelCase : Optional[int] ) -> Union[str, Any]: return AutoModelForMaskedLM.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[Any] ,**_lowerCamelCase : Dict ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Union[str, Any] ,**_lowerCamelCase : List[Any] ) -> Optional[Any]: return AutoModelForQuestionAnswering.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
44
import re import string import numpy as np import datasets UpperCAmelCase : List[str] = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" UpperCAmelCase : str = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" UpperCAmelCase : Dict = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def __A ( self , A , A , A=None , A=False , A=False , A=False , ) -> List[str]: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCamelCase = np.array([re.sub(A , """""" , A ) for x in predictions] ) lowerCamelCase = np.array([re.sub(A , """""" , A ) for x in references] ) else: lowerCamelCase = np.asarray(A ) lowerCamelCase = np.asarray(A ) if ignore_case: lowerCamelCase = np.char.lower(A ) lowerCamelCase = np.char.lower(A ) if ignore_punctuation: lowerCamelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = np.char.translate(A , table=A ) if ignore_numbers: lowerCamelCase = string.digits.maketrans("""""" , """""" , string.digits ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = predictions == references return {"exact_match": np.mean(A ) * 1_00}
252
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __SCREAMING_SNAKE_CASE : Tuple = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ): _lowerCamelCase = [file for file in os.listdir(lowerCamelCase__ ) if os.path.isfile(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) )] if identifier is not None: _lowerCamelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): for n_ in n_identifier: _lowerCamelCase = [file for file in files if n_ not in file] else: _lowerCamelCase = [file for file in files if n_identifier not in file] _lowerCamelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _lowerCamelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , lowerCamelCase__ ) if only_modules: _lowerCamelCase = file.split('''.''' )[0] try: _lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = doctest.DocTestSuite(lowerCamelCase__ ) _lowerCamelCase = unittest.TextTestRunner().run(lowerCamelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: _lowerCamelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def snake_case__ ( self ): _lowerCamelCase = Path('''src/transformers''' ) _lowerCamelCase = '''modeling''' _lowerCamelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ , ignore_files=lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = Path('''src/transformers''' ) _lowerCamelCase = '''tokenization''' self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = Path('''src/transformers''' ) _lowerCamelCase = '''configuration''' self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = Path('''src/transformers''' ) _lowerCamelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(lowerCamelCase__ , n_identifier=lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = Path('''docs/source''' ) _lowerCamelCase = ['''favicon.ico'''] self.analyze_directory(lowerCamelCase__ , ignore_files=lowerCamelCase__ , only_modules=lowerCamelCase__ )
366
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=3_2 , lowerCamelCase__=3 , lowerCamelCase__=1_0 , lowerCamelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = self.get_config() return config, pixel_values def snake_case__ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FlaxRegNetModel(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : Union[str, Any] = False def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def snake_case__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ): return def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def snake_case__ ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ): return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ ) with self.subTest('''JIT Enabled''' ): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_( ) -> Optional[Any]: _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='''np''' ) _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
73
0
import math import os import sys def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ = '''''' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: SCREAMING_SNAKE_CASE_ = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE_ = f"{dat:08b}" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any ) -> str: lexicon.pop(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: SCREAMING_SNAKE_CASE_ = '''0''' + lexicon[curr_key] SCREAMING_SNAKE_CASE_ = bin(__UpperCAmelCase )[2:] def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = {'''0''': '''0''', '''1''': '''1'''} SCREAMING_SNAKE_CASE_ = '''''', '''''' SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE_ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 SCREAMING_SNAKE_CASE_ = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": SCREAMING_SNAKE_CASE_ = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = os.path.getsize(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = bin(__UpperCAmelCase )[2:] SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: SCREAMING_SNAKE_CASE_ = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = read_file_binary(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = compress_data(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
225
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( snake_case ): """simple docstring""" if "://" in dataset_path: __SCREAMING_SNAKE_CASE : Any = dataset_path.split('''://''' )[1] return dataset_path def a__ ( snake_case ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) ) else: fs.mv(snake_case , snake_case , recursive=snake_case ) def a__ ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
303
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __A = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __A = '''▁''' class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = BarthezTokenizer def __init__( self : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int="<s>" , UpperCAmelCase : Dict="</s>" , UpperCAmelCase : List[str]="</s>" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Dict="<unk>" , UpperCAmelCase : List[Any]="<pad>" , UpperCAmelCase : List[Any]="<mask>" , **UpperCAmelCase : Dict , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : Union[str, Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : Any = vocab_file __lowerCamelCase : Dict = False if not self.vocab_file else True def lowerCamelCase__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : Optional[Any] = [self.cls_token_id] __lowerCamelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : int = [self.sep_token_id] __lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
358
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
0
from __future__ import annotations def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Dict ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = sum(_lowercase ) create_state_space_tree(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return result def lowerCamelCase__ ( A__ : Tuple , A__ : int , A__ : List[Any] , A__ : Any , A__ : Union[str, Any] , A__ : int , ): '''simple docstring''' if sum(_lowercase ) > max_sum or (remaining_nums_sum + sum(_lowercase )) < max_sum: return if sum(_lowercase ) == max_sum: result.append(_lowercase ) return for index in range(_lowercase , len(_lowercase ) ): create_state_space_tree( _lowercase , _lowercase , index + 1 , [*path, nums[index]] , _lowercase , remaining_nums_sum - nums[index] , ) UpperCAmelCase_ = [3, 34, 4, 12, 5, 2] UpperCAmelCase_ = 9 UpperCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
12
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A ( _lowercase ): if "model" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: SCREAMING_SNAKE_CASE : Tuple = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.split('''.''' )[0].split('''_''' )[-1] SCREAMING_SNAKE_CASE : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: SCREAMING_SNAKE_CASE : Dict = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE : List[str] = '''yoso.''' + orig_key return orig_key def A ( _lowercase , _lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(_lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE : Union[str, Any] = val SCREAMING_SNAKE_CASE : List[str] = orig_state_dict['''cls.predictions.decoder.bias'''] SCREAMING_SNAKE_CASE : Dict = torch.arange(_lowercase ).expand((1, -1) ) + 2 return orig_state_dict def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowercase , map_location='''cpu''' )['''model_state_dict'''] SCREAMING_SNAKE_CASE : List[Any] = YosoConfig.from_json_file(_lowercase ) SCREAMING_SNAKE_CASE : str = YosoForMaskedLM(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = convert_checkpoint_helper(config.max_position_embeddings , _lowercase ) print(model.load_state_dict(_lowercase ) ) model.eval() model.save_pretrained(_lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
182
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( snake_case_ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: """simple docstring""" UpperCamelCase_ : int = ort.SessionOptions() UpperCamelCase_ : Optional[Any] = False return options def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) UpperCamelCase_ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) UpperCamelCase_ : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=snake_case , feature_extractor=snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : Optional[Any] = 'A red cat sitting on a park bench' UpperCamelCase_ : List[Any] = np.random.RandomState(0 ) UpperCamelCase_ : int = pipe( prompt=snake_case , image=snake_case , mask_image=snake_case , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case , output_type='np' , ) UpperCamelCase_ : Dict = output.images UpperCamelCase_ : List[str] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_ : str = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: """simple docstring""" UpperCamelCase_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) UpperCamelCase_ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) UpperCamelCase_ : str = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) UpperCamelCase_ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : Optional[Any] = 'A red cat sitting on a park bench' UpperCamelCase_ : Dict = np.random.RandomState(0 ) UpperCamelCase_ : List[Any] = pipe( prompt=snake_case , image=snake_case , mask_image=snake_case , guidance_scale=7.5 , num_inference_steps=2_0 , generator=snake_case , output_type='np' , ) UpperCamelCase_ : Union[str, Any] = output.images UpperCamelCase_ : Optional[int] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_ : Optional[int] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
369
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowercase ( unittest.TestCase ): def __init__( self : List[Any] , snake_case : int , snake_case : Union[str, Any]=2 , snake_case : Optional[Any]=5_6 , snake_case : Dict=True , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : List[Any]=True , snake_case : Tuple=9_9 , snake_case : Any=3_2 , snake_case : List[Any]=2 , snake_case : Optional[Any]=2 , snake_case : str=7 , snake_case : Dict="gelu_new" , snake_case : List[str]=0.1 , snake_case : Dict=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : Tuple=1_6 , snake_case : Dict=2 , snake_case : List[str]=0.02 , snake_case : Optional[int]=4 , snake_case : str="block_sparse" , snake_case : List[Any]=True , snake_case : int=False , snake_case : Tuple=2 , snake_case : Optional[int]=3 , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = parent UpperCamelCase_ : str = batch_size UpperCamelCase_ : List[str] = seq_length UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : Dict = use_attention_mask UpperCamelCase_ : List[Any] = use_token_type_ids UpperCamelCase_ : Optional[Any] = use_labels UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : Union[str, Any] = hidden_size UpperCamelCase_ : Optional[Any] = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : Optional[Any] = intermediate_size UpperCamelCase_ : Optional[Any] = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase_ : List[str] = max_position_embeddings UpperCamelCase_ : List[Any] = type_vocab_size UpperCamelCase_ : Any = type_sequence_label_size UpperCamelCase_ : Optional[int] = initializer_range UpperCamelCase_ : int = num_choices UpperCamelCase_ : str = rescale_embeddings UpperCamelCase_ : List[Any] = attention_type UpperCamelCase_ : Optional[Any] = use_bias UpperCamelCase_ : List[str] = block_size UpperCamelCase_ : int = num_random_blocks def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : str = None if self.use_attention_mask: UpperCamelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : int = None if self.use_token_type_ids: UpperCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Tuple = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : Any = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : int = config_and_inputs UpperCamelCase_ : Tuple = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class _lowercase ( snake_case_ , unittest.TestCase ): lowercase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ : List[str] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase_ : Optional[Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ : Optional[Any] = self._prepare_for_class(snake_case , snake_case ) UpperCamelCase_ : Optional[Any] = model_class(snake_case ) @jax.jit def model_jitted(snake_case : str , snake_case : List[str]=None , **snake_case : Tuple ): return model(input_ids=snake_case , attention_mask=snake_case , **snake_case ) with self.subTest('JIT Enabled' ): UpperCamelCase_ : List[str] = model_jitted(**snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase_ : List[str] = model_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Optional[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Optional[int]=1e-5 , snake_case : Tuple="outputs" , snake_case : Dict=None ) -> Dict: """simple docstring""" if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )
50
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> list: '''simple docstring''' def merge(__A , __A ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__A ) <= 1: return collection UpperCamelCase__ = len(__A ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = input('Enter numbers separated by a comma:\n').strip() a__ : Tuple = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
80
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def snake_case_ ( A_ : Any ): '''simple docstring''' _lowerCamelCase : Any = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A_, A_ ) def snake_case_ ( A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Tuple = emb.weight.shape _lowerCamelCase : Dict = nn.Linear(A_, A_, bias=A_ ) _lowerCamelCase : str = emb.weight.data return lin_layer def snake_case_ ( A_ : str, A_ : Optional[int]="facebook/mbart-large-en-ro", A_ : Union[str, Any]=False, A_ : List[str]=False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.load(A_, map_location='''cpu''' )['''model'''] remove_ignore_keys_(A_ ) _lowerCamelCase : int = state_dict['''encoder.embed_tokens.weight'''].shape[0] _lowerCamelCase : Any = MBartConfig.from_pretrained(A_, vocab_size=A_ ) if mbart_aa and finetuned: _lowerCamelCase : Any = '''relu''' _lowerCamelCase : Optional[int] = state_dict['''decoder.embed_tokens.weight'''] _lowerCamelCase : Any = MBartForConditionalGeneration(A_ ) model.model.load_state_dict(A_ ) if finetuned: _lowerCamelCase : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
72
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCamelCase : Tuple = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''pixel_values'''] def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Dict[str, int]] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : List[str] , ) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = size if size is not None else {'''shortest_edge''': 256} A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__) A__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A__ = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''') A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : int , ) ->np.ndarray: '''simple docstring''' A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") A__ = get_resize_output_image_size(UpperCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase__) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) ->np.ndarray: '''simple docstring''' A__ = get_size_dict(UpperCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int]) ->np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) ->np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : Dict , ) ->Any: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''') A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = make_list_of_images(UpperCAmelCase__) if not valid_images(UpperCAmelCase__): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. A__ = [to_numpy_array(UpperCAmelCase__) for image in images] if do_resize: A__ = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__) for image in images] if do_center_crop: A__ = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__) for image in images] if do_rescale: A__ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__) for image in images] if do_normalize: A__ = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__) for image in images] A__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__) for image in images] A__ = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Tuple] = None) ->Dict: '''simple docstring''' A__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__) != len(UpperCAmelCase__): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(UpperCAmelCase__): A__ = target_sizes.numpy() A__ = [] for idx in range(len(UpperCAmelCase__)): A__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCAmelCase__) A__ = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCAmelCase__) else: A__ = logits.argmax(dim=1) A__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
231
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : float) ->float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int | float, int | float]: """simple docstring""" A__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: """simple docstring""" A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(lowercase_ ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.abs(np.fft.fft(lowercase_ ) ) A__ = 20 * np.logaa(lowercase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds A__ = get_bounds(lowercase_ , lowercase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(lowercase_ ) plt.show() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: """simple docstring""" A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(lowercase_ ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.angle(np.fft.fft(lowercase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(lowercase_ , -2 * pi ) ) plt.show()
231
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , )-> Dict: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =image_size lowerCamelCase_ =num_channels lowerCamelCase_ =embeddings_size lowerCamelCase_ =hidden_sizes lowerCamelCase_ =depths lowerCamelCase_ =is_training lowerCamelCase_ =use_labels lowerCamelCase_ =hidden_act lowerCamelCase_ =num_labels lowerCamelCase_ =scope lowerCamelCase_ =len(SCREAMING_SNAKE_CASE__ ) def _snake_case ( self )-> str: lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =self.get_config() return config, pixel_values def _snake_case ( self )-> str: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =FlaxRegNetModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ =model(SCREAMING_SNAKE_CASE__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaxRegNetForImageClassification(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ =model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.prepare_config_and_inputs() lowerCamelCase_ =config_and_inputs lowerCamelCase_ ={'pixel_values': pixel_values} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:str = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _UpperCamelCase:Optional[Any] = False _UpperCamelCase:Optional[Any] = False _UpperCamelCase:List[str] = False def _snake_case ( self )-> Dict: lowerCamelCase_ =FlaxRegNetModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def _snake_case ( self )-> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self )-> int: return def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _snake_case ( self )-> Optional[Any]: pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _snake_case ( self )-> List[Any]: pass def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ =[*signature.parameters.keys()] lowerCamelCase_ =['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def _snake_case ( self )-> Union[str, Any]: def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase_ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ =self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ =True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case ( self )-> int: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ =self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ =model_class(SCREAMING_SNAKE_CASE__ ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return model(pixel_values=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with self.subTest("""JIT Enabled""" ): lowerCamelCase_ =model_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase_ =model_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCamelCase ( ) ->Any: """simple docstring""" lowerCamelCase_ =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def _snake_case ( self )-> Optional[int]: return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def _snake_case ( self )-> List[Any]: lowerCamelCase_ =FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) lowerCamelCase_ =model(**SCREAMING_SNAKE_CASE__ ) # verify the logits lowerCamelCase_ =(1, 1000) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ =jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
154
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __lowerCamelCase : int = quote(lowerCamelCase__ ) return hfh.hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' , revision=lowerCamelCase__ )
73
0
from __future__ import annotations lowerCAmelCase__ : Dict =list[list[int]] # assigning initial values to the grid lowerCAmelCase__ : Matrix =[ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCAmelCase__ : Matrix =[ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __lowercase ( a__ , a__ , a__ , a__ ) -> Union[str, Any]: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __lowercase ( a__ ) -> Tuple: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __lowercase ( a__ ) -> Any: if location := find_empty_location(UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = digit if sudoku(UpperCamelCase__ ) is not None: return grid __SCREAMING_SNAKE_CASE = 0 return None def __lowercase ( a__ ) -> List[Any]: for row in grid: for cell in row: print(UpperCamelCase__ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') lowerCAmelCase__ : str =sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Optional[int] ={'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] =['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple =[ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCAmelCase__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 100 ): lowercase = set() lowercase = 0 lowercase = n + 1 # maximum limit for a in range(2 , snake_case__ ): for b in range(2 , snake_case__ ): lowercase = a**b # calculates the current power collect_powers.add(snake_case__ ) # adds the result to the set return len(snake_case__ ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
195
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } A_ = { '''Salesforce/codegen-350M-mono''': 20_48, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = CodeGenTokenizer def __init__( self: Union[str, Any], a_: List[Any]=None, a_: str=None, a_: str=None, a_: Dict="<|endoftext|>", a_: Tuple="<|endoftext|>", a_: str="<|endoftext|>", a_: List[Any]=False, **a_: List[str], ): '''simple docstring''' super().__init__( a_, a_, tokenizer_file=a_, unk_token=a_, bos_token=a_, eos_token=a_, add_prefix_space=a_, **a_, ) if kwargs.pop("""add_bos_token""", a_ ): _snake_case : str = kwargs.pop("""name_or_path""", """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) _snake_case : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", a_ ) != add_prefix_space: _snake_case : Dict = getattr(a_, pre_tok_state.pop("""type""" ) ) _snake_case : Dict = add_prefix_space _snake_case : str = pre_tok_class(**a_ ) _snake_case : List[Any] = add_prefix_space def UpperCamelCase_ ( self: Any, *a_: Any, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], *a_: Any, **a_: List[str] ): '''simple docstring''' _snake_case : Dict = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[int], a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : List[Any] = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ ) def UpperCamelCase_ ( self: str, a_: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], a_: bool = False, a_: bool = None, a_: Optional[List[str]] = None, **a_: List[str], ): '''simple docstring''' _snake_case : Any = super().decode( token_ids=a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_, **a_, ) if truncate_before_pattern is not None and len(a_ ) > 0: _snake_case : List[str] = self.truncate(a_, a_ ) return decoded_text def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Optional[Any] ): '''simple docstring''' def find_re(a_: Dict, a_: str, a_: Union[str, Any] ): _snake_case : Any = pattern.search(a_, a_ ) return m.start() if m else -1 _snake_case : Tuple = [re.compile(a_, re.MULTILINE ) for pattern in truncate_before_pattern] _snake_case : List[Any] = list(re.finditer("""^print""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : int = completion[: prints[1].start()] _snake_case : List[str] = list(re.finditer("""^def""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : List[Any] = completion[: defs[1].start()] _snake_case : int = 0 _snake_case : List[Any] = [ pos for pos in [find_re(a_, a_, a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
64
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = MvpTokenizer UpperCamelCase_ = MvpTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = filter_roberta_detectors def __A ( self : str ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) SCREAMING_SNAKE_CASE : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] SCREAMING_SNAKE_CASE : Dict = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def __A ( self : Optional[Any] , **UpperCamelCase__ : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self : str , **UpperCamelCase__ : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self : Dict , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def __A ( self : Optional[int] ): '''simple docstring''' return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def __A ( self : int ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE : str = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Any = tokenizer(UpperCamelCase__ , max_length=len(UpperCamelCase__ ) , padding=UpperCamelCase__ , return_tensors='''pt''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : str = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Test that special tokens are reset @require_torch def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : List[str] = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , UpperCamelCase__ ) self.assertIn('''attention_mask''' , UpperCamelCase__ ) self.assertNotIn('''labels''' , UpperCamelCase__ ) self.assertNotIn('''decoder_attention_mask''' , UpperCamelCase__ ) @require_torch def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : List[str] = tokenizer(text_target=UpperCamelCase__ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def __A ( self : str ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : str = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ['''A long paragraph for summarization.'''] SCREAMING_SNAKE_CASE : List[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : str = inputs['''input_ids'''] SCREAMING_SNAKE_CASE : Tuple = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def __A ( self : List[str] ): '''simple docstring''' pass def __A ( self : str ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''A, <mask> AllenNLP sentence.''' SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
258
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : str = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') SCREAMING_SNAKE_CASE : Tuple = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = model.state_dict() def to_tf_var_name(_lowercase ): for patt, repl in iter(_lowercase ): SCREAMING_SNAKE_CASE : Dict = name.replace(_lowercase , _lowercase ) return f"""bert/{name}""" def create_tf_var(_lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) SCREAMING_SNAKE_CASE : Tuple = tf.get_variable(dtype=_lowercase , shape=tensor.shape , name=_lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: SCREAMING_SNAKE_CASE : List[str] = to_tf_var_name(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): SCREAMING_SNAKE_CASE : Any = torch_tensor.T SCREAMING_SNAKE_CASE : str = create_tf_var(tensor=_lowercase , name=_lowercase , session=_lowercase ) tf.keras.backend.set_value(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Dict = session.run(_lowercase ) print(f"""Successfully created {tf_name}: {np.allclose(_lowercase , _lowercase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowercase , os.path.join(_lowercase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A ( _lowercase=None ): SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_lowercase , required=_lowercase , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=_lowercase , default=_lowercase , required=_lowercase , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=_lowercase , required=_lowercase , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=_lowercase , required=_lowercase , help='''Directory in which to save tensorflow model''' ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args(_lowercase ) SCREAMING_SNAKE_CASE : Any = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
258
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """spiece.model"""} __snake_case = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } __snake_case = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } __snake_case = """▁""" class _lowerCAmelCase ( __UpperCamelCase ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="[CLS]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="<unk>" , UpperCamelCase__="[SEP]" , UpperCamelCase__="<pad>" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: '''simple docstring''' snake_case : int = ( AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ , normalized=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token ) snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) snake_case : Optional[Any] = do_lower_case snake_case : List[str] = remove_space snake_case : Any = keep_accents snake_case : Dict = vocab_file snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return len(self.sp_model ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: '''simple docstring''' snake_case : List[Any] = self.__dict__.copy() snake_case : List[Any] = None return state def __setstate__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' if self.remove_space: snake_case : int = ' '.join(inputs.strip().split() ) else: snake_case : int = inputs snake_case : List[Any] = outputs.replace("``" , "\"" ).replace("\'\'" , "\"" ) if not self.keep_accents: snake_case : List[Any] = unicodedata.normalize("NFKD" , UpperCamelCase__ ) snake_case : Optional[Any] = ''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: snake_case : Any = outputs.lower() return outputs def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = self.preprocess_text(UpperCamelCase__ ) snake_case : Dict = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) snake_case : List[Any] = [] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): snake_case : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case : List[str] = cur_pieces[1:] else: snake_case : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' snake_case : str = [] snake_case : Tuple = '' snake_case : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token snake_case : List[Any] = True snake_case : str = [] else: current_sub_tokens.append(UpperCamelCase__ ) snake_case : List[str] = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' snake_case : Optional[Any] = [self.sep_token_id] snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' snake_case : Optional[int] = [self.sep_token_id] snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : Dict = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
203
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
import math from datetime import datetime, timedelta def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]: __snake_case: Any = year % 19 __snake_case: Dict = year % 4 __snake_case: Dict = year % 7 __snake_case: Optional[Any] = math.floor(year / 100) __snake_case: Union[str, Any] = math.floor((13 + 8 * leap_day_inhibits) / 25) __snake_case: List[Any] = leap_day_inhibits / 4 __snake_case: Tuple = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __snake_case: List[str] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __snake_case: int = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __snake_case: Optional[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase__ , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase__ , 4 , 18) else: return datetime(lowerCAmelCase__ , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): __UpperCAmelCase : str = "will be" if year > datetime.now().year else "was" print(f'Easter in {year} {tense} {gauss_easter(year)}')
359
from __future__ import annotations from decimal import Decimal from numpy import array def A__ ( SCREAMING_SNAKE_CASE__) -> list[list[float]]: __snake_case: Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE__) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix __snake_case: Tuple = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError("""This matrix has no inverse.""") # Creates a copy of the matrix with swapped positions of the elements __snake_case: Optional[int] = [[0.0, 0.0], [0.0, 0.0]] __snake_case , __snake_case: Optional[Any] = matrix[1][1], matrix[0][0] __snake_case , __snake_case: Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE__)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE__) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __snake_case: Any = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError("""This matrix has no inverse.""") # Creating cofactor matrix __snake_case: Tuple = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] __snake_case: Dict = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) __snake_case: Tuple = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) __snake_case: Optional[int] = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) __snake_case: Union[str, Any] = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) __snake_case: str = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) __snake_case: List[Any] = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) __snake_case: Optional[Any] = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) __snake_case: List[str] = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) __snake_case: Optional[int] = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) __snake_case: List[Any] = array(SCREAMING_SNAKE_CASE__) for i in range(3): for j in range(3): __snake_case: Tuple = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __snake_case: List[Any] = array(SCREAMING_SNAKE_CASE__) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE__) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE__)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""")
293
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _A = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
import requests _A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
231
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _lowerCamelCase : int = logging.getLogger(__name__) @dataclass class lowercase : lowercase__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase__ : bool = field(default=a , metadata={"""help""": """Whether tp freeze the encoder."""} ) lowercase__ : bool = field(default=a , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowercase : lowercase__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowercase__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) lowercase__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) lowercase__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) lowercase__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) lowercase__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) lowercase__ : Optional[str] = field(default=a , metadata={"""help""": """Source language id for translation."""} ) lowercase__ : Optional[str] = field(default=a , metadata={"""help""": """Target language id for translation."""} ) lowercase__ : Optional[int] = field(default=a , metadata={"""help""": """# num_beams to use for evaluation."""} ) lowercase__ : bool = field( default=a , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ): logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , F"{split}_results.json" ) ) def __lowerCamelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() check_output_dir(UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): assert hasattr(UpperCAmelCase__ , UpperCAmelCase__ ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(UpperCAmelCase__ , UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCAmelCase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: SCREAMING_SNAKE_CASE = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCAmelCase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = tokenizer.lang_code_to_id[data_args.tgt_lang] else: SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCAmelCase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) SCREAMING_SNAKE_CASE = SeqaSeqDataset # Get datasets SCREAMING_SNAKE_CASE = ( dataset_class( UpperCAmelCase__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE = ( dataset_class( UpperCAmelCase__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) SCREAMING_SNAKE_CASE = ( dataset_class( UpperCAmelCase__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer SCREAMING_SNAKE_CASE = ( build_compute_metrics_fn(data_args.task , UpperCAmelCase__ ) if training_args.predict_with_generate else None ) SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , data_args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , data_collator=SeqaSeqDataCollator( UpperCAmelCase__ , UpperCAmelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE = {} # Training if training_args.do_train: logger.info("*** Train ***" ) SCREAMING_SNAKE_CASE = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) SCREAMING_SNAKE_CASE = train_result.metrics SCREAMING_SNAKE_CASE = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCAmelCase__ , training_args.output_dir ) all_metrics.update(UpperCAmelCase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE = trainer.evaluate(metric_key_prefix="val" ) SCREAMING_SNAKE_CASE = data_args.n_val SCREAMING_SNAKE_CASE = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCAmelCase__ , training_args.output_dir ) all_metrics.update(UpperCAmelCase__ ) if training_args.do_predict: logger.info("*** Predict ***" ) SCREAMING_SNAKE_CASE = trainer.predict(test_dataset=UpperCAmelCase__ , metric_key_prefix="test" ) SCREAMING_SNAKE_CASE = test_output.metrics SCREAMING_SNAKE_CASE = data_args.n_test if trainer.is_world_process_zero(): SCREAMING_SNAKE_CASE = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCAmelCase__ , training_args.output_dir ) all_metrics.update(UpperCAmelCase__ ) if training_args.predict_with_generate: SCREAMING_SNAKE_CASE = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = lmap(str.strip , UpperCAmelCase__ ) write_txt_file(UpperCAmelCase__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCAmelCase__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
206
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowercase ( unittest.TestCase ): @slow def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("xlm-roberta-base" ) SCREAMING_SNAKE_CASE = "The dog is cute and lives in the garden house" SCREAMING_SNAKE_CASE = jnp.array([tokenizer.encode(_UpperCamelCase )] ) SCREAMING_SNAKE_CASE = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase )["last_hidden_state"] self.assertEqual(output.shape , _UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _UpperCamelCase , atol=1e-3 ) )
206
1
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> float: '''simple docstring''' UpperCAmelCase__ = 0.00 UpperCAmelCase__ = 0 for resistor in resistors: if resistor <= 0: UpperCAmelCase__ = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def lowerCAmelCase_ ( __A ) -> float: '''simple docstring''' UpperCAmelCase__ = 0.00 UpperCAmelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase__ = f"""Resistor at index {index} has a negative value!""" raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
65
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A : Tuple = "src/transformers" A : Optional[Any] = "docs/source/en/tasks" def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A : List[str] = direct_transformers_import(TRANSFORMERS_PATH) A : List[Any] = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A : Any = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__UpperCamelCase , set() ) SCREAMING_SNAKE_CASE_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def a__ ( __UpperCamelCase , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _find_text_in_file( filename=os.path.join(__UpperCamelCase , __UpperCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) SCREAMING_SNAKE_CASE_ = get_model_list_for_task(__UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' " to fix this." ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A : Dict = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
118
0
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a__ ( SCREAMING_SNAKE_CASE__ ): def lowercase ( self : Any ) -> Optional[int]: lowercase : Any = tempfile.mkdtemp() lowercase : Optional[Any] = 8 # DPR tok lowercase : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase : List[Any] = os.path.join(self.tmpdirname, 'dpr_tokenizer' ) os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase ) lowercase : Union[str, Any] = os.path.join(lowerCAmelCase, DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowercase : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowercase : Optional[Any] = dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowercase : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase : int = {'unk_token': '<unk>'} lowercase : Union[str, Any] = os.path.join(self.tmpdirname, 'bart_tokenizer' ) os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase ) lowercase : int = os.path.join(lowerCAmelCase, BART_VOCAB_FILES_NAMES['vocab_file'] ) lowercase : str = os.path.join(lowerCAmelCase, BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def lowercase ( self : int ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'dpr_tokenizer' ) ) def lowercase ( self : Optional[Any] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'dpr_tokenizer' ) ) def lowercase ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'bart_tokenizer' ) ) def lowercase ( self : int ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings', string_factory='Flat', metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowercase ( self : Tuple ) -> Tuple: lowercase : str = self.get_dummy_dataset() lowercase : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowercase : Optional[Any] = dataset lowercase : Dict = RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) return retriever def lowercase ( self : List[Any], lowerCAmelCase : bool ) -> List[str]: lowercase : List[Any] = self.get_dummy_dataset() lowercase : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name='custom', ) if from_disk: lowercase : Optional[Any] = os.path.join(self.tmpdirname, 'dataset' ) lowercase : str = os.path.join(self.tmpdirname, 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname, 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname, 'dataset' ) ) del dataset lowercase : Optional[Any] = RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) else: lowercase : Tuple = RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), index=CustomHFIndex(config.retrieval_vector_size, lowerCAmelCase ), ) return retriever def lowercase ( self : Dict ) -> str: lowercase : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings', string_factory='Flat', metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase : Dict = os.path.join(self.tmpdirname, 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings', index_file_name + '.index.dpr' ) pickle.dump(dataset['id'], open(index_file_name + '.index_meta.dpr', 'wb' ) ) lowercase : List[str] = os.path.join(self.tmpdirname, 'psgs_w100.tsv.pkl' ) lowercase : List[Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(lowerCAmelCase, open(lowerCAmelCase, 'wb' ) ) lowercase : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name='legacy', index_path=self.tmpdirname, ) lowercase : List[Any] = RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase : str = 1 lowercase : List[Any] = self.get_dummy_canonical_hf_index_retriever() lowercase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : Tuple = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase ( self : List[Any] ) -> int: lowercase : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowercase : str = self.get_dummy_dataset() retriever.save_pretrained(lowerCAmelCase ) lowercase : Optional[Any] = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self : List[Any] ) -> int: lowercase : Tuple = 1 lowercase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) lowercase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase ( self : Optional[int] ) -> List[Any]: lowercase : Any = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowercase : Tuple = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : List[Any] = retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Dict = 1 lowercase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) lowercase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : Tuple = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase ( self : Tuple ) -> Dict: lowercase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowercase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase ( self : List[Any] ) -> Dict: lowercase : str = 1 lowercase : str = self.get_dummy_legacy_index_retriever() lowercase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : Dict = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['text'][0], 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0], 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase ( self : int ) -> Dict: lowercase : Optional[Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowercase : List[str] = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : List[str] = retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowercase ( self : List[str] ) -> int: import torch lowercase : int = 1 lowercase : List[str] = self.get_dummy_canonical_hf_index_retriever() lowercase : Union[str, Any] = [[5, 7], [10, 11]] lowercase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : Optional[Any] = retriever(lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase ) lowercase : Dict = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, np.ndarray ) lowercase : Optional[Any] = retriever( lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase, return_tensors='pt', ) lowercase : Optional[Any] = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowercase ( self : int ) -> Optional[Any]: lowercase : Any = self.get_dpr_ctx_encoder_tokenizer() lowercase : int = 1 lowercase : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) retriever.set_ctx_encoder_tokenizer(lowerCAmelCase ) lowercase : List[Any] = [[5, 7], [10, 11]] lowercase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowercase : List[Any] = retriever(lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase ) self.assertEqual( len(lowerCAmelCase ), 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ), lowerCAmelCase ) # check for doc token related keys in dictionary.
369
"""simple docstring""" _UpperCamelCase: Dict = 2_5_6 # Modulus to hash a string _UpperCamelCase: Union[str, Any] = 1_0_0_0_0_0_3 def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: '''simple docstring''' lowercase : Dict = len(_UpperCAmelCase ) lowercase : Union[str, Any] = len(_UpperCAmelCase ) if p_len > t_len: return False lowercase : Union[str, Any] = 0 lowercase : Dict = 0 lowercase : Any = 1 # Calculating the hash of pattern and substring of text for i in range(_UpperCAmelCase ): lowercase : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowercase : Tuple = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowercase : Tuple = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowercase : str = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase__ ( ) -> None: '''simple docstring''' lowercase : Any = 'abc1abc12' lowercase : int = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowercase : Optional[int] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) and not rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 2) lowercase : str = 'ABABX' lowercase : Tuple = 'ABABZABABYABABX' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 3) lowercase : int = 'AAAB' lowercase : Union[str, Any] = 'ABAAAAAB' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 4) lowercase : Union[str, Any] = 'abcdabcy' lowercase : List[str] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 5) lowercase : Dict = 'Lü' lowercase : Dict = 'Lüsai' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) lowercase : List[Any] = 'Lue' assert not rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
53
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class __UpperCAmelCase ( A__ , A__ ): '''simple docstring''' __lowerCAmelCase = '''nat''' __lowerCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self : int , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : List[Any]=64 , _lowerCAmelCase : Union[str, Any]=[3, 4, 6, 5] , _lowerCAmelCase : str=[2, 4, 8, 16] , _lowerCAmelCase : Union[str, Any]=7 , _lowerCAmelCase : Tuple=3.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Union[str, Any]="gelu" , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : str=1e-5 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict , ): super().__init__(**_lowerCAmelCase ) A = patch_size A = num_channels A = embed_dim A = depths A = len(_lowerCAmelCase ) A = num_heads A = kernel_size A = mlp_ratio A = qkv_bias A = hidden_dropout_prob A = attention_probs_dropout_prob A = drop_path_rate A = hidden_act A = layer_norm_eps A = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) A = layer_scale_init_value A = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCAmelCase ) + 1 )] A , A = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
258
'''simple docstring''' import datasets from .evaluate import evaluate _lowerCamelCase : List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _lowerCamelCase : List[Any] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def A (self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def A (self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
258
1
def _UpperCamelCase ( UpperCamelCase_ : list[list[int | float]] ) -> int: """simple docstring""" lowerCAmelCase__ = len(snake_case_ ) lowerCAmelCase__ = len(matrix[0] ) lowerCAmelCase__ = min(snake_case_ , snake_case_ ) for row in range(snake_case_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case_ ): lowerCAmelCase__ = matrix[col][row] / matrix[row][row] for i in range(snake_case_ , snake_case_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase__ = True for i in range(row + 1 , snake_case_ ): if matrix[i][row] != 0: lowerCAmelCase__ , lowerCAmelCase__ = matrix[i], matrix[row] lowerCAmelCase__ = False break if reduce: rank -= 1 for i in range(snake_case_ ): lowerCAmelCase__ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
368
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = 3 lowerCAmelCase__ = (32, 32) lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase ) return image @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_UpperCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) return CLIPTextModel(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=_UpperCamelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] lowerCAmelCase__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCAmelCase__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images assert image.shape[0] == 2 lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCAmelCase__ = unet.half() lowerCAmelCase__ = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type='np' , ).images lowerCAmelCase__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained( _UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained( _UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , output_type='np' , ) lowerCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
122
0
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> list: """simple docstring""" __lowerCamelCase = int(UpperCamelCase__ ) if n_element < 1: __lowerCamelCase = ValueError('a should be a positive number' ) raise my_error __lowerCamelCase = [1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = (0, 0, 0) __lowerCamelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __A = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") __A = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
90
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __A = logging.getLogger(__name__) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" if os.path.exists(_SCREAMING_SNAKE_CASE ): if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) else: os.makedirs(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Optional[int]: """simple docstring""" lowerCAmelCase__ :Dict = 2 if unlogit: lowerCAmelCase__ :List[str] = torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = p * torch.log(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = 0 return -plogp.sum(dim=-1 ) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" logger.info('lv, h >\t' + '\t'.join(F"{x + 1}" for x in range(len(_SCREAMING_SNAKE_CASE ) ) ) ) for row in range(len(_SCREAMING_SNAKE_CASE ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:d}" for x in tensor[row].cpu().data ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :Dict = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ :Any = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) lowerCAmelCase__ :Tuple = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) if head_mask is None: lowerCAmelCase__ :Optional[int] = torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) head_mask.requires_grad_(requires_grad=_SCREAMING_SNAKE_CASE ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ :List[str] = None lowerCAmelCase__ :Any = 0.0 lowerCAmelCase__ :Any = 0.0 for step, inputs in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ :str = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) , ) :Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ :str = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = entropy(attn.detach() , _SCREAMING_SNAKE_CASE ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_SCREAMING_SNAKE_CASE ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ :Union[str, Any] = 2 lowerCAmelCase__ :Tuple = torch.pow(torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowerCAmelCase__ :str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) logger.info('Head ranked by importance scores' ) lowerCAmelCase__ :List[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ :List[Any] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ :int = head_ranks.view_as(_SCREAMING_SNAKE_CASE ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) return attn_entropy, head_importance, total_loss def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _SCREAMING_SNAKE_CASE , original_score * args.masking_threshold ) lowerCAmelCase__ :Optional[int] = torch.ones_like(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ :List[str] = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ :List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ :str = float('Inf' ) lowerCAmelCase__ :List[str] = head_importance.view(-1 ).sort()[1] if len(_SCREAMING_SNAKE_CASE ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads lowerCAmelCase__ :int = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ :Dict = new_head_mask.view(-1 ) lowerCAmelCase__ :Any = 0.0 lowerCAmelCase__ :Tuple = new_head_mask.view_as(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = new_head_mask.clone().detach() print_ad_tensor(_SCREAMING_SNAKE_CASE ) # Compute metric and head importance again lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = datetime.now() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = 1 / loss lowerCAmelCase__ :Tuple = datetime.now() - before_time lowerCAmelCase__ :List[str] = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ :List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_SCREAMING_SNAKE_CASE ) ) } for k, v in heads_to_prune.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = [ v, ] assert sum(len(_SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ :int = datetime.now() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , actually_pruned=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ :int = 1 / loss lowerCAmelCase__ :Tuple = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(_SCREAMING_SNAKE_CASE , args.output_dir ) def __A () ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_SCREAMING_SNAKE_CASE , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_SCREAMING_SNAKE_CASE , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=_SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_SCREAMING_SNAKE_CASE , help='Batch size.' ) parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ :Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ :List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) lowerCAmelCase__ :Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ :Dict = torch.device('cuda' , args.local_rank ) lowerCAmelCase__ :Tuple = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ :int = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ :Optional[Any] = nn.parallel.DistributedDataParallel( _SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_SCREAMING_SNAKE_CASE ) elif args.n_gpu > 1: lowerCAmelCase__ :Union[str, Any] = nn.DataParallel(_SCREAMING_SNAKE_CASE ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Prepare dataset lowerCAmelCase__ :Optional[int] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ :Union[str, Any] = (torch.from_numpy(_SCREAMING_SNAKE_CASE ),) lowerCAmelCase__ :Optional[int] = TensorDataset(*_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = RandomSampler(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ :Optional[Any] = mask_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) prune_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
293
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase = logging.getLogger() lowerCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( _lowercase): def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Tuple: os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = {'''source''': '''What is love ?''', '''target''': '''life'''} lowerCAmelCase__ : Any = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase__ : Tuple = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(_SCREAMING_SNAKE_CASE , F'{split}.{field}' ) , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str = "pytorch" )-> Optional[int]: lowerCAmelCase__ : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , '''output''' ) lowerCAmelCase__ : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , '''data''' ) self._create_dummy_data(data_dir=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = F'\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '.split() if gpus > 0: testargs.append(F'--gpus={gpus}' ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) lowerCAmelCase__ : List[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=self.get_env() ) lowerCAmelCase__ : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , '''metrics.json''' ) with open(_SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase__ : int = json.load(_SCREAMING_SNAKE_CASE ) return result @require_torch_gpu def UpperCAmelCase__( self : List[str] )-> Dict: lowerCAmelCase__ : int = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def UpperCAmelCase__( self : Union[str, Any] )-> Dict: lowerCAmelCase__ : Optional[int] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def UpperCAmelCase__( self : Optional[Any] )-> List[Any]: lowerCAmelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCAmelCase__( self : str )-> Union[str, Any]: lowerCAmelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
365
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] lowerCamelCase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = {f'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCamelCase = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class _a ( _lowercase): _a : Tuple = VOCAB_FILES_NAMES _a : Dict = PRETRAINED_VOCAB_FILES_MAP _a : Dict = PRETRAINED_INIT_CONFIGURATION _a : Union[str, Any] = FunnelTokenizer _a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int = 2 def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Any="<unk>" , _SCREAMING_SNAKE_CASE : Dict="<sep>" , _SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , _SCREAMING_SNAKE_CASE : str="<cls>" , _SCREAMING_SNAKE_CASE : List[str]="<mask>" , _SCREAMING_SNAKE_CASE : Optional[int]="<s>" , _SCREAMING_SNAKE_CASE : Dict="</s>" , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : str="##" , **_SCREAMING_SNAKE_CASE : List[str] , )-> List[str]: super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , clean_text=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , wordpieces_prefix=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): lowerCAmelCase__ : int = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : str = strip_accents lowerCAmelCase__ : Dict = tokenize_chinese_chars lowerCAmelCase__ : str = normalizer_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = do_lower_case def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None )-> Optional[int]: lowerCAmelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]: lowerCAmelCase__ : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
211
0
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCamelCase :int = logging.get_logger(__name__) class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : int = None @experimental def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return _map_with_joblib(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Dict = num_proc if num_proc <= len(lowerCamelCase__ ) else len(lowerCamelCase__ ) A_ : int = [] # We organize the splits ourselve (contiguous splits) for index in range(lowerCamelCase__ ): A_ : Optional[int] = len(lowerCamelCase__ ) // num_proc A_ : str = len(lowerCamelCase__ ) % num_proc A_ : Union[str, Any] = div * index + min(lowerCamelCase__ , lowerCamelCase__ ) A_ : Union[str, Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowerCamelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'Error dividing inputs iterable among processes. ' f'Total number of objects {len(lowerCamelCase__ )}, ' f'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( f'Spawning {num_proc} processes for {len(lowerCamelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) A_, A_ : Optional[int] = None, None if not disable_tqdm: A_, A_ : Optional[int] = (RLock(),), tqdm.set_lock with Pool(lowerCamelCase__ , initargs=lowerCamelCase__ , initializer=lowerCamelCase__ ) as pool: A_ : Any = pool.map(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Finished {num_proc} processes' ) A_ : Any = [obj for proc_res in mapped for obj in proc_res] logger.info(f'Unpacked {len(lowerCamelCase__ )} objects' ) return mapped def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=lowerCamelCase__ ): return joblib.Parallel()( joblib.delayed(lowerCamelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: A_ : str = None
206
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Optional[Any] = 10 def _a (self ): A_ : Dict = [1, 2, 3, 4] A_ : List[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A_ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : List[str] = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" A_, A_ : Dict = process_story(lowercase ) self.assertEqual(lowercase , [] ) def _a (self ): A_ : Optional[int] = """""" A_, A_ : List[str] = process_story(lowercase ) self.assertEqual(lowercase , [] ) self.assertEqual(lowercase , [] ) def _a (self ): A_ : Optional[Any] = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) A_, A_ : int = process_story(lowercase ) A_ : Optional[Any] = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(lowercase , lowercase ) A_ : Dict = ["""It was the best of times."""] self.assertEqual(lowercase , lowercase ) def _a (self ): A_ : Optional[int] = torch.tensor([1, 2, 3, 4] ) A_ : Dict = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase , 0 ).numpy() , expected.numpy() ) def _a (self ): A_ : str = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A_ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase , 23 ).numpy() , expected.numpy() ) def _a (self ): A_ : Any = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A_ : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase , 1 ).numpy() , expected.numpy() ) def _a (self ): A_ : List[Any] = 101 A_ : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A_ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A_ : Dict = compute_token_type_ids(lowercase , lowercase ) np.testing.assert_array_equal(lowercase , lowercase )
206
1
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __A = logging.get_logger(__name__) @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case_ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case_ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=__magic_name__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.task_name.lower() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''train''' snake_case_ = '''dev''' snake_case_ = '''test''' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = Split.train , lowerCamelCase__ = None , ) -> int: '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , lowerCamelCase__ , ) __lowerCamelCase = args __lowerCamelCase = glue_processors[args.task_name]() __lowerCamelCase = glue_output_modes[args.task_name] if isinstance(lowerCamelCase__ , lowerCamelCase__ ): try: __lowerCamelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file __lowerCamelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) __lowerCamelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase , __lowerCamelCase = label_list[2], label_list[1] __lowerCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCamelCase = cached_features_file + '.lock' with FileLock(lowerCamelCase__ ): if os.path.exists(lowerCamelCase__ ) and not args.overwrite_cache: __lowerCamelCase = time.time() __lowerCamelCase = torch.load(lowerCamelCase__ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: __lowerCamelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowerCamelCase = self.processor.get_test_examples(args.data_dir ) else: __lowerCamelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowerCamelCase = examples[:limit_length] __lowerCamelCase = glue_convert_examples_to_features( lowerCamelCase__ , lowerCamelCase__ , max_length=args.max_seq_length , label_list=lowerCamelCase__ , output_mode=self.output_mode , ) __lowerCamelCase = time.time() torch.save(self.features , lowerCamelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.features ) def __getitem__( self , lowerCamelCase__ ) -> InputFeatures: '''simple docstring''' return self.features[i] def lowercase_ ( self ) -> int: '''simple docstring''' return self.label_list
367
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
0