code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ = {
"configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["MobileViTFeatureExtractor"]
UpperCAmelCase__ = ["MobileViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileViTForImageClassification",
"MobileViTForSemanticSegmentation",
"MobileViTModel",
"MobileViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileViTForImageClassification",
"TFMobileViTForSemanticSegmentation",
"TFMobileViTModel",
"TFMobileViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 0
|
def __lowercase ( _SCREAMING_SNAKE_CASE = 10 ) -> str:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or n < 0:
raise ValueError("""Invalid input""" )
SCREAMING_SNAKE_CASE = 10**n
SCREAMING_SNAKE_CASE = 2_84_33 * (pow(2 , 7_83_04_57 , _SCREAMING_SNAKE_CASE )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'''{solution(1_0) = }''')
| 296
| 0
|
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowerCamelCase__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("RGB" )
return image
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") )
# fmt: on
return rename_keys
def lowerCamelCase__ ( lowercase , lowercase , lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = dct.pop(lowercase )
SCREAMING_SNAKE_CASE : List[str] = val
def lowerCamelCase__ ( lowercase , lowercase ):
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' )
SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) )
SCREAMING_SNAKE_CASE : List[Any] = qkv_bias
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = 364 if "coco" in model_name else 224
SCREAMING_SNAKE_CASE : str = InstructBlipVisionConfig(image_size=lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
SCREAMING_SNAKE_CASE : Union[str, Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32001 ).to_dict()
elif "vicuna-13b" in model_name:
SCREAMING_SNAKE_CASE : Tuple = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32001 ).to_dict()
else:
raise ValueError("Model name not supported" )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
SCREAMING_SNAKE_CASE : List[str] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict()
SCREAMING_SNAKE_CASE : Any = InstructBlipConfig(vision_config=lowercase , text_config=lowercase , qformer_config=lowercase )
return config, image_size
@torch.no_grad()
def lowerCamelCase__ ( lowercase , lowercase=None , lowercase=False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" )
qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} )
if "t5" in model_name:
SCREAMING_SNAKE_CASE : Any = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
SCREAMING_SNAKE_CASE : List[Any] = LlamaTokenizerFast.from_pretrained(
"huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" )
tokenizer.add_special_tokens({"pad_token": "[PAD]"} )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_blipa_config(lowercase )
SCREAMING_SNAKE_CASE : List[str] = InstructBlipForConditionalGeneration(lowercase ).eval()
SCREAMING_SNAKE_CASE : int = {
"instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"),
"instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"),
"instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"),
"instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"),
}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
SCREAMING_SNAKE_CASE : Optional[int] = "cuda:1" if torch.cuda.is_available() else "cpu"
SCREAMING_SNAKE_CASE : Any = "cuda:2" if torch.cuda.is_available() else "cpu"
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = load_model_and_preprocess(
name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase )
original_model.eval()
print("Done!" )
# update state dict keys
SCREAMING_SNAKE_CASE : Optional[int] = original_model.state_dict()
SCREAMING_SNAKE_CASE : Tuple = create_rename_keys(lowercase )
for src, dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowercase )
if key.startswith("Qformer.bert" ):
SCREAMING_SNAKE_CASE : str = key.replace("Qformer.bert" , "qformer" )
if "attention.self" in key:
SCREAMING_SNAKE_CASE : Any = key.replace("self" , "attention" )
if "llm_proj" in key:
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace("llm_proj" , "language_projection" )
if "t5_proj" in key:
SCREAMING_SNAKE_CASE : int = key.replace("t5_proj" , "language_projection" )
if key.startswith("llm_model" ):
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace("llm_model" , "language_model" )
if key.startswith("t5" ):
SCREAMING_SNAKE_CASE : List[str] = key.replace("t5" , "language" )
SCREAMING_SNAKE_CASE : Dict = val
# read in qv biases
read_in_q_v_bias(lowercase , lowercase )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(lowercase , strict=lowercase )
SCREAMING_SNAKE_CASE : Optional[int] = load_demo_image()
SCREAMING_SNAKE_CASE : Any = "What is unusual about this image?"
# create processor
SCREAMING_SNAKE_CASE : List[str] = BlipImageProcessor(
size={"height": image_size, "width": image_size} , image_mean=lowercase , image_std=lowercase )
SCREAMING_SNAKE_CASE : List[str] = InstructBlipProcessor(
image_processor=lowercase , tokenizer=lowercase , qformer_tokenizer=lowercase , )
SCREAMING_SNAKE_CASE : int = processor(images=lowercase , text=lowercase , return_tensors="pt" ).to(lowercase )
# make sure processor creates exact same pixel values
SCREAMING_SNAKE_CASE : Optional[Any] = vis_processors["eval"](lowercase ).unsqueeze(0 ).to(lowercase )
SCREAMING_SNAKE_CASE : int = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase )
original_model.to(lowercase )
hf_model.to(lowercase )
with torch.no_grad():
if "vicuna" in model_name:
SCREAMING_SNAKE_CASE : List[Any] = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits
SCREAMING_SNAKE_CASE : List[Any] = hf_model(**lowercase ).logits
else:
SCREAMING_SNAKE_CASE : Tuple = original_model(
{"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits
SCREAMING_SNAKE_CASE : Any = tokenizer("\n" , return_tensors="pt" ).input_ids.to(lowercase )
SCREAMING_SNAKE_CASE : Union[str, Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 )
SCREAMING_SNAKE_CASE : Optional[int] = hf_model(**lowercase , labels=lowercase ).logits
print("First values of original logits:" , original_logits[0, :3, :3] )
print("First values of HF logits:" , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
SCREAMING_SNAKE_CASE : Union[str, Any] = 1E-4 if "vicuna" in model_name else 1E-5
assert torch.allclose(original_logits.to(logits.device ) , lowercase , atol=lowercase )
print("Looks ok!" )
print("Generating with original model..." )
SCREAMING_SNAKE_CASE : int = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print("Generating with HF model..." )
SCREAMING_SNAKE_CASE : str = hf_model.generate(
**lowercase , do_sample=lowercase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
SCREAMING_SNAKE_CASE : Dict = 2
print("Original generation:" , lowercase )
SCREAMING_SNAKE_CASE : Dict = processor.batch_decode(lowercase , skip_special_tokens=lowercase )
SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text]
print("HF generation:" , lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(lowercase )
hf_model.save_pretrained(lowercase )
if push_to_hub:
processor.push_to_hub(F'''Salesforce/{model_name}''' )
hf_model.push_to_hub(F'''Salesforce/{model_name}''' )
if __name__ == "__main__":
snake_case = argparse.ArgumentParser()
snake_case = [
"""instructblip-vicuna-7b""",
"""instructblip-vicuna-13b""",
"""instructblip-flan-t5-xl""",
"""instructblip-flan-t5-xxl""",
]
parser.add_argument(
"""--model_name""",
default="""instructblip-flan-t5-xl""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 364
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
snake_case = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 319
| 0
|
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
_snake_case : Union[str, Any] = logging.getLogger(__name__)
_snake_case : Tuple = 'pytorch_model.bin'
@dataclasses.dataclass
class _UpperCAmelCase :
"""simple docstring"""
a_ = dataclasses.field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} )
a_ = dataclasses.field(
default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , )
@dataclasses.dataclass
class _UpperCAmelCase :
"""simple docstring"""
a_ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} )
a_ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} )
a_ = dataclasses.field(
default=_UpperCamelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} )
a_ = dataclasses.field(
default=_UpperCamelCase , metadata={"""help""": """The name of the task to train on."""} , )
a_ = dataclasses.field(
default=_UpperCamelCase , metadata={"""help""": """The list of labels for the task."""} )
@dataclasses.dataclass
class _UpperCAmelCase :
"""simple docstring"""
a_ = dataclasses.field(
metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} )
a_ = dataclasses.field(
default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} )
a_ = dataclasses.field(
default="""no""" , metadata={
"""help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"""
} , )
a_ = dataclasses.field(
default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , )
a_ = dataclasses.field(
default=0.0 , metadata={
"""help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions."""
} , )
a_ = dataclasses.field(
default=_UpperCamelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , )
a_ = dataclasses.field(
default=_UpperCamelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , )
a_ = dataclasses.field(
default=_UpperCamelCase , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , )
a_ = dataclasses.field(
default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , )
a_ = dataclasses.field(
default=1_00 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , )
a_ = dataclasses.field(
default=_UpperCamelCase , metadata={"""help""": """Random seed for initialization."""} , )
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : str, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[Any] ):
__lowerCAmelCase = datasets.concatenate_datasets([infer_input, infer_output], axis=1 )
if args.do_filter_by_confidence:
__lowerCAmelCase = dataset.filter(lambda lowerCAmelCase_ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
__lowerCAmelCase = int(eval_result * len(lowerCAmelCase_ ) )
print(lowerCAmelCase_ )
__lowerCAmelCase = dataset.sort('probability', reverse=lowerCAmelCase_ )
__lowerCAmelCase = dataset.select(range(lowerCAmelCase_ ) )
__lowerCAmelCase = dataset.remove_columns(['label', 'probability'] )
__lowerCAmelCase = dataset.rename_column('prediction', 'label' )
__lowerCAmelCase = dataset.map(lambda lowerCAmelCase_ : {"label": idalabel[example["label"]]} )
__lowerCAmelCase = dataset.shuffle(seed=args.seed )
__lowerCAmelCase = os.path.join(lowerCAmelCase_, F"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(lowerCAmelCase_, index=lowerCAmelCase_ )
else:
dataset.to_json(lowerCAmelCase_ )
def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[int], **lowerCAmelCase_ : Optional[Any] ):
__lowerCAmelCase = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
__lowerCAmelCase = STModelArguments(model_name_or_path=lowerCAmelCase_ )
__lowerCAmelCase = STDataArguments(train_file=lowerCAmelCase_, infer_file=lowerCAmelCase_ )
__lowerCAmelCase = STTrainingArguments(output_dir=lowerCAmelCase_ )
__lowerCAmelCase = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(lowerCAmelCase_ ).items():
setattr(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
for key, value in kwargs.items():
if hasattr(lowerCAmelCase_, lowerCAmelCase_ ):
setattr(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
# Sanity checks
__lowerCAmelCase = {}
__lowerCAmelCase = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
__lowerCAmelCase = args.train_file
__lowerCAmelCase = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
__lowerCAmelCase = args.eval_file
for key in data_files:
__lowerCAmelCase = data_files[key].split('.' )[-1]
assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
__lowerCAmelCase = extension
else:
assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('Creating the initial data directory for self-training...' )
__lowerCAmelCase = F"""{args.output_dir}/self-train_iter-{{}}""".format
__lowerCAmelCase = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=lowerCAmelCase_ )
os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ )
accelerator.wait_for_everyone()
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = 0
__lowerCAmelCase = False
# Show the progress bar
__lowerCAmelCase = tqdm(range(args.max_selftrain_iterations ), disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0, int(args.max_selftrain_iterations ) ):
__lowerCAmelCase = data_dir_format(lowerCAmelCase_ )
assert os.path.exists(lowerCAmelCase_ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
__lowerCAmelCase = os.path.join(lowerCAmelCase_, 'stage-1' )
__lowerCAmelCase = {
'accelerator': accelerator,
'model_name_or_path': args.model_name_or_path,
'cache_dir': args.cache_dir,
'do_train': True,
'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'],
'do_eval': True if args.eval_file is not None else False,
'eval_file': data_files['eval'],
'do_predict': True,
'infer_file': data_files['infer'],
'task_name': args.task_name,
'label_list': args.label_list,
'output_dir': current_output_dir,
'eval_metric': args.eval_metric,
'evaluation_strategy': args.evaluation_strategy,
'early_stopping_patience': args.early_stopping_patience,
'early_stopping_threshold': args.early_stopping_threshold,
'seed': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(lowerCAmelCase_, lowerCAmelCase_ ):
arguments_dict.update({key: value} )
__lowerCAmelCase = os.path.join(lowerCAmelCase_, 'best-checkpoint', lowerCAmelCase_ )
if os.path.exists(lowerCAmelCase_ ):
logger.info(
'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.', lowerCAmelCase_, lowerCAmelCase_, )
else:
logger.info('***** Running self-training: iteration: %d, stage: 1 *****', lowerCAmelCase_ )
finetune(**lowerCAmelCase_ )
accelerator.wait_for_everyone()
assert os.path.exists(lowerCAmelCase_ )
logger.info('Self-training job completed: iteration: %d, stage: 1.', lowerCAmelCase_ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
__lowerCAmelCase = os.path.join(lowerCAmelCase_, 'best-checkpoint' )
__lowerCAmelCase = os.path.join(lowerCAmelCase_, 'stage-2' )
# Update arguments_dict
__lowerCAmelCase = model_path
__lowerCAmelCase = data_files['train']
__lowerCAmelCase = current_output_dir
__lowerCAmelCase = os.path.join(lowerCAmelCase_, 'best-checkpoint', lowerCAmelCase_ )
if os.path.exists(lowerCAmelCase_ ):
logger.info(
'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.', lowerCAmelCase_, lowerCAmelCase_, )
else:
logger.info('***** Running self-training: iteration: %d, stage: 2 *****', lowerCAmelCase_ )
finetune(**lowerCAmelCase_ )
accelerator.wait_for_everyone()
assert os.path.exists(lowerCAmelCase_ )
logger.info('Self-training job completed: iteration: %d, stage: 2.', lowerCAmelCase_ )
__lowerCAmelCase = iteration
__lowerCAmelCase = data_dir_format(iteration + 1 )
__lowerCAmelCase = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase_, 'best-checkpoint' ) )
__lowerCAmelCase = config.idalabel
__lowerCAmelCase = os.path.join(lowerCAmelCase_, 'eval_results_best-checkpoint.json' )
__lowerCAmelCase = os.path.join(lowerCAmelCase_, 'test_results_best-checkpoint.json' )
assert os.path.exists(lowerCAmelCase_ )
with open(lowerCAmelCase_, 'r' ) as f:
__lowerCAmelCase = float(json.load(lowerCAmelCase_ )[args.eval_metric] )
__lowerCAmelCase = os.path.join(lowerCAmelCase_, 'infer_output_best-checkpoint.csv' )
assert os.path.exists(lowerCAmelCase_ )
# Loading the dataset from local csv or json files.
__lowerCAmelCase = load_dataset(args.data_file_extension, data_files={'data': data_files['infer']} )['data']
__lowerCAmelCase = load_dataset('csv', data_files={'data': infer_output_file} )['data']
if accelerator.is_main_process:
os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ )
shutil.copy(lowerCAmelCase_, os.path.join(lowerCAmelCase_, F"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(lowerCAmelCase_ ):
shutil.copy(lowerCAmelCase_, os.path.join(lowerCAmelCase_, F"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
accelerator.wait_for_everyone()
__lowerCAmelCase = os.path.join(lowerCAmelCase_, F"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
__lowerCAmelCase = eval_result
if best_iteration is None:
__lowerCAmelCase = new_iteration
__lowerCAmelCase = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
__lowerCAmelCase = new_iteration
__lowerCAmelCase = new_eval_result
__lowerCAmelCase = 0
else:
if new_eval_result == best_eval_result:
__lowerCAmelCase = new_iteration
__lowerCAmelCase = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
__lowerCAmelCase = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('Best iteration: %d', lowerCAmelCase_ )
logger.info('Best evaluation result: %s = %f', args.eval_metric, lowerCAmelCase_ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(lowerCAmelCase_, F"""eval_results_iter-{iteration}.json""" ), os.path.join(lowerCAmelCase_, 'eval_results_best-iteration.json' ), )
else:
# Assume that the last iteration is the best
logger.info('Best iteration: %d', args.max_selftrain_iterations - 1 )
logger.info('Best evaluation result: %s = %f', args.eval_metric, lowerCAmelCase_ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(lowerCAmelCase_, F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ), os.path.join(lowerCAmelCase_, 'eval_results_best-iteration.json' ), )
| 284
|
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Dict, lowerCAmelCase_ : Tuple=1024, lowerCAmelCase_ : Optional[Any]=1024, lowerCAmelCase_ : Tuple=False, **lowerCAmelCase_ : Union[str, Any] ):
__lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ )
__lowerCAmelCase = SeqaSeqDataset(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, type_path='train', **lowerCAmelCase_ )
__lowerCAmelCase = tok.pad_token_id
def get_lens(lowerCAmelCase_ : Optional[Any] ):
__lowerCAmelCase = tqdm(
DataLoader(lowerCAmelCase_, batch_size=512, num_workers=8, shuffle=lowerCAmelCase_, collate_fn=ds.collate_fn ), desc=str(ds.len_file ), )
__lowerCAmelCase = []
for batch in dl:
__lowerCAmelCase = batch['input_ids'].ne(lowerCAmelCase_ ).sum(1 ).tolist()
__lowerCAmelCase = batch['labels'].ne(lowerCAmelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowerCAmelCase_, lowerCAmelCase_ ):
max_lens.append(max(lowerCAmelCase_, lowerCAmelCase_ ) )
else:
max_lens.extend(lowerCAmelCase_ )
return max_lens
__lowerCAmelCase = get_lens(lowerCAmelCase_ )
__lowerCAmelCase = SeqaSeqDataset(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, type_path='val', **lowerCAmelCase_ )
__lowerCAmelCase = get_lens(lowerCAmelCase_ )
pickle_save(lowerCAmelCase_, train_ds.len_file )
pickle_save(lowerCAmelCase_, val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 284
| 1
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase = {
'configuration_instructblip': [
'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InstructBlipConfig',
'InstructBlipQFormerConfig',
'InstructBlipVisionConfig',
],
'processing_instructblip': ['InstructBlipProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'InstructBlipQFormerModel',
'InstructBlipPreTrainedModel',
'InstructBlipForConditionalGeneration',
'InstructBlipVisionModel',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 352
|
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]:
'''simple docstring'''
__lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
__lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' )
__lowercase= transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ),
] )
__lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ )
return image
def _lowerCamelCase( lowercase__ ) -> Dict:
'''simple docstring'''
if "visual_encoder" in key:
__lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ )
if "blocks" in key:
__lowercase= re.sub(R'blocks' , 'layers' , lowercase__ )
if "attn" in key:
__lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ )
if "norm1" in key:
__lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ )
if "norm2" in key:
__lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ )
if "encoder.norm" in key:
__lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ )
if "encoder.patch_embed.proj" in key:
__lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ )
if "encoder.pos_embed" in key:
__lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ )
if "encoder.cls_token" in key:
__lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ )
if "self_attn" in key:
__lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ )
return key
@torch.no_grad()
def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int:
'''simple docstring'''
if config_path is not None:
__lowercase= BlipConfig.from_pretrained(lowercase__ )
else:
__lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} )
__lowercase= BlipForConditionalGeneration(lowercase__ ).eval()
__lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'
__lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' )
__lowercase= pt_model.eval()
__lowercase= pt_model.state_dict()
for key in modified_state_dict.copy():
__lowercase= modified_state_dict.pop(lowercase__ )
__lowercase= rename_key(lowercase__ )
__lowercase= value
hf_model.load_state_dict(lowercase__ )
__lowercase= 3_8_4
__lowercase= load_demo_image(image_size=lowercase__ , device='cpu' )
__lowercase= BertTokenizer.from_pretrained('bert-base-uncased' )
__lowercase= tokenizer(['a picture of'] ).input_ids
__lowercase= hf_model.generate(lowercase__ , lowercase__ )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
__lowercase= hf_model.generate(lowercase__ )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(lowercase__ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
__lowercase= (
'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
)
__lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' )
vqa_model.eval()
__lowercase= vqa_model.state_dict()
for key in modified_state_dict.copy():
__lowercase= modified_state_dict.pop(lowercase__ )
__lowercase= rename_key(lowercase__ )
__lowercase= value
__lowercase= BlipForQuestionAnswering(lowercase__ )
hf_vqa_model.load_state_dict(lowercase__ )
__lowercase= ['How many dogs are in this image?']
__lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids
__lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' )
__lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
__lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' )
itm_model.eval()
__lowercase= itm_model.state_dict()
for key in modified_state_dict.copy():
__lowercase= modified_state_dict.pop(lowercase__ )
__lowercase= rename_key(lowercase__ )
__lowercase= value
__lowercase= BlipForImageTextRetrieval(lowercase__ )
__lowercase= ['A picture of a woman with a dog sitting in a beach']
__lowercase= tokenizer(
lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids
hf_itm_model.load_state_dict(lowercase__ )
hf_itm_model.eval()
__lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ )
__lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ )
assert out[0].item() == 0.2110_6874_9427_7954
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
lowerCAmelCase = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 304
| 0
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = '''▁'''
_lowercase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
_lowercase = {
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
_lowercase = {
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
_lowercase = {
'''ernie-m-base''': 5_14,
'''ernie-m-large''': 5_14,
}
_lowercase = {
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
_lowerCamelCase: List[str] = ["input_ids"]
_lowerCamelCase: Any = VOCAB_FILES_NAMES
_lowerCamelCase: Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase: str = RESOURCE_FILES_NAMES
def __init__( self : List[Any] ,A_ : int ,A_ : Tuple=None ,A_ : List[str]=False ,A_ : Union[str, Any]="utf8" ,A_ : List[Any]="[UNK]" ,A_ : Optional[int]="[SEP]" ,A_ : str="[PAD]" ,A_ : int="[CLS]" ,A_ : str="[MASK]" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : str ,) -> None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=A_ ,unk_token=A_ ,sep_token=A_ ,pad_token=A_ ,cls_token=A_ ,mask_token=A_ ,vocab_file=A_ ,encoding=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,)
A = do_lower_case
A = sentencepiece_model_ckpt
A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A_ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
A = self.load_vocab(filepath=A_ )
else:
A = {self.sp_model.id_to_piece(A_ ): id for id in range(self.sp_model.get_piece_size() )}
A = {v: k for k, v in self.vocab.items()}
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[str] ) -> Any:
if text is None:
return None
A = self.tokenize(A_ )
A , A = '', []
for i, ch in enumerate(A_ ):
if ch in self.SP_CHAR_MAPPING:
A = self.SP_CHAR_MAPPING.get(A_ )
else:
A = unicodedata.normalize('NFKC' ,A_ )
if self.is_whitespace(A_ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(A_ ) )
A , A , A = normalized_text, [], 0
if self.do_lower_case:
A = text.lower()
for token in split_tokens:
if token[:1] == "▁":
A = token[1:]
A = text[offset:].index(A_ ) + offset
A = start + len(A_ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
A = end
return token_mapping
@property
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]:
return len(self.vocab )
def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]:
return dict(self.vocab ,**self.added_tokens_encoder )
def __getstate__( self : Optional[int] ) -> Optional[int]:
A = self.__dict__.copy()
A = None
return state
def __setstate__( self : Any ,A_ : Any ) -> Optional[int]:
A = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
A = {}
A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Union[str, Any] ) -> int:
return "".join((self.SP_CHAR_MAPPING.get(A_ ,A_ ) for c in text) )
def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Any=64 ,A_ : int=0.1 ) -> str:
if self.sp_model_kwargs.get('enable_sampling' ) is True:
A = True
if self.sp_model_kwargs.get('alpha' ) is not None:
A = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
A = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
A = self.sp_model.EncodeAsPieces(A_ )
else:
A = self.sp_model.SampleEncodeAsPieces(A_ ,A_ ,A_ )
A = []
for pi, piece in enumerate(A_ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(A_ ) and pi != 0:
new_pieces.append(A_ )
continue
else:
continue
A = 0
for i, chunk in enumerate(A_ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(A_ ) or self.is_punct(A_ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(A_ )
A = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
A = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
A = i
if len(A_ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Dict ) -> Tuple:
A = ''.join(A_ ).replace(A_ ,' ' ).strip()
return out_string
def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ) -> List[Any]:
A = self.convert_ids_to_tokens(A_ )
A = ''.join(A_ ).replace(A_ ,' ' ).strip()
return out_string
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : str ) -> List[Any]:
return self.vocab.get(A_ ,self.vocab.get(self.unk_token ) )
def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : int ) -> Optional[Any]:
return self.reverse_vocab.get(A_ ,self.unk_token )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : int ,A_ : int=None ) -> List[str]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A = [self.cls_token_id]
A = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ,A_ : Dict=None ) -> List[Any]:
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ,A_ : List[str]=None ,A_ : Tuple=False ) -> Union[str, Any]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1]
return [1] + ([0] * len(A_ )) + [1]
def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]:
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(A_ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(A_ ) + 1) + [1] * (len(A_ ) + 3)
def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Optional[int] ) -> Optional[int]:
if "\u4e00" <= char <= "\u9fff":
return True
return False
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : int ) -> Dict:
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[Any] ) -> List[Any]:
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ) -> Optional[int]:
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(A_ ) == 1:
A = unicodedata.category(A_ )
if cat == "Zs":
return True
return False
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Tuple ) -> Any:
A = {}
with io.open(A_ ,'r' ,encoding='utf-8' ) as f:
for index, line in enumerate(A_ ):
A = line.rstrip('\n' )
A = int(A_ )
return token_to_idx
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]:
A = 0
if os.path.isdir(A_ ):
A = os.path.join(
A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
A = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(A_ ,'w' ,encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() ,key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
A = token_index
writer.write(token + '\n' )
index += 1
A = os.path.join(A_ ,'sentencepiece.bpe.model' )
with open(A_ ,'wb' ) as fi:
A = self.sp_model.serialized_model_proto()
fi.write(A_ )
return (vocab_file,)
| 74
|
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
a_ : int = logging.getLogger(__name__)
a_ : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
a_ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _snake_case :
_lowercase : Optional[str] = field(
default=A__ , metadata={
'''help''': (
'''The model checkpoint for weights initialization. Leave None if you want to train a model from'''
''' scratch.'''
)
} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A__ )} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class _snake_case :
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''The input training data file (a text file).'''} )
_lowercase : Optional[str] = field(
default=A__ , metadata={
'''help''': (
'''The input training data files (multiple files in glob format). '''
'''Very often splitting large files to smaller files can prevent tokenizer going out of memory'''
)
} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , )
_lowercase : bool = field(
default=A__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , )
_lowercase : bool = field(
default=A__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} )
_lowercase : bool = field(default=A__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} )
_lowercase : float = field(
default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} )
_lowercase : float = field(
default=1 / 6 , metadata={
'''help''': (
'''Ratio of length of a span of masked tokens to surrounding context length for permutation language'''
''' modeling.'''
)
} , )
_lowercase : int = field(
default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} )
_lowercase : int = field(
default=-1 , metadata={
'''help''': (
'''Optional input sequence length after tokenization.'''
'''The training dataset will be truncated in block of this size for training.'''
'''Default to the model max input length for single sentence inputs (take into account special tokens).'''
)
} , )
_lowercase : bool = field(
default=A__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ):
def _dataset(_UpperCAmelCase , _UpperCAmelCase=None):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask')
return LineByLineWithRefDataset(
tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , )
return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size)
else:
return TextDataset(
tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file)
elif args.train_data_files:
return ConcatDataset([_dataset(_UpperCAmelCase) for f in glob(args.train_data_files)])
else:
return _dataset(args.train_data_file , args.train_ref_file)
def lowerCamelCase__ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '
'or remove the --do_eval argument.')
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.')
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _UpperCAmelCase)
# Set seed
set_seed(training_args.seed)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir)
else:
SCREAMING_SNAKE_CASE = CONFIG_MAPPING[model_args.model_type]()
logger.warning('You are instantiating a new config instance from scratch.')
if model_args.tokenizer_name:
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir)
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'
' script, save it,and load it from here, using --tokenizer_name')
if model_args.model_name_or_path:
SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , )
else:
logger.info('Training new model from scratch')
SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_config(_UpperCAmelCase)
model.resize_token_embeddings(len(_UpperCAmelCase))
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'
'--mlm flag (masked language modeling).')
if data_args.block_size <= 0:
SCREAMING_SNAKE_CASE = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
SCREAMING_SNAKE_CASE = min(data_args.block_size , tokenizer.max_len)
# Get datasets
SCREAMING_SNAKE_CASE = (
get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_train else None
)
SCREAMING_SNAKE_CASE = (
get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir)
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
SCREAMING_SNAKE_CASE = DataCollatorForPermutationLanguageModeling(
tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
SCREAMING_SNAKE_CASE = DataCollatorForWholeWordMask(
tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability)
else:
SCREAMING_SNAKE_CASE = DataCollatorForLanguageModeling(
tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability)
# Initialize our Trainer
SCREAMING_SNAKE_CASE = Trainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
else None
)
trainer.train(model_path=_UpperCAmelCase)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
SCREAMING_SNAKE_CASE = {}
if training_args.do_eval:
logger.info('*** Evaluate ***')
SCREAMING_SNAKE_CASE = trainer.evaluate()
SCREAMING_SNAKE_CASE = math.exp(eval_output['eval_loss'])
SCREAMING_SNAKE_CASE = {'perplexity': perplexity}
SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , 'eval_results_lm.txt')
if trainer.is_world_master():
with open(_UpperCAmelCase , 'w') as writer:
logger.info('***** Eval results *****')
for key in sorted(result.keys()):
logger.info(' %s = %s' , _UpperCAmelCase , str(result[key]))
writer.write('%s = %s\n' % (key, str(result[key])))
results.update(_UpperCAmelCase)
return results
def lowerCamelCase__ (_UpperCAmelCase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 137
| 0
|
import fire
from utils import calculate_rouge, save_json
def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ):
snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()]
snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )]
snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
if save_path is not None:
save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 10
|
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
__lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
for attribute in key.split("." ):
snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase )
if weight_type is not None:
snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape
else:
snake_case : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
snake_case : Dict = value
elif weight_type == "weight_g":
snake_case : Optional[int] = value
elif weight_type == "weight_v":
snake_case : Optional[int] = value
elif weight_type == "bias":
snake_case : Tuple = value
else:
snake_case : Optional[int] = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ):
snake_case : int = []
snake_case : List[Any] = fairseq_model.state_dict()
snake_case : int = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
snake_case : List[str] = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , )
snake_case : str = True
else:
for key, mapped_key in MAPPING.items():
snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key):
# special case since naming is very similar
continue
snake_case : Tuple = True
if "*" in mapped_key:
snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2]
snake_case : Any = mapped_key.replace("*" , __lowerCamelCase )
if "weight_g" in name:
snake_case : Optional[int] = "weight_g"
elif "weight_v" in name:
snake_case : Tuple = "weight_v"
elif "bias" in name:
snake_case : Dict = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
snake_case : str = "weight"
else:
snake_case : str = None
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
continue
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f"""Unused weights: {unused_weights}""" )
def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ):
snake_case : str = full_name.split("conv_layers." )[-1]
snake_case : int = name.split("." )
snake_case : Optional[int] = int(items[0] )
snake_case : Dict = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
snake_case : Union[str, Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
snake_case : List[str] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
snake_case : Dict = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
snake_case : Optional[Any] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ):
if config_path is not None:
snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase )
else:
snake_case : str = UniSpeechSatConfig()
snake_case : Tuple = ""
if is_finetuned:
snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase )
else:
snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase )
snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
snake_case : Dict = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
__lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
__lowerCamelCase = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10
| 1
|
'''simple docstring'''
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Union[str, Any] = k_size // 2
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
_SCREAMING_SNAKE_CASE : List[str] = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE__ ) + square(SCREAMING_SNAKE_CASE__ )) / (2 * square(SCREAMING_SNAKE_CASE__ )) )
return g
def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = image.shape[0], image.shape[1]
# dst image height and width
_SCREAMING_SNAKE_CASE : Optional[int] = height - k_size + 1
_SCREAMING_SNAKE_CASE : Optional[Any] = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
_SCREAMING_SNAKE_CASE : Any = zeros((dst_height * dst_width, k_size * k_size) )
_SCREAMING_SNAKE_CASE : Any = 0
for i, j in product(range(SCREAMING_SNAKE_CASE__ ) , range(SCREAMING_SNAKE_CASE__ ) ):
_SCREAMING_SNAKE_CASE : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] )
_SCREAMING_SNAKE_CASE : List[Any] = window
row += 1
# turn the kernel into shape(k*k, 1)
_SCREAMING_SNAKE_CASE : Optional[Any] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_SCREAMING_SNAKE_CASE : Optional[Any] = ravel(SCREAMING_SNAKE_CASE__ )
# reshape and get the dst image
_SCREAMING_SNAKE_CASE : Optional[Any] = dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).astype(SCREAMING_SNAKE_CASE__ )
return dst
if __name__ == "__main__":
# read original image
UpperCAmelCase_ : str = imread(r'../image_data/lena.jpg')
# turn image in gray scale value
UpperCAmelCase_ : Tuple = cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
UpperCAmelCase_ : Dict = gaussian_filter(gray, 3, sigma=1)
UpperCAmelCase_ : Dict = gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow('gaussian filter with 3x3 mask', gaussianaxa)
imshow('gaussian filter with 5x5 mask', gaussianaxa)
waitKey()
| 200
|
'''simple docstring'''
def snake_case_ ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : str = 0
for ch in input_str:
_SCREAMING_SNAKE_CASE : Optional[Any] = ord(SCREAMING_SNAKE_CASE__ )
_SCREAMING_SNAKE_CASE : Union[str, Any] = pow(2 , SCREAMING_SNAKE_CASE__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 200
| 1
|
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = 'laion/clap-htsat-unfused'
UpperCamelCase = tempfile.mkdtemp()
def A ( self : Any , **UpperCamelCase__ : List[Any] ):
"""simple docstring"""
return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase__ )
def A ( self : Any , **UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCamelCase__ )
def A ( self : Tuple ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = self.get_feature_extractor()
UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
processor.save_pretrained(self.tmpdirname )
UpperCamelCase = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase__ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ )
def A ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
UpperCamelCase = self.get_feature_extractor(do_normalize=UpperCamelCase__ , padding_value=1.0 )
UpperCamelCase = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase__ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ )
def A ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.get_feature_extractor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
UpperCamelCase = floats_list((3, 1_0_0_0) )
UpperCamelCase = feature_extractor(UpperCamelCase__ , return_tensors='np' )
UpperCamelCase = processor(audios=UpperCamelCase__ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def A ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.get_feature_extractor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
UpperCamelCase = 'This is a test string'
UpperCamelCase = processor(text=UpperCamelCase__ )
UpperCamelCase = tokenizer(UpperCamelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A ( self : Any ):
"""simple docstring"""
UpperCamelCase = self.get_feature_extractor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCamelCase = processor.batch_decode(UpperCamelCase__ )
UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : int ):
"""simple docstring"""
UpperCamelCase = self.get_feature_extractor()
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = ClapProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
| 249
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : Tuple = {
"configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["ConvNextFeatureExtractor"]
_lowerCamelCase : Optional[Any] = ["ConvNextImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : int = [
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvNextForImageClassification",
"ConvNextModel",
"ConvNextPreTrainedModel",
"ConvNextBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Union[str, Any] = [
"TFConvNextForImageClassification",
"TFConvNextModel",
"TFConvNextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
_lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 249
| 1
|
"""simple docstring"""
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def snake_case_ ( A_ : Union[str, Any], A_ : Dict, A_ : Any, A_ : Optional[int] ):
'''simple docstring'''
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' )
if tokenizer_name is None:
_lowerCamelCase : List[str] = TOKENIZER_CLASSES
else:
_lowerCamelCase : List[str] = {tokenizer_name: getattr(A_, tokenizer_name + '''Fast''' )}
logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' )
for tokenizer_name in tokenizer_names:
_lowerCamelCase : Optional[int] = TOKENIZER_CLASSES[tokenizer_name]
_lowerCamelCase : List[str] = True
if checkpoint_name is None:
_lowerCamelCase : int = list(tokenizer_class.max_model_input_sizes.keys() )
else:
_lowerCamelCase : List[str] = [checkpoint_name]
logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' )
for checkpoint in checkpoint_names:
logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' )
# Load tokenizer
_lowerCamelCase : int = tokenizer_class.from_pretrained(A_, force_download=A_ )
# Save fast tokenizer
logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' )
# For organization names we create sub-directories
if "/" in checkpoint:
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = checkpoint.split('''/''' )
_lowerCamelCase : Dict = os.path.join(A_, A_ )
elif add_prefix:
_lowerCamelCase : List[Any] = checkpoint
_lowerCamelCase : str = dump_path
else:
_lowerCamelCase : str = None
_lowerCamelCase : List[str] = dump_path
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
_lowerCamelCase : int = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
_lowerCamelCase : Union[str, Any] = file_path.split(A_ )[-1][0]
if next_char == "/":
_lowerCamelCase : Any = os.path.join(A_, A_ )
_lowerCamelCase : Union[str, Any] = None
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
_lowerCamelCase : Union[str, Any] = tokenizer.save_pretrained(
A_, legacy_format=A_, filename_prefix=A_ )
logger.info(F'''=> File names {file_names}''' )
for file_name in file_names:
if not file_name.endswith('''tokenizer.json''' ):
os.remove(A_ )
logger.info(F'''=> removing {file_name}''' )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
lowerCAmelCase__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 72
|
'''simple docstring'''
import heapq
import sys
import numpy as np
UpperCamelCase = tuple[int, int]
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[Any] ) -> str:
'''simple docstring'''
A: Any = []
A: int = set()
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def _snake_case ( self : List[str] ) -> List[Any]:
'''simple docstring'''
return len(self.elements ) == 0
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]:
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(SCREAMING_SNAKE_CASE_ )
else:
# update
# print("update", item)
A: Optional[int] = []
((A) , (A)): str = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((A) , (A)): int = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any:
'''simple docstring'''
if item in self.set:
self.set.remove(SCREAMING_SNAKE_CASE_ )
A: str = []
((A) , (A)): List[str] = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((A) , (A)): Any = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
return self.elements[0][1]
def _snake_case ( self : int ) -> Union[str, Any]:
'''simple docstring'''
((A) , (A)): Dict = heapq.heappop(self.elements )
self.set.remove(SCREAMING_SNAKE_CASE_ )
return (priority, item)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
# euclidean distance
A: List[str] = np.array(__lowercase )
A: Optional[int] = np.array(__lowercase )
return np.linalg.norm(a - b )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int:
# integer division by time variable
return consistent_heuristic(__lowercase , __lowercase ) // t
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]:
A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase )
return ans
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]:
A: Union[str, Any] = np.chararray((n, n) )
for i in range(__lowercase ):
for j in range(__lowercase ):
A: Union[str, Any] = '''*'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (j, (n - 1) - i) in blocks:
A: Optional[Any] = '''#'''
A: Tuple = '''-'''
A: List[str] = back_pointer[goal]
while x != start:
((A) , (A)): Tuple = x
# print(x)
A: List[str] = '''-'''
A: str = back_pointer[x]
A: Dict = '''-'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
A: List[str] = back_pointer[goal]
while x != start:
print(__lowercase , end=''' ''' )
A: Optional[int] = back_pointer[x]
print(__lowercase )
sys.exit()
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]:
for itera in range(__lowercase ):
open_list[itera].remove_element(__lowercase )
# print("s", s)
# print("j", j)
((A) , (A)): Tuple = s
A: Optional[Any] = (x - 1, y)
A: str = (x + 1, y)
A: List[Any] = (x, y + 1)
A: int = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(__lowercase ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(__lowercase )
A: int = -1
A: int = float('''inf''' )
if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1:
A: List[str] = g_function[s] + 1
A: List[str] = s
if neighbours not in close_list_anchor:
open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) )
if neighbours not in close_list_inad:
for var in range(1 , __lowercase ):
if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key(
__lowercase , 0 , __lowercase , __lowercase ):
open_list[j].put(
__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( ) -> Tuple:
A: str = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
UpperCamelCase = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
UpperCamelCase = make_common_ground()
UpperCamelCase = blocks_blk
# hyper parameters
UpperCamelCase = 1
UpperCamelCase = 1
UpperCamelCase = 20
UpperCamelCase = 3 # one consistent and two other inconsistent
# start and end destination
UpperCamelCase = (0, 0)
UpperCamelCase = (n - 1, n - 1)
UpperCamelCase = 1
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: int = {start: 0, goal: float('''inf''' )}
A: Union[str, Any] = {start: -1, goal: -1}
A: List[Any] = []
A: Union[str, Any] = set()
for i in range(__lowercase ):
open_list.append(PriorityQueue() )
open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
A: list[int] = []
A: list[int] = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , __lowercase ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A , A: Union[str, Any] = open_list[i].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_inad.append(__lowercase )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A: Union[str, Any] = open_list[0].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_anchor.append(__lowercase )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(__lowercase ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 319
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A = logging.get_logger(__name__)
_A = {
'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json',
}
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
UpperCAmelCase__ : int = "switch_transformers"
UpperCAmelCase__ : Optional[Any] = ["past_key_values"]
UpperCAmelCase__ : int = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self , A_=32128 , A_=768 , A_=64 , A_=2048 , A_=64 , A_=12 , A_=3 , A_=12 , A_=3 , A_=12 , A_=8 , A_=False , A_=0.01 , A_="float32" , A_=False , A_=32 , A_=128 , A_=0.1 , A_=1E-6 , A_=0.001 , A_=0.001 , A_=1.0 , A_="relu" , A_=True , A_=False , A_=True , A_=0 , A_=1 , **A_ , ) -> Optional[int]:
__UpperCamelCase =vocab_size
__UpperCamelCase =d_model
__UpperCamelCase =d_kv
__UpperCamelCase =d_ff
__UpperCamelCase =num_sparse_encoder_layers
__UpperCamelCase =num_layers
__UpperCamelCase =(
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__UpperCamelCase =num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
__UpperCamelCase =self.num_layers // self.num_sparse_encoder_layers
else:
__UpperCamelCase =self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
__UpperCamelCase =self.num_decoder_layers // self.num_sparse_decoder_layers
else:
__UpperCamelCase =self.num_decoder_layers # HACK: this will create 0 sparse layers
__UpperCamelCase =num_heads
__UpperCamelCase =num_experts
__UpperCamelCase =expert_capacity
__UpperCamelCase =router_bias
__UpperCamelCase =router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' )
__UpperCamelCase =router_dtype
__UpperCamelCase =router_ignore_padding_tokens
__UpperCamelCase =relative_attention_num_buckets
__UpperCamelCase =relative_attention_max_distance
__UpperCamelCase =dropout_rate
__UpperCamelCase =layer_norm_epsilon
__UpperCamelCase =initializer_factor
__UpperCamelCase =feed_forward_proj
__UpperCamelCase =use_cache
__UpperCamelCase =add_router_probs
__UpperCamelCase =router_z_loss_coef
__UpperCamelCase =router_aux_loss_coef
__UpperCamelCase =self.feed_forward_proj.split('-' )
__UpperCamelCase =act_info[-1]
__UpperCamelCase =act_info[0] == 'gated'
if len(A_ ) > 1 and act_info[0] != "gated" or len(A_ ) > 2:
raise ValueError(
f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
__UpperCamelCase ='gelu_new'
super().__init__(
pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , **A_ , )
| 117
|
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
UpperCAmelCase__ : torch.FloatTensor
UpperCAmelCase__ : Optional[torch.FloatTensor] = None
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=0.999 , SCREAMING_SNAKE_CASE__ : str="cosine" , ):
if alpha_transform_type == "cosine":
def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' )
__UpperCamelCase =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
__UpperCamelCase =i / num_diffusion_timesteps
__UpperCamelCase =(i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) )
return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa )
class UpperCAmelCase__ ( A_ , A_ ):
"""simple docstring"""
@register_to_config
def __init__( self , A_ = 1000 , A_ = "fixed_small_log" , A_ = True , A_ = 1.0 , A_ = "epsilon" , A_ = "squaredcos_cap_v2" , ) -> Tuple:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' )
__UpperCamelCase =betas_for_alpha_bar(A_ )
__UpperCamelCase =1.0 - self.betas
__UpperCamelCase =torch.cumprod(self.alphas , dim=0 )
__UpperCamelCase =torch.tensor(1.0 )
# standard deviation of the initial noise distribution
__UpperCamelCase =1.0
# setable values
__UpperCamelCase =None
__UpperCamelCase =torch.from_numpy(np.arange(0 , A_ )[::-1].copy() )
__UpperCamelCase =variance_type
def _a ( self , A_ , A_ = None ) -> torch.FloatTensor:
return sample
def _a ( self , A_ , A_ = None ) -> Tuple:
__UpperCamelCase =num_inference_steps
__UpperCamelCase =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
__UpperCamelCase =(np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(np.intaa )
__UpperCamelCase =torch.from_numpy(A_ ).to(A_ )
def _a ( self , A_ , A_=None , A_=None , A_=None ) -> List[Any]:
if prev_timestep is None:
__UpperCamelCase =t - 1
__UpperCamelCase =self.alphas_cumprod[t]
__UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__UpperCamelCase =1 - alpha_prod_t
__UpperCamelCase =1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__UpperCamelCase =self.betas[t]
else:
__UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
__UpperCamelCase =beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
__UpperCamelCase =self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
__UpperCamelCase =torch.log(torch.clamp(A_ , min=1E-20 ) )
__UpperCamelCase =torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
__UpperCamelCase =variance.log()
__UpperCamelCase =beta.log()
__UpperCamelCase =(predicted_variance + 1) / 2
__UpperCamelCase =frac * max_log + (1 - frac) * min_log
return variance
def _a ( self , A_ , A_ , A_ , A_ = None , A_=None , A_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]:
__UpperCamelCase =timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
__UpperCamelCase , __UpperCamelCase =torch.split(A_ , sample.shape[1] , dim=1 )
else:
__UpperCamelCase =None
# 1. compute alphas, betas
if prev_timestep is None:
__UpperCamelCase =t - 1
__UpperCamelCase =self.alphas_cumprod[t]
__UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__UpperCamelCase =1 - alpha_prod_t
__UpperCamelCase =1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__UpperCamelCase =self.betas[t]
__UpperCamelCase =self.alphas[t]
else:
__UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev
__UpperCamelCase =1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
__UpperCamelCase =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
__UpperCamelCase =model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'
' for the UnCLIPScheduler.' )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
__UpperCamelCase =torch.clamp(
A_ , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__UpperCamelCase =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
__UpperCamelCase =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__UpperCamelCase =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__UpperCamelCase =0
if t > 0:
__UpperCamelCase =randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=A_ , device=model_output.device )
__UpperCamelCase =self._get_variance(
A_ , predicted_variance=A_ , prev_timestep=A_ , )
if self.variance_type == "fixed_small_log":
__UpperCamelCase =variance
elif self.variance_type == "learned_range":
__UpperCamelCase =(0.5 * variance).exp()
else:
raise ValueError(
f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'
' for the UnCLIPScheduler.' )
__UpperCamelCase =variance * variance_noise
__UpperCamelCase =pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=A_ , pred_original_sample=A_ )
def _a ( self , A_ , A_ , A_ , ) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
__UpperCamelCase =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
__UpperCamelCase =timesteps.to(original_samples.device )
__UpperCamelCase =alphas_cumprod[timesteps] ** 0.5
__UpperCamelCase =sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
__UpperCamelCase =sqrt_alpha_prod.unsqueeze(-1 )
__UpperCamelCase =(1 - alphas_cumprod[timesteps]) ** 0.5
__UpperCamelCase =sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
__UpperCamelCase =sqrt_one_minus_alpha_prod.unsqueeze(-1 )
__UpperCamelCase =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 117
| 1
|
"""simple docstring"""
_a = {
0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9',
10: 'a',
11: 'b',
12: 'c',
13: 'd',
14: 'e',
15: 'f',
}
def __a ( __lowerCamelCase ):
assert type(__lowerCamelCase ) in (int, float) and decimal == int(__lowerCamelCase )
UpperCAmelCase_ : Any = int(__lowerCamelCase )
UpperCAmelCase_ : List[Any] = ""
UpperCAmelCase_ : Union[str, Any] = False
if decimal < 0:
UpperCAmelCase_ : Optional[int] = True
decimal *= -1
while decimal > 0:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(__lowerCamelCase, 16 )
UpperCAmelCase_ : Optional[int] = values[remainder] + hexadecimal
UpperCAmelCase_ : List[Any] = "0x" + hexadecimal
if negative:
UpperCAmelCase_ : Any = "-" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 61
|
'''simple docstring'''
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
_UpperCamelCase : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
_UpperCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase)} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
a_ = field(
default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class snake_case__ :
a_ = field(
default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."})
a_ = field(
default=UpperCamelCase , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."})
a_ = field(default=UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."})
a_ = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"})
a_ = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
a_ = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."})
a_ = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
a_ = field(
default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"})
def __UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ) -> List[Any]:
def _dataset(A : Dict , A : str=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' )
return LineByLineWithRefDataset(
tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , )
return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size )
else:
return TextDataset(
tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __UpperCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '''
'''or remove the --do_eval argument.''' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , A )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
UpperCAmelCase_ : List[Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.tokenizer_name:
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'''
''' script, save it,and load it from here, using --tokenizer_name''' )
if model_args.model_name_or_path:
UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , )
else:
logger.info('''Training new model from scratch''' )
UpperCAmelCase_ : int = AutoModelWithLMHead.from_config(A )
model.resize_token_embeddings(len(A ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'''
'''--mlm flag (masked language modeling).''' )
if data_args.block_size <= 0:
UpperCAmelCase_ : List[str] = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
UpperCAmelCase_ : Dict = min(data_args.block_size , tokenizer.max_len )
# Get datasets
UpperCAmelCase_ : str = (
get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
UpperCAmelCase_ : Any = (
get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
UpperCAmelCase_ : Optional[int] = DataCollatorForPermutationLanguageModeling(
tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
UpperCAmelCase_ : Tuple = DataCollatorForWholeWordMask(
tokenizer=A , mlm_probability=data_args.mlm_probability )
else:
UpperCAmelCase_ : List[str] = DataCollatorForLanguageModeling(
tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
UpperCAmelCase_ : Any = Trainer(
model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , )
# Training
if training_args.do_train:
UpperCAmelCase_ : List[str] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=A )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase_ : Tuple = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase_ : Dict = trainer.evaluate()
UpperCAmelCase_ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
UpperCAmelCase_ : Optional[int] = {'''perplexity''': perplexity}
UpperCAmelCase_ : int = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' )
if trainer.is_world_master():
with open(A , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key in sorted(result.keys() ):
logger.info(''' %s = %s''' , A , str(result[key] ) )
writer.write('''%s = %s\n''' % (key, str(result[key] )) )
results.update(A )
return results
def __UpperCAmelCase ( A : Tuple ) -> Tuple:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 304
| 0
|
"""simple docstring"""
from datetime import datetime
import requests
def a__ ( lowerCAmelCase ) -> bytes:
UpperCAmelCase__ : Dict = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url="""
UpperCAmelCase__ : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""]
return requests.get(lowerCAmelCase ).content
if __name__ == "__main__":
_A = input("""Enter Video/IGTV url: """).strip()
_A = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, """wb""") as fp:
fp.write(download_video(url))
print(f'''Done. Video saved to disk as {file_name}.''')
| 166
|
"""simple docstring"""
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class lowerCamelCase :
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ):
"""simple docstring"""
UpperCAmelCase__ : Dict = parent
UpperCAmelCase__ : str = batch_size
UpperCAmelCase__ : Optional[int] = image_size
UpperCAmelCase__ : Tuple = patch_size
UpperCAmelCase__ : Any = num_channels
UpperCAmelCase__ : Union[str, Any] = is_training
UpperCAmelCase__ : Optional[int] = use_labels
UpperCAmelCase__ : List[str] = hidden_size
UpperCAmelCase__ : int = num_hidden_layers
UpperCAmelCase__ : List[str] = num_attention_heads
UpperCAmelCase__ : Dict = intermediate_size
UpperCAmelCase__ : Optional[int] = hidden_act
UpperCAmelCase__ : Any = hidden_dropout_prob
UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : Dict = type_sequence_label_size
UpperCAmelCase__ : Optional[int] = initializer_range
UpperCAmelCase__ : str = scope
UpperCAmelCase__ : Optional[Any] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
UpperCAmelCase__ : int = (image_size // patch_size) ** 2
UpperCAmelCase__ : Tuple = num_patches + 2
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : int = self.get_config()
return config, pixel_values, labels
def _a (self ):
"""simple docstring"""
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = DeiTModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = DeiTForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ : str = 1
UpperCAmelCase__ : List[str] = DeiTForMaskedImageModeling(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Dict = model(_lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[Any] = self.type_sequence_label_size
UpperCAmelCase__ : List[str] = DeiTForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : str = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Union[str, Any] = 1
UpperCAmelCase__ : int = DeiTForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Tuple = config_and_inputs
UpperCAmelCase__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE = (
{
'feature-extraction': DeiTModel,
'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = DeiTModelTester(self )
UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def _a (self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def _a (self ):
"""simple docstring"""
pass
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Any = model_class(_lowerCamelCase )
UpperCAmelCase__ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _a (self ):
"""simple docstring"""
if not self.model_tester.is_training:
return
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : List[str] = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(_lowerCamelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
UpperCAmelCase__ : Dict = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
UpperCAmelCase__ : int = model(**_lowerCamelCase ).loss
loss.backward()
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[Any] = True
for model_class in self.all_model_classes:
if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(_lowerCamelCase )
model.train()
UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
UpperCAmelCase__ : Tuple = model(**_lowerCamelCase ).loss
loss.backward()
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[Any] = [
{"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float},
{"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long},
{"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(_lowerCamelCase ),
*get_values(_lowerCamelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ):
UpperCAmelCase__ : List[str] = problem_type["""title"""]
UpperCAmelCase__ : List[Any] = problem_type["""num_labels"""]
UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
if problem_type["num_labels"] > 1:
UpperCAmelCase__ : Optional[int] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] )
UpperCAmelCase__ : str = inputs["""labels"""].to(problem_type["""dtype"""] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list:
UpperCAmelCase__ : Any = model(**_lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F"""Something is going wrong in the regression problem: intercepted {w.message}""" )
loss.backward()
@slow
def _a (self ):
"""simple docstring"""
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : int = DeiTModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def a__ ( ) -> int:
UpperCAmelCase__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _a (self ):
"""simple docstring"""
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : int = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to(
_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = self.default_image_processor
UpperCAmelCase__ : Tuple = prepare_img()
UpperCAmelCase__ : Tuple = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Any = model(**_lowerCamelCase )
# verify the logits
UpperCAmelCase__ : List[str] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
UpperCAmelCase__ : Dict = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = DeiTModel.from_pretrained(
"""facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" )
UpperCAmelCase__ : Union[str, Any] = self.default_image_processor
UpperCAmelCase__ : int = prepare_img()
UpperCAmelCase__ : str = image_processor(images=_lowerCamelCase , return_tensors="""pt""" )
UpperCAmelCase__ : Dict = inputs.pixel_values.to(_lowerCamelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
UpperCAmelCase__ : int = model(_lowerCamelCase )
| 166
| 1
|
import fire
from utils import calculate_rouge, save_json
def lowerCAmelCase_ ( __a , __a , __a=None , **__a ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase__: Any =[x.strip() for x in open(__a ).readlines()]
lowerCamelCase__: Dict =[x.strip() for x in open(__a ).readlines()][: len(__a )]
lowerCamelCase__: str =calculate_rouge(__a , __a , **__a )
if save_path is not None:
save_json(__a , __a , indent=__a )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 10
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , "vision")
self.check_model_type(UpperCAmelCase_)
def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
lowerCamelCase__: Any =kwargs.pop("text_queries")
if isinstance(UpperCAmelCase_ , (str, Image.Image)):
lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels}
else:
lowerCamelCase__: Any =image
lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_)
return results
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] ={}
if "threshold" in kwargs:
lowerCamelCase__: List[Any] =kwargs["threshold"]
if "top_k" in kwargs:
lowerCamelCase__: Any =kwargs["top_k"]
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =load_image(inputs["image"])
lowerCamelCase__: Dict =inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =candidate_labels.split(",")
lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(UpperCAmelCase_):
lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework)
lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework)
yield {
"is_last": i == len(UpperCAmelCase_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model_inputs.pop("target_size")
lowerCamelCase__: Dict =model_inputs.pop("candidate_label")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =[]
for model_output in model_outputs:
lowerCamelCase__: Optional[Any] =model_output["candidate_label"]
lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_)
lowerCamelCase__: Dict =self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
lowerCamelCase__: Dict =outputs["scores"][index].item()
lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0])
lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_)
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)
if top_k:
lowerCamelCase__: Dict =results[:top_k]
return results
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist()
lowerCamelCase__: Optional[int] ={
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 10
| 1
|
'''simple docstring'''
from random import shuffle
import tensorflow as tf
from numpy import array
def __lowerCamelCase ( A__ , A__ ) -> int:
"""simple docstring"""
UpperCamelCase = int(A__ )
assert noofclusters < len(A__ )
# Find out the dimensionality
UpperCamelCase = len(vectors[0] )
# Will help select random centroids from among the available vectors
UpperCamelCase = list(range(len(A__ ) ) )
shuffle(A__ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCamelCase = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCamelCase = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCamelCase = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(A__ )
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCamelCase = tf.placeholder('float64' , [dim] )
UpperCamelCase = []
for centroid in centroids:
cent_assigns.append(tf.assign(A__ , A__ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCamelCase = [tf.Variable(0 ) for i in range(len(A__ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCamelCase = tf.placeholder('int32' )
UpperCamelCase = []
for assignment in assignments:
cluster_assigns.append(tf.assign(A__ , A__ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCamelCase = tf.placeholder('float' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCamelCase = tf.reduce_mean(A__ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A__ , A__ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCamelCase = tf.placeholder('float' , [noofclusters] )
UpperCamelCase = tf.argmin(A__ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCamelCase = tf.initialize_all_variables()
# Initialize all variables
sess.run(A__ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCamelCase = 100
for _ in range(A__ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(A__ ) ):
UpperCamelCase = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCamelCase = [
sess.run(A__ , feed_dict={va: vect, va: sess.run(A__ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCamelCase = sess.run(
A__ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(A__ ):
# Collect all the vectors assigned to this cluster
UpperCamelCase = [
vectors[i]
for i in range(len(A__ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
UpperCamelCase = sess.run(
A__ , feed_dict={mean_input: array(A__ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
UpperCamelCase = sess.run(A__ )
UpperCamelCase = sess.run(A__ )
return centroids, assignments
| 363
|
'''simple docstring'''
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]:
"""simple docstring"""
# Load configuration defined in the metadata file
with open(A__ ) as metadata_file:
UpperCamelCase = json.load(A__ )
UpperCamelCase = LukeConfig(use_entity_aware_attention=A__ , **metadata['model_config'] )
# Load in the weights from the checkpoint_path
UpperCamelCase = torch.load(A__ , map_location='cpu' )['module']
# Load the entity vocab file
UpperCamelCase = load_original_entity_vocab(A__ )
# add an entry for [MASK2]
UpperCamelCase = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCamelCase = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCamelCase = AddedToken('<ent>' , lstrip=A__ , rstrip=A__ )
UpperCamelCase = AddedToken('<ent2>' , lstrip=A__ , rstrip=A__ )
tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(A__ )
with open(os.path.join(A__ , 'tokenizer_config.json' ) , 'r' ) as f:
UpperCamelCase = json.load(A__ )
UpperCamelCase = 'MLukeTokenizer'
with open(os.path.join(A__ , 'tokenizer_config.json' ) , 'w' ) as f:
json.dump(A__ , A__ )
with open(os.path.join(A__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f:
json.dump(A__ , A__ )
UpperCamelCase = MLukeTokenizer.from_pretrained(A__ )
# Initialize the embeddings of the special tokens
UpperCamelCase = tokenizer.convert_tokens_to_ids(['@'] )[0]
UpperCamelCase = tokenizer.convert_tokens_to_ids(['#'] )[0]
UpperCamelCase = state_dict['embeddings.word_embeddings.weight']
UpperCamelCase = word_emb[ent_init_index].unsqueeze(0 )
UpperCamelCase = word_emb[enta_init_index].unsqueeze(0 )
UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCamelCase = state_dict[bias_name]
UpperCamelCase = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCamelCase = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCamelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCamelCase = F"""encoder.layer.{layer_index}.attention.self."""
UpperCamelCase = state_dict[prefix + matrix_name]
UpperCamelCase = state_dict[prefix + matrix_name]
UpperCamelCase = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCamelCase = state_dict['entity_embeddings.entity_embeddings.weight']
UpperCamelCase = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCamelCase = state_dict['entity_predictions.bias']
UpperCamelCase = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCamelCase = LukeForMaskedLM(config=A__ ).eval()
state_dict.pop('entity_predictions.decoder.weight' )
state_dict.pop('lm_head.decoder.weight' )
state_dict.pop('lm_head.decoder.bias' )
UpperCamelCase = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )):
UpperCamelCase = state_dict[key]
else:
UpperCamelCase = state_dict[key]
UpperCamelCase , UpperCamelCase = model.load_state_dict(A__ , strict=A__ )
if set(A__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(A__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCamelCase = MLukeTokenizer.from_pretrained(A__ , task='entity_classification' )
UpperCamelCase = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'
UpperCamelCase = (0, 9)
UpperCamelCase = tokenizer(A__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase = model(**A__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase = torch.Size((1, 33, 768) )
UpperCamelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase = torch.Size((1, 1, 768) )
UpperCamelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
F""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCamelCase = MLukeTokenizer.from_pretrained(A__ )
UpperCamelCase = 'Tokyo is the capital of <mask>.'
UpperCamelCase = (24, 30)
UpperCamelCase = tokenizer(A__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase = model(**A__ )
UpperCamelCase = encoding['input_ids'][0].tolist()
UpperCamelCase = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) )
UpperCamelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(A__ )
UpperCamelCase = outputs.entity_logits[0][0].argmax().item()
UpperCamelCase = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('Saving PyTorch model to {}'.format(A__ ) )
model.save_pretrained(A__ )
def __lowerCamelCase ( A__ ) -> int:
"""simple docstring"""
UpperCamelCase = ['[MASK]', '[PAD]', '[UNK]']
UpperCamelCase = [json.loads(A__ ) for line in open(A__ )]
UpperCamelCase = {}
for entry in data:
UpperCamelCase = entry['id']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCamelCase = entity_id
break
UpperCamelCase = F"""{language}:{entity_name}"""
UpperCamelCase = entity_id
return new_mapping
if __name__ == "__main__":
_lowerCamelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
_lowerCamelCase : Optional[Any] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 249
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
return int(input_a == input_a == 0 )
def __UpperCAmelCase ( ):
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 249
|
"""simple docstring"""
from __future__ import annotations
a_ = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ):
__lowercase : Union[str, Any] = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) )
] # the reference grid
__lowercase : Optional[int] = 1
__lowercase : str = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) )
] # the action grid
__lowercase : List[str] = init[0]
__lowercase : Optional[Any] = init[1]
__lowercase : int = 0
__lowercase : List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell
__lowercase : Optional[Any] = [[f, g, x, y]]
__lowercase : Union[str, Any] = False # flag that is set when search is complete
__lowercase : List[Any] = False # flag set if we can't find expand
while not found and not resign:
if len(__UpperCamelCase ) == 0:
raise ValueError('''Algorithm is unable to find solution''' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__lowercase : str = cell.pop()
__lowercase : List[Any] = next_cell[2]
__lowercase : Optional[int] = next_cell[3]
__lowercase : Dict = next_cell[1]
if x == goal[0] and y == goal[1]:
__lowercase : List[Any] = True
else:
for i in range(len(__UpperCamelCase ) ): # to try out different valid actions
__lowercase : Union[str, Any] = x + DIRECTIONS[i][0]
__lowercase : Optional[int] = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__lowercase : str = g + cost
__lowercase : Optional[int] = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__lowercase : Dict = 1
__lowercase : List[Any] = i
__lowercase : Dict = []
__lowercase : List[Any] = goal[0]
__lowercase : Tuple = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__lowercase : Any = x - DIRECTIONS[action[x][y]][0]
__lowercase : Dict = y - DIRECTIONS[action[x][y]][1]
__lowercase : List[Any] = xa
__lowercase : Optional[Any] = ya
invpath.append([x, y] )
__lowercase : Optional[int] = []
for i in range(len(__UpperCamelCase ) ):
path.append(invpath[len(__UpperCamelCase ) - 1 - i] )
return path, action
if __name__ == "__main__":
a_ = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
a_ = [0, 0]
# all coordinates are given in format [y,x]
a_ = [len(grid) - 1, len(grid[0]) - 1]
a_ = 1
# the cost map which pushes the path closer to the goal
a_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
a_ = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
a_ = 9_9
a_ , a_ = search(grid, init, goal, cost, heuristic)
print('ACTION MAP')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 249
| 1
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
_UpperCAmelCase = logging.get_logger(__name__)
@add_end_docstrings(__A )
class UpperCAmelCase ( __A ):
'''simple docstring'''
def __init__( self , **lowercase ):
"""simple docstring"""
super().__init__(**lowercase )
if self.framework == "tf":
raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , 'vision' )
self.check_model_type(lowercase )
def __call__( self , lowercase , lowercase = None , **lowercase , ):
"""simple docstring"""
if "text_queries" in kwargs:
A_ : Dict = kwargs.pop('text_queries' )
if isinstance(lowercase , (str, Image.Image) ):
A_ : Optional[int] = {'image': image, 'candidate_labels': candidate_labels}
else:
A_ : Optional[Any] = image
A_ : Dict = super().__call__(lowercase , **lowercase )
return results
def lowerCAmelCase_ ( self , **lowercase ):
"""simple docstring"""
A_ : Optional[Any] = {}
if "threshold" in kwargs:
A_ : int = kwargs['threshold']
if "top_k" in kwargs:
A_ : Any = kwargs['top_k']
return {}, {}, postprocess_params
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : Optional[int] = load_image(inputs['image'] )
A_ : List[Any] = inputs['candidate_labels']
if isinstance(lowercase , lowercase ):
A_ : Dict = candidate_labels.split(',' )
A_ : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(lowercase ):
A_ : Dict = self.tokenizer(lowercase , return_tensors=self.framework )
A_ : List[Any] = self.image_processor(lowercase , return_tensors=self.framework )
yield {
"is_last": i == len(lowercase ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
A_ : List[Any] = model_inputs.pop('target_size' )
A_ : str = model_inputs.pop('candidate_label' )
A_ : Dict = model_inputs.pop('is_last' )
A_ : Optional[Any] = self.model(**lowercase )
A_ : Any = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs}
return model_outputs
def lowerCAmelCase_ ( self , lowercase , lowercase=0.1 , lowercase=None ):
"""simple docstring"""
A_ : Optional[int] = []
for model_output in model_outputs:
A_ : List[str] = model_output['candidate_label']
A_ : Union[str, Any] = BaseModelOutput(lowercase )
A_ : Optional[int] = self.image_processor.post_process_object_detection(
outputs=lowercase , threshold=lowercase , target_sizes=model_output['target_size'] )[0]
for index in outputs["scores"].nonzero():
A_ : Tuple = outputs['scores'][index].item()
A_ : List[str] = self._get_bounding_box(outputs['boxes'][index][0] )
A_ : int = {'score': score, 'label': label, 'box': box}
results.append(lowercase )
A_ : str = sorted(lowercase , key=lambda lowercase : x["score"] , reverse=lowercase )
if top_k:
A_ : List[str] = results[:top_k]
return results
def lowerCAmelCase_ ( self , lowercase ):
"""simple docstring"""
if self.framework != "pt":
raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' )
A_ , A_ , A_ , A_ : List[Any] = box.int().tolist()
A_ : Tuple = {
'xmin': xmin,
'ymin': ymin,
'xmax': xmax,
'ymax': ymax,
}
return bbox
| 192
|
from __future__ import annotations
import requests
_UpperCAmelCase = set(
"""approved_at_utc approved_by author_flair_background_color
author_flair_css_class author_flair_richtext author_flair_template_id author_fullname
author_premium can_mod_post category clicked content_categories created_utc downs
edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta
is_original_content is_reddit_media_domain is_video link_flair_css_class
link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title
name permalink pwls quarantine saved score secure_media secure_media_embed selftext
subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type
total_awards_received ups upvote_ratio url user_reports""".split()
)
def UpperCamelCase ( __lowercase : str ,__lowercase : int = 1 ,__lowercase : str = "new" ,__lowercase : list | None = None ):
'''simple docstring'''
A_ : Tuple = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__lowercase ) - valid_terms ) ):
A_ : int = f'''Invalid search term: {invalid_search_terms}'''
raise ValueError(__lowercase )
A_ : Optional[int] = requests.get(
f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' ,headers={'User-agent': 'A random string'} ,)
if response.status_code == 4_29:
raise requests.HTTPError
A_ : Optional[Any] = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__lowercase )}
A_ : Union[str, Any] = {}
for id_ in range(__lowercase ):
A_ : List[str] = {
item: data['data']['children'][id_]['data'][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
| 192
| 1
|
def _a ( lowerCamelCase: int ) -> int:
'''simple docstring'''
if not isinstance(lowerCamelCase , lowerCamelCase ):
raise ValueError('''Input must be an integer''' )
if input_num <= 0:
raise ValueError('''Input must be positive''' )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 117
|
from __future__ import annotations
def _a ( lowerCamelCase: list[float] , lowerCamelCase: Tuple ) -> List[str]:
'''simple docstring'''
print(F"""Vertex\tShortest Distance from vertex {src}""" )
for i, d in enumerate(lowerCamelCase ):
print(F"""{i}\t\t{d}""" )
def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: list[float] , lowerCamelCase: int ) -> Union[str, Any]:
'''simple docstring'''
for j in range(lowerCamelCase ):
__A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: int ) -> list[float]:
'''simple docstring'''
__A = [float('''inf''' )] * vertex_count
__A = 0.0
for _ in range(vertex_count - 1 ):
for j in range(lowerCamelCase ):
__A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
__A = distance[u] + w
__A = check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : Dict = int(input('Enter number of vertices: ').strip())
snake_case__ : Optional[int] = int(input('Enter number of edges: ').strip())
snake_case__ : list[dict[str, int]] = [{} for _ in range(E)]
for i in range(E):
print('Edge ', i + 1)
snake_case__ , snake_case__ , snake_case__ : Dict = (
int(x)
for x in input('Enter source, destination, weight: ').strip().split(' ')
)
snake_case__ : List[Any] = {'src': src, 'dst': dest, 'weight': weight}
snake_case__ : Union[str, Any] = int(input('\nEnter shortest path source:').strip())
snake_case__ : List[Any] = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 117
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCamelCase ( unittest.TestCase ):
def __init__( self ,__UpperCamelCase ,__UpperCamelCase=7 ,__UpperCamelCase=3 ,__UpperCamelCase=10 ,__UpperCamelCase=18 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=None ,) -> Optional[int]:
'''simple docstring'''
lowercase_ : Any = size if size is not None else {'shortest_edge': 18}
lowercase_ : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowercase_ : List[str] = parent
lowercase_ : List[str] = batch_size
lowercase_ : Optional[int] = num_channels
lowercase_ : Union[str, Any] = num_frames
lowercase_ : Union[str, Any] = image_size
lowercase_ : List[str] = min_resolution
lowercase_ : int = max_resolution
lowercase_ : Union[str, Any] = do_resize
lowercase_ : Optional[int] = size
lowercase_ : str = do_normalize
lowercase_ : Tuple = image_mean
lowercase_ : Any = image_std
lowercase_ : Tuple = crop_size
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase ( lowercase_ , unittest.TestCase ):
lowercase = VivitImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : int = VivitImageProcessingTester(self )
@property
def _UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCamelCase ,'image_mean' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'image_std' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_normalize' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_resize' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'do_center_crop' ) )
self.assertTrue(hasattr(__UpperCamelCase ,'size' ) )
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{'shortest_edge': 18} )
self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} )
lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} )
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
lowercase_ : Any = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase )
for video in video_inputs:
self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase )
self.assertIsInstance(video[0] ,Image.Image )
# Test not batched input
lowercase_ : Any = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : List[Any] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
def _UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,numpify=__UpperCamelCase )
for video in video_inputs:
self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase )
self.assertIsInstance(video[0] ,np.ndarray )
# Test not batched input
lowercase_ : Tuple = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : List[str] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
def _UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,torchify=__UpperCamelCase )
for video in video_inputs:
self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase )
self.assertIsInstance(video[0] ,torch.Tensor )
# Test not batched input
lowercase_ : Optional[int] = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
# Test batched
lowercase_ : Tuple = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) ,)
| 321
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__SCREAMING_SNAKE_CASE ={
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
__SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128}
class UpperCamelCase ( lowercase_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = BlenderbotTokenizer
def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]:
'''simple docstring'''
super().__init__(
__UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,)
lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) )
lowercase_ : Any = add_prefix_space
lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase )
lowercase_ : int = add_prefix_space
lowercase_ : Any = 'post_processor'
lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
if tokenizer_component_instance:
lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : str = tuple(state['sep'] )
if "cls" in state:
lowercase_ : Union[str, Any] = tuple(state['cls'] )
lowercase_ : str = False
if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space:
lowercase_ : Dict = add_prefix_space
lowercase_ : int = True
if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets:
lowercase_ : Optional[Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) )
lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase )
setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value
lowercase_ : str = value
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding:
'''simple docstring'''
lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
lowercase_ : int = [self.sep_token_id]
lowercase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any:
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]:
'''simple docstring'''
lowercase_ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__UpperCamelCase )
lowercase_ : Dict = ' '.join(__UpperCamelCase )
lowercase_ : str = self.encode(__UpperCamelCase )
if len(__UpperCamelCase ) > self.model_max_length:
lowercase_ : List[str] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 321
| 1
|
'''simple docstring'''
def _A ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
__lowercase =str(bin(_lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def _A ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
__lowercase =str(bin(_lowerCAmelCase ) )[2:]
if shift_amount >= len(_lowerCAmelCase ):
return "0b0"
__lowercase =binary_number[: len(_lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def _A ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
__lowercase ='0' + str(bin(_lowerCAmelCase ) ).strip('-' )[2:]
else: # Get binary (2's complement) representation of negative number
__lowercase =len(bin(_lowerCAmelCase )[3:] ) # Find 2's complement of number
__lowercase =bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:]
__lowercase =(
'1' + '0' * (binary_number_length - len(_lowerCAmelCase )) + binary_number
)
if shift_amount >= len(_lowerCAmelCase ):
return "0b" + binary_number[0] * len(_lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(_lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 166
|
'''simple docstring'''
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
if (ksize % 2) == 0:
__lowercase =ksize + 1
__lowercase =np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(_lowerCAmelCase ):
for x in range(_lowerCAmelCase ):
# distance from center
__lowercase =x - ksize // 2
__lowercase =y - ksize // 2
# degree to radiant
__lowercase =theta / 180 * np.pi
__lowercase =np.cos(_theta )
__lowercase =np.sin(_theta )
# get kernel x
__lowercase =cos_theta * px + sin_theta * py
# get kernel y
__lowercase =-sin_theta * px + cos_theta * py
# fill kernel
__lowercase =np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
lowerCamelCase = imread("""../image_data/lena.jpg""")
# turn image in gray scale value
lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
lowerCamelCase = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
lowerCamelCase = out / out.max() * 255
lowerCamelCase = out.astype(np.uinta)
imshow("""Original""", gray)
imshow("""Gabor filter with 20x20 mask and 6 directions""", out)
waitKey(0)
| 166
| 1
|
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class a__ ( UpperCAmelCase__ , unittest.TestCase ):
lowerCamelCase : str =XLNetTokenizer
lowerCamelCase : Union[str, Any] =XLNetTokenizerFast
lowerCamelCase : List[Any] =True
lowerCamelCase : str =True
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCamelCase = XLNetTokenizer(a , keep_accents=a )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
__lowerCamelCase = '''<s>'''
__lowerCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
__lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<eod>''' )
self.assertEqual(len(a ) , 10_06 )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
__lowerCamelCase = XLNetTokenizer(a , keep_accents=a )
__lowerCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [2_85, 46, 10, 1_70, 3_82] )
__lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__lowerCamelCase = tokenizer.convert_tokens_to_ids(a )
self.assertListEqual(a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(a )
self.assertListEqual(
a , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
__lowerCamelCase = XLNetTokenizer(a , do_lower_case=a )
__lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a , [
SPIECE_UNDERLINE + '''''',
'''i''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''se''',
'''.''',
] , )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
__lowerCamelCase = XLNetTokenizer(a , do_lower_case=a )
__lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''se''',
'''.''',
] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
__lowerCamelCase = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' )
__lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a )
__lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
__lowerCamelCase = {'''input_ids''': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
| 237
|
'''simple docstring'''
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float:
if principal <= 0:
raise Exception('''Principal borrowed must be > 0''' )
if rate_per_annum < 0:
raise Exception('''Rate of interest must be >= 0''' )
if years_to_repay <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise Exception('''Years to repay must be an integer > 0''' )
# Yearly rate is divided by 12 to get monthly rate
__lowerCamelCase = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
__lowerCamelCase = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 237
| 1
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__a = logging.get_logger(__name__)
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
_A : Tuple = ["""input_features""", """attention_mask"""]
def __init__( self: Optional[Any] , snake_case: str=80 , snake_case: int=16_000 , snake_case: Tuple=80 , snake_case: Tuple=0.0 , snake_case: Union[str, Any]=True , snake_case: str=True , snake_case: List[str]=True , **snake_case: Optional[Any] , ) -> List[Any]:
super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ )
snake_case_ :int = num_mel_bins
snake_case_ :List[Any] = do_ceptral_normalize
snake_case_ :str = normalize_means
snake_case_ :Optional[int] = normalize_vars
snake_case_ :Optional[Any] = True
def lowerCAmelCase_ ( self: List[Any] , snake_case: Tuple , ) -> np.ndarray:
snake_case_ :Dict = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
snake_case_ :Dict = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 )
snake_case_ :int = ta_kaldi.fbank(UpperCamelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def lowerCAmelCase_ ( snake_case: Any , snake_case: Optional[Any] , snake_case: Union[str, Any] = True , snake_case: List[str] = True , snake_case: int = 0.0 , ) -> np.ndarray:
# make sure we normalize float32 arrays
if normalize_means:
snake_case_ :Tuple = x[:input_length].mean(axis=0 )
snake_case_ :Any = np.subtract(UpperCamelCase_ , UpperCamelCase_ )
if normalize_vars:
snake_case_ :str = x[:input_length].std(axis=0 )
snake_case_ :Dict = np.divide(UpperCamelCase_ , UpperCamelCase_ )
if input_length < x.shape[0]:
snake_case_ :Any = padding_value
# make sure array is in float32
snake_case_ :int = x.astype(np.floataa )
return x
def lowerCAmelCase_ ( self: int , snake_case: Dict , snake_case: List[str] = None ) -> List[np.ndarray]:
snake_case_ :Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(UpperCamelCase_ , UpperCamelCase_ , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(UpperCamelCase_ , UpperCamelCase_ )
]
def __call__( self: Dict , snake_case: str , snake_case: Dict = False , snake_case: Any = None , snake_case: Optional[Any] = False , snake_case: str = None , snake_case: List[Any] = None , snake_case: Union[str, Any] = None , snake_case: Any = None , **snake_case: Tuple , ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
f""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
snake_case_ :Any = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
snake_case_ :str = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
snake_case_ :Optional[int] = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
snake_case_ :Any = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
snake_case_ :Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ :Optional[Any] = [raw_speech]
# extract fbank features
snake_case_ :Optional[int] = [self._extract_fbank_features(UpperCamelCase_ ) for waveform in raw_speech]
# convert into correct format for padding
snake_case_ :int = BatchFeature({"""input_features""": features} )
snake_case_ :Tuple = self.pad(
UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
# make sure list is in array format
snake_case_ :int = padded_inputs.get("""input_features""" )
if isinstance(input_features[0] , UpperCamelCase_ ):
snake_case_ :Union[str, Any] = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features]
snake_case_ :List[str] = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
snake_case_ :List[Any] = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
snake_case_ :Optional[Any] = (
np.array(UpperCamelCase_ , dtype=np.intaa )
if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
snake_case_ :Any = self.normalize(
padded_inputs["""input_features"""] , attention_mask=UpperCamelCase_ )
if return_tensors is not None:
snake_case_ :Optional[Any] = padded_inputs.convert_to_tensors(UpperCamelCase_ )
return padded_inputs
| 66
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 249
| 0
|
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
_UpperCamelCase = getLogger(__name__)
_UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def UpperCamelCase_( snake_case__: List[str] , snake_case__: str , snake_case__: str , snake_case__: int = 8 , snake_case__: str = DEFAULT_DEVICE , snake_case__: Tuple=False , snake_case__: Tuple="summarization" , snake_case__: List[Any]=None , **snake_case__: Optional[int] , ) -> Dict:
UpperCAmelCase__ = Path(snake_case__ ).open('w' , encoding='utf-8' )
UpperCAmelCase__ = str(snake_case__ )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).to(snake_case__ )
if fpaa:
UpperCAmelCase__ = model.half()
UpperCAmelCase__ = AutoTokenizer.from_pretrained(snake_case__ )
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
UpperCAmelCase__ = time.time()
# update config with task specific params
use_task_specific_params(snake_case__ , snake_case__ )
if prefix is None:
UpperCAmelCase__ = prefix or getattr(model.config , 'prefix' , '' ) or ''
for examples_chunk in tqdm(list(chunks(snake_case__ , snake_case__ ) ) ):
UpperCAmelCase__ = [prefix + text for text in examples_chunk]
UpperCAmelCase__ = tokenizer(snake_case__ , return_tensors='pt' , truncation=snake_case__ , padding='longest' ).to(snake_case__ )
UpperCAmelCase__ = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case__ , )
UpperCAmelCase__ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
for hypothesis in dec:
fout.write(hypothesis + '\n' )
fout.flush()
fout.close()
UpperCAmelCase__ = int(time.time() - start_time ) # seconds
UpperCAmelCase__ = len(snake_case__ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def UpperCamelCase_( ) -> int:
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )
def UpperCamelCase_( snake_case__: Dict=True ) -> List[Any]:
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('model_name' , type=snake_case__ , help='like facebook/bart-large-cnn,t5-base, etc.' )
parser.add_argument('input_path' , type=snake_case__ , help='like cnn_dm/test.source' )
parser.add_argument('save_path' , type=snake_case__ , help='where to save summaries' )
parser.add_argument('--reference_path' , type=snake_case__ , required=snake_case__ , help='like cnn_dm/test.target' )
parser.add_argument('--score_path' , type=snake_case__ , required=snake_case__ , default='metrics.json' , help='where to save metrics' )
parser.add_argument('--device' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='cuda, cuda:1, cpu etc.' )
parser.add_argument(
'--prefix' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='will be added to the begininng of src examples' )
parser.add_argument('--task' , type=snake_case__ , default='summarization' , help='used for task_specific_params + metrics' )
parser.add_argument('--bs' , type=snake_case__ , default=8 , required=snake_case__ , help='batch size' )
parser.add_argument(
'--n_obs' , type=snake_case__ , default=-1 , required=snake_case__ , help='How many observations. Defaults to all.' )
parser.add_argument('--fp16' , action='store_true' )
parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' )
parser.add_argument(
'--info' , nargs='?' , type=snake_case__ , const=datetime_now() , help=(
'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'
' lang=en-ru. If no value is passed, the current datetime string will be used.'
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_known_args()
UpperCAmelCase__ = parse_numeric_n_bool_cl_kwargs(snake_case__ )
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}" )
UpperCAmelCase__ = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
UpperCAmelCase__ = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=snake_case__ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('Can\'t mix --fp16 and --device cpu' )
UpperCAmelCase__ = generate_summaries_or_translations(
snake_case__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case__ , )
if args.reference_path is None:
return {}
# Compute scores
UpperCAmelCase__ = calculate_bleu if 'translation' in args.task else calculate_rouge
UpperCAmelCase__ = [x.rstrip() for x in open(args.save_path ).readlines()]
UpperCAmelCase__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case__ )]
UpperCAmelCase__ = score_fn(snake_case__ , snake_case__ )
scores.update(snake_case__ )
if args.dump_args:
scores.update(snake_case__ )
if args.info:
UpperCAmelCase__ = args.info
if verbose:
print(snake_case__ )
if args.score_path is not None:
json.dump(snake_case__ , open(args.score_path , 'w' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 335
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335
| 1
|
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
A_ : Any = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class _a (unittest.TestCase ):
'''simple docstring'''
@classmethod
def __A ( cls ):
A__ : List[str] = TOKEN
HfFolder.save_token(A__ )
@classmethod
def __A ( cls ):
try:
delete_repo(token=cls._token , repo_id="""test-model-flax""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" )
except HTTPError:
pass
def __A ( self ):
A__ : Tuple = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
A__ : Union[str, Any] = FlaxBertModel(A__ )
model.push_to_hub("""test-model-flax""" , use_auth_token=self._token )
A__ : Union[str, Any] = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
A__ : Dict = flatten_dict(unfreeze(model.params ) )
A__ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
A__ : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(A__ , 1e-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id="""test-model-flax""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(A__ , repo_id="""test-model-flax""" , push_to_hub=A__ , use_auth_token=self._token )
A__ : List[str] = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
A__ : Union[str, Any] = flatten_dict(unfreeze(model.params ) )
A__ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
A__ : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(A__ , 1e-3 , msg=F"""{key} not identical""" )
def __A ( self ):
A__ : int = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
A__ : Tuple = FlaxBertModel(A__ )
model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token )
A__ : List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" )
A__ : List[str] = flatten_dict(unfreeze(model.params ) )
A__ : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
A__ : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(A__ , 1e-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
A__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=A__ , use_auth_token=self._token )
A__ : Dict = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" )
A__ : List[Any] = flatten_dict(unfreeze(model.params ) )
A__ : List[str] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
A__ : Tuple = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(A__ , 1e-3 , msg=F"""{key} not identical""" )
def UpperCamelCase (lowercase_: Optional[int] , lowercase_: str ) -> List[str]:
A__ : Dict = True
A__ : Tuple = flatten_dict(modela.params )
A__ : Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4:
A__ : List[Any] = False
return models_are_equal
@require_flax
class _a (unittest.TestCase ):
'''simple docstring'''
def __A ( self ):
A__ : Optional[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
A__ : Any = FlaxBertModel(A__ )
A__ : Optional[int] = """bert"""
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(A__ , A__ ) )
with self.assertRaises(A__ ):
A__ : Tuple = FlaxBertModel.from_pretrained(A__ )
A__ : int = FlaxBertModel.from_pretrained(A__ , subfolder=A__ )
self.assertTrue(check_models_equal(A__ , A__ ) )
def __A ( self ):
A__ : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
A__ : Union[str, Any] = FlaxBertModel(A__ )
A__ : Tuple = """bert"""
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(A__ , A__ ) , max_shard_size="""10KB""" )
with self.assertRaises(A__ ):
A__ : Dict = FlaxBertModel.from_pretrained(A__ )
A__ : Dict = FlaxBertModel.from_pretrained(A__ , subfolder=A__ )
self.assertTrue(check_models_equal(A__ , A__ ) )
def __A ( self ):
A__ : Optional[int] = """bert"""
A__ : List[str] = """hf-internal-testing/tiny-random-bert-subfolder"""
with self.assertRaises(A__ ):
A__ : Optional[Any] = FlaxBertModel.from_pretrained(A__ )
A__ : List[Any] = FlaxBertModel.from_pretrained(A__ , subfolder=A__ )
self.assertIsNotNone(A__ )
def __A ( self ):
A__ : Tuple = """bert"""
A__ : List[str] = """hf-internal-testing/tiny-random-bert-sharded-subfolder"""
with self.assertRaises(A__ ):
A__ : str = FlaxBertModel.from_pretrained(A__ )
A__ : List[str] = FlaxBertModel.from_pretrained(A__ , subfolder=A__ )
self.assertIsNotNone(A__ )
| 192
|
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def UpperCamelCase (lowercase_: str ) -> Dict:
A__ : int = int(lowercase_ )
A__ , A__ , A__ : Tuple = t // 3600, (t // 60) % 60, t % 60
return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}"""
def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Tuple , lowercase_: Any=300 ) -> Optional[int]:
# docstyle-ignore
return f"""
<div>
{prefix}
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
{label}
</div>
"""
def UpperCamelCase (lowercase_: Tuple ) -> Optional[int]:
A__ : Tuple = """<table border=\"1\" class=\"dataframe\">\n"""
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f""" <th>{i}</th>\n"""
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
A__ : str = f"""{elt:.6f}""" if isinstance(lowercase_ , lowercase_ ) else str(lowercase_ )
html_code += f""" <td>{elt}</td>\n"""
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class _a :
'''simple docstring'''
UpperCAmelCase__: str = 5
UpperCAmelCase__: int = 0.2
def __init__( self , A__ , A__ = None , A__ = True , A__ = None , A__ = 300 , ):
A__ : Optional[int] = total
A__ : Tuple = """""" if prefix is None else prefix
A__ : str = leave
A__ : str = parent
A__ : int = width
A__ : Dict = None
A__ : List[str] = None
A__ : Optional[int] = None
def __A ( self , A__ , A__ = False , A__ = None ):
A__ : Tuple = value
if comment is not None:
A__ : Any = comment
if self.last_value is None:
A__ : int = time.time()
A__ : Dict = value
A__ : int = None
A__ : int = self.warmup
A__ : str = 1
self.update_bar(A__ )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
A__ : Any = time.time()
A__ : str = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
A__ : Dict = self.elapsed_time / (value - self.start_value)
else:
A__ : List[str] = None
if value >= self.total:
A__ : Optional[Any] = self.total
A__ : List[Any] = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
A__ : List[Any] = self.average_time_per_item * (self.total - value)
self.update_bar(A__ )
A__ : Any = value
A__ : List[str] = current_time
if self.average_time_per_item is None:
A__ : str = 1
else:
A__ : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 )
def __A ( self , A__ , A__=None ):
A__ : Tuple = """ """ * (len(str(self.total ) ) - len(str(A__ ) )) + str(A__ )
if self.elapsed_time is None:
A__ : Union[str, Any] = F"""[{spaced_value}/{self.total} : < :"""
elif self.predicted_remaining is None:
A__ : Tuple = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}"""
else:
A__ : Optional[int] = (
F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <"""
F""" {format_time(self.predicted_remaining )}"""
)
self.label += F""", {1/self.average_time_per_item:.2f} it/s"""
self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]"""
self.display()
def __A ( self ):
A__ : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
A__ : str = disp.display(disp.HTML(self.html_code ) , display_id=A__ )
else:
self.output.update(disp.HTML(self.html_code ) )
def __A ( self ):
if self.parent is None and self.output is not None:
self.output.update(disp.HTML("""""" ) )
class _a (__magic_name__ ):
'''simple docstring'''
def __init__( self , A__ , A__=None ):
super().__init__(A__ )
A__ : Optional[Any] = None if column_names is None else [column_names]
A__ : Optional[Any] = None
def __A ( self ):
A__ : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
A__ : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=A__ )
else:
self.output.update(disp.HTML(self.html_code ) )
def __A ( self , A__ ):
if self.inner_table is None:
A__ : List[str] = [list(values.keys() ), list(values.values() )]
else:
A__ : Optional[Any] = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(A__ )
A__ : Any = columns
self.inner_table.append([values[c] for c in columns] )
def __A ( self , A__ , A__=None , A__=300 ):
A__ : Optional[Any] = NotebookProgressBar(A__ , prefix=A__ , parent=self , width=A__ )
return self.child_bar
def __A ( self ):
A__ : List[str] = None
self.display()
class _a (__magic_name__ ):
'''simple docstring'''
def __init__( self ):
A__ : int = None
A__ : List[str] = None
A__ : Union[str, Any] = False
def __A ( self , A__ , A__ , A__ , **A__ ):
A__ : List[str] = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step"""
A__ : Dict = 0
A__ : Tuple = 0
A__ : Optional[int] = [self.first_column] + ["""Training Loss"""]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("""Validation Loss""" )
A__ : Union[str, Any] = NotebookTrainingTracker(state.max_steps , A__ )
def __A ( self , A__ , A__ , A__ , **A__ ):
A__ : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}"""
self.training_tracker.update(
state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , )
A__ : str = False
def __A ( self , A__ , A__ , A__ , A__=None , **A__ ):
if not has_length(A__ ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
A__ : Union[str, Any] = self.training_tracker.add_child(len(A__ ) )
else:
A__ : Tuple = NotebookProgressBar(len(A__ ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def __A ( self , A__ , A__ , A__ , **A__ ):
if self.prediction_bar is not None:
self.prediction_bar.close()
A__ : List[str] = None
def __A ( self , A__ , A__ , A__ , A__=None , **A__ ):
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
A__ : Dict = {"""Training Loss""": logs["""loss"""]}
# First column is necessarily Step sine we're not in epoch eval strategy
A__ : List[Any] = state.global_step
self.training_tracker.write_line(A__ )
def __A ( self , A__ , A__ , A__ , A__=None , **A__ ):
if self.training_tracker is not None:
A__ : Tuple = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""}
for log in reversed(state.log_history ):
if "loss" in log:
A__ : Dict = log["""loss"""]
break
if self.first_column == "Epoch":
A__ : List[Any] = int(state.epoch )
else:
A__ : Optional[Any] = state.global_step
A__ : Optional[Any] = """eval"""
for k in metrics:
if k.endswith("""_loss""" ):
A__ : Optional[int] = re.sub(r"""\_loss$""" , """""" , A__ )
A__ : int = metrics.pop("""total_flos""" , A__ )
A__ : int = metrics.pop("""epoch""" , A__ )
A__ : Optional[int] = metrics.pop(F"""{metric_key_prefix}_runtime""" , A__ )
A__ : Any = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , A__ )
A__ : List[Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , A__ )
A__ : Optional[Any] = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , A__ )
for k, v in metrics.items():
if k == F"""{metric_key_prefix}_loss""":
A__ : Any = v
else:
A__ : Optional[Any] = k.split("""_""" )
A__ : Any = """ """.join([part.capitalize() for part in splits[1:]] )
A__ : List[str] = v
self.training_tracker.write_line(A__ )
self.training_tracker.remove_child()
A__ : Dict = None
# Evaluation takes a long time so we should force the next update.
A__ : Union[str, Any] = True
def __A ( self , A__ , A__ , A__ , **A__ ):
self.training_tracker.update(
state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=A__ )
A__ : Optional[int] = None
| 192
| 1
|
'''simple docstring'''
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class _a ( unittest.TestCase ):
'''simple docstring'''
A : Any = inspect.getfile(accelerate.test_utils )
A : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] )
A : List[Any] = ['''accelerate''', '''launch''']
A : Dict = Path.home() / '''.cache/huggingface/accelerate'''
A : Optional[int] = '''default_config.yaml'''
A : Optional[int] = config_folder / config_file
A : Union[str, Any] = config_folder / '''_default_config.yaml'''
A : Union[str, Any] = Path('''tests/test_configs''' )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def UpperCamelCase_ ( cls ):
'''simple docstring'''
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy() )
def UpperCamelCase_ ( self ):
'''simple docstring'''
for config in sorted(self.test_config_path.glob('**/*.yaml' ) ):
with self.subTest(config_file=A ):
execute_subprocess_async(
self.base_cmd + ['--config_file', str(A ), self.test_file_path], env=os.environ.copy() )
def UpperCamelCase_ ( self ):
'''simple docstring'''
execute_subprocess_async(['accelerate', 'test'], env=os.environ.copy() )
class _a ( unittest.TestCase ):
'''simple docstring'''
A : str = '''test-tpu'''
A : Union[str, Any] = '''us-central1-a'''
A : Optional[int] = '''ls'''
A : Tuple = ['''accelerate''', '''tpu-config''']
A : str = '''cd /usr/share'''
A : List[str] = '''tests/test_samples/test_command_file.sh'''
A : Optional[int] = '''Running gcloud compute tpus tpu-vm ssh'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = run_command(
self.cmd
+ ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'], return_stdout=A, )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command',
self.command,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
], return_stdout=A, )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'], return_stdout=A )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'], return_stdout=A, )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--command',
self.command,
'--command',
'echo "Hello World"',
'--debug',
], return_stdout=A, )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all", A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = run_command(
self.cmd
+ ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'], return_stdout=A, )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command_file',
self.command_file,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
], return_stdout=A, )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'], return_stdout=A, )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--install_accelerate',
'--accelerate_version',
'12.0.0',
'--debug',
], return_stdout=A, )
self.assertIn(
F"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all", A, )
| 351
|
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE : str = 1
SCREAMING_SNAKE_CASE : Optional[int] = 1
while repunit:
SCREAMING_SNAKE_CASE : List[str] = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def lowercase__( __UpperCamelCase: int = 1_00_00_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__UpperCamelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"""{solution() = }""")
| 246
| 0
|
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowercase__ ( )-> Tuple:
UpperCamelCase = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=__UpperCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=__UpperCamelCase , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=__UpperCamelCase )
return parser.parse_args()
def lowercase__ ( )-> Optional[int]:
UpperCamelCase = parse_args()
# Import training_script as a module.
UpperCamelCase = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
UpperCamelCase = script_fpath.stem
UpperCamelCase = importlib.import_module(__UpperCamelCase )
# Patch sys.argv
UpperCamelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 321
|
'''simple docstring'''
def lowercase__ ( __UpperCamelCase = 4000000 )-> int:
UpperCamelCase = []
UpperCamelCase ,UpperCamelCase = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(__UpperCamelCase )
UpperCamelCase ,UpperCamelCase = b, a + b
return sum(__UpperCamelCase )
if __name__ == "__main__":
print(f'{solution() = }')
| 321
| 1
|
"""simple docstring"""
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
_lowercase : Tuple = logging.getLogger(__name__)
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Any = "sequence-classification"
def __init__( self : str , _lowercase : int ):
if type(_lowercase ) == dict:
__UpperCAmelCase = Namespace(**_lowercase )
__UpperCAmelCase = glue_output_modes[hparams.task]
__UpperCAmelCase = glue_tasks_num_labels[hparams.task]
super().__init__(_lowercase , _lowercase , self.mode )
def a ( self : Tuple , **_lowercase : List[str] ):
return self.model(**_lowercase )
def a ( self : List[Any] , _lowercase : int , _lowercase : Any ):
__UpperCAmelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__UpperCAmelCase = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None
__UpperCAmelCase = self(**_lowercase )
__UpperCAmelCase = outputs[0]
__UpperCAmelCase = self.trainer.lr_schedulers[0]['''scheduler''']
__UpperCAmelCase = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def a ( self : Tuple ):
__UpperCAmelCase = self.hparams
__UpperCAmelCase = processors[args.task]()
__UpperCAmelCase = processor.get_labels()
for mode in ["train", "dev"]:
__UpperCAmelCase = self._feature_file(_lowercase )
if os.path.exists(_lowercase ) and not args.overwrite_cache:
logger.info('''Loading features from cached file %s''' , _lowercase )
else:
logger.info('''Creating features from dataset file at %s''' , args.data_dir )
__UpperCAmelCase = (
processor.get_dev_examples(args.data_dir )
if mode == '''dev'''
else processor.get_train_examples(args.data_dir )
)
__UpperCAmelCase = convert_examples_to_features(
_lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info('''Saving features into cached file %s''' , _lowercase )
torch.save(_lowercase , _lowercase )
def a ( self : int , _lowercase : str , _lowercase : int , _lowercase : bool = False ):
__UpperCAmelCase = '''dev''' if mode == '''test''' else mode
__UpperCAmelCase = self._feature_file(_lowercase )
logger.info('''Loading features from cached file %s''' , _lowercase )
__UpperCAmelCase = torch.load(_lowercase )
__UpperCAmelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
__UpperCAmelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
__UpperCAmelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
__UpperCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
__UpperCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.float )
return DataLoader(
TensorDataset(_lowercase , _lowercase , _lowercase , _lowercase ) , batch_size=_lowercase , shuffle=_lowercase , )
def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Any ):
__UpperCAmelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__UpperCAmelCase = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None
__UpperCAmelCase = self(**_lowercase )
__UpperCAmelCase , __UpperCAmelCase = outputs[:2]
__UpperCAmelCase = logits.detach().cpu().numpy()
__UpperCAmelCase = inputs['''labels'''].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def a ( self : str , _lowercase : int ):
__UpperCAmelCase = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item()
__UpperCAmelCase = np.concatenate([x['''pred'''] for x in outputs] , axis=0 )
if self.hparams.glue_output_mode == "classification":
__UpperCAmelCase = np.argmax(_lowercase , axis=1 )
elif self.hparams.glue_output_mode == "regression":
__UpperCAmelCase = np.squeeze(_lowercase )
__UpperCAmelCase = np.concatenate([x['''target'''] for x in outputs] , axis=0 )
__UpperCAmelCase = [[] for _ in range(out_label_ids.shape[0] )]
__UpperCAmelCase = [[] for _ in range(out_label_ids.shape[0] )]
__UpperCAmelCase = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , _lowercase , _lowercase )}
__UpperCAmelCase = dict(results.items() )
__UpperCAmelCase = results
return ret, preds_list, out_label_list
def a ( self : int , _lowercase : list ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._eval_end(_lowercase )
__UpperCAmelCase = ret['''log''']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def a ( self : List[str] , _lowercase : Optional[Any] ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._eval_end(_lowercase )
__UpperCAmelCase = ret['''log''']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def a ( _lowercase : Union[str, Any] , _lowercase : Dict ):
BaseTransformer.add_model_specific_args(_lowercase , _lowercase )
parser.add_argument(
'''--max_seq_length''' , default=1_28 , type=_lowercase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--task''' , default='''''' , type=_lowercase , required=_lowercase , help='''The GLUE task to run''' , )
parser.add_argument(
'''--gpus''' , default=0 , type=_lowercase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
return parser
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser()
add_generic_args(snake_case_ , os.getcwd() )
__UpperCAmelCase = GLUETransformer.add_model_specific_args(snake_case_ , os.getcwd() )
__UpperCAmelCase = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
__UpperCAmelCase = os.path.join(
'''./results''' , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , )
os.makedirs(args.output_dir )
__UpperCAmelCase = GLUETransformer(snake_case_ )
__UpperCAmelCase = generic_train(snake_case_ , snake_case_ )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
__UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=snake_case_ ) )
__UpperCAmelCase = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(snake_case_ )
if __name__ == "__main__":
main()
| 86
|
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
_lowercase : List[Any] = logging.get_logger(__name__)
_lowercase : int = {
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json',
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[Any] = "bloom"
a__ : List[Any] = ["past_key_values"]
a__ : Optional[Any] = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
}
def __init__( self : Union[str, Any] , _lowercase : Dict=25_08_80 , _lowercase : str=64 , _lowercase : int=2 , _lowercase : Union[str, Any]=8 , _lowercase : Optional[Any]=1E-5 , _lowercase : Dict=0.02 , _lowercase : Optional[int]=True , _lowercase : Any=1 , _lowercase : Dict=2 , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=0.0 , _lowercase : str=0.0 , _lowercase : str=1 , _lowercase : int=False , **_lowercase : List[str] , ):
__UpperCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
__UpperCAmelCase = kwargs.pop('''n_embed''' , _lowercase )
__UpperCAmelCase = hidden_size if n_embed is None else n_embed
__UpperCAmelCase = n_layer
__UpperCAmelCase = n_head
__UpperCAmelCase = layer_norm_epsilon
__UpperCAmelCase = initializer_range
__UpperCAmelCase = use_cache
__UpperCAmelCase = pretraining_tp
__UpperCAmelCase = apply_residual_connection_post_layernorm
__UpperCAmelCase = hidden_dropout
__UpperCAmelCase = attention_dropout
__UpperCAmelCase = bos_token_id
__UpperCAmelCase = eos_token_id
__UpperCAmelCase = slow_but_exact
super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : List[str] = version.parse("1.12" )
def __init__( self : Optional[int] , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ):
super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase )
if not getattr(self._config , '''pad_token_id''' , _lowercase ):
# TODO: how to do that better?
__UpperCAmelCase = 0
@property
def a ( self : Optional[int] ):
__UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(_lowercase , direction='''inputs''' , inverted_values_shape=_lowercase )
__UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def a ( self : Any ):
return self._config.n_layer
@property
def a ( self : Tuple ):
return self._config.n_head
@property
def a ( self : Dict ):
return 1E-3
def a ( self : List[str] , _lowercase : "PreTrainedTokenizer" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional["TensorType"] = None , ):
__UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs(
_lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase )
# We need to order the input in the way they appears in the forward()
__UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
__UpperCAmelCase = seqlen + 2
__UpperCAmelCase = self._config.hidden_size // self.num_attention_heads
__UpperCAmelCase = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
__UpperCAmelCase = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
__UpperCAmelCase = [
(torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers )
]
__UpperCAmelCase = common_inputs['''attention_mask''']
if self.use_past:
__UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype
__UpperCAmelCase = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 )
return ordered_inputs
@property
def a ( self : Any ):
return 13
| 86
| 1
|
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ):
A__ = 3_84
A__ = 7
if "tiny" in model_name:
A__ = 96
A__ = (2, 2, 6, 2)
A__ = (3, 6, 12, 24)
elif "small" in model_name:
A__ = 96
A__ = (2, 2, 18, 2)
A__ = (3, 6, 12, 24)
elif "base" in model_name:
A__ = 1_28
A__ = (2, 2, 18, 2)
A__ = (4, 8, 16, 32)
A__ = 12
A__ = 5_12
elif "large" in model_name:
A__ = 1_92
A__ = (2, 2, 18, 2)
A__ = (6, 12, 24, 48)
A__ = 12
A__ = 7_68
# set label information
A__ = 1_50
A__ = "huggingface/label-files"
A__ = "ade20k-id2label.json"
A__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
A__ = {v: k for k, v in idalabel.items()}
A__ = SwinConfig(
embed_dim=_lowerCamelCase , depths=_lowerCamelCase , num_heads=_lowerCamelCase , window_size=_lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , )
A__ = UperNetConfig(
backbone_config=_lowerCamelCase , auxiliary_in_channels=_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , )
return config
def UpperCamelCase ( _lowerCamelCase : Tuple ):
A__ = []
# fmt: off
# stem
rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") )
rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") )
if i < 3:
rename_keys.append((F"backbone.stages.{i}.downsample.reduction.weight", F"backbone.encoder.layers.{i}.downsample.reduction.weight") )
rename_keys.append((F"backbone.stages.{i}.downsample.norm.weight", F"backbone.encoder.layers.{i}.downsample.norm.weight") )
rename_keys.append((F"backbone.stages.{i}.downsample.norm.bias", F"backbone.encoder.layers.{i}.downsample.norm.bias") )
rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") )
rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] ):
A__ = dct.pop(_lowerCamelCase )
A__ = val
def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : str ):
A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
A__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
A__ = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" )
A__ = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
A__ = in_proj_weight[:dim, :]
A__ = in_proj_bias[: dim]
A__ = in_proj_weight[
dim : dim * 2, :
]
A__ = in_proj_bias[
dim : dim * 2
]
A__ = in_proj_weight[
-dim :, :
]
A__ = in_proj_bias[-dim :]
# fmt: on
def UpperCamelCase ( _lowerCamelCase : Optional[Any] ):
A__, A__ = x.shape
A__ = x.reshape(_lowerCamelCase , 4 , in_channel // 4 )
A__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_lowerCamelCase , _lowerCamelCase )
return x
def UpperCamelCase ( _lowerCamelCase : Any ):
A__, A__ = x.shape
A__ = x.reshape(_lowerCamelCase , in_channel // 4 , 4 )
A__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_lowerCamelCase , _lowerCamelCase )
return x
def UpperCamelCase ( _lowerCamelCase : Optional[int] ):
A__ = x.shape[0]
A__ = x.reshape(4 , in_channel // 4 )
A__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_lowerCamelCase )
return x
def UpperCamelCase ( _lowerCamelCase : Optional[Any] ):
A__ = x.shape[0]
A__ = x.reshape(in_channel // 4 , 4 )
A__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_lowerCamelCase )
return x
def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ):
A__ = {
"upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth",
"upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth",
"upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth",
"upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth",
}
A__ = model_name_to_url[model_name]
A__ = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" , file_name=_lowerCamelCase )[
"state_dict"
]
for name, param in state_dict.items():
print(_lowerCamelCase , param.shape )
A__ = get_upernet_config(_lowerCamelCase )
A__ = UperNetForSemanticSegmentation(_lowerCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
A__ = state_dict.pop(_lowerCamelCase )
if "bn" in key:
A__ = key.replace("bn" , "batch_norm" )
A__ = val
# rename keys
A__ = create_rename_keys(_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
A__ = reverse_correct_unfold_reduction_order(_lowerCamelCase )
if "norm" in key:
A__ = reverse_correct_unfold_norm_order(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
# verify on image
A__ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" )
A__ = SegformerImageProcessor()
A__ = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values
with torch.no_grad():
A__ = model(_lowerCamelCase )
A__ = outputs.logits
print(logits.shape )
print("First values of logits:" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
A__ = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] )
elif model_name == "upernet-swin-small":
A__ = torch.tensor(
[[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] )
elif model_name == "upernet-swin-base":
A__ = torch.tensor(
[[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] )
elif model_name == "upernet-swin-large":
A__ = torch.tensor(
[[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_lowerCamelCase )
print(F"Saving processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(_lowerCamelCase )
if push_to_hub:
print(F"Pushing model and processor for {model_name} to hub" )
model.push_to_hub(F"openmmlab/{model_name}" )
processor.push_to_hub(F"openmmlab/{model_name}" )
if __name__ == "__main__":
__lowerCAmelCase : Optional[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__lowerCAmelCase : List[str] =parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 237
|
'''simple docstring'''
import functools
def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ):
A__ = len(_lowerCamelCase )
A__ = len(_lowerCamelCase )
@functools.cache
def min_distance(_lowerCamelCase : int , _lowerCamelCase : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
A__ = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , _lowerCamelCase ) , 1 + min_distance(_lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 237
| 1
|
from __future__ import annotations
_lowercase : Tuple = tuple[int, int, int]
_lowercase : str = tuple[str, str, str]
# used alphabet --------------------------
# from string.ascii_uppercase
_lowercase : str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# -------------------------- default selection --------------------------
# rotors --------------------------
_lowercase : Any = "EGZWVONAHDCLFQMSIPJBYUKXTR"
_lowercase : Any = "FOBHMDKEXQNRAULPGSJVTYICZW"
_lowercase : Dict = "ZJXESIUQLHAVRMDOYGTNFWPBKC"
# reflector --------------------------
_lowercase : Dict = {
"A": "N",
"N": "A",
"B": "O",
"O": "B",
"C": "P",
"P": "C",
"D": "Q",
"Q": "D",
"E": "R",
"R": "E",
"F": "S",
"S": "F",
"G": "T",
"T": "G",
"H": "U",
"U": "H",
"I": "V",
"V": "I",
"J": "W",
"W": "J",
"K": "X",
"X": "K",
"L": "Y",
"Y": "L",
"M": "Z",
"Z": "M",
}
# -------------------------- extra rotors --------------------------
_lowercase : Union[str, Any] = "RMDJXFUWGISLHVTCQNKYPBEZOA"
_lowercase : Dict = "SGLCPQWZHKXAREONTFBVIYJUDM"
_lowercase : Union[str, Any] = "HVSICLTYKQUBXDWAJZOMFGPREN"
_lowercase : Any = "RZWQHFMVDBKICJLNTUXAGYPSOE"
_lowercase : List[Any] = "LFKIJODBEGAMQPXVUHYSTCZRWN"
_lowercase : int = "KOAEGVDHXPQZMLFTYWJNBRCIUS"
def snake_case_ ( __SCREAMING_SNAKE_CASE : RotorPositionT , __SCREAMING_SNAKE_CASE : RotorSelectionT , __SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
if (unique_rotsel := len(set(__SCREAMING_SNAKE_CASE ) )) < 3:
lowercase_ : Any = F'''Please use 3 unique rotors (not {unique_rotsel})'''
raise Exception(__SCREAMING_SNAKE_CASE )
# Checks if rotor positions are valid
lowercase_ : Dict = rotpos
if not 0 < rotorposa <= len(__SCREAMING_SNAKE_CASE ):
lowercase_ : str = F'''First rotor position is not within range of 1..26 ({rotorposa}'''
raise ValueError(__SCREAMING_SNAKE_CASE )
if not 0 < rotorposa <= len(__SCREAMING_SNAKE_CASE ):
lowercase_ : Optional[int] = F'''Second rotor position is not within range of 1..26 ({rotorposa})'''
raise ValueError(__SCREAMING_SNAKE_CASE )
if not 0 < rotorposa <= len(__SCREAMING_SNAKE_CASE ):
lowercase_ : str = F'''Third rotor position is not within range of 1..26 ({rotorposa})'''
raise ValueError(__SCREAMING_SNAKE_CASE )
# Validates string and returns dict
lowercase_ : str = _plugboard(__SCREAMING_SNAKE_CASE )
return rotpos, rotsel, pbdict
def snake_case_ ( __SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowercase_ : Optional[Any] = F'''Plugboard setting isn\'t type string ({type(__SCREAMING_SNAKE_CASE )})'''
raise TypeError(__SCREAMING_SNAKE_CASE )
elif len(__SCREAMING_SNAKE_CASE ) % 2 != 0:
lowercase_ : Dict = F'''Odd number of symbols ({len(__SCREAMING_SNAKE_CASE )})'''
raise Exception(__SCREAMING_SNAKE_CASE )
elif pbstring == "":
return {}
pbstring.replace(''' ''' , '''''' )
# Checks if all characters are unique
lowercase_ : Any = set()
for i in pbstring:
if i not in abc:
lowercase_ : Dict = F'''\'{i}\' not in list of symbols'''
raise Exception(__SCREAMING_SNAKE_CASE )
elif i in tmppbl:
lowercase_ : Any = F'''Duplicate symbol ({i})'''
raise Exception(__SCREAMING_SNAKE_CASE )
else:
tmppbl.add(__SCREAMING_SNAKE_CASE )
del tmppbl
# Created the dictionary
lowercase_ : Dict = {}
for j in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 , 2 ):
lowercase_ : str = pbstring[j + 1]
lowercase_ : Optional[Any] = pbstring[j]
return pb
def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : RotorPositionT , __SCREAMING_SNAKE_CASE : RotorSelectionT = (rotora, rotora, rotora) , __SCREAMING_SNAKE_CASE : str = "" , ):
"""simple docstring"""
lowercase_ : Optional[int] = text.upper()
lowercase_ : int = _validator(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , plugb.upper() )
lowercase_ : Tuple = rotor_position
lowercase_ : str = rotor_selection
rotorposa -= 1
rotorposa -= 1
rotorposa -= 1
lowercase_ : Tuple = []
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
# 1st plugboard --------------------------
if symbol in plugboard:
lowercase_ : Tuple = plugboard[symbol]
# rotor ra --------------------------
lowercase_ : str = abc.index(__SCREAMING_SNAKE_CASE ) + rotorposa
lowercase_ : str = rotora[index % len(__SCREAMING_SNAKE_CASE )]
# rotor rb --------------------------
lowercase_ : Any = abc.index(__SCREAMING_SNAKE_CASE ) + rotorposa
lowercase_ : Optional[int] = rotora[index % len(__SCREAMING_SNAKE_CASE )]
# rotor rc --------------------------
lowercase_ : str = abc.index(__SCREAMING_SNAKE_CASE ) + rotorposa
lowercase_ : Any = rotora[index % len(__SCREAMING_SNAKE_CASE )]
# reflector --------------------------
# this is the reason you don't need another machine to decipher
lowercase_ : Optional[Any] = reflector[symbol]
# 2nd rotors
lowercase_ : List[str] = abc[rotora.index(__SCREAMING_SNAKE_CASE ) - rotorposa]
lowercase_ : Dict = abc[rotora.index(__SCREAMING_SNAKE_CASE ) - rotorposa]
lowercase_ : Optional[int] = abc[rotora.index(__SCREAMING_SNAKE_CASE ) - rotorposa]
# 2nd plugboard
if symbol in plugboard:
lowercase_ : str = plugboard[symbol]
# moves/resets rotor positions
rotorposa += 1
if rotorposa >= len(__SCREAMING_SNAKE_CASE ):
lowercase_ : Dict = 0
rotorposa += 1
if rotorposa >= len(__SCREAMING_SNAKE_CASE ):
lowercase_ : str = 0
rotorposa += 1
if rotorposa >= len(__SCREAMING_SNAKE_CASE ):
lowercase_ : int = 0
# else:
# pass
# Error could be also raised
# raise ValueError(
# 'Invalid symbol('+repr(symbol)+')')
result.append(__SCREAMING_SNAKE_CASE )
return "".join(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
_lowercase : Tuple = "This is my Python script that emulates the Enigma machine from WWII."
_lowercase : Union[str, Any] = (1, 1, 1)
_lowercase : Optional[int] = "pictures"
_lowercase : List[Any] = (rotora, rotora, rotora)
_lowercase : Dict = enigma(message, rotor_pos, rotor_sel, pb)
print("Encrypted message:", en)
print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
| 350
|
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowerCamelCase_ ):
lowerCAmelCase_ = (DDPMScheduler,)
def _snake_case ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : Optional[Any] = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def _snake_case ( self ):
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , )
def _snake_case ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : List[str] = self.scheduler_classes[0]
lowercase_ : int = self.get_scheduler_config()
lowercase_ : str = scheduler_class(**__SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Union[str, Any] = self.scheduler_classes[0]
lowercase_ : Any = self.get_scheduler_config()
lowercase_ : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowercase_ : Any = len(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = self.dummy_model()
lowercase_ : Any = self.dummy_sample_deter
lowercase_ : List[str] = torch.manual_seed(0 )
for t in reversed(range(__SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowercase_ : Optional[int] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowercase_ : Union[str, Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase_ : List[str] = pred_prev_sample
lowercase_ : str = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
lowercase_ : Tuple = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Optional[Any] = self.scheduler_classes[0]
lowercase_ : Tuple = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowercase_ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = len(__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = self.dummy_model()
lowercase_ : int = self.dummy_sample_deter
lowercase_ : str = torch.manual_seed(0 )
for t in reversed(range(__SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowercase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowercase_ : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase_ : int = pred_prev_sample
lowercase_ : str = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
lowercase_ : Tuple = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Optional[int] = self.scheduler_classes[0]
lowercase_ : int = self.get_scheduler_config()
lowercase_ : int = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowercase_ : int = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = scheduler.timesteps
for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ):
if i == len(__SCREAMING_SNAKE_CASE ) - 1:
lowercase_ : str = -1
else:
lowercase_ : Any = timesteps[i + 1]
lowercase_ : Optional[Any] = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE )
lowercase_ : int = prev_t.item()
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Tuple = self.scheduler_classes[0]
lowercase_ : List[Any] = self.get_scheduler_config()
lowercase_ : str = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = [1_00, 87, 50, 51, 0]
with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Optional[Any] = self.scheduler_classes[0]
lowercase_ : str = self.get_scheduler_config()
lowercase_ : Tuple = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = [1_00, 87, 50, 1, 0]
lowercase_ : List[str] = len(__SCREAMING_SNAKE_CASE )
with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : List[Any] = self.scheduler_classes[0]
lowercase_ : Optional[int] = self.get_scheduler_config()
lowercase_ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowercase_ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
| 264
| 0
|
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE_ : List[Any] = getLogger(__name__)
SCREAMING_SNAKE_CASE_ : str = 'cuda' if torch.cuda.is_available() else 'cpu'
def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : str = DEFAULT_DEVICE , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict="summarization" , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ):
A__ = Path(UpperCAmelCase_ ).open("""w""" , encoding="""utf-8""" )
A__ = str(UpperCAmelCase_ )
A__ = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ )
if fpaa:
A__ = model.half()
A__ = AutoTokenizer.from_pretrained(UpperCAmelCase_ )
logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
A__ = time.time()
# update config with task specific params
use_task_specific_params(UpperCAmelCase_ , UpperCAmelCase_ )
if prefix is None:
A__ = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(UpperCAmelCase_ , UpperCAmelCase_ ) ) ):
A__ = [prefix + text for text in examples_chunk]
A__ = tokenizer(UpperCAmelCase_ , return_tensors="""pt""" , truncation=UpperCAmelCase_ , padding="""longest""" ).to(UpperCAmelCase_ )
A__ = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **UpperCAmelCase_ , )
A__ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
A__ = int(time.time() - start_time ) # seconds
A__ = len(UpperCAmelCase_ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _snake_case ( ):
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def _snake_case ( UpperCAmelCase_ : Any=True ):
A__ = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=UpperCAmelCase_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=UpperCAmelCase_ , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=UpperCAmelCase_ , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , default=UpperCAmelCase_ , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , default=UpperCAmelCase_ , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=UpperCAmelCase_ , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=UpperCAmelCase_ , default=8 , required=UpperCAmelCase_ , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=UpperCAmelCase_ , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
A__ , A__ = parser.parse_known_args()
A__ = parse_numeric_n_bool_cl_kwargs(UpperCAmelCase_ )
if parsed_args and verbose:
print(F"""parsed the following generate kwargs: {parsed_args}""" )
A__ = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
A__ = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=UpperCAmelCase_ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
A__ = generate_summaries_or_translations(
UpperCAmelCase_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **UpperCAmelCase_ , )
if args.reference_path is None:
return {}
# Compute scores
A__ = calculate_bleu if """translation""" in args.task else calculate_rouge
A__ = [x.rstrip() for x in open(args.save_path ).readlines()]
A__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(UpperCAmelCase_ )]
A__ = score_fn(UpperCAmelCase_ , UpperCAmelCase_ )
scores.update(UpperCAmelCase_ )
if args.dump_args:
scores.update(UpperCAmelCase_ )
if args.info:
A__ = args.info
if verbose:
print(UpperCAmelCase_ )
if args.score_path is not None:
json.dump(UpperCAmelCase_ , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 335
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase ( self: Any ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase ( self: Dict ):
"""simple docstring"""
A__ = 1
A__ = 3
A__ = (32, 32)
A__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase )
return image
@property
def UpperCamelCase ( self: int ):
"""simple docstring"""
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def UpperCamelCase ( self: Tuple ):
"""simple docstring"""
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def UpperCamelCase ( self: List[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
A__ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(UpperCamelCase )
@property
def UpperCamelCase ( self: str ):
"""simple docstring"""
def extract(*UpperCamelCase: List[str] , **UpperCamelCase: Any ):
class a :
"""simple docstring"""
def __init__( self: Any ):
"""simple docstring"""
A__ = torch.ones([0] )
def UpperCamelCase ( self: Dict , UpperCamelCase: Optional[Any] ):
"""simple docstring"""
self.pixel_values.to(UpperCamelCase )
return self
return Out()
return extract
def UpperCamelCase ( self: str ):
"""simple docstring"""
A__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
A__ = self.dummy_cond_unet
A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase )
A__ = self.dummy_vae
A__ = self.dummy_text_encoder
A__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
A__ = 77
A__ = self.dummy_image.to(UpperCamelCase )
A__ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
A__ = AltDiffusionImgaImgPipeline(
unet=UpperCamelCase , scheduler=UpperCamelCase , vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=self.dummy_extractor , )
A__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase )
A__ = alt_pipe.to(UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase )
A__ = """A painting of a squirrel eating a burger"""
A__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 )
A__ = alt_pipe(
[prompt] , generator=UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase , )
A__ = output.images
A__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 )
A__ = alt_pipe(
[prompt] , generator=UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase , return_dict=UpperCamelCase , )[0]
A__ = image[0, -3:, -3:, -1]
A__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A__ = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def UpperCamelCase ( self: int ):
"""simple docstring"""
A__ = self.dummy_cond_unet
A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase )
A__ = self.dummy_vae
A__ = self.dummy_text_encoder
A__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
A__ = 77
A__ = self.dummy_image.to(UpperCamelCase )
# put models in fp16
A__ = unet.half()
A__ = vae.half()
A__ = bert.half()
# make sure here that pndm scheduler skips prk
A__ = AltDiffusionImgaImgPipeline(
unet=UpperCamelCase , scheduler=UpperCamelCase , vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=self.dummy_extractor , )
A__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase )
A__ = alt_pipe.to(UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase )
A__ = """A painting of a squirrel eating a burger"""
A__ = torch.manual_seed(0 )
A__ = alt_pipe(
[prompt] , generator=UpperCamelCase , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def UpperCamelCase ( self: str ):
"""simple docstring"""
A__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
# resize to resolution that is divisible by 8 but not 16 or 32
A__ = init_image.resize((7_60, 5_04) )
A__ = """BAAI/AltDiffusion"""
A__ = AltDiffusionImgaImgPipeline.from_pretrained(
UpperCamelCase , safety_checker=UpperCamelCase , )
pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
pipe.enable_attention_slicing()
A__ = """A fantasy landscape, trending on artstation"""
A__ = torch.manual_seed(0 )
A__ = pipe(
prompt=UpperCamelCase , image=UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase , output_type="""np""" , )
A__ = output.images[0]
A__ = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
A__ = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase ( self: Any ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase ( self: List[str] ):
"""simple docstring"""
A__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
A__ = init_image.resize((7_68, 5_12) )
A__ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" )
A__ = """BAAI/AltDiffusion"""
A__ = AltDiffusionImgaImgPipeline.from_pretrained(
UpperCamelCase , safety_checker=UpperCamelCase , )
pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
pipe.enable_attention_slicing()
A__ = """A fantasy landscape, trending on artstation"""
A__ = torch.manual_seed(0 )
A__ = pipe(
prompt=UpperCamelCase , image=UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase , output_type="""np""" , )
A__ = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 335
| 1
|
"""simple docstring"""
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
a :Tuple = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(f'{bindir}/../../examples/pytorch/translation'):
from run_translation import main # noqa
set_seed(42)
a :Dict = "sshleifer/student_marian_en_ro_6_1"
a :Optional[Any] = "sshleifer/tiny-mbart"
@require_torch
class __a (UpperCamelCase_):
'''simple docstring'''
def _a ( self , _a=False , _a=None , _a=True , _a=True , _a=True , _a=True , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.run_trainer(
eval_steps=1 , max_len=12 , model_name=_a , num_train_epochs=1 , distributed=_a , extra_args_str=_a , predict_with_generate=_a , do_train=_a , do_eval=_a , do_predict=_a , )
SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(os.path.join(_a , """trainer_state.json""" ) ).log_history
if not do_eval:
return
SCREAMING_SNAKE_CASE__ : int = [log for log in logs if """eval_loss""" in log.keys()]
SCREAMING_SNAKE_CASE__ : Dict = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
SCREAMING_SNAKE_CASE__ : List[str] = eval_metrics[-1]
assert isinstance(last_step_stats["""eval_bleu"""] , _a )
assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
self.run_seqaseq_quick()
@require_torch_multi_gpu
def _a ( self ) -> Optional[int]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a )
@require_torch_multi_gpu
def _a ( self ) -> str:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def _a ( self ) -> List[str]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp simple""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def _a ( self ) -> List[str]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp simple --fp16""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=_a )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def _a ( self ) -> List[Any]:
"""simple docstring"""
self.run_seqaseq_quick(
distributed=_a , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=_a )
@require_apex
@require_torch_gpu
def _a ( self ) -> List[str]:
"""simple docstring"""
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--fp16 --fp16_backend=apex""" )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=_a , extra_args_str="""--fp16 --fp16_backend=apex""" )
@parameterized.expand(["""base""", """low""", """high""", """mixed"""] )
@require_torch_multi_gpu
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = {
# test with the default log_level - should be info and thus log info once
"""base""": {"""extra_args_str""": """""", """n_matches""": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"""low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"""high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"""mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0},
}
SCREAMING_SNAKE_CASE__ : List[str] = experiments[experiment_id]
SCREAMING_SNAKE_CASE__ : List[Any] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False}
SCREAMING_SNAKE_CASE__ : Optional[Any] = """Running training"""
with CaptureStderr() as cl:
self.run_seqaseq_quick(**_a , extra_args_str=data["""extra_args_str"""] )
SCREAMING_SNAKE_CASE__ : Any = len(re.findall(_a , cl.err ) )
self.assertEqual(_a , data["""n_matches"""] )
@slow
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.run_trainer(
eval_steps=2 , max_len=128 , model_name=_a , learning_rate=3E-4 , num_train_epochs=10 , distributed=_a , )
# Check metrics
SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(os.path.join(_a , """trainer_state.json""" ) ).log_history
SCREAMING_SNAKE_CASE__ : str = [log for log in logs if """eval_loss""" in log.keys()]
SCREAMING_SNAKE_CASE__ : int = eval_metrics[0]
SCREAMING_SNAKE_CASE__ : Optional[int] = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["""eval_bleu"""] , _a )
# test if do_predict saves generations and metrics
SCREAMING_SNAKE_CASE__ : List[Any] = os.listdir(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = {os.path.basename(_a ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def _a ( self ) -> List[Any]:
"""simple docstring"""
from transformers.training_args import OptimizerNames
def train_and_return_metrics(_a ) -> Tuple[int, float]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """--skip_memory_metrics 0"""
SCREAMING_SNAKE_CASE__ : Any = self.run_trainer(
max_len=128 , model_name=_a , learning_rate=3E-4 , num_train_epochs=1 , optim=_a , distributed=_a , extra_args_str=_a , do_eval=_a , do_predict=_a , n_gpus_to_use=1 , )
# Check metrics
SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(Path(_a , """trainer_state.json""" ) ).log_history
SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 )
SCREAMING_SNAKE_CASE__ : Tuple = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = logs[0]["""train_loss"""]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
SCREAMING_SNAKE_CASE__ : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
SCREAMING_SNAKE_CASE__ : Union[str, Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig
SCREAMING_SNAKE_CASE__ : int = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
SCREAMING_SNAKE_CASE__ : List[Any] = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
SCREAMING_SNAKE_CASE__ : Any = 120
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
_a , _a , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
_a , _a , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
_a , _a , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def _a ( self , _a , _a , _a , _a = 3E-3 , _a = "adafactor" , _a = False , _a = None , _a = 0 , _a = True , _a = True , _a = True , _a = True , _a = None , ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(_a )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(_a )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
SCREAMING_SNAKE_CASE__ : str = f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(_a )}
'''.split()
SCREAMING_SNAKE_CASE__ : int = """
--do_predict
""".split()
SCREAMING_SNAKE_CASE__ : List[Any] = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_gpu_count()
SCREAMING_SNAKE_CASE__ : List[Any] = get_torch_dist_unique_port()
SCREAMING_SNAKE_CASE__ : int = f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
SCREAMING_SNAKE_CASE__ : Optional[int] = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(_a , env=self.get_env() )
else:
SCREAMING_SNAKE_CASE__ : Dict = ["""run_translation.py"""] + args
with patch.object(_a , """argv""" , _a ):
main()
return output_dir
| 56
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __a (metaclass=UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = ["""transformers""", """torch""", """note_seq"""]
def __init__( self , *_a , **_a ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def _a ( cls , *_a , **_a ) -> int:
"""simple docstring"""
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def _a ( cls , *_a , **_a ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
| 56
| 1
|
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
_A : List[str] =get_tests_dir('''fixtures''')
class _lowercase ( unittest.TestCase ):
def lowerCamelCase_ ( self: Optional[Any] ):
lowerCamelCase__ : Union[str, Any] = mock.Mock()
lowerCamelCase__ : Optional[Any] = 500
lowerCamelCase__ : Optional[Any] = {}
lowerCamelCase__ : List[Any] = HTTPError
lowerCamelCase__ : Tuple = {}
# Download this model to make sure it's in the cache.
lowerCamelCase__ : Tuple = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("""requests.Session.request""" , return_value=_A ) as mock_head:
lowerCamelCase__ : List[Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCamelCase_ ( self: Tuple ):
lowerCamelCase__ : List[str] = ViTImageProcessor.from_pretrained(
"""https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" )
def lowerCamelCase_ ( self: Union[str, Any] ):
with self.assertRaises(_A ):
# config is in subfolder, the following should not work without specifying the subfolder
lowerCamelCase__ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" )
lowerCamelCase__ : Tuple = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" )
self.assertIsNotNone(_A )
@is_staging_test
class _lowercase ( unittest.TestCase ):
@classmethod
def lowerCamelCase_ ( cls: Optional[Any] ):
lowerCamelCase__ : Optional[int] = TOKEN
HfFolder.save_token(_A )
@classmethod
def lowerCamelCase_ ( cls: Optional[int] ):
try:
delete_repo(token=cls._token , repo_id="""test-image-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" )
except HTTPError:
pass
def lowerCamelCase_ ( self: str ):
lowerCamelCase__ : List[Any] = ViTImageProcessor.from_pretrained(_A )
image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token )
lowerCamelCase__ : Union[str, Any] = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(_A , getattr(_A , _A ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
_A , repo_id="""test-image-processor""" , push_to_hub=_A , use_auth_token=self._token )
lowerCamelCase__ : List[str] = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(_A , getattr(_A , _A ) )
def lowerCamelCase_ ( self: int ):
lowerCamelCase__ : List[str] = ViTImageProcessor.from_pretrained(_A )
image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token )
lowerCamelCase__ : Any = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(_A , getattr(_A , _A ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
_A , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=_A , use_auth_token=self._token )
lowerCamelCase__ : Optional[Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(_A , getattr(_A , _A ) )
def lowerCamelCase_ ( self: List[Any] ):
CustomImageProcessor.register_for_auto_class()
lowerCamelCase__ : Optional[Any] = CustomImageProcessor.from_pretrained(_A )
image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , )
lowerCamelCase__ : Any = AutoImageProcessor.from_pretrained(
F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=_A )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
| 41
|
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
lowerCamelCase__ : int = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''),
('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''),
('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''),
('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''),
('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''),
('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''),
('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''),
('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''),
('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''),
('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''),
]
)
def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int, _lowerCAmelCase : Optional[int] ) -> Dict:
_UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = val
def UpperCamelCase ( _lowerCAmelCase : List[Any] ) -> List[str]:
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
_UpperCAmelCase : Tuple = key.replace("""backbone.0.body""", """backbone.conv_encoder.model""" )
_UpperCAmelCase : Any = value
else:
_UpperCAmelCase : List[Any] = value
return new_state_dict
def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Tuple=False ) -> Optional[Any]:
_UpperCAmelCase : int = """"""
if is_panoptic:
_UpperCAmelCase : str = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_UpperCAmelCase : Dict = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
_UpperCAmelCase : Any = in_proj_weight[:256, :]
_UpperCAmelCase : Tuple = in_proj_bias[:256]
_UpperCAmelCase : Optional[int] = in_proj_weight[256:512, :]
_UpperCAmelCase : str = in_proj_bias[256:512]
_UpperCAmelCase : int = in_proj_weight[-256:, :]
_UpperCAmelCase : List[Any] = in_proj_bias[-256:]
def UpperCamelCase ( ) -> Any:
_UpperCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_UpperCAmelCase : Dict = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def UpperCamelCase ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ) -> List[Any]:
_UpperCAmelCase : str = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
_UpperCAmelCase : Dict = """resnet101"""
if "dc5" in model_name:
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Optional[Any] = """panoptic""" in model_name
if is_panoptic:
_UpperCAmelCase : Optional[int] = 250
else:
_UpperCAmelCase : str = 91
_UpperCAmelCase : Optional[int] = """huggingface/label-files"""
_UpperCAmelCase : str = """coco-detection-id2label.json"""
_UpperCAmelCase : Any = json.load(open(hf_hub_download(_lowerCAmelCase, _lowerCAmelCase, repo_type="""dataset""" ), """r""" ) )
_UpperCAmelCase : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
_UpperCAmelCase : List[str] = idalabel
_UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
# load image processor
_UpperCAmelCase : Optional[int] = """coco_panoptic""" if is_panoptic else """coco_detection"""
_UpperCAmelCase : int = ConditionalDetrImageProcessor(format=_lowerCAmelCase )
# prepare image
_UpperCAmelCase : List[str] = prepare_img()
_UpperCAmelCase : Any = image_processor(images=_lowerCAmelCase, return_tensors="""pt""" )
_UpperCAmelCase : Any = encoding["""pixel_values"""]
logger.info(f'''Converting model {model_name}...''' )
# load original model from torch hub
_UpperCAmelCase : Tuple = torch.hub.load("""DeppMeng/ConditionalDETR""", _lowerCAmelCase, pretrained=_lowerCAmelCase ).eval()
_UpperCAmelCase : Tuple = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
_UpperCAmelCase : Optional[int] = """conditional_detr.""" + src
rename_key(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_UpperCAmelCase : Optional[Any] = rename_backbone_keys(_lowerCAmelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(_lowerCAmelCase, is_panoptic=_lowerCAmelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_UpperCAmelCase : List[str] = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
_UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase )
_UpperCAmelCase : Any = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
_UpperCAmelCase : Optional[Any] = state_dict.pop(_lowerCAmelCase )
_UpperCAmelCase : Union[str, Any] = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
_UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase )
_UpperCAmelCase : Optional[int] = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
_UpperCAmelCase : Tuple = state_dict.pop(_lowerCAmelCase )
_UpperCAmelCase : Any = val
# finally, create HuggingFace model and load state dict
_UpperCAmelCase : Union[str, Any] = ConditionalDetrForSegmentation(_lowerCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
model.push_to_hub(repo_id=_lowerCAmelCase, organization="""DepuMeng""", commit_message="""Add model""" )
# verify our conversion
_UpperCAmelCase : Any = conditional_detr(_lowerCAmelCase )
_UpperCAmelCase : int = model(_lowerCAmelCase )
assert torch.allclose(outputs.logits, original_outputs["""pred_logits"""], atol=1E-4 )
assert torch.allclose(outputs.pred_boxes, original_outputs["""pred_boxes"""], atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks, original_outputs["""pred_masks"""], atol=1E-4 )
# Save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
image_processor.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''conditional_detr_resnet50''',
type=str,
help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
lowerCamelCase__ : int = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 246
| 0
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class lowerCamelCase :
'''simple docstring'''
__snake_case = BlenderbotConfig
__snake_case = {}
__snake_case = 'gelu'
def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[int]=99 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[Any]=37 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=20 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Union[str, Any]=0 , ) -> Any:
'''simple docstring'''
A__ : Optional[int] =parent
A__ : int =batch_size
A__ : Union[str, Any] =seq_length
A__ : Optional[Any] =is_training
A__ : Any =use_labels
A__ : Union[str, Any] =vocab_size
A__ : Any =hidden_size
A__ : Optional[int] =num_hidden_layers
A__ : Tuple =num_attention_heads
A__ : Tuple =intermediate_size
A__ : Union[str, Any] =hidden_dropout_prob
A__ : Optional[int] =attention_probs_dropout_prob
A__ : Dict =max_position_embeddings
A__ : Any =eos_token_id
A__ : List[Any] =pad_token_id
A__ : List[str] =bos_token_id
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
A__ : Dict =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
A__ : Tuple =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
A__ : Optional[int] =tf.concat([input_ids, eos_tensor] , axis=1 )
A__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Union[str, Any] =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
A__ : Any =prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return config, inputs_dict
def lowercase__ ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[Any] =TFBlenderbotModel(config=lowerCAmelCase_ ).get_decoder()
A__ : Union[str, Any] =inputs_dict["""input_ids"""]
A__ : Any =input_ids[:1, :]
A__ : str =inputs_dict["""attention_mask"""][:1, :]
A__ : Any =inputs_dict["""head_mask"""]
A__ : Tuple =1
# first forward pass
A__ : str =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ )
A__ , A__ : Optional[Any] =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : Tuple =ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : Optional[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
A__ : List[str] =tf.concat([input_ids, next_tokens] , axis=-1 )
A__ : Any =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
A__ : Union[str, Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0]
A__ : List[Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
A__ : Tuple =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
A__ : Optional[int] =output_from_no_past[:, -3:, random_slice_idx]
A__ : Optional[Any] =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 )
def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Union[str, Any], __snake_case : Union[str, Any], __snake_case : List[Any]=None, __snake_case : Tuple=None, __snake_case : List[Any]=None, __snake_case : str=None, __snake_case : Any=None, ) -> List[Any]:
"""simple docstring"""
if attention_mask is None:
A__ : List[str] =tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
A__ : Dict =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
A__ : Dict =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A__ : Any =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
A__ : List[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__snake_case = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__snake_case = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__snake_case = True
__snake_case = False
__snake_case = False
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
A__ : Tuple =TFBlenderbotModelTester(self )
A__ : int =ConfigTester(self , config_class=lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
A__ : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ )
@require_tokenizers
@require_tf
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = ['My friends are cool but they eat too many carbs.']
__snake_case = 'facebook/blenderbot-400M-distill'
@cached_property
def lowercase__ ( self : str ) -> Any:
'''simple docstring'''
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def lowercase__ ( self : List[str] ) -> str:
'''simple docstring'''
A__ : str =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
A__ : Optional[Any] =self.tokenizer(self.src_text , return_tensors="""tf""" )
A__ : Dict =self.model.generate(
model_inputs.input_ids , )
A__ : List[Any] =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase_ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 136
|
'''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def __lowerCamelCase ( __snake_case : int ) -> int:
"""simple docstring"""
A__ : List[Any] =prime_factors(__snake_case )
if is_square_free(__snake_case ):
return -1 if len(__snake_case ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 136
| 1
|
"""simple docstring"""
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
lowerCamelCase__ = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False)
parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""")
parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""")
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = """cpu"""
lowerCamelCase__ = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings"""
lowerCamelCase__ = """path-to-your-trained-model"""
lowerCamelCase__ = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
lowerCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
lowerCamelCase__ = pipe.to(device)
# to channels last
lowerCamelCase__ = pipe.unet.to(memory_format=torch.channels_last)
lowerCamelCase__ = pipe.vae.to(memory_format=torch.channels_last)
lowerCamelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
lowerCamelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
lowerCamelCase__ = torch.randn(2, 4, 64, 64)
lowerCamelCase__ = torch.rand(1) * 999
lowerCamelCase__ = torch.randn(2, 77, 768)
lowerCamelCase__ = (sample, timestep, encoder_hidden_status)
try:
lowerCamelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
lowerCamelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
lowerCamelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
lowerCamelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
lowerCamelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
lowerCamelCase__ = 666
lowerCamelCase__ = torch.Generator(device).manual_seed(seed)
lowerCamelCase__ = {"""generator""": generator}
if args.steps is not None:
lowerCamelCase__ = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
lowerCamelCase__ = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save("""generated.png""")
| 86
|
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( _lowerCamelCase , unittest.TestCase):
A_ : Union[str, Any] = BarthezTokenizer
A_ : Tuple = BarthezTokenizerFast
A_ : Dict = True
A_ : List[str] = True
def __lowerCamelCase ( self ):
super().setUp()
__lowerCAmelCase : str = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Any = tokenizer
def __lowerCamelCase ( self ):
__lowerCAmelCase : Optional[Any] = '<pad>'
__lowerCAmelCase : Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
__lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 10_11_22 )
def __lowerCamelCase ( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 )
@require_torch
def __lowerCamelCase ( self ):
__lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowerCAmelCase : Optional[Any] = [0, 57, 30_18, 7_03_07, 91, 2]
__lowerCAmelCase : Optional[int] = self.tokenizer(
_SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
__lowerCAmelCase : List[str] = batch.input_ids.tolist()[0]
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self ):
if not self.test_rust_tokenizer:
return
__lowerCAmelCase : Tuple = self.get_tokenizer()
__lowerCAmelCase : Optional[int] = self.get_rust_tokenizer()
__lowerCAmelCase : List[str] = 'I was born in 92000, and this is falsé.'
__lowerCAmelCase : Optional[int] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Optional[int] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Optional[int] = self.get_rust_tokenizer()
__lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Dict = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self ):
# fmt: off
__lowerCAmelCase : str = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
__lowerCAmelCase : Union[str, Any] = [
'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '
'utilisé principalement dans le domaine du traitement automatique des langues (TAL).',
'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '
'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '
'telles que la traduction et la synthèse de texte.',
]
self.tokenizer_integration_test_util(
expected_encoding=_SCREAMING_SNAKE_CASE , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_SCREAMING_SNAKE_CASE , )
| 86
| 1
|
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase__ : List[str] = StableDiffusionDiffEditPipeline
UpperCamelCase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'}
UpperCamelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'}
UpperCamelCase__ : List[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCamelCase__ : Union[str, Any] = frozenset([] )
def _A ( self ):
'''simple docstring'''
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , )
__SCREAMING_SNAKE_CASE = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
__SCREAMING_SNAKE_CASE = DDIMInverseScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_zero=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , )
__SCREAMING_SNAKE_CASE = CLIPTextModel(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__SCREAMING_SNAKE_CASE = {
"""unet""": unet,
"""scheduler""": scheduler,
"""inverse_scheduler""": inverse_scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _A ( self , _A , _A=0 ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = {
"""prompt""": """a dog and a newt""",
"""mask_image""": mask,
"""image_latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 2,
"""inpaint_strength""": 1.0,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _A ( self , _A , _A=0 ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' )
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = {
"""image""": image,
"""source_prompt""": """a cat and a frog""",
"""target_prompt""": """a dog and a newt""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""num_maps_per_mask""": 2,
"""mask_encode_strength""": 1.0,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _A ( self , _A , _A=0 ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' )
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = {
"""image""": image,
"""prompt""": """a cat and a frog""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""inpaint_strength""": 1.0,
"""guidance_scale""": 6.0,
"""decode_latents""": True,
"""output_type""": """numpy""",
}
return inputs
def _A ( self ):
'''simple docstring'''
if not hasattr(self.pipeline_class , '_optional_components' ):
return
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = pipe(**SCREAMING_SNAKE_CASE_ )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE_ )
pipe_loaded.to(SCREAMING_SNAKE_CASE_ )
pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = pipe_loaded(**SCREAMING_SNAKE_CASE_ )[0]
__SCREAMING_SNAKE_CASE = np.abs(output - output_loaded ).max()
self.assertLess(SCREAMING_SNAKE_CASE_ , 1e-4 )
def _A ( self ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """cpu"""
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = pipe.generate_mask(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
__SCREAMING_SNAKE_CASE = np.array([0] * 9 )
__SCREAMING_SNAKE_CASE = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def _A ( self ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """cpu"""
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = pipe.invert(**SCREAMING_SNAKE_CASE_ ).images
__SCREAMING_SNAKE_CASE = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
__SCREAMING_SNAKE_CASE = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
__SCREAMING_SNAKE_CASE = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 )
def _A ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def _A ( self ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """cpu"""
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""}
__SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = pipe.invert(**SCREAMING_SNAKE_CASE_ ).images
__SCREAMING_SNAKE_CASE = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
__SCREAMING_SNAKE_CASE = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
__SCREAMING_SNAKE_CASE = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 )
@require_torch_gpu
@slow
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _A ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def _A ( cls ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
__SCREAMING_SNAKE_CASE = raw_image.convert('RGB' ).resize((768, 768) )
__SCREAMING_SNAKE_CASE = raw_image
def _A ( self ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa )
__SCREAMING_SNAKE_CASE = DDIMScheduler.from_config(pipe.scheduler.config )
__SCREAMING_SNAKE_CASE = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = """a bowl of fruit"""
__SCREAMING_SNAKE_CASE = """a bowl of pears"""
__SCREAMING_SNAKE_CASE = pipe.generate_mask(
image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )
__SCREAMING_SNAKE_CASE = pipe.invert(
prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ ).latents
__SCREAMING_SNAKE_CASE = pipe(
prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , output_type='numpy' , ).images[0]
__SCREAMING_SNAKE_CASE = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5e-1
def _A ( self ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa )
__SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__SCREAMING_SNAKE_CASE = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = """a bowl of fruit"""
__SCREAMING_SNAKE_CASE = """a bowl of pears"""
__SCREAMING_SNAKE_CASE = pipe.generate_mask(
image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )
__SCREAMING_SNAKE_CASE = pipe.invert(
prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , ).latents
__SCREAMING_SNAKE_CASE = pipe(
prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0]
__SCREAMING_SNAKE_CASE = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 355
|
def __lowercase ( a__ ) -> int:
__SCREAMING_SNAKE_CASE = [[0 for _ in range(a__ )] for _ in range(m + 1 )]
for i in range(m + 1 ):
__SCREAMING_SNAKE_CASE = 1
for n in range(m + 1 ):
for k in range(1 , a__ ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
lowerCAmelCase__ : Optional[Any] =int(input('''Enter a number: ''').strip())
print(partition(n))
except ValueError:
print('''Please enter a number.''')
else:
try:
lowerCAmelCase__ : str =int(sys.argv[1])
print(partition(n))
except ValueError:
print('''Please pass a number.''')
| 118
| 0
|
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A__ : Dict =logging.get_logger(__name__)
A__ : Optional[int] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all LED models at https://huggingface.co/models?filter=LED
A__ : List[str] ={
'''vocab_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''',
},
'''merges_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''',
},
}
A__ : List[str] ={
'''allenai/led-base-16384''': 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def UpperCamelCase__ ( ):
"""simple docstring"""
_lowerCAmelCase = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
_lowerCAmelCase = bs[:]
_lowerCAmelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_a )
cs.append(2**8 + n )
n += 1
_lowerCAmelCase = [chr(_a ) for n in cs]
return dict(zip(_a , _a ) )
def UpperCamelCase__ ( lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase = set()
_lowerCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase = char
return pairs
class UpperCAmelCase ( lowerCAmelCase__ ):
_lowercase: List[str] = VOCAB_FILES_NAMES
_lowercase: Any = PRETRAINED_VOCAB_FILES_MAP
_lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase: Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int="replace" , __snake_case : Any="<s>" , __snake_case : List[str]="</s>" , __snake_case : int="</s>" , __snake_case : List[str]="<s>" , __snake_case : Tuple="<unk>" , __snake_case : Optional[int]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Dict=False , **__snake_case : Optional[Any] , ) -> List[str]:
_lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token
_lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token
_lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token
_lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token
_lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token
_lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
super().__init__(
errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , )
with open(lowercase_ , encoding="""utf-8""" ) as vocab_handle:
_lowerCAmelCase = json.load(lowercase_ )
_lowerCAmelCase = {v: k for k, v in self.encoder.items()}
_lowerCAmelCase = errors # how to handle errors in decoding
_lowerCAmelCase = bytes_to_unicode()
_lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(lowercase_ , encoding="""utf-8""" ) as merges_handle:
_lowerCAmelCase = merges_handle.read().split("""\n""" )[1:-1]
_lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
_lowerCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
_lowerCAmelCase = {}
_lowerCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_lowerCAmelCase = re.compile(R"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowercase__ ( self : Union[str, Any] ) -> str:
return len(self.encoder )
def lowercase__ ( self : Optional[Any] ) -> int:
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : Tuple , __snake_case : Tuple ) -> Optional[int]:
if token in self.cache:
return self.cache[token]
_lowerCAmelCase = tuple(lowercase_ )
_lowerCAmelCase = get_pairs(lowercase_ )
if not pairs:
return token
while True:
_lowerCAmelCase = min(lowercase_ , key=lambda __snake_case : self.bpe_ranks.get(lowercase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase = bigram
_lowerCAmelCase = []
_lowerCAmelCase = 0
while i < len(lowercase_ ):
try:
_lowerCAmelCase = word.index(lowercase_ , lowercase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase = j
if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase = tuple(lowercase_ )
_lowerCAmelCase = new_word
if len(lowercase_ ) == 1:
break
else:
_lowerCAmelCase = get_pairs(lowercase_ )
_lowerCAmelCase = ''' '''.join(lowercase_ )
_lowerCAmelCase = word
return word
def lowercase__ ( self : Any , __snake_case : Union[str, Any] ) -> Optional[int]:
_lowerCAmelCase = []
for token in re.findall(self.pat , lowercase_ ):
_lowerCAmelCase = ''''''.join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(""" """ ) )
return bpe_tokens
def lowercase__ ( self : List[Any] , __snake_case : List[str] ) -> Any:
return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Union[str, Any] , __snake_case : Dict ) -> Tuple:
return self.decoder.get(lowercase_ )
def lowercase__ ( self : Tuple , __snake_case : Union[str, Any] ) -> Union[str, Any]:
_lowerCAmelCase = ''''''.join(lowercase_ )
_lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def lowercase__ ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Any:
if not os.path.isdir(lowercase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
_lowerCAmelCase = os.path.join(
lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase = os.path.join(
lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + """\n""" )
_lowerCAmelCase = 0
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
""" Please check that the tokenizer is not corrupted!""" )
_lowerCAmelCase = token_index
writer.write(""" """.join(lowercase_ ) + """\n""" )
index += 1
return vocab_file, merge_file
def lowercase__ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> Tuple:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
_lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[Any]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase_ )) + [1]
return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1]
def lowercase__ ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> Tuple:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase__ ( self : Union[str, Any] , __snake_case : str , __snake_case : str=False , **__snake_case : Dict ) -> str:
_lowerCAmelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()):
_lowerCAmelCase = ''' ''' + text
return (text, kwargs)
def lowercase__ ( self : Any , __snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ) -> Any:
_lowerCAmelCase = super()._pad(
encoded_inputs=lowercase_ , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , )
# Load from model defaults
if return_attention_mask is None:
_lowerCAmelCase = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_lowerCAmelCase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_lowerCAmelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowercase_ )
if needs_to_be_padded:
_lowerCAmelCase = len(lowercase_ ) - len(encoded_inputs["""global_attention_mask"""] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_lowerCAmelCase = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
_lowerCAmelCase = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return encoded_inputs
| 70
|
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
lowercase__ : int = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''enhancement''',
'''new pipeline/model''',
'''new scheduler''',
'''wip''',
]
def __lowercase ( ):
snake_case_ : Optional[Any] = Github(os.environ['''GITHUB_TOKEN'''] )
snake_case_ : Any = g.get_repo('''huggingface/diffusers''' )
snake_case_ : Any = repo.get_issues(state='''open''' )
for issue in open_issues:
snake_case_ : str = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a )
snake_case_ : Dict = comments[0] if len(_a ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 264
| 0
|
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class _UpperCAmelCase:
def __init__( self , __a , __a=13 , __a=7 , __a=6 , __a=17 , __a=23 , __a=11 , __a=True , ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = act_dim
_UpperCamelCase = state_dim
_UpperCamelCase = hidden_size
_UpperCamelCase = max_length
_UpperCamelCase = is_training
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1))
_UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1))
_UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00)
_UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length))
_UpperCamelCase = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = DecisionTransformerModel(config=__a)
model.to(__a)
model.eval()
_UpperCamelCase = model(__a , __a , __a , __a , __a , __a)
self.parent.assertEqual(result.state_preds.shape , states.shape)
self.parent.assertEqual(result.action_preds.shape , actions.shape)
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {
'''states''': states,
'''actions''': actions,
'''rewards''': rewards,
'''returns_to_go''': returns_to_go,
'''timesteps''': timesteps,
'''attention_mask''': attention_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
lowercase__ = (DecisionTransformerModel,) if is_torch_available() else ()
lowercase__ = ()
lowercase__ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
lowercase__ = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DecisionTransformerModelTester(self)
_UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37)
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a)
@slow
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = DecisionTransformerModel.from_pretrained(__a)
self.assertIsNotNone(__a)
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(__a)
_UpperCamelCase = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = [
'''states''',
'''actions''',
'''rewards''',
'''returns_to_go''',
'''timesteps''',
'''attention_mask''',
]
self.assertListEqual(arg_names[: len(__a)] , __a)
@require_torch
class _UpperCAmelCase( unittest.TestCase ):
@slow
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform
_UpperCamelCase = 10 # defined by the RL environment, may be normalized
_UpperCamelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''')
_UpperCamelCase = model.to(__a)
_UpperCamelCase = model.config
torch.manual_seed(0)
_UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=__a , dtype=torch.floataa) # env.reset()
_UpperCamelCase = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=__a)
_UpperCamelCase = torch.tensor(__a , device=__a , dtype=torch.floataa).reshape(1 , 1 , 1)
_UpperCamelCase = state
_UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=__a , dtype=torch.floataa)
_UpperCamelCase = torch.zeros(1 , 0 , device=__a , dtype=torch.floataa)
_UpperCamelCase = torch.tensor(0 , device=__a , dtype=torch.long).reshape(1 , 1)
for step in range(__a):
_UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__a)] , dim=1)
_UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=__a)] , dim=1)
_UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device)
with torch.no_grad():
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model(
states=__a , actions=__a , rewards=__a , returns_to_go=__a , timesteps=__a , attention_mask=__a , return_dict=__a , )
self.assertEqual(action_pred.shape , actions.shape)
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4))
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim).to(device=__a , dtype=torch.floataa),
1.0,
False,
{},
)
_UpperCamelCase = action_pred[0, -1]
_UpperCamelCase = torch.cat([states, state] , dim=1)
_UpperCamelCase = returns_to_go[0, -1] - reward
_UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1)
_UpperCamelCase = torch.cat(
[timesteps, torch.ones((1, 1) , device=__a , dtype=torch.long) * (step + 1)] , dim=1)
| 353
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
"""facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""",
"""facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class _UpperCAmelCase( lowerCamelCase ):
lowercase__ = 'xlm-roberta-xl'
def __init__( self , __a=25_08_80 , __a=25_60 , __a=36 , __a=32 , __a=1_02_40 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=0.02 , __a=1e-05 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Tuple:
'''simple docstring'''
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a)
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = hidden_act
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = position_embedding_type
_UpperCamelCase = use_cache
_UpperCamelCase = classifier_dropout
class _UpperCAmelCase( lowerCamelCase ):
@property
def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
_UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_UpperCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
])
| 100
| 0
|
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int:
'''simple docstring'''
while b:
snake_case_ ,snake_case_ = b, a % b
return a
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int:
'''simple docstring'''
return a if b == 0 else euclidean_gcd_recursive(__UpperCAmelCase, a % b )
def __magic_name__ ( ) -> Any:
'''simple docstring'''
print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}" )
print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}" )
print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}" )
print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}" )
print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}" )
print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}" )
print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}" )
print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}" )
print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}" )
print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}" )
if __name__ == "__main__":
main()
| 56
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a : Tuple = {
'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = ['LlamaTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = ['LlamaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
'LlamaForCausalLM',
'LlamaModel',
'LlamaPreTrainedModel',
'LlamaForSequenceClassification',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 56
| 1
|
import math
import qiskit
def a__ ( __UpperCamelCase = 1 , __UpperCamelCase = 1 , __UpperCamelCase = 1 ):
if (
isinstance(__UpperCamelCase , __UpperCamelCase )
or isinstance(__UpperCamelCase , __UpperCamelCase )
or isinstance(__UpperCamelCase , __UpperCamelCase )
):
raise TypeError("inputs must be integers." )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError("inputs must be positive." )
if (
(math.floor(__UpperCamelCase ) != input_a)
or (math.floor(__UpperCamelCase ) != input_a)
or (math.floor(__UpperCamelCase ) != carry_in)
):
raise ValueError("inputs must be exact integers." )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError("inputs must be less or equal to 2." )
# build registers
SCREAMING_SNAKE_CASE_ = qiskit.QuantumRegister(4 , "qr" )
SCREAMING_SNAKE_CASE_ = qiskit.ClassicalRegister(2 , "cr" )
# list the entries
SCREAMING_SNAKE_CASE_ = [input_a, input_a, carry_in]
SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(__UpperCamelCase ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(__UpperCamelCase ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(__UpperCamelCase ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , __UpperCamelCase ) # measure the last two qbits
SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend("aer_simulator" )
SCREAMING_SNAKE_CASE_ = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1_0_0_0 )
return job.result().get_counts(__UpperCamelCase )
if __name__ == "__main__":
print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
| 305
|
import torch
def a__ ( ):
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE_ = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE_ = 0
print(F'''Successfully ran on {num_gpus} GPUs''' )
if __name__ == "__main__":
main()
| 305
| 1
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = 42
lowercase__ = 42
lowercase__ = None
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ):
lowercase__ = 2
@register_to_config
def __init__( self : Dict , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 1_0_0 , lowerCAmelCase_ : float = 1.007 , lowerCAmelCase_ : float = 8_0 , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 5_0 , ):
"""simple docstring"""
lowercase_ = sigma_max
# setable values
lowercase_ = None
lowercase_ = None
lowercase_ = None # sigma(t_i)
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[int] = None):
"""simple docstring"""
return sample
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None):
"""simple docstring"""
lowercase_ = num_inference_steps
lowercase_ = np.arange(0 , self.num_inference_steps)[::-1].copy()
lowercase_ = torch.from_numpy(lowerCAmelCase_).to(lowerCAmelCase_)
lowercase_ = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowercase_ = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa , device=lowerCAmelCase_)
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[torch.Generator] = None):
"""simple docstring"""
if self.config.s_min <= sigma <= self.config.s_max:
lowercase_ = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1)
else:
lowercase_ = 0
# sample eps ~ N(0, S_noise^2 * I)
lowercase_ = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCAmelCase_).to(sample.device)
lowercase_ = sigma + gamma * sigma
lowercase_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ):
"""simple docstring"""
lowercase_ = sample_hat + sigma_hat * model_output
lowercase_ = (sample_hat - pred_original_sample) / sigma_hat
lowercase_ = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ):
"""simple docstring"""
lowercase_ = sample_prev + sigma_prev * model_output
lowercase_ = (sample_prev - pred_original_sample) / sigma_prev
lowercase_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_)
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str):
"""simple docstring"""
raise NotImplementedError()
| 136
|
"""simple docstring"""
import os
from typing import Dict, List, Tuple, TypeVar, Union
UpperCAmelCase : Union[str, Any] = TypeVar("T")
UpperCAmelCase : Dict = Union[List[T], Tuple[T, ...]]
UpperCAmelCase : int = Union[T, List[T], Dict[str, T]]
UpperCAmelCase : Tuple = Union[str, bytes, os.PathLike]
| 136
| 1
|
'''simple docstring'''
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _snake_case ( unittest.TestCase ):
lowerCAmelCase :Tuple = JukeboxTokenizer
lowerCAmelCase :Optional[int] = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def snake_case__ ( self):
import torch
UpperCAmelCase__ : str = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""")
UpperCAmelCase__ : Optional[int] = tokenizer(**self.metas)["""input_ids"""]
# fmt: off
UpperCAmelCase__ : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]]),
torch.tensor([[0, 0, 0, 1069, 11]]),
torch.tensor([[0, 0, 0, 1069, 11]]),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0]))
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1]))
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
@require_torch
def snake_case__ ( self):
import torch
UpperCAmelCase__ : List[str] = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""")
UpperCAmelCase__ : Union[str, Any] = tokenizer(**self.metas)["""input_ids"""]
# fmt: off
UpperCAmelCase__ : List[Any] = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]]),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0]))
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1]))
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
| 283
|
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class _snake_case ( a__ ):
lowerCAmelCase :Optional[int] = ''''''
lowerCAmelCase :str = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
lowerCAmelCase :str = None # compression type in fsspec. ex: "gzip"
lowerCAmelCase :str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase):
super().__init__(self , **_lowerCamelCase)
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
UpperCAmelCase__ : Optional[Any] = fsspec.open(
_lowerCamelCase , mode="""rb""" , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={
"""requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459
"""trust_env""": True, # Enable reading proxy env variables.
**(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
UpperCAmelCase__ : List[Any] = os.path.basename(self.file.path.split("""::""")[0])
UpperCAmelCase__ : Dict = (
self.compressed_name[: self.compressed_name.rindex(""".""")]
if """.""" in self.compressed_name
else self.compressed_name
)
UpperCAmelCase__ : Tuple = None
@classmethod
def snake_case__ ( cls , _lowerCamelCase):
# compressed file paths are always relative to the archive root
return super()._strip_protocol(_lowerCamelCase).lstrip("""/""")
def snake_case__ ( self):
if self.dir_cache is None:
UpperCAmelCase__ : Optional[Any] = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name}
UpperCAmelCase__ : Union[str, Any] = {f["""name"""]: f}
def snake_case__ ( self , _lowerCamelCase):
return self.file.open().read()
def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ):
UpperCAmelCase__ : List[str] = self._strip_protocol(_lowerCamelCase)
if mode != "rb":
raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''')
return self.file.open()
class _snake_case ( a__ ):
lowerCAmelCase :Dict = '''bz2'''
lowerCAmelCase :List[str] = '''bz2'''
lowerCAmelCase :Dict = '''.bz2'''
class _snake_case ( a__ ):
lowerCAmelCase :int = '''gzip'''
lowerCAmelCase :Tuple = '''gzip'''
lowerCAmelCase :str = '''.gz'''
class _snake_case ( a__ ):
lowerCAmelCase :List[str] = '''lz4'''
lowerCAmelCase :Any = '''lz4'''
lowerCAmelCase :int = '''.lz4'''
class _snake_case ( a__ ):
lowerCAmelCase :Union[str, Any] = '''xz'''
lowerCAmelCase :int = '''xz'''
lowerCAmelCase :List[Any] = '''.xz'''
class _snake_case ( a__ ):
lowerCAmelCase :Tuple = '''zstd'''
lowerCAmelCase :List[str] = '''zstd'''
lowerCAmelCase :Union[str, Any] = '''.zst'''
def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , ):
super().__init__(
fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
UpperCAmelCase__ : Dict = self.file.__enter__
class _snake_case :
def __init__( self , _lowerCamelCase):
UpperCAmelCase__ : Optional[int] = file_
def __enter__( self):
self._file.__enter__()
return self
def __exit__( self , *_lowerCamelCase , **_lowerCamelCase):
self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase)
def __iter__( self):
return iter(self._file)
def snake_case__ ( self):
return next(self._file)
def __getattr__( self , _lowerCamelCase):
return getattr(self._file , _lowerCamelCase)
def fixed_enter(*_lowerCamelCase , **_lowerCamelCase):
return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase))
UpperCAmelCase__ : List[Any] = fixed_enter
| 283
| 1
|
def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
__snake_case = set()
# Replace all the whitespace in our sentence
__snake_case = input_str.replace(''' ''' , '''''' )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(snake_case_ ) == 26
def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
__snake_case = [False] * 26
for char in input_str:
if char.islower():
__snake_case = True
elif char.isupper():
__snake_case = True
return all(snake_case_ )
def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def lowerCamelCase__ ( ) -> None:
from timeit import timeit
__snake_case = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'''
print(timeit('''is_pangram()''' , setup=snake_case_ ) )
print(timeit('''is_pangram_faster()''' , setup=snake_case_ ) )
print(timeit('''is_pangram_fastest()''' , setup=snake_case_ ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 24
|
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = DebertaTokenizer
lowerCamelCase__ = True
lowerCamelCase__ = DebertaTokenizerFast
def __A ( self : List[Any] ) -> Dict:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE_ = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"[UNK]",
]
SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
SCREAMING_SNAKE_CASE_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
SCREAMING_SNAKE_CASE_ = {"unk_token": "[UNK]"}
SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__magic_name__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__magic_name__ ) )
def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
def __A ( self : str , __magic_name__ : List[Any] ) -> Dict:
SCREAMING_SNAKE_CASE_ = "lower newer"
SCREAMING_SNAKE_CASE_ = "lower newer"
return input_text, output_text
def __A ( self : Union[str, Any] ) -> str:
SCREAMING_SNAKE_CASE_ = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ = "lower newer"
SCREAMING_SNAKE_CASE_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
SCREAMING_SNAKE_CASE_ = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def __A ( self : Optional[int] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ = tokenizer("Hello" , "World" )
SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd["token_type_ids"] , __magic_name__ )
@slow
def __A ( self : Any ) -> Any:
SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" )
SCREAMING_SNAKE_CASE_ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ )
SCREAMING_SNAKE_CASE_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ )
SCREAMING_SNAKE_CASE_ = tokenizer.encode(
"sequence builders" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
SCREAMING_SNAKE_CASE_ = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def __A ( self : Tuple ) -> str:
SCREAMING_SNAKE_CASE_ = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained("microsoft/deberta-base" )
SCREAMING_SNAKE_CASE_ = [
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations",
"ALBERT incorporates two parameter reduction techniques",
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary"
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"
" vocabulary embedding.",
]
SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ )
SCREAMING_SNAKE_CASE_ = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["input_ids"]]
# fmt: off
SCREAMING_SNAKE_CASE_ = {
"input_ids": [
[1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2]
],
"token_type_ids": [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
SCREAMING_SNAKE_CASE_ = [
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations",
"ALBERT incorporates two parameter reduction techniques",
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary"
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"
" vocabulary embedding.",
]
self.assertDictEqual(encoding.data , __magic_name__ )
for expected, decoded in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(__magic_name__ , __magic_name__ )
| 118
| 0
|
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
_SCREAMING_SNAKE_CASE = 1e-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class a :
"""simple docstring"""
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=16 , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=14 , lowerCAmelCase_=10 , lowerCAmelCase_=19 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=True , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=[1, 2, 3, 4, 5] , lowerCAmelCase_=25 , lowerCAmelCase_=5 , ) -> Union[str, Any]:
_A = d_model
_A = parent
_A = batch_size
_A = prediction_length
_A = context_length
_A = cardinality
_A = num_time_features
_A = lags_sequence
_A = embedding_dimension
_A = is_training
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = context_length
_A = prediction_length + label_length
_A = label_length
_A = moving_average
_A = autocorrelation_factor
def UpperCAmelCase ( self ) -> Optional[Any]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Dict:
_A = config.context_length + max(config.lags_sequence )
_A = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
_A = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
_A = floats_tensor([self.batch_size, _past_length] )
_A = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
_A = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
_A = floats_tensor([self.batch_size, config.prediction_length] )
_A = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def UpperCAmelCase ( self ) -> Optional[Any]:
_A = self.get_config()
_A = self.prepare_autoformer_inputs_dict(lowerCAmelCase_ )
return config, inputs_dict
def UpperCAmelCase ( self ) -> str:
_A , _A = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int:
_A = AutoformerModel(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval()
_A = model(**lowerCAmelCase_ )
_A = outputs.encoder_last_hidden_state
_A = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
_A = model.get_encoder()
encoder.save_pretrained(lowerCAmelCase_ )
_A = AutoformerEncoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ )
_A , _A , _A , _A , _A = model.create_network_inputs(**lowerCAmelCase_ )
_A , _A = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
_A = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
_A = encoder(inputs_embeds=lowerCAmelCase_ )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
_A = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
_A = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
_A = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
_A = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
_A = model.get_decoder()
decoder.save_pretrained(lowerCAmelCase_ )
_A = AutoformerDecoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ )
_A = decoder(
trend=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase :Union[str, Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
lowerCamelCase :List[Any] = (AutoformerForPrediction,) if is_torch_available() else ()
lowerCamelCase :Optional[int] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {}
lowerCamelCase :Any = False
lowerCamelCase :Optional[int] = False
lowerCamelCase :Dict = False
lowerCamelCase :Any = False
lowerCamelCase :str = False
lowerCamelCase :Any = False
def UpperCAmelCase ( self ) -> Any:
_A = AutoformerModelTester(self )
_A = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ) -> str:
_A , _A = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
_A = model_class(lowerCAmelCase_ )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase_ )
_A , _A = model_class.from_pretrained(lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ )
self.assertEqual(info["""missing_keys"""] , [] )
def UpperCAmelCase ( self ) -> int:
_A = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase_ )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def UpperCAmelCase ( self ) -> str:
pass
def UpperCAmelCase ( self ) -> str:
_A = inspect.signature(getattr(lowerCAmelCase_ , """forward""" ) )
# The main input is the name of the argument after `self`
_A = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> Tuple:
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(lowerCAmelCase_ )
_A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A = [*signature.parameters.keys()]
_A = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> str:
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = True
_A = getattr(self.model_tester , """seq_length""" , lowerCAmelCase_ )
_A = getattr(self.model_tester , """decoder_seq_length""" , lowerCAmelCase_ )
_A = getattr(self.model_tester , """encoder_seq_length""" , lowerCAmelCase_ )
_A = getattr(self.model_tester , """d_model""" , lowerCAmelCase_ )
_A = getattr(self.model_tester , """num_attention_heads""" , lowerCAmelCase_ )
_A = d_model // num_attention_heads
for model_class in self.all_model_classes:
_A = True
_A = False
_A = True
_A = model_class(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) )
_A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_A = True
_A = model_class(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) )
_A = outputs.encoder_attentions
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
_A = len(lowerCAmelCase_ )
_A = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
# decoder attentions
_A = outputs.decoder_attentions
self.assertIsInstance(lowerCAmelCase_ , (list, tuple) )
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
_A = outputs.cross_attentions
self.assertIsInstance(lowerCAmelCase_ , (list, tuple) )
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
_A = True
_A = True
_A = model_class(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) )
self.assertEqual(out_len + 2 , len(lowerCAmelCase_ ) )
_A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def UpperCAmelCase ( self ) -> Union[str, Any]:
super().test_retain_grad_hidden_states_attentions()
def snake_case ( snake_case__ :str="train-batch.pt") -> Optional[Any]:
_A = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=snake_case__ , repo_type="""dataset""")
_A = torch.load(snake_case__ , map_location=snake_case__)
return batch
@require_torch
@slow
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> Dict:
_A = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ )
_A = prepare_batch()
with torch.no_grad():
_A = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
_A = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , lowerCAmelCase_ )
_A = torch.tensor(
[[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=lowerCAmelCase_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) )
def UpperCAmelCase ( self ) -> Optional[Any]:
_A = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ )
_A = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_A = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
_A = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , lowerCAmelCase_ )
_A = torch.tensor(
[[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=lowerCAmelCase_ )
self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) )
def UpperCAmelCase ( self ) -> Dict:
_A = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ )
_A = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_A = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
_A = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , lowerCAmelCase_ )
_A = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=lowerCAmelCase_ )
_A = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCAmelCase_ , rtol=1E-1 ) )
| 351
|
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class a ( __lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase :int = (UnCLIPScheduler,)
def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[Any]:
_A = {
"""num_train_timesteps""": 10_00,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**lowerCAmelCase_ )
return config
def UpperCAmelCase ( self ) -> Union[str, Any]:
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> Union[str, Any]:
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> int:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> List[Any]:
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> Any:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> Optional[int]:
for time_step in [0, 5_00, 9_99]:
for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ )
def UpperCAmelCase ( self ) -> Union[str, Any]:
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(variance_type="""fixed_small_log""" )
_A = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5
def UpperCAmelCase ( self ) -> Optional[int]:
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(variance_type="""learned_range""" )
_A = scheduler_class(**lowerCAmelCase_ )
_A = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_ ) - -10.171_2790 < 1E-5
assert scheduler._get_variance(4_87 , predicted_variance=lowerCAmelCase_ ) - -5.799_8052 < 1E-5
assert scheduler._get_variance(9_99 , predicted_variance=lowerCAmelCase_ ) - -0.001_0011 < 1E-5
def UpperCAmelCase ( self ) -> List[Any]:
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**lowerCAmelCase_ )
_A = scheduler.timesteps
_A = self.dummy_model()
_A = self.dummy_sample_deter
_A = torch.manual_seed(0 )
for i, t in enumerate(lowerCAmelCase_ ):
# 1. predict noise residual
_A = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_A = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_A = pred_prev_sample
_A = torch.sum(torch.abs(lowerCAmelCase_ ) )
_A = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1E-2
assert abs(result_mean.item() - 0.328_4743 ) < 1E-3
def UpperCAmelCase ( self ) -> Optional[int]:
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**lowerCAmelCase_ )
scheduler.set_timesteps(25 )
_A = scheduler.timesteps
_A = self.dummy_model()
_A = self.dummy_sample_deter
_A = torch.manual_seed(0 )
for i, t in enumerate(lowerCAmelCase_ ):
# 1. predict noise residual
_A = model(lowerCAmelCase_ , lowerCAmelCase_ )
if i + 1 == timesteps.shape[0]:
_A = None
else:
_A = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_A = scheduler.step(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_A = pred_prev_sample
_A = torch.sum(torch.abs(lowerCAmelCase_ ) )
_A = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1E-2
assert abs(result_mean.item() - 0.336_2038 ) < 1E-3
def UpperCAmelCase ( self ) -> Dict:
pass
def UpperCAmelCase ( self ) -> List[Any]:
pass
| 81
| 0
|
from math import pow
def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : int, lowerCAmelCase_ : List[str], lowerCAmelCase_ : str, lowerCAmelCase_ : Dict, ):
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
__lowerCAmelCase = int(pow(UpperCamelCase_, UpperCamelCase_ ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
__lowerCAmelCase , __lowerCAmelCase = backtrack(
UpperCamelCase_, UpperCamelCase_, current_number + 1, UpperCamelCase_, UpperCamelCase_ )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
__lowerCAmelCase , __lowerCAmelCase = backtrack(
UpperCamelCase_, UpperCamelCase_, current_number + 1, UpperCamelCase_, UpperCamelCase_ )
return current_sum, solutions_count
def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Any ):
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
'Invalid input\n'
'needed_sum must be between 1 and 1000, power between 2 and 10.' )
return backtrack(UpperCamelCase_, UpperCamelCase_, 1, 0, 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 284
|
"""simple docstring"""
__magic_name__ = "Tobias Carryer"
from time import time
class SCREAMING_SNAKE_CASE_ :
"""simple docstring"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=int(time())): # noqa: B008
__SCREAMING_SNAKE_CASE = multiplier
__SCREAMING_SNAKE_CASE = increment
__SCREAMING_SNAKE_CASE = modulo
__SCREAMING_SNAKE_CASE = seed
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
__magic_name__ = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31)
while True:
print(lcg.next_number())
| 100
| 0
|
from string import ascii_lowercase, ascii_uppercase
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if not sentence:
return ""
a = dict(zip(snake_case_, snake_case_ ) )
return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 330
|
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
UpperCamelCase__ : Optional[Any] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for attribute in key.split('''.''' ):
a = getattr(snake_case_, snake_case_ )
if weight_type is not None:
a = getattr(snake_case_, snake_case_ ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
else:
a = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = []
a = fairseq_model.state_dict()
a = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', )
a = True
else:
for key, mapped_key in MAPPING.items():
a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
a = True
if "*" in mapped_key:
a = name.split(snake_case_ )[0].split('''.''' )[-2]
a = mapped_key.replace('''*''', snake_case_ )
if "weight_g" in name:
a = '''weight_g'''
elif "weight_v" in name:
a = '''weight_v'''
elif "bias" in name:
a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = '''weight'''
else:
a = None
set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = full_name.split('''conv_layers.''' )[-1]
a = name.split('''.''' )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]:
"""simple docstring"""
if config_path is not None:
a = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
a = UniSpeechSatConfig()
a = ''''''
if is_finetuned:
a = UniSpeechSatForCTC(snake_case_ )
else:
a = UniSpeechSatForPreTraining(snake_case_ )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
a = model[0].eval()
recursively_load_weights(snake_case_, snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
UpperCamelCase__ : int = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 330
| 1
|
import math
A : Optional[Any] = 1_0
A : List[str] = 7
A : str = BALLS_PER_COLOUR * NUM_COLOURS
def UpperCamelCase ( __magic_name__ : int = 20 ) -> str:
"""simple docstring"""
lowercase__ = math.comb(__magic_name__ , __magic_name__ )
lowercase__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __magic_name__ )
lowercase__ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(2_0))
| 305
|
from __future__ import annotations
import math
def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list:
"""simple docstring"""
if len(__magic_name__ ) != 2 or len(a[0] ) != 2 or len(__magic_name__ ) != 2 or len(b[0] ) != 2:
raise Exception("""Matrices are not 2x2""" )
lowercase__ = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> Union[str, Any]:
"""simple docstring"""
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__magic_name__ ) )
]
def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> int:
"""simple docstring"""
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__magic_name__ ) )
]
def UpperCamelCase ( __magic_name__ : list ) -> tuple[list, list, list, list]:
"""simple docstring"""
if len(__magic_name__ ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception("""Odd matrices are not supported!""" )
lowercase__ = len(__magic_name__ )
lowercase__ = matrix_length // 2
lowercase__ = [[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ )]
lowercase__ = [
[a[i][j] for j in range(__magic_name__ , __magic_name__ )] for i in range(__magic_name__ , __magic_name__ )
]
lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ )]
lowercase__ = [[a[i][j] for j in range(__magic_name__ )] for i in range(__magic_name__ , __magic_name__ )]
return top_left, top_right, bot_left, bot_right
def UpperCamelCase ( __magic_name__ : list ) -> tuple[int, int]:
"""simple docstring"""
return len(__magic_name__ ), len(matrix[0] )
def UpperCamelCase ( __magic_name__ : list ) -> None:
"""simple docstring"""
print("""\n""".join(str(__magic_name__ ) for line in matrix ) )
def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list:
"""simple docstring"""
if matrix_dimensions(__magic_name__ ) == (2, 2):
return default_matrix_multiplication(__magic_name__ , __magic_name__ )
lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ )
lowercase__ , lowercase__ , lowercase__ , lowercase__ = split_matrix(__magic_name__ )
lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) )
lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ )
lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ )
lowercase__ = actual_strassen(__magic_name__ , matrix_subtraction(__magic_name__ , __magic_name__ ) )
lowercase__ = actual_strassen(matrix_addition(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) )
lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) )
lowercase__ = actual_strassen(matrix_subtraction(__magic_name__ , __magic_name__ ) , matrix_addition(__magic_name__ , __magic_name__ ) )
lowercase__ = matrix_addition(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ )
lowercase__ = matrix_addition(__magic_name__ , __magic_name__ )
lowercase__ = matrix_addition(__magic_name__ , __magic_name__ )
lowercase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__magic_name__ , __magic_name__ ) , __magic_name__ ) , __magic_name__ )
# construct the new matrix from our 4 quadrants
lowercase__ = []
for i in range(len(__magic_name__ ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__magic_name__ ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list ) -> list:
"""simple docstring"""
if matrix_dimensions(__magic_name__ )[1] != matrix_dimensions(__magic_name__ )[0]:
lowercase__ = (
"""Unable to multiply these matrices, please check the dimensions.\n"""
f'''Matrix A: {matrixa}\n'''
f'''Matrix B: {matrixa}'''
)
raise Exception(__magic_name__ )
lowercase__ = matrix_dimensions(__magic_name__ )
lowercase__ = matrix_dimensions(__magic_name__ )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
lowercase__ = max(*__magic_name__ , *__magic_name__ )
lowercase__ = int(math.pow(2 , math.ceil(math.loga(__magic_name__ ) ) ) )
lowercase__ = matrixa
lowercase__ = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __magic_name__ ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __magic_name__ ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __magic_name__ ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
lowercase__ = actual_strassen(__magic_name__ , __magic_name__ )
# Removing the additional zeros
for i in range(0 , __magic_name__ ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __magic_name__ ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
A : Optional[Any] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
A : List[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 305
| 1
|
"""simple docstring"""
from __future__ import annotations
def A_ ( A__ ) -> list[int]: # This function is recursive
a__ : str = len(A__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
a__ : List[Any] = array[0]
a__ : List[Any] = False
a__ : str = 1
a__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
a__ : Optional[Any] = True
a__ : Optional[int] = [element for element in array[i:] if element >= array[i]]
a__ : Union[str, Any] = longest_subsequence(A__ )
if len(A__ ) > len(A__ ):
a__ : Optional[Any] = temp_array
else:
i += 1
a__ : Any = [element for element in array[1:] if element >= pivot]
a__ : Tuple = [pivot, *longest_subsequence(A__ )]
if len(A__ ) > len(A__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357
|
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
lowercase : Union[str, Any] = data_utils.TransfoXLTokenizer
lowercase : Optional[int] = data_utils.TransfoXLCorpus
lowercase : List[Any] = data_utils
lowercase : Tuple = data_utils
def A_ ( A__ , A__ , A__ , A__ ) -> Optional[Any]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(A__ , 'rb' ) as fp:
a__ : int = pickle.load(A__ , encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
a__ : int = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(F'Save vocabulary to {pytorch_vocab_dump_path}' )
a__ : List[Any] = corpus.vocab.__dict__
torch.save(A__ , A__ )
a__ : Dict = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' , A__ )
a__ : Optional[int] = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(F'Save dataset to {pytorch_dataset_dump_path}' )
torch.save(A__ , A__ )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
a__ : Union[str, Any] = os.path.abspath(A__ )
a__ : Optional[Any] = os.path.abspath(A__ )
print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
a__ : Dict = TransfoXLConfig()
else:
a__ : Dict = TransfoXLConfig.from_json_file(A__ )
print(F'Building PyTorch model from configuration: {config}' )
a__ : Optional[int] = TransfoXLLMHeadModel(A__ )
a__ : int = load_tf_weights_in_transfo_xl(A__ , A__ , A__ )
# Save pytorch-model
a__ : Any = os.path.join(A__ , A__ )
a__ : Dict = os.path.join(A__ , A__ )
print(F'Save PyTorch model to {os.path.abspath(A__ )}' )
torch.save(model.state_dict() , A__ )
print(F'Save configuration file to {os.path.abspath(A__ )}' )
with open(A__ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowercase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the folder to store the PyTorch model or dataset/vocab.""",
)
parser.add_argument(
"""--tf_checkpoint_path""",
default="""""",
type=str,
help="""An optional path to a TensorFlow checkpoint path to be converted.""",
)
parser.add_argument(
"""--transfo_xl_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained BERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--transfo_xl_dataset_file""",
default="""""",
type=str,
help="""An optional dataset file to be converted in a vocabulary.""",
)
lowercase : Any = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 225
| 0
|
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''}
_snake_case = {
'''vocab_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''',
},
'''emoji_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''',
},
}
_snake_case = {
'''abeja/gpt-neox-japanese-2.7b''': 20_48,
}
def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as f:
lowerCamelCase : Dict = json.loads(f.read() )
lowerCamelCase : List[Any] = collections.OrderedDict()
lowerCamelCase : Tuple = collections.OrderedDict()
lowerCamelCase : Tuple = collections.OrderedDict()
with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as f:
lowerCamelCase : Union[str, Any] = f.readlines()
lowerCamelCase : Any = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(SCREAMING_SNAKE_CASE_ ):
lowerCamelCase : Union[str, Any] = b
lowerCamelCase : Optional[int] = idx
for wd in b:
lowerCamelCase : List[str] = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class UpperCAmelCase_ ( UpperCamelCase ):
'''simple docstring'''
__A : List[Any] = VOCAB_FILES_NAMES
__A : Dict = PRETRAINED_VOCAB_FILES_MAP
__A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Tuple = ["input_ids", "attention_mask"]
def __init__( self , __A , __A , __A="<|endoftext|>" , __A="<|endoftext|>" , __A="<|startoftext|>" , __A="<|endoftext|>" , __A=False , **__A , ):
"""simple docstring"""
super().__init__(
unk_token=__A , pad_token=__A , bos_token=__A , eos_token=__A , do_clean_text=__A , **__A , )
if not os.path.isfile(__A ):
raise ValueError(
F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"""
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
if not os.path.isfile(__A ):
raise ValueError(
F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"""
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
lowerCamelCase : List[Any] = do_clean_text
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Dict = load_vocab_and_emoji(__A , __A )
lowerCamelCase : List[Any] = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def _snake_case ( self ):
"""simple docstring"""
return len(self.raw_vocab )
def _snake_case ( self ):
"""simple docstring"""
return dict(self.raw_vocab , **self.added_tokens_encoder )
def _snake_case ( self , __A ):
"""simple docstring"""
return self.subword_tokenizer.tokenize(__A , clean=self.do_clean_text )
def _snake_case ( self , __A ):
"""simple docstring"""
return self.vocab.get(__A , self.vocab.get(self.unk_token ) )
def _snake_case ( self , __A ):
"""simple docstring"""
return self.subword_tokenizer.convert_id_to_token(__A )
def _snake_case ( self , __A ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = "".join(__A ).strip()
return out_string
def _snake_case ( self , __A ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__A , add_special_tokens=__A ) + [self.eos_token_id] )
if len(__A ) > self.model_max_length:
lowerCamelCase : List[str] = input_ids[-self.model_max_length :]
return input_ids
def _snake_case ( self , __A , __A = None ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = 0
if os.path.isdir(__A ):
lowerCamelCase : Union[str, Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase : Optional[int] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] )
else:
lowerCamelCase : Optional[Any] = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
lowerCamelCase : Tuple = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(__A , "w" , encoding="utf-8" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
" Please check that the vocabulary is not corrupted!" )
lowerCamelCase : Union[str, Any] = token_index
writer.write(",".join(__A ) + "\n" )
index += 1
with open(__A , "w" , encoding="utf-8" ) as writer:
json.dump(self.emoji , __A )
return vocab_file, emoji_file
class UpperCAmelCase_ ( UpperCamelCase ):
'''simple docstring'''
def __init__( self , __A , __A , __A ):
"""simple docstring"""
lowerCamelCase : Any = vocab # same as swe
lowerCamelCase : Optional[int] = ids_to_tokens # same as bpe
lowerCamelCase : str = emoji
lowerCamelCase : Optional[Any] = np.max([len(__A ) for w in self.vocab.keys()] )
lowerCamelCase : int = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" )
lowerCamelCase : Optional[int] = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" )
lowerCamelCase : Dict = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" )
lowerCamelCase : List[str] = re.compile(
R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
lowerCamelCase : Any = re.compile(
R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
lowerCamelCase : str = re.compile(
R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" )
lowerCamelCase : Optional[int] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
lowerCamelCase : List[Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
lowerCamelCase : Dict = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} )
def __len__( self ):
"""simple docstring"""
return len(self.ids_to_tokens )
def _snake_case ( self , __A ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<URL>" , __A )
lowerCamelCase : Dict = self.content_repattera.sub("<EMAIL>" , __A )
lowerCamelCase : int = self.content_repattera.sub("<TEL>" , __A )
lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<DATE>" , __A )
lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<DATE>" , __A )
lowerCamelCase : int = self.content_repattera.sub("<PRICE>" , __A )
lowerCamelCase : Any = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
lowerCamelCase : Any = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" )
return content
def _snake_case ( self , __A , __A=False ):
"""simple docstring"""
lowerCamelCase : List[str] = text.replace(" " , "<SP>" )
lowerCamelCase : Dict = text.replace(" " , "<SP>" )
lowerCamelCase : Dict = text.replace("\r\n" , "<BR>" )
lowerCamelCase : Tuple = text.replace("\n" , "<BR>" )
lowerCamelCase : Dict = text.replace("\r" , "<BR>" )
lowerCamelCase : Dict = text.replace("\t" , "<TAB>" )
lowerCamelCase : str = text.replace("—" , "ー" )
lowerCamelCase : Any = text.replace("−" , "ー" )
for k, v in self.emoji["emoji"].items():
if k in text:
lowerCamelCase : Tuple = text.replace(__A , __A )
if clean:
lowerCamelCase : str = self.clean_text(__A )
def check_simbol(__A ):
lowerCamelCase : List[Any] = x.encode()
if len(__A ) == 1 and len(__A ) == 2:
lowerCamelCase : List[Any] = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xC2_A1 and c <= 0xC2_BF)
or (c >= 0xC7_80 and c <= 0xC7_83)
or (c >= 0xCA_B9 and c <= 0xCB_BF)
or (c >= 0xCC_80 and c <= 0xCD_A2)
):
return True
return False
def checkuae(__A ):
lowerCamelCase : Optional[Any] = x.encode()
if len(__A ) == 1 and len(__A ) == 3:
lowerCamelCase : Optional[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xE2_80_80 and c <= 0xE2_B0_7F:
return True
return False
lowerCamelCase : Optional[Any] = 0
lowerCamelCase : Optional[Any] = []
while pos < len(__A ):
lowerCamelCase : Any = min(len(__A ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3
lowerCamelCase : Optional[Any] = [] # (token_id, token, pos)
for e in range(__A , __A , -1 ):
lowerCamelCase : str = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__A ) > 2:
lowerCamelCase : Dict = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(__A ) > 0:
# the smallest token_id is adopted
lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = sorted(__A , key=lambda __A : x[0] )[0]
result.append(__A )
lowerCamelCase : Optional[Any] = e
else:
lowerCamelCase : Union[str, Any] = pos + 1
lowerCamelCase : Union[str, Any] = text[pos:end]
if check_simbol(__A ):
result.append("<KIGOU>" )
elif checkuae(__A ):
result.append("<U2000U2BFF>" )
else:
for i in wd.encode("utf-8" ):
result.append("<|byte%d|>" % i )
lowerCamelCase : int = end
return result
def _snake_case ( self , __A , __A="\n" ):
"""simple docstring"""
lowerCamelCase : List[Any] = []
lowerCamelCase : Optional[Any] = []
lowerCamelCase : Optional[int] = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(__A ) > 0:
words.append(bytearray(__A ).decode("utf-8" , errors="replace" ) )
lowerCamelCase : Any = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word] )
elif word == "<SP>":
words.append(" " )
elif word == "<BR>":
words.append(__A )
elif word == "<TAB>":
words.append("\t" )
elif word == "<BLOCK>":
words.append("▀" )
elif word == "<KIGOU>":
words.append("ǀ" )
elif word == "<U2000U2BFF>":
words.append("‖" )
else:
words.append(__A )
if len(__A ) > 0:
words.append(bytearray(__A ).decode("utf-8" , errors="replace" ) )
lowerCamelCase : Optional[int] = "".join(__A )
return text
| 283
|
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : str = tempfile.mkdtemp()
# fmt: off
lowerCamelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCamelCase : List[Any] = dict(zip(__A , range(len(__A ) ) ) )
lowerCamelCase : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"}
lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__A ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__A ) )
lowerCamelCase : str = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711],
}
lowerCamelCase : str = os.path.join(self.tmpdirname , __A )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__A , __A )
def _snake_case ( self , **__A ):
"""simple docstring"""
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__A )
def _snake_case ( self , **__A ):
"""simple docstring"""
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__A )
def _snake_case ( self , **__A ):
"""simple docstring"""
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__A )
def _snake_case ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : List[Any] = self.get_tokenizer()
lowerCamelCase : Optional[Any] = self.get_rust_tokenizer()
lowerCamelCase : Tuple = self.get_image_processor()
lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__A )
lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__A , image_processor=__A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __A )
self.assertIsInstance(processor_fast.tokenizer , __A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __A )
self.assertIsInstance(processor_fast.image_processor , __A )
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__A )
lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __A )
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : List[Any] = self.get_image_processor()
lowerCamelCase : Optional[int] = self.get_tokenizer()
lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A )
lowerCamelCase : Tuple = self.prepare_image_inputs()
lowerCamelCase : int = image_processor(__A , return_tensors="np" )
lowerCamelCase : Union[str, Any] = processor(images=__A , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = self.get_image_processor()
lowerCamelCase : Dict = self.get_tokenizer()
lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A )
lowerCamelCase : Tuple = "lower newer"
lowerCamelCase : Union[str, Any] = processor(text=__A , return_tensors="np" )
lowerCamelCase : List[Any] = tokenizer(__A , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Any = self.get_image_processor()
lowerCamelCase : Any = self.get_tokenizer()
lowerCamelCase : int = OwlViTProcessor(tokenizer=__A , image_processor=__A )
lowerCamelCase : Optional[Any] = "lower newer"
lowerCamelCase : Dict = self.prepare_image_inputs()
lowerCamelCase : Any = processor(text=__A , images=__A )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__A ):
processor()
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Any = "google/owlvit-base-patch32"
lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(__A )
lowerCamelCase : Tuple = ["cat", "nasa badge"]
lowerCamelCase : str = processor(text=__A )
lowerCamelCase : Union[str, Any] = 16
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__A ):
processor()
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : str = "google/owlvit-base-patch32"
lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained(__A )
lowerCamelCase : Dict = [["cat", "nasa badge"], ["person"]]
lowerCamelCase : int = processor(text=__A )
lowerCamelCase : Tuple = 16
lowerCamelCase : Any = len(__A )
lowerCamelCase : Optional[Any] = max([len(__A ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__A ):
processor()
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Dict = "google/owlvit-base-patch32"
lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(__A )
lowerCamelCase : List[Any] = ["cat", "nasa badge"]
lowerCamelCase : Optional[Any] = processor(text=__A )
lowerCamelCase : int = 16
lowerCamelCase : List[str] = inputs["input_ids"]
lowerCamelCase : int = [
[4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Any = self.get_image_processor()
lowerCamelCase : List[str] = self.get_tokenizer()
lowerCamelCase : str = OwlViTProcessor(tokenizer=__A , image_processor=__A )
lowerCamelCase : Dict = self.prepare_image_inputs()
lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
lowerCamelCase : Any = processor(images=__A , query_images=__A )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__A ):
processor()
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = self.get_image_processor()
lowerCamelCase : Optional[int] = self.get_tokenizer()
lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A )
lowerCamelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase : List[Any] = processor.batch_decode(__A )
lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(__A )
self.assertListEqual(__A , __A )
| 283
| 1
|
"""simple docstring"""
def lowerCamelCase_ ():
for n in range(1 , 100_0000 ):
yield n * (n + 1) // 2
def lowerCamelCase_ (UpperCamelCase__ : Dict ):
_UpperCAmelCase : Optional[int] = 1
_UpperCAmelCase : Tuple = 2
while i * i <= n:
_UpperCAmelCase : List[str] = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def lowerCamelCase_ ():
return next(i for i in triangle_number_generator() if count_divisors(UpperCamelCase__ ) > 500 )
if __name__ == "__main__":
print(solution())
| 354
|
"""simple docstring"""
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
_lowerCAmelCase :int = get_logger(__name__)
class _UpperCAmelCase ( enum.Enum ):
'''simple docstring'''
a__ ='''all_checks'''
a__ ='''basic_checks'''
a__ ='''no_checks'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict , UpperCamelCase__ : Tuple=None ):
if expected_checksums is None:
logger.info('''Unable to verify checksums.''' )
return
if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) )
if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0:
raise UnexpectedDownloadedFile(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) )
_UpperCAmelCase : Optional[Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
_UpperCAmelCase : str = ''' for ''' + verification_name if verification_name is not None else ''''''
if len(UpperCamelCase__ ) > 0:
raise NonMatchingChecksumError(
F'Checksums didn\'t match{for_verification_name}:\n'
F'{bad_urls}\n'
'''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' )
logger.info('''All the checksums matched successfully''' + for_verification_name )
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
class _UpperCAmelCase ( a ):
'''simple docstring'''
def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict ):
if expected_splits is None:
logger.info('''Unable to verify splits sizes.''' )
return
if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0:
raise ExpectedMoreSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) )
if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0:
raise UnexpectedSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) )
_UpperCAmelCase : Dict = [
{'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(UpperCamelCase__ ) > 0:
raise NonMatchingSplitsSizesError(str(UpperCamelCase__ ) )
logger.info('''All the splits matched successfully.''' )
def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : bool = True ):
if record_checksum:
_UpperCAmelCase : Any = shaaaa()
with open(UpperCamelCase__ , '''rb''' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ):
m.update(UpperCamelCase__ )
_UpperCAmelCase : int = m.hexdigest()
else:
_UpperCAmelCase : Union[str, Any] = None
return {"num_bytes": os.path.getsize(UpperCamelCase__ ), "checksum": checksum}
def lowerCamelCase_ (UpperCamelCase__ : List[str] ):
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 68
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _a ( UpperCamelCase__ , unittest.TestCase ):
_lowercase : Union[str, Any] = KandinskyVaaImgaImgPipeline
_lowercase : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''']
_lowercase : Any = [
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
_lowercase : Union[str, Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_lowercase : Optional[Any] = False
@property
def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict:
"""simple docstring"""
return 32
@property
def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return 32
@property
def lowerCamelCase_ ( self: Any ) -> Any:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCamelCase_ ( self: Tuple ) -> Any:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]:
"""simple docstring"""
return 100
@property
def lowerCamelCase_ ( self: int ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
lowercase__ = UNetaDConditionModel(**UpperCamelCase_ )
return model
@property
def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCamelCase_ ( self: Optional[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.dummy_unet
lowercase__ = self.dummy_movq
lowercase__ = {
'''num_train_timesteps''': 1_000,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.00085,
'''beta_end''': 0.012,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
lowercase__ = DDIMScheduler(**UpperCamelCase_ )
lowercase__ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=0 ) -> Optional[int]:
"""simple docstring"""
lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCamelCase_ )
# create init_image
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((256, 256) )
if str(UpperCamelCase_ ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(UpperCamelCase_ )
else:
lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
lowercase__ = {
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def lowerCamelCase_ ( self: Optional[int] ) -> Dict:
"""simple docstring"""
lowercase__ = '''cpu'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase_ )
lowercase__ = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) )
lowercase__ = output.images
lowercase__ = pipe(
**self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0]
lowercase__ = image[0, -3:, -3:, -1]
lowercase__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase__ = np.array(
[0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
def lowerCamelCase_ ( self: str ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_img2img_frog.npy''' )
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
lowercase__ = '''A red cartoon frog, 4k'''
lowercase__ = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(UpperCamelCase_ )
lowercase__ = KandinskyVaaImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa )
lowercase__ = pipeline.to(UpperCamelCase_ )
pipeline.set_progress_bar_config(disable=UpperCamelCase_ )
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ , lowercase__ = pipe_prior(
UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
lowercase__ = pipeline(
image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , )
lowercase__ = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
| 110
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCamelCase_ : Any = logging.get_logger(__name__)
lowerCamelCase_ : Optional[Any] = """▁"""
lowerCamelCase_ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""}
lowerCamelCase_ : Any = {
"""vocab_file""": {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"""
),
}
}
lowerCamelCase_ : Tuple = {
"""xlm-roberta-base""": 5_1_2,
"""xlm-roberta-large""": 5_1_2,
"""xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2,
"""xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2,
"""xlm-roberta-large-finetuned-conll03-english""": 5_1_2,
"""xlm-roberta-large-finetuned-conll03-german""": 5_1_2,
}
class __A ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__lowerCAmelCase = VOCAB_FILES_NAMES
__lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase = ["input_ids", "attention_mask"]
def __init__( self , __A , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A = None , **__A , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
a ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , )
a =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__A ) )
a =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
a ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
a =1
a =len(self.sp_model ) + self.fairseq_offset
a ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Any:
a =self.__dict__.copy()
a =None
a =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __A ) -> List[Any]:
a =d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
a ={}
a =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
a =[self.cls_token_id]
a =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]:
a =[self.sep_token_id]
a =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
a ={self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]:
return self.sp_model.encode(__A , out_type=__A )
def SCREAMING_SNAKE_CASE ( self , __A ) -> int:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
a =self.sp_model.PieceToId(__A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]:
a =''''''.join(__A ).replace(__A , ''' ''' ).strip()
return out_string
def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]:
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
a =os.path.join(
__A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __A )
elif not os.path.isfile(self.vocab_file ):
with open(__A , '''wb''' ) as fi:
a =self.sp_model.serialized_model_proto()
fi.write(__A )
return (out_vocab_file,)
| 81
| 0
|
def __magic_name__ ( __a : int , __a : int ):
'''simple docstring'''
return abs(__a ) if a == 0 else greatest_common_divisor(b % a , __a )
def __magic_name__ ( __a : int , __a : int ):
'''simple docstring'''
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCamelCase__ , UpperCamelCase__ = y, x % y
return abs(__a )
def __magic_name__ ( ):
'''simple docstring'''
try:
UpperCamelCase__ = input("""Enter two integers separated by comma (,): """ ).split(""",""" )
UpperCamelCase__ = int(nums[0] )
UpperCamelCase__ = int(nums[1] )
print(
f"greatest_common_divisor({num_a}, {num_a}) = "
f"{greatest_common_divisor(__a , __a )}" )
print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__a , __a )}" )
except (IndexError, UnboundLocalError, ValueError):
print("""Wrong input""" )
if __name__ == "__main__":
main()
| 178
|
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __magic_name__ ( __a : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def __magic_name__ ( __a : np.ndarray , __a : np.ndarray , __a : np.ndarray ):
'''simple docstring'''
UpperCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__a , __a )
# Predict target for test data
UpperCamelCase__ = xgb.predict(__a )
UpperCamelCase__ = predictions.reshape(len(__a ) , 1 )
return predictions
def __magic_name__ ( ):
'''simple docstring'''
UpperCamelCase__ = fetch_california_housing()
UpperCamelCase__ , UpperCamelCase__ = data_handling(__a )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = train_test_split(
__a , __a , test_size=0.25 , random_state=1 )
UpperCamelCase__ = xgboost(__a , __a , __a )
# Error printing
print(f"Mean Absolute Error : {mean_absolute_error(__a , __a )}" )
print(f"Mean Square Error : {mean_squared_error(__a , __a )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 178
| 1
|
from string import ascii_lowercase, ascii_uppercase
def a__ ( _UpperCamelCase : str ):
if not sentence:
return ""
__lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) )
return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 330
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
a_ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCAmelCase ( lowerCAmelCase__ ):
lowerCAmelCase__ = ["""pixel_values"""]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__lowerCamelCase = size if size is not None else {'''shortest_edge''': 224}
__lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
__lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
__lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
__lowerCamelCase = do_resize
__lowerCamelCase = size
__lowerCamelCase = resample
__lowerCamelCase = do_center_crop
__lowerCamelCase = crop_size
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_normalize
__lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowerCamelCase = do_convert_rgb
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
__lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
__lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
__lowerCamelCase = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ):
'''simple docstring'''
__lowerCamelCase = do_resize if do_resize is not None else self.do_resize
__lowerCamelCase = size if size is not None else self.size
__lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
__lowerCamelCase = resample if resample is not None else self.resample
__lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowerCamelCase = crop_size if crop_size is not None else self.crop_size
__lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__lowerCamelCase = image_mean if image_mean is not None else self.image_mean
__lowerCamelCase = image_std if image_std is not None else self.image_std
__lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowerCamelCase = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
__lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
__lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
__lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
__lowerCamelCase = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 330
| 1
|
def lowerCAmelCase__ ( a__ , a__ ) ->Any:
'''simple docstring'''
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F"{price_plus_tax(100, 0.25) = }")
print(F"{price_plus_tax(125.50, 0.05) = }")
| 362
|
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class _UpperCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
def __init__( self : List[str] , lowercase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = path_or_paths
_UpperCamelCase = split if split or isinstance(lowercase_ , lowercase_) else "train"
_UpperCamelCase = features
_UpperCamelCase = cache_dir
_UpperCamelCase = keep_in_memory
_UpperCamelCase = streaming
_UpperCamelCase = num_proc
_UpperCamelCase = kwargs
@abstractmethod
def __UpperCAmelCase ( self : Any) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]:
"""simple docstring"""
pass
class _UpperCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
def __init__( self : List[Any] , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ) -> str:
"""simple docstring"""
_UpperCamelCase = features
_UpperCamelCase = cache_dir
_UpperCamelCase = keep_in_memory
_UpperCamelCase = streaming
_UpperCamelCase = num_proc
_UpperCamelCase = kwargs
@abstractmethod
def __UpperCAmelCase ( self : Any) -> Union[Dataset, IterableDataset]:
"""simple docstring"""
pass
| 63
| 0
|
'''simple docstring'''
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def __snake_case ( UpperCAmelCase_ : Optional[int] ):
if isinstance(__UpperCAmelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class snake_case :
"""simple docstring"""
def snake_case ( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
pass
def snake_case ( self ):
"""simple docstring"""
pass
def snake_case ( self ):
"""simple docstring"""
pass
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase )
lowerCamelCase_ = TFVisionTextDualEncoderModel(_lowerCAmelCase )
lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase )
lowerCamelCase_ = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase )
lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase )
lowerCamelCase_ = {"vision_model": vision_model, "text_model": text_model}
lowerCamelCase_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase )
lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase )
lowerCamelCase_ = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase )
lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
lowerCamelCase_ = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase )
lowerCamelCase_ = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase )
lowerCamelCase_ = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
lowerCamelCase_ = after_output[0].numpy()
lowerCamelCase_ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase , 1e-5 )
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase )
lowerCamelCase_ = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase )
lowerCamelCase_ = model(
input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase )
lowerCamelCase_ = output.vision_model_output.attentions
self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCamelCase_ = to_atuple(vision_model.config.image_size )
lowerCamelCase_ = to_atuple(vision_model.config.patch_size )
lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCamelCase_ = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCamelCase_ = output.text_model_output.attentions
self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = np.abs((a - b) ).max()
self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**_lowerCAmelCase )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**_lowerCAmelCase )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = self.prepare_config_and_inputs()
self.check_save_load(**_lowerCAmelCase )
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**_lowerCAmelCase )
@slow
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ ,lowerCamelCase_ = self.get_pretrained_model_and_inputs()
lowerCamelCase_ = model_a(**_lowerCAmelCase )
lowerCamelCase_ = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(_lowerCAmelCase )
lowerCamelCase_ = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase )
lowerCamelCase_ = model_a(**_lowerCAmelCase )
lowerCamelCase_ = after_outputs[0].numpy()
lowerCamelCase_ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase , 1e-5 )
@require_tf
class snake_case ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" )
lowerCamelCase_ = 13
lowerCamelCase_ = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCamelCase_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCamelCase_ = random_attention_mask([batch_size, 4] )
lowerCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def snake_case ( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = TFViTModel(_lowerCAmelCase , name="vision_model" )
lowerCamelCase_ = TFBertModel(_lowerCAmelCase , name="text_model" )
return vision_model, text_model
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = TFViTModelTester(self )
lowerCamelCase_ = TFBertModelTester(self )
lowerCamelCase_ = vit_model_tester.prepare_config_and_inputs()
lowerCamelCase_ = bert_model_tester.prepare_config_and_inputs()
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = vision_config_and_inputs
(
(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,
) = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class snake_case ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
"""simple docstring"""
# DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's
# just reinitialize it.
lowerCamelCase_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" )
lowerCamelCase_ = 13
lowerCamelCase_ = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCamelCase_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCamelCase_ = random_attention_mask([batch_size, 4] )
lowerCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ ,lowerCamelCase_ = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase )
lowerCamelCase_ = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase )
lowerCamelCase_ = model(
input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase )
lowerCamelCase_ = output.vision_model_output.attentions
self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowerCamelCase_ = to_atuple(vision_model.config.image_size )
lowerCamelCase_ = to_atuple(vision_model.config.patch_size )
lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCamelCase_ = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCamelCase_ = output.text_model_output.attentions
self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case ( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = TFDeiTModel(_lowerCAmelCase , name="vision_model" )
lowerCamelCase_ = TFRobertaModel(_lowerCAmelCase , name="text_model" )
return vision_model, text_model
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = TFDeiTModelTester(self )
lowerCamelCase_ = TFRobertaModelTester(self )
lowerCamelCase_ = vit_model_tester.prepare_config_and_inputs()
lowerCamelCase_ = bert_model_tester.prepare_config_and_inputs()
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = vision_config_and_inputs
(
(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,
) = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class snake_case ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" )
lowerCamelCase_ = 13
lowerCamelCase_ = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCamelCase_ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCamelCase_ = random_attention_mask([batch_size, 4] )
lowerCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def snake_case ( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = TFCLIPVisionModel(_lowerCAmelCase , name="vision_model" )
lowerCamelCase_ = TFBertModel(_lowerCAmelCase , name="text_model" )
return vision_model, text_model
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = TFCLIPVisionModelTester(self )
lowerCamelCase_ = TFBertModelTester(self )
lowerCamelCase_ = clip_model_tester.prepare_config_and_inputs()
lowerCamelCase_ = bert_model_tester.prepare_config_and_inputs()
lowerCamelCase_ ,lowerCamelCase_ = vision_config_and_inputs
(
(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,
) = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class snake_case ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case ( self ):
"""simple docstring"""
lowerCamelCase_ = TFVisionTextDualEncoderModel.from_pretrained(
"clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase )
lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" )
lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
lowerCamelCase_ = processor(
text=["una foto di un gatto", "una foto di un cane"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" )
lowerCamelCase_ = model(**_lowerCAmelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowerCamelCase_ = np.array([[1.2_284_727, 0.3_104_122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
| 55
|
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def UpperCAmelCase_ ( __UpperCAmelCase : bytes , __UpperCAmelCase : int ) -> np.array:
SCREAMING_SNAKE_CASE_ = f"{sampling_rate}"
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = 'f32le'
SCREAMING_SNAKE_CASE_ = [
'ffmpeg',
'-i',
'pipe:0',
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
try:
with subprocess.Popen(__UpperCAmelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
SCREAMING_SNAKE_CASE_ = ffmpeg_process.communicate(__UpperCAmelCase )
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error
SCREAMING_SNAKE_CASE_ = output_stream[0]
SCREAMING_SNAKE_CASE_ = np.frombuffer(__UpperCAmelCase , np.floataa )
if audio.shape[0] == 0:
raise ValueError('Malformed soundfile' )
return audio
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : str = "f32le" , ) -> int:
SCREAMING_SNAKE_CASE_ = f"{sampling_rate}"
SCREAMING_SNAKE_CASE_ = '1'
if format_for_conversion == "s16le":
SCREAMING_SNAKE_CASE_ = 2
elif format_for_conversion == "f32le":
SCREAMING_SNAKE_CASE_ = 4
else:
raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" )
SCREAMING_SNAKE_CASE_ = platform.system()
if system == "Linux":
SCREAMING_SNAKE_CASE_ = 'alsa'
SCREAMING_SNAKE_CASE_ = 'default'
elif system == "Darwin":
SCREAMING_SNAKE_CASE_ = 'avfoundation'
SCREAMING_SNAKE_CASE_ = ':0'
elif system == "Windows":
SCREAMING_SNAKE_CASE_ = 'dshow'
SCREAMING_SNAKE_CASE_ = 'default'
SCREAMING_SNAKE_CASE_ = [
'ffmpeg',
'-f',
format_,
'-i',
input_,
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-fflags',
'nobuffer',
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
SCREAMING_SNAKE_CASE_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
SCREAMING_SNAKE_CASE_ = _ffmpeg_stream(__UpperCAmelCase , __UpperCAmelCase )
for item in iterator:
yield item
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[Union[Tuple[float, float], float]] = None , __UpperCAmelCase : str = "f32le" , ) -> Tuple:
if stream_chunk_s is not None:
SCREAMING_SNAKE_CASE_ = stream_chunk_s
else:
SCREAMING_SNAKE_CASE_ = chunk_length_s
SCREAMING_SNAKE_CASE_ = ffmpeg_microphone(__UpperCAmelCase , __UpperCAmelCase , format_for_conversion=__UpperCAmelCase )
if format_for_conversion == "s16le":
SCREAMING_SNAKE_CASE_ = np.intaa
SCREAMING_SNAKE_CASE_ = 2
elif format_for_conversion == "f32le":
SCREAMING_SNAKE_CASE_ = np.floataa
SCREAMING_SNAKE_CASE_ = 4
else:
raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" )
if stride_length_s is None:
SCREAMING_SNAKE_CASE_ = chunk_length_s / 6
SCREAMING_SNAKE_CASE_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(__UpperCAmelCase , (int, float) ):
SCREAMING_SNAKE_CASE_ = [stride_length_s, stride_length_s]
SCREAMING_SNAKE_CASE_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
SCREAMING_SNAKE_CASE_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
SCREAMING_SNAKE_CASE_ = datetime.datetime.now()
SCREAMING_SNAKE_CASE_ = datetime.timedelta(seconds=__UpperCAmelCase )
for item in chunk_bytes_iter(__UpperCAmelCase , __UpperCAmelCase , stride=(stride_left, stride_right) , stream=__UpperCAmelCase ):
# Put everything back in numpy scale
SCREAMING_SNAKE_CASE_ = np.frombuffer(item['raw'] , dtype=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = (
item['stride'][0] // size_of_sample,
item['stride'][1] // size_of_sample,
)
SCREAMING_SNAKE_CASE_ = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple[int, int] , __UpperCAmelCase : bool = False ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = b''
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" )
SCREAMING_SNAKE_CASE_ = 0
for raw in iterator:
acc += raw
if stream and len(__UpperCAmelCase ) < chunk_len:
SCREAMING_SNAKE_CASE_ = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(__UpperCAmelCase ) >= chunk_len:
# We are flushing the accumulator
SCREAMING_SNAKE_CASE_ = (_stride_left, stride_right)
SCREAMING_SNAKE_CASE_ = {'raw': acc[:chunk_len], 'stride': stride}
if stream:
SCREAMING_SNAKE_CASE_ = False
yield item
SCREAMING_SNAKE_CASE_ = stride_left
SCREAMING_SNAKE_CASE_ = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(__UpperCAmelCase ) > stride_left:
SCREAMING_SNAKE_CASE_ = {'raw': acc, 'stride': (_stride_left, 0)}
if stream:
SCREAMING_SNAKE_CASE_ = False
yield item
def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = 2**24 # 16Mo
try:
with subprocess.Popen(__UpperCAmelCase , stdout=subprocess.PIPE , bufsize=__UpperCAmelCase ) as ffmpeg_process:
while True:
SCREAMING_SNAKE_CASE_ = ffmpeg_process.stdout.read(__UpperCAmelCase )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
| 225
| 0
|
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_lowerCAmelCase : Dict = "\\n Text data.\n Second line of data."
_lowerCAmelCase : Any = "file"
@pytest.fixture(scope='session' )
def UpperCamelCase_( _snake_case : List[Any] ):
"""simple docstring"""
__a =tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd')
__a =bytes(_snake_case , 'utf-8' )
with zstd.open(_snake_case , 'wb' ) as f:
f.write(_snake_case )
return path
@pytest.fixture
def UpperCamelCase_( _snake_case : Union[str, Any] ):
"""simple docstring"""
with open(os.path.join(tmpfs.local_root_dir , _snake_case ) , 'w' ) as f:
f.write(_snake_case )
return FILE_PATH
@pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] )
def UpperCamelCase_( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : str ):
"""simple docstring"""
__a ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path}
__a =input_paths[compression_format]
__a =tmp_path / 'cache'
__a =DownloadConfig(cache_dir=_snake_case , extract_compressed_file=_snake_case )
__a =cached_path(_snake_case , download_config=_snake_case )
with open(_snake_case ) as f:
__a =f.read()
with open(_snake_case ) as f:
__a =f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('default_extracted' , [True, False] )
@pytest.mark.parametrize('default_cache_dir' , [True, False] )
def UpperCamelCase_( _snake_case : List[str] , _snake_case : str , _snake_case : Dict , _snake_case : Any , _snake_case : Tuple ):
"""simple docstring"""
__a ='custom_cache'
__a ='custom_extracted_dir'
__a =tmp_path / 'custom_extracted_path'
if default_extracted:
__a =('downloads' if default_cache_dir else custom_cache_dir, 'extracted')
else:
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _snake_case )
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_snake_case ) )
__a =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
__a =xz_file
__a =(
DownloadConfig(extract_compressed_file=_snake_case )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_snake_case )
)
__a =cached_path(_snake_case , download_config=_snake_case )
assert Path(_snake_case ).parent.parts[-2:] == expected
def UpperCamelCase_( _snake_case : int ):
"""simple docstring"""
__a =str(Path(_snake_case ).resolve() )
assert cached_path(_snake_case ) == text_file
# relative path
__a =str(Path(_snake_case ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_snake_case ) == text_file
def UpperCamelCase_( _snake_case : Tuple ):
"""simple docstring"""
__a =str(tmp_path.resolve() / '__missing_file__.txt' )
with pytest.raises(_snake_case ):
cached_path(_snake_case )
# relative path
__a ='./__missing_file__.txt'
with pytest.raises(_snake_case ):
cached_path(_snake_case )
def UpperCamelCase_( _snake_case : str ):
"""simple docstring"""
__a =get_from_cache(F'tmp://{tmpfs_file}' )
with open(_snake_case ) as f:
__a =f.read()
assert output_file_content == FILE_CONTENT
@patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case )
def UpperCamelCase_( ):
"""simple docstring"""
with pytest.raises(_snake_case ):
cached_path('https://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case )
def UpperCamelCase_( _snake_case : Dict ):
"""simple docstring"""
__a =tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_snake_case ):
http_get('https://huggingface.co' , temp_file=_snake_case )
with pytest.raises(_snake_case ):
http_head('https://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case )
def UpperCamelCase_( _snake_case : Tuple ):
"""simple docstring"""
__a =tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_snake_case ):
ftp_get('ftp://huggingface.co' , temp_file=_snake_case )
with pytest.raises(_snake_case ):
ftp_head('ftp://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case )
def UpperCamelCase_( _snake_case : List[str] ):
"""simple docstring"""
__a =tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_snake_case ):
fsspec_get('s3://huggingface.co' , temp_file=_snake_case )
with pytest.raises(_snake_case ):
fsspec_head('s3://huggingface.co' )
| 308
|
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
_lowerCAmelCase : Optional[Any] = numpy.array([0, 0])
_lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254])
_lowerCAmelCase : Any = numpy.array([1, 0])
_lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ):
"""simple docstring"""
__a =initial_vectors
for _ in range(_snake_case ):
__a =iteration_step(_snake_case )
return vectors
def UpperCamelCase_( _snake_case : list[numpy.ndarray] ):
"""simple docstring"""
__a =[]
for i, start_vector in enumerate(vectors[:-1] ):
__a =vectors[i + 1]
new_vectors.append(_snake_case )
__a =end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ):
"""simple docstring"""
__a =numpy.radians(_snake_case )
__a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case )
__a =numpy.array(((c, -s), (s, c)) )
return numpy.dot(_snake_case , _snake_case )
def UpperCamelCase_( _snake_case : list[numpy.ndarray] ):
"""simple docstring"""
__a =plt.gca()
axes.set_aspect('equal' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
__a , __a =zip(*_snake_case )
plt.plot(_snake_case , _snake_case )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 308
| 1
|
"""simple docstring"""
from __future__ import annotations
import os
from typing import Any
import requests
A: List[Any] = "https://api.github.com"
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
A: List[str] = BASE_URL + "/user"
# https://github.com/settings/tokens
A: Optional[Any] = os.environ.get("USER_TOKEN", "")
def _snake_case ( UpperCamelCase : str ):
UpperCAmelCase : Optional[Any] = {
"""Authorization""": F"token {auth_token}",
"""Accept""": """application/vnd.github.v3+json""",
}
return requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f"""{key}: {value}""")
else:
raise ValueError("'USER_TOKEN' field cannot be empty.")
| 109
|
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> list:
'''simple docstring'''
A__ = int(SCREAMING_SNAKE_CASE_ )
if n_element < 1:
A__ = ValueError("a should be a positive number" )
raise my_error
A__ = [1]
A__ , A__ , A__ = (0, 0, 0)
A__ = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
lowerCAmelCase__ = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
lowerCAmelCase__ = hamming(int(n))
print("""-----------------------------------------------------""")
print(f"""The list with nth numbers is: {hamming_numbers}""")
print("""-----------------------------------------------------""")
| 68
| 0
|
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = 0
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json'
UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json'
json.dump(
{'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , )
json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) )
UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : Any ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json'
UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json'
json.dump(
{'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , )
json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) )
UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : Tuple ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = CLIPConfig()
# Create a dummy config file with image_proceesor_type
UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json'
UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json'
json.dump(
{'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , )
json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ ).to_dict()
config_dict.pop('image_processor_type' )
UpperCamelCase = CLIPImageProcessor(**UpperCamelCase__ )
# save in new folder
model_config.save_pretrained(UpperCamelCase__ )
config.save_pretrained(UpperCamelCase__ )
UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ )
# make sure private variable is not incorrectly saved
UpperCamelCase = json.loads(config.to_json_string() )
self.assertTrue('_processor_class' not in dict_as_saved )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : List[str] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json'
json.dump(
{'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , )
UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def A ( self : Any ):
"""simple docstring"""
with self.assertRaisesRegex(
UpperCamelCase__ , 'clip-base is not a local folder and is not a valid model identifier' ):
UpperCamelCase = AutoImageProcessor.from_pretrained('clip-base' )
def A ( self : List[Any] ):
"""simple docstring"""
with self.assertRaisesRegex(
UpperCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ , revision='aaaaaa' )
def A ( self : List[str] ):
"""simple docstring"""
with self.assertRaisesRegex(
UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ):
UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' )
def A ( self : Tuple ):
"""simple docstring"""
with self.assertRaises(UpperCamelCase__ ):
UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase__ ):
UpperCamelCase = AutoImageProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ )
UpperCamelCase = AutoImageProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ )
self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCamelCase__ )
UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ )
self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' )
def A ( self : Optional[Any] ):
"""simple docstring"""
try:
AutoConfig.register('custom' , UpperCamelCase__ )
AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase__ ):
AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = Path(UpperCamelCase__ ) / 'preprocessor_config.json'
UpperCamelCase = Path(UpperCamelCase__ ) / 'config.json'
json.dump(
{'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase__ , 'w' ) , )
json.dump({'model_type': 'clip'} , open(UpperCamelCase__ , 'w' ) )
UpperCamelCase = CustomImageProcessor.from_pretrained(UpperCamelCase__ )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(UpperCamelCase__ )
UpperCamelCase = AutoImageProcessor.from_pretrained(UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def A ( self : Optional[int] ):
"""simple docstring"""
class SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = True
try:
AutoConfig.register('custom' , UpperCamelCase__ )
AutoImageProcessor.register(UpperCamelCase__ , UpperCamelCase__ )
# If remote code is not set, the default is to use local
UpperCamelCase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' )
self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
UpperCamelCase = AutoImageProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ )
self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
UpperCamelCase = AutoImageProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase__ )
self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' )
self.assertTrue(not hasattr(UpperCamelCase__ , 'is_local' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 249
|
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
@staticmethod
@abstractmethod
def A ( UpperCamelCase__ : ArgumentParser ):
"""simple docstring"""
raise NotImplementedError()
@abstractmethod
def A ( self : str ):
"""simple docstring"""
raise NotImplementedError()
| 249
| 1
|
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
lowercase = {
"gwf-440k": {
"url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt",
"sample_rate": 48000,
"sample_size": 65536,
},
"jmann-small-190k": {
"url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt",
"sample_rate": 48000,
"sample_size": 65536,
},
"jmann-large-580k": {
"url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt",
"sample_rate": 48000,
"sample_size": 131072,
},
"maestro-uncond-150k": {
"url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt",
"sample_rate": 16000,
"sample_size": 65536,
},
"unlocked-uncond-250k": {
"url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt",
"sample_rate": 16000,
"sample_size": 65536,
},
"honk-140k": {
"url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt",
"sample_rate": 16000,
"sample_size": 65536,
},
}
def __UpperCAmelCase ( a_ , a_):
return torch.atana(a_ , a_) / math.pi * 2
def __UpperCAmelCase ( a_):
snake_case_ = torch.sin(t * math.pi / 2) ** 2
snake_case_ = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(a_ , a_)
class UpperCamelCase_ ( snake_case_ ):
'''simple docstring'''
pass
class UpperCamelCase_ ( nn.Module ):
'''simple docstring'''
def __init__( self , a ) -> Union[str, Any]:
super().__init__()
snake_case_ = DiffusionAttnUnetaD(a , n_attn_layers=4 )
snake_case_ = deepcopy(self.diffusion )
snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=a )
def __UpperCAmelCase ( a_):
snake_case_ = MODELS_MAP[model_name]['url']
os.system(f'''wget {url} ./''')
return f'''./{model_name}.ckpt'''
lowercase = {
"1": "resnets.0",
"2": "attentions.0",
"3": "resnets.1",
"4": "attentions.1",
"5": "resnets.2",
"6": "attentions.2",
}
lowercase = {
"8": "resnets.0",
"9": "attentions.0",
"10": "resnets.1",
"11": "attentions.1",
"12": "resnets.2",
"13": "attentions.2",
}
lowercase = {
"1": "resnets.0",
"2": "attentions.0",
"3": "resnets.1",
"4": "attentions.1",
"5": "resnets.2",
"6": "attentions.2",
"8": "resnets.3",
"9": "attentions.3",
"10": "resnets.4",
"11": "attentions.4",
"12": "resnets.5",
"13": "attentions.5",
}
lowercase = {
"0": "resnets.0",
"1": "resnets.1",
"2": "resnets.2",
"4": "resnets.0",
"5": "resnets.1",
"6": "resnets.2",
}
lowercase = {
"skip": "conv_skip",
"main.0": "conv_1",
"main.1": "group_norm_1",
"main.3": "conv_2",
"main.4": "group_norm_2",
}
lowercase = {
"norm": "group_norm",
"qkv_proj": ["query", "key", "value"],
"out_proj": ["proj_attn"],
}
def __UpperCAmelCase ( a_):
if name.startswith('skip'):
return name.replace('skip' , RES_CONV_MAP['skip'])
# name has to be of format main.{digit}
if not name.startswith('main.'):
raise ValueError(f'''ResConvBlock error with {name}''')
return name.replace(name[:6] , RES_CONV_MAP[name[:6]])
def __UpperCAmelCase ( a_):
for key, value in ATTN_MAP.items():
if name.startswith(a_) and not isinstance(a_ , a_):
return name.replace(a_ , a_)
elif name.startswith(a_):
return [name.replace(a_ , a_) for v in value]
raise ValueError(f'''Attn error with {name}''')
def __UpperCAmelCase ( a_ , a_=13):
snake_case_ = input_string
if string.split('.')[0] == "timestep_embed":
return string.replace('timestep_embed' , 'time_proj')
snake_case_ = 0
if string.startswith('net.3.'):
depth += 1
snake_case_ = string[6:]
elif string.startswith('net.'):
snake_case_ = string[4:]
while string.startswith('main.7.'):
depth += 1
snake_case_ = string[7:]
if string.startswith('main.'):
snake_case_ = string[5:]
# mid block
if string[:2].isdigit():
snake_case_ = string[:2]
snake_case_ = string[2:]
else:
snake_case_ = string[0]
snake_case_ = string[1:]
if depth == max_depth:
snake_case_ = MID_NUM_TO_LAYER[layer_num]
snake_case_ = 'mid_block'
elif depth > 0 and int(a_) < 7:
snake_case_ = DOWN_NUM_TO_LAYER[layer_num]
snake_case_ = f'''down_blocks.{depth}'''
elif depth > 0 and int(a_) > 7:
snake_case_ = UP_NUM_TO_LAYER[layer_num]
snake_case_ = f'''up_blocks.{max_depth - depth - 1}'''
elif depth == 0:
snake_case_ = DEPTH_0_TO_LAYER[layer_num]
snake_case_ = f'''up_blocks.{max_depth - 1}''' if int(a_) > 3 else 'down_blocks.0'
if not string_left.startswith('.'):
raise ValueError(f'''Naming error with {input_string} and string_left: {string_left}.''')
snake_case_ = string_left[1:]
if "resnets" in new_layer:
snake_case_ = convert_resconv_naming(a_)
elif "attentions" in new_layer:
snake_case_ = convert_attn_naming(a_)
snake_case_ = new_string_left
if not isinstance(a_ , a_):
snake_case_ = prefix + '.' + new_layer + '.' + string_left
else:
snake_case_ = [prefix + '.' + new_layer + '.' + s for s in string_left]
return new_string
def __UpperCAmelCase ( a_):
snake_case_ = {}
for k, v in state_dict.items():
if k.endswith('kernel'):
# up- and downsample layers, don't have trainable weights
continue
snake_case_ = rename(a_)
# check if we need to transform from Conv => Linear for attention
if isinstance(a_ , a_):
snake_case_ = transform_conv_attns(a_ , a_ , a_)
else:
snake_case_ = v
return new_state_dict
def __UpperCAmelCase ( a_ , a_ , a_):
if len(a_) == 1:
if len(v.shape) == 3:
# weight
snake_case_ = v[:, :, 0]
else:
# bias
snake_case_ = v
else:
# qkv matrices
snake_case_ = v.shape[0]
snake_case_ = trippled_shape // 3
for i in range(3):
if len(v.shape) == 3:
snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
snake_case_ = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __UpperCAmelCase ( a_):
snake_case_ = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
snake_case_ = args.model_path.split('/')[-1].split('.')[0]
if not os.path.isfile(args.model_path):
assert (
model_name == args.model_path
), f'''Make sure to provide one of the official model names {MODELS_MAP.keys()}'''
snake_case_ = download(a_)
snake_case_ = MODELS_MAP[model_name]['sample_rate']
snake_case_ = MODELS_MAP[model_name]['sample_size']
snake_case_ = Object()
snake_case_ = sample_size
snake_case_ = sample_rate
snake_case_ = 0
snake_case_ = UNetaDModel(sample_size=a_ , sample_rate=a_)
snake_case_ = diffusers_model.state_dict()
snake_case_ = DiffusionUncond(a_)
orig_model.load_state_dict(torch.load(args.model_path , map_location=a_)['state_dict'])
snake_case_ = orig_model.diffusion_ema.eval()
snake_case_ = orig_model.state_dict()
snake_case_ = rename_orig_weights(a_)
snake_case_ = set(renamed_state_dict.keys()) - set(diffusers_state_dict.keys())
snake_case_ = set(diffusers_state_dict.keys()) - set(renamed_state_dict.keys())
assert len(a_) == 0, f'''Problem with {renamed_minus_diffusers}'''
assert all(k.endswith('kernel') for k in list(a_)), f'''Problem with {diffusers_minus_renamed}'''
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), f'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}'''
if key == "time_proj.weight":
snake_case_ = value.squeeze()
snake_case_ = value
diffusers_model.load_state_dict(a_)
snake_case_ = 1_00
snake_case_ = 33
snake_case_ = IPNDMScheduler(num_train_timesteps=a_)
snake_case_ = torch.manual_seed(a_)
snake_case_ = torch.randn([1, 2, config.sample_size] , generator=a_).to(a_)
snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=a_)[:-1]
snake_case_ = get_crash_schedule(a_)
snake_case_ = DanceDiffusionPipeline(unet=a_ , scheduler=a_)
snake_case_ = torch.manual_seed(33)
snake_case_ = pipe(num_inference_steps=a_ , generator=a_).audios
snake_case_ = sampling.iplms_sample(a_ , a_ , a_ , {})
snake_case_ = generated.clamp(-1 , 1)
snake_case_ = (generated - audio).abs().sum()
snake_case_ = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path)
print('Diff sum' , a_)
print('Diff max' , a_)
assert diff_max < 1E-3, f'''Diff max: {diff_max} is too much :-/'''
print(f'''Conversion for {model_name} successful!''')
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
lowercase = parser.parse_args()
main(args)
| 178
|
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name
lowercase = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n"
def __UpperCAmelCase ( a_ , a_ , a_=8):
snake_case_ = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
snake_case_ = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class UpperCamelCase_ ( snake_case_ ):
'''simple docstring'''
def __init__( self , a , a , a , ) -> Tuple:
super().__init__()
self.register_modules(
unet=a , scheduler=a , movq=a , )
snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _UpperCamelCase ( self , a , a , a , a , a , a ) -> Any:
if latents is None:
snake_case_ = randn_tensor(a , generator=a , device=a , dtype=a )
else:
if latents.shape != shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
snake_case_ = latents.to(a )
snake_case_ = latents * scheduler.init_noise_sigma
return latents
def _UpperCamelCase ( self , a=0 ) -> str:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
snake_case_ = torch.device(F'''cuda:{gpu_id}''' )
snake_case_ = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(a , a )
def _UpperCamelCase ( self , a=0 ) -> List[str]:
if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' )
snake_case_ = torch.device(F'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to('cpu' , silence_dtype_warnings=a )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
snake_case_ = None
for cpu_offloaded_model in [self.unet, self.movq]:
snake_case_ , snake_case_ = cpu_offload_with_hook(a , a , prev_module_hook=a )
# We'll offload the last model manually.
snake_case_ = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _UpperCamelCase ( self ) -> Any:
if not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(a , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(a )
def __call__( self , a , a , a , a = 5_12 , a = 5_12 , a = 1_00 , a = 4.0 , a = 1 , a = None , a = None , a = "pil" , a = True , ) -> List[str]:
snake_case_ = self._execution_device
snake_case_ = guidance_scale > 1.0
if isinstance(a , a ):
snake_case_ = torch.cat(a , dim=0 )
if isinstance(a , a ):
snake_case_ = torch.cat(a , dim=0 )
if isinstance(a , a ):
snake_case_ = torch.cat(a , dim=0 )
snake_case_ = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
snake_case_ = image_embeds.repeat_interleave(a , dim=0 )
snake_case_ = negative_image_embeds.repeat_interleave(a , dim=0 )
snake_case_ = hint.repeat_interleave(a , dim=0 )
snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a )
snake_case_ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a )
self.scheduler.set_timesteps(a , device=a )
snake_case_ = self.scheduler.timesteps
snake_case_ = self.movq.config.latent_channels
snake_case_ , snake_case_ = downscale_height_and_width(a , a , self.movq_scale_factor )
# create initial latent
snake_case_ = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , a , a , a , self.scheduler , )
for i, t in enumerate(self.progress_bar(a ) ):
# expand the latents if we are doing classifier free guidance
snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
snake_case_ = {'image_embeds': image_embeds, 'hint': hint}
snake_case_ = self.unet(
sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0]
if do_classifier_free_guidance:
snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 )
snake_case_ , snake_case_ = noise_pred.chunk(2 )
snake_case_ , snake_case_ = variance_pred.chunk(2 )
snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , 'variance_type' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
snake_case_ = self.scheduler.step(
a , a , a , generator=a , )[0]
# post-processing
snake_case_ = self.movq.decode(a , force_not_quantize=a )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
snake_case_ = image * 0.5 + 0.5
snake_case_ = image.clamp(0 , 1 )
snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
snake_case_ = self.numpy_to_pil(a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=a )
| 178
| 1
|
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
lowercase : Optional[Any] = (
"This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate "
"library. You can have a look at this example script for pointers: "
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
)
def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : int ):
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , "sklearn" )
return (preds == labels).mean()
def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ):
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , "sklearn" )
__UpperCamelCase : Dict = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )
__UpperCamelCase : int = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def UpperCAmelCase_ (_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ):
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , "sklearn" )
__UpperCamelCase : int = pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0]
__UpperCamelCase : List[Any] = spearmanr(_lowerCAmelCase , _lowerCAmelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple ):
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , "sklearn" )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), F'''Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}'''
if task_name == "cola":
return {"mcc": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "mrpc":
return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase )
elif task_name == "sts-b":
return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase )
elif task_name == "qqp":
return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
else:
raise KeyError(_lowerCAmelCase )
def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ):
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , "sklearn" )
if len(_lowerCAmelCase ) != len(_lowerCAmelCase ):
raise ValueError(F'''Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}''' )
if task_name == "xnli":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
else:
raise KeyError(_lowerCAmelCase )
| 171
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase : Dict = logging.get_logger(__name__)
def UpperCAmelCase_ (_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ):
__UpperCamelCase : Optional[int] = b.T
__UpperCamelCase : List[str] = np.sum(np.square(_lowerCAmelCase ) , axis=1 )
__UpperCamelCase : Union[str, Any] = np.sum(np.square(_lowerCAmelCase ) , axis=0 )
__UpperCamelCase : Dict = np.matmul(_lowerCAmelCase , _lowerCAmelCase )
__UpperCamelCase : Dict = aa[:, None] - 2 * ab + ba[None, :]
return d
def UpperCAmelCase_ (_lowerCAmelCase : Any , _lowerCAmelCase : Tuple ):
__UpperCamelCase : Tuple = x.reshape(-1 , 3 )
__UpperCamelCase : List[str] = squared_euclidean_distance(_lowerCAmelCase , _lowerCAmelCase )
return np.argmin(_lowerCAmelCase , axis=1 )
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
"""simple docstring"""
lowercase : Optional[int] = ['pixel_values']
def __init__( self , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = True , **__UpperCamelCase , ) -> None:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
__UpperCamelCase : List[str] = size if size is not None else {"height": 2_56, "width": 2_56}
__UpperCamelCase : Optional[Any] = get_size_dict(__UpperCamelCase )
__UpperCamelCase : Optional[int] = np.array(__UpperCamelCase ) if clusters is not None else None
__UpperCamelCase : int = do_resize
__UpperCamelCase : Optional[int] = size
__UpperCamelCase : List[str] = resample
__UpperCamelCase : Any = do_normalize
__UpperCamelCase : List[str] = do_color_quantize
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , ) -> np.ndarray:
'''simple docstring'''
__UpperCamelCase : Any = get_size_dict(__UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
__UpperCamelCase , size=(size["height"], size["width"]) , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , ) -> np.ndarray:
'''simple docstring'''
__UpperCamelCase : List[str] = rescale(image=__UpperCamelCase , scale=1 / 127.5 , data_format=__UpperCamelCase )
__UpperCamelCase : int = image - 1
return image
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__UpperCamelCase : Any = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase : Union[str, Any] = size if size is not None else self.size
__UpperCamelCase : Union[str, Any] = get_size_dict(__UpperCamelCase )
__UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample
__UpperCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase : Union[str, Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
__UpperCamelCase : List[str] = clusters if clusters is not None else self.clusters
__UpperCamelCase : Any = np.array(__UpperCamelCase )
__UpperCamelCase : Tuple = make_list_of_images(__UpperCamelCase )
if not valid_images(__UpperCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_color_quantize and clusters is None:
raise ValueError("Clusters must be specified if do_color_quantize is True." )
# All transformations expect numpy arrays.
__UpperCamelCase : Optional[Any] = [to_numpy_array(__UpperCamelCase ) for image in images]
if do_resize:
__UpperCamelCase : int = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images]
if do_normalize:
__UpperCamelCase : Optional[int] = [self.normalize(image=__UpperCamelCase ) for image in images]
if do_color_quantize:
__UpperCamelCase : List[str] = [to_channel_dimension_format(__UpperCamelCase , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
__UpperCamelCase : str = np.array(__UpperCamelCase )
__UpperCamelCase : List[str] = color_quantize(__UpperCamelCase , __UpperCamelCase ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
__UpperCamelCase : List[Any] = images.shape[0]
__UpperCamelCase : List[Any] = images.reshape(__UpperCamelCase , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
__UpperCamelCase : Tuple = list(__UpperCamelCase )
else:
__UpperCamelCase : List[Any] = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images]
__UpperCamelCase : int = {"input_ids": images}
return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
| 171
| 1
|
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
__A = "<<<<<<< This should probably be modified because it mentions: "
__A = "=======\n>>>>>>>\n"
__A = [
"TextEncoderConfig",
"ByteTextEncoder",
"SubwordTextEncoder",
"encoder_config",
"maybe_build_from_corpus",
"manual_dir",
]
__A = [
# (pattern, replacement)
# Order is important here for some replacements
(R"tfds\.core", R"datasets"),
(R"tf\.io\.gfile\.GFile", R"open"),
(R"tf\.([\w\d]+)", R"datasets.Value('\1')"),
(R"tfds\.features\.Text\(\)", R"datasets.Value('string')"),
(R"tfds\.features\.Text\(", R"datasets.Value('string'),"),
(R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("),
(R"tfds\.features\.FeaturesDict\(", R"dict("),
(R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
(R"tfds\.", R"datasets."),
(R"dl_manager\.manual_dir", R"self.config.data_dir"),
(R"self\.builder_config", R"self.config"),
]
def lowerCAmelCase_ ( __a ) -> Optional[Any]:
"""simple docstring"""
return ConvertCommand(args.tfds_path , args.datasets_directory )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] =parser.add_parser(
"convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , )
train_parser.add_argument(
"--tfds_path" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , )
train_parser.add_argument(
"--datasets_directory" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to the HuggingFace Datasets folder.")
train_parser.set_defaults(func=UpperCAmelCase_)
def __init__(self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , *UpperCAmelCase_ : List[str]) ->int:
'''simple docstring'''
lowerCamelCase__: str =get_logger("datasets-cli/converting")
lowerCamelCase__: Tuple =tfds_path
lowerCamelCase__: Union[str, Any] =datasets_directory
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]:
'''simple docstring'''
if os.path.isdir(self._tfds_path):
lowerCamelCase__: Dict =os.path.abspath(self._tfds_path)
elif os.path.isfile(self._tfds_path):
lowerCamelCase__: Any =os.path.dirname(self._tfds_path)
else:
raise ValueError("--tfds_path is neither a directory nor a file. Please check path.")
lowerCamelCase__: Any =os.path.abspath(self._datasets_directory)
self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""")
lowerCamelCase__: List[str] =[]
lowerCamelCase__: Optional[int] =[]
lowerCamelCase__: int ={}
if os.path.isdir(self._tfds_path):
lowerCamelCase__: Tuple =os.listdir(UpperCAmelCase_)
else:
lowerCamelCase__: int =[os.path.basename(self._tfds_path)]
for f_name in file_names:
self._logger.info(F"""Looking at file {f_name}""")
lowerCamelCase__: Tuple =os.path.join(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: List[str] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_)
if not os.path.isfile(UpperCAmelCase_) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info("Skipping file")
continue
with open(UpperCAmelCase_ , encoding="utf-8") as f:
lowerCamelCase__: Union[str, Any] =f.readlines()
lowerCamelCase__: int =[]
lowerCamelCase__: Any =False
lowerCamelCase__: int =False
lowerCamelCase__: int =[]
for line in lines:
lowerCamelCase__: List[Any] =line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
lowerCamelCase__: List[Any] ="import datasets\n"
elif "import tensorflow" in out_line:
# order is important here
lowerCamelCase__: Union[str, Any] =""
continue
elif "from absl import logging" in out_line:
lowerCamelCase__: Tuple ="from datasets import logging\n"
elif "getLogger" in out_line:
lowerCamelCase__: List[str] =out_line.replace("getLogger" , "get_logger")
elif any(expression in out_line for expression in TO_HIGHLIGHT):
lowerCamelCase__: str =True
lowerCamelCase__: List[Any] =list(filter(lambda UpperCAmelCase_: e in out_line , UpperCAmelCase_))
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCAmelCase_) + "\n")
out_lines.append(UpperCAmelCase_)
out_lines.append(UpperCAmelCase_)
continue
else:
for pattern, replacement in TO_CONVERT:
lowerCamelCase__: Dict =re.sub(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
lowerCamelCase__: Any =re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , UpperCAmelCase_)
tfds_imports.extend(imp.strip() for imp in match.group(1).split(","))
lowerCamelCase__: Any ="from . import " + match.group(1)
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(F"""Error converting {out_line.strip()}""")
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
lowerCamelCase__: Optional[int] =True
out_lines.append(UpperCAmelCase_)
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
lowerCamelCase__: Tuple =f_name.replace(".py" , "")
lowerCamelCase__: Optional[int] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_)
os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_)
self._logger.info(F"""Adding directory {output_dir}""")
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports})
else:
# Utilities will be moved at the end
utils_files.append(UpperCAmelCase_)
if needs_manual_update:
with_manual_update.append(UpperCAmelCase_)
with open(UpperCAmelCase_ , "w" , encoding="utf-8") as f:
f.writelines(UpperCAmelCase_)
self._logger.info(F"""Converted in {output_file}""")
for utils_file in utils_files:
try:
lowerCamelCase__: Union[str, Any] =os.path.basename(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =imports_to_builder_map[f_name.replace(".py" , "")]
self._logger.info(F"""Moving {dest_folder} to {utils_file}""")
shutil.copy(UpperCAmelCase_ , UpperCAmelCase_)
except KeyError:
self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""")
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""")
| 10
|
'''simple docstring'''
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : int , lowercase : int=1024 , lowercase : int=1024 , lowercase : Tuple=False , **lowercase : Optional[int] ) -> Union[str, Any]:
_a = AutoTokenizer.from_pretrained(lowercase )
_a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="train" , **lowercase )
_a = tok.pad_token_id
def get_lens(lowercase : Optional[int] ):
_a = tqdm(
DataLoader(lowercase , batch_size=512 , num_workers=8 , shuffle=lowercase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
_a = []
for batch in dl:
_a = batch["input_ids"].ne(lowercase ).sum(1 ).tolist()
_a = batch["labels"].ne(lowercase ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowercase , lowercase ):
max_lens.append(max(lowercase , lowercase ) )
else:
max_lens.extend(lowercase )
return max_lens
_a = get_lens(lowercase )
_a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="val" , **lowercase )
_a = get_lens(lowercase )
pickle_save(lowercase , train_ds.len_file )
pickle_save(lowercase , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 63
| 0
|
'''simple docstring'''
def _lowerCamelCase ( lowercase : int ) -> int:
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(lowercase , lowercase ):
raise TypeError("Input value must be a 'int' type" )
return bin(lowercase ).count("1" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346
|
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : int = '▁'
lowerCAmelCase_ : Optional[Any] = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
lowerCAmelCase_ : Optional[int] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
lowerCAmelCase_ : List[str] = {
'facebook/s2t-small-librispeech-asr': 10_24,
}
lowerCAmelCase_ : List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
lowerCAmelCase_ : Union[str, Any] = {'mustc': MUSTC_LANGS}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =VOCAB_FILES_NAMES
__a =PRETRAINED_VOCAB_FILES_MAP
__a =MAX_MODEL_INPUT_SIZES
__a =['input_ids', 'attention_mask']
__a =[]
def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Any , __a : Any="<s>" , __a : List[str]="</s>" , __a : str="<pad>" , __a : List[str]="<unk>" , __a : Union[str, Any]=False , __a : Any=False , __a : List[str]=None , __a : Optional[int]=None , __a : Optional[Dict[str, Any]] = None , **__a : int , ):
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
_a = do_upper_case
_a = do_lower_case
_a = load_json(__a )
_a = {v: k for k, v in self.encoder.items()}
_a = spm_file
_a = load_spm(__a , self.sp_model_kwargs )
if lang_codes is not None:
_a = lang_codes
_a = LANGUAGES[lang_codes]
_a = [f'<lang:{lang}>' for lang in self.langs]
_a = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs}
_a = self.lang_tokens
_a = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
_a = {}
@property
def UpperCamelCase__ ( self : str ):
return len(self.encoder )
@property
def UpperCamelCase__ ( self : str ):
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase__ ( self : Optional[int] , __a : Any ):
_a = new_tgt_lang
self.set_tgt_lang_special_tokens(__a )
def UpperCamelCase__ ( self : List[Any] , __a : str ):
_a = self.lang_code_to_id[tgt_lang]
_a = [lang_code_id]
def UpperCamelCase__ ( self : Dict , __a : str ):
return self.sp_model.encode(__a , out_type=__a )
def UpperCamelCase__ ( self : List[str] , __a : Any ):
return self.encoder.get(__a , self.encoder[self.unk_token] )
def UpperCamelCase__ ( self : str , __a : int ):
return self.decoder.get(__a , self.unk_token )
def UpperCamelCase__ ( self : str , __a : List[str] ):
_a = []
_a = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
_a = self.sp_model.decode(__a )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
_a = []
else:
current_sub_tokens.append(__a )
_a = self.sp_model.decode(__a )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase__ ( self : int , __a : Any , __a : int=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase__ ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
_a = [1] * len(self.prefix_tokens )
_a = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__a )) + suffix_ones
return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : str , __a : Dict ):
_a = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_a = {}
_a = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCamelCase__ ( self : List[str] , __a : str , __a : Optional[str] = None ):
_a = Path(__a )
assert save_dir.is_dir(), f'{save_directory} should be a directory'
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
_a = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , __a )
if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __a )
elif not os.path.isfile(self.spm_file ):
with open(__a , "wb" ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(__a )
return (str(__a ), str(__a ))
def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
_a = sentencepiece.SentencePieceProcessor(**lowercase )
spm.Load(str(lowercase ) )
return spm
def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]:
with open(lowercase , "r" ) as f:
return json.load(lowercase )
def _lowerCamelCase ( lowercase : Any , lowercase : str ) -> None:
with open(lowercase , "w" ) as f:
json.dump(lowercase , lowercase , indent=2 )
| 346
| 1
|
def snake_case( __magic_name__ , __magic_name__ ) -> float:
'''simple docstring'''
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f'''{price_plus_tax(1_00, 0.2_5) = }''')
print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
| 308
|
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def snake_case( ) -> int:
'''simple docstring'''
lowercase : List[str] = ArgumentParser(
description=(
'''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes'''
) )
# Optional arguments for the launch helper
parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' )
# positional
parser.add_argument(
'''training_script''' , type=__magic_name__ , help=(
'''The full path to the single TPU training '''
'''program/script to be launched in parallel, '''
'''followed by all the arguments for the '''
'''training script'''
) , )
# rest from the training program
parser.add_argument('''training_script_args''' , nargs=__magic_name__ )
return parser.parse_args()
def snake_case( ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Optional[Any] = parse_args()
# Import training_script as a module.
lowercase : Optional[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowercase : int = script_fpath.stem
lowercase : List[Any] = importlib.import_module(__magic_name__ )
# Patch sys.argv
lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 308
| 1
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class lowercase_ ( __lowercase ):
UpperCamelCase_ : Union[str, Any] = "naver-clova-ix/donut-base-finetuned-docvqa"
UpperCamelCase_ : str = (
"This is a tool that answers a question about an document (pdf). It takes an input named `document` which "
"should be the document containing the information, as well as a `question` that is the question about the "
"document. It returns a text that contains the answer to the question."
)
UpperCamelCase_ : str = "document_qa"
UpperCamelCase_ : str = AutoProcessor
UpperCamelCase_ : List[Any] = VisionEncoderDecoderModel
UpperCamelCase_ : List[Any] = ["image", "text"]
UpperCamelCase_ : Optional[Any] = ["text"]
def __init__( self : List[str] , *A__ : str , **A__ : str ) -> Optional[Any]:
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*A__ , **A__ )
def UpperCamelCase_ ( self : Optional[int] , A__ : "Image" , A__ : str ) -> Optional[int]:
_snake_case = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
_snake_case = task_prompt.replace('''{user_input}''' , A__ )
_snake_case = self.pre_processor.tokenizer(
A__ , add_special_tokens=A__ , return_tensors='''pt''' ).input_ids
_snake_case = self.pre_processor(A__ , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def UpperCamelCase_ ( self : Optional[int] , A__ : Tuple ) -> Tuple:
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=A__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=A__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=A__ , ).sequences
def UpperCamelCase_ ( self : Union[str, Any] , A__ : Dict ) -> List[str]:
_snake_case = self.pre_processor.batch_decode(A__ )[0]
_snake_case = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
_snake_case = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
_snake_case = re.sub(R'''<.*?>''' , '''''' , A__ , count=1 ).strip() # remove first task start token
_snake_case = self.pre_processor.tokenajson(A__ )
return sequence["answer"]
| 278
|
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
__A = logging.get_logger(__name__)
class lowercase_ ( __lowercase ):
def __init__( self : Optional[Any] , *A__ : List[Any] , **A__ : int ) -> None:
warnings.warn(
'''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use DeformableDetrImageProcessor instead.''' , A__ , )
super().__init__(*A__ , **A__ )
| 278
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
a_ = logging.get_logger(__name__)
a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
a_ = {
'vocab_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json',
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'
),
},
'merges_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt',
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'
),
},
'tokenizer_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json',
'roberta-base-openai-detector': (
'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'
),
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'
),
},
}
a_ = {
'roberta-base': 5_1_2,
'roberta-large': 5_1_2,
'roberta-large-mnli': 5_1_2,
'distilroberta-base': 5_1_2,
'roberta-base-openai-detector': 5_1_2,
'roberta-large-openai-detector': 5_1_2,
}
class UpperCAmelCase_ ( snake_case ):
UpperCamelCase =VOCAB_FILES_NAMES
UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase =["input_ids", "attention_mask"]
UpperCamelCase =RobertaTokenizer
def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , UpperCamelCase_=True , **UpperCamelCase_ , ) -> Optional[Any]:
super().__init__(
UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , **UpperCamelCase_ , )
__lowercase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space:
__lowercase : Union[str, Any] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) )
__lowercase : Optional[int] = add_prefix_space
__lowercase : Optional[int] = pre_tok_class(**UpperCamelCase_ )
__lowercase : int = add_prefix_space
__lowercase : List[Any] = '''post_processor'''
__lowercase : Union[str, Any] = getattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ )
if tokenizer_component_instance:
__lowercase : List[str] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__lowercase : Tuple = tuple(state['''sep'''] )
if "cls" in state:
__lowercase : Union[str, Any] = tuple(state['''cls'''] )
__lowercase : str = False
if state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space:
__lowercase : Union[str, Any] = add_prefix_space
__lowercase : Optional[Any] = True
if state.get('''trim_offsets''' , UpperCamelCase_ ) != trim_offsets:
__lowercase : Any = trim_offsets
__lowercase : str = True
if changes_to_apply:
__lowercase : Any = getattr(UpperCamelCase_ , state.pop('''type''' ) )
__lowercase : Optional[Any] = component_class(**UpperCamelCase_ )
setattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ )
@property
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[Any]:
__lowercase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else value
__lowercase : List[str] = value
def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> BatchEncoding:
__lowercase : Optional[int] = kwargs.get('''is_split_into_words''' , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> BatchEncoding:
__lowercase : int = kwargs.get('''is_split_into_words''' , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]:
__lowercase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ) -> Dict:
__lowercase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]:
__lowercase : Optional[Any] = [self.sep_token_id]
__lowercase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 249
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ):
UpperCamelCase =StableDiffusionDiffEditPipeline
UpperCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
UpperCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
UpperCamelCase =frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCamelCase =frozenset([] )
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
__lowercase : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , )
__lowercase : Optional[Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , )
__lowercase : Optional[int] = DDIMInverseScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_zero=UpperCamelCase_ , )
torch.manual_seed(0 )
__lowercase : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__lowercase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , )
__lowercase : Optional[int] = CLIPTextModel(UpperCamelCase_ )
__lowercase : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__lowercase : str = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Any:
__lowercase : Any = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
__lowercase : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
if str(UpperCamelCase_ ).startswith('''mps''' ):
__lowercase : List[Any] = torch.manual_seed(UpperCamelCase_ )
else:
__lowercase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowercase : Any = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> int:
__lowercase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
__lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowercase : List[Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' )
if str(UpperCamelCase_ ).startswith('''mps''' ):
__lowercase : List[str] = torch.manual_seed(UpperCamelCase_ )
else:
__lowercase : List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowercase : int = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Union[str, Any]:
__lowercase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
__lowercase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowercase : Any = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' )
if str(UpperCamelCase_ ).startswith('''mps''' ):
__lowercase : Optional[Any] = torch.manual_seed(UpperCamelCase_ )
else:
__lowercase : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowercase : Optional[int] = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def _lowerCamelCase ( self ) -> Optional[Any]:
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
__lowercase : Optional[int] = self.get_dummy_components()
__lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
__lowercase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ )
__lowercase : Any = pipe(**UpperCamelCase_ )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCamelCase_ )
__lowercase : Tuple = self.pipeline_class.from_pretrained(UpperCamelCase_ )
pipe_loaded.to(UpperCamelCase_ )
pipe_loaded.set_progress_bar_config(disable=UpperCamelCase_ )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(UpperCamelCase_ , UpperCamelCase_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , )
__lowercase : List[Any] = self.get_dummy_inputs(UpperCamelCase_ )
__lowercase : Any = pipe_loaded(**UpperCamelCase_ )[0]
__lowercase : Any = np.abs(output - output_loaded ).max()
self.assertLess(UpperCamelCase_ , 1E-4 )
def _lowerCamelCase ( self ) -> List[Any]:
__lowercase : int = '''cpu'''
__lowercase : Optional[int] = self.get_dummy_components()
__lowercase : Tuple = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase : str = self.get_dummy_mask_inputs(UpperCamelCase_ )
__lowercase : int = pipe.generate_mask(**UpperCamelCase_ )
__lowercase : Any = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
__lowercase : List[Any] = np.array([0] * 9 )
__lowercase : str = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def _lowerCamelCase ( self ) -> str:
__lowercase : Optional[int] = '''cpu'''
__lowercase : Dict = self.get_dummy_components()
__lowercase : str = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase : int = self.get_dummy_inversion_inputs(UpperCamelCase_ )
__lowercase : List[str] = pipe.invert(**UpperCamelCase_ ).images
__lowercase : Any = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
__lowercase : Any = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
__lowercase : int = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def _lowerCamelCase ( self ) -> Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def _lowerCamelCase ( self ) -> str:
__lowercase : Union[str, Any] = '''cpu'''
__lowercase : str = self.get_dummy_components()
__lowercase : Any = {'''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''beta_schedule''': '''scaled_linear'''}
__lowercase : str = DPMSolverMultistepScheduler(**UpperCamelCase_ )
__lowercase : List[str] = DPMSolverMultistepInverseScheduler(**UpperCamelCase_ )
__lowercase : int = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase : str = self.get_dummy_inversion_inputs(UpperCamelCase_ )
__lowercase : str = pipe.invert(**UpperCamelCase_ ).images
__lowercase : Any = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
__lowercase : Union[str, Any] = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
__lowercase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
@require_torch_gpu
@slow
class UpperCAmelCase_ ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def _lowerCamelCase ( cls ) -> Optional[Any]:
__lowercase : List[str] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
__lowercase : Optional[int] = raw_image.convert('''RGB''' ).resize((7_68, 7_68) )
__lowercase : Any = raw_image
def _lowerCamelCase ( self ) -> Optional[int]:
__lowercase : str = torch.manual_seed(0 )
__lowercase : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa )
__lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config )
__lowercase : Dict = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase : Tuple = '''a bowl of fruit'''
__lowercase : int = '''a bowl of pears'''
__lowercase : str = pipe.generate_mask(
image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , )
__lowercase : Dict = pipe.invert(
prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ ).latents
__lowercase : Optional[int] = pipe(
prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
__lowercase : int = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5E-1
def _lowerCamelCase ( self ) -> Tuple:
__lowercase : Union[str, Any] = torch.manual_seed(0 )
__lowercase : Dict = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa )
__lowercase : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowercase : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase : List[str] = '''a bowl of fruit'''
__lowercase : Union[str, Any] = '''a bowl of pears'''
__lowercase : int = pipe.generate_mask(
image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , )
__lowercase : List[Any] = pipe.invert(
prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ , num_inference_steps=25 , ).latents
__lowercase : Optional[int] = pipe(
prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
__lowercase : Union[str, Any] = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 249
| 1
|
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_A = logging.getLogger()
def lowercase_ ( ):
lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
lowerCAmelCase__ : Any = parser.parse_args()
return args.f
class _lowerCamelCase ( a_ ):
def _lowerCAmelCase ( self : List[str] ) -> None:
"""simple docstring"""
lowerCAmelCase__ : str = logging.StreamHandler(sys.stdout )
logger.addHandler(lowercase_ )
def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ : Dict = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(lowercase_ , """argv""" , lowercase_ ):
lowerCAmelCase__ : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowercase_ , 0.666 )
@slow
@require_torch_non_multi_gpu
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ : Dict = """\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n """.split()
self.run_and_check(lowercase_ )
lowerCAmelCase__ : Optional[int] = """\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n """.split()
self.run_and_check(lowercase_ )
lowerCAmelCase__ : Tuple = """\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n """.split()
self.run_and_check(lowercase_ )
| 364
|
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 212
| 0
|
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowerCamelCase :
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=[0, 1, 2, 3] , ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = parent
UpperCAmelCase__ : List[str] = 100
UpperCAmelCase__ : Union[str, Any] = batch_size
UpperCAmelCase__ : Tuple = image_size
UpperCAmelCase__ : Optional[Any] = patch_size
UpperCAmelCase__ : Optional[int] = num_channels
UpperCAmelCase__ : str = is_training
UpperCAmelCase__ : int = use_labels
UpperCAmelCase__ : int = hidden_size
UpperCAmelCase__ : int = num_hidden_layers
UpperCAmelCase__ : Union[str, Any] = num_attention_heads
UpperCAmelCase__ : int = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_act
UpperCAmelCase__ : Tuple = hidden_dropout_prob
UpperCAmelCase__ : str = attention_probs_dropout_prob
UpperCAmelCase__ : List[Any] = type_sequence_label_size
UpperCAmelCase__ : int = initializer_range
UpperCAmelCase__ : Dict = scope
UpperCAmelCase__ : Union[str, Any] = out_indices
UpperCAmelCase__ : Any = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ : Dict = (image_size // patch_size) ** 2
UpperCAmelCase__ : Dict = num_patches + 1
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : Union[str, Any] = None
UpperCAmelCase__ : int = None
if self.use_labels:
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def _a (self ):
"""simple docstring"""
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Dict = BeitModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : Any = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Union[str, Any] = BeitForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : Dict = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : str = self.type_sequence_label_size
UpperCAmelCase__ : Optional[Any] = BeitForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Optional[int] = 1
UpperCAmelCase__ : List[Any] = BeitForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Any = self.num_labels
UpperCAmelCase__ : Any = BeitForSemanticSegmentation(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCAmelCase__ : List[str] = model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCAmelCase__ : Dict = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : int = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs
UpperCAmelCase__ : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : str = BeitModelTester(self )
UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def _a (self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""BEiT does not use inputs_embeds""" )
def _a (self ):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def _a (self ):
"""simple docstring"""
pass
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Union[str, Any] = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(_lowerCamelCase )
UpperCAmelCase__ : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : int = [*signature.parameters.keys()]
UpperCAmelCase__ : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
def _a (self ):
"""simple docstring"""
if not self.model_tester.is_training:
return
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Any = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(_lowerCamelCase ), BeitForMaskedImageModeling]:
continue
UpperCAmelCase__ : Tuple = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
UpperCAmelCase__ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
UpperCAmelCase__ : Any = model(**_lowerCamelCase ).loss
loss.backward()
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCAmelCase__ : str = False
UpperCAmelCase__ : Tuple = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(_lowerCamelCase ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase__ : Dict = model_class(_lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(_lowerCamelCase )
model.train()
UpperCAmelCase__ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
UpperCAmelCase__ : Any = model(**_lowerCamelCase ).loss
loss.backward()
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Any = _config_zero_init(_lowerCamelCase )
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@slow
def _a (self ):
"""simple docstring"""
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Any = BeitModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def a__ ( ) -> List[Any]:
UpperCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _a (self ):
"""simple docstring"""
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = self.default_image_processor
UpperCAmelCase__ : int = prepare_img()
UpperCAmelCase__ : Tuple = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCamelCase )
# prepare bool_masked_pos
UpperCAmelCase__ : Optional[int] = torch.ones((1, 196) , dtype=torch.bool ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : int = model(pixel_values=_lowerCamelCase , bool_masked_pos=_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = outputs.logits
# verify the logits
UpperCAmelCase__ : Optional[int] = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , _lowerCamelCase )
UpperCAmelCase__ : List[Any] = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowerCamelCase , atol=1e-2 ) )
@slow
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(_lowerCamelCase )
UpperCAmelCase__ : int = self.default_image_processor
UpperCAmelCase__ : str = prepare_img()
UpperCAmelCase__ : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[Any] = model(**_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = outputs.logits
# verify the logits
UpperCAmelCase__ : Tuple = torch.Size((1, 1000) )
self.assertEqual(logits.shape , _lowerCamelCase )
UpperCAmelCase__ : int = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
UpperCAmelCase__ : Union[str, Any] = 281
self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase )
@slow
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Any = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to(
_lowerCamelCase )
UpperCAmelCase__ : Optional[Any] = self.default_image_processor
UpperCAmelCase__ : Dict = prepare_img()
UpperCAmelCase__ : int = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Any = model(**_lowerCamelCase )
UpperCAmelCase__ : List[str] = outputs.logits
# verify the logits
UpperCAmelCase__ : Any = torch.Size((1, 21841) )
self.assertEqual(logits.shape , _lowerCamelCase )
UpperCAmelCase__ : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
UpperCAmelCase__ : Any = 2396
self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase )
@slow
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
UpperCAmelCase__ : Dict = model.to(_lowerCamelCase )
UpperCAmelCase__ : Optional[Any] = BeitImageProcessor(do_resize=_lowerCamelCase , size=640 , do_center_crop=_lowerCamelCase )
UpperCAmelCase__ : int = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
UpperCAmelCase__ : Tuple = Image.open(ds[0]["""file"""] )
UpperCAmelCase__ : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(**_lowerCamelCase )
UpperCAmelCase__ : Optional[Any] = outputs.logits
# verify the logits
UpperCAmelCase__ : Tuple = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , _lowerCamelCase )
UpperCAmelCase__ : Dict = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" )
if is_pillow_less_than_a:
UpperCAmelCase__ : Tuple = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=_lowerCamelCase , )
else:
UpperCAmelCase__ : List[str] = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=_lowerCamelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
@slow
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
UpperCAmelCase__ : str = model.to(_lowerCamelCase )
UpperCAmelCase__ : Optional[Any] = BeitImageProcessor(do_resize=_lowerCamelCase , size=640 , do_center_crop=_lowerCamelCase )
UpperCAmelCase__ : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["""file"""] )
UpperCAmelCase__ : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Tuple = model(**_lowerCamelCase )
UpperCAmelCase__ : Dict = outputs.logits.detach().cpu()
UpperCAmelCase__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(500, 300)] )
UpperCAmelCase__ : Union[str, Any] = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , _lowerCamelCase )
UpperCAmelCase__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase )
UpperCAmelCase__ : Any = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , _lowerCamelCase )
| 171
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _a (self , _lowerCamelCase ):
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
UpperCAmelCase__ : int = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(_lowerCamelCase )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Optional[Any] = """sshleifer/tiny-gpt2"""
UpperCAmelCase__ : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : int = PyTorchBenchmark(_lowerCamelCase )
UpperCAmelCase__ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = """sgugger/tiny-distilbert-classification"""
UpperCAmelCase__ : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , only_pretrain_model=_lowerCamelCase , )
UpperCAmelCase__ : Tuple = PyTorchBenchmark(_lowerCamelCase )
UpperCAmelCase__ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Dict = """sshleifer/tiny-gpt2"""
UpperCAmelCase__ : List[str] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , torchscript=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase )
UpperCAmelCase__ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Dict = """sshleifer/tiny-gpt2"""
UpperCAmelCase__ : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , fpaa=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : List[str] = PyTorchBenchmark(_lowerCamelCase )
UpperCAmelCase__ : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Any = """sshleifer/tiny-gpt2"""
UpperCAmelCase__ : Dict = AutoConfig.from_pretrained(_lowerCamelCase )
# set architectures equal to `None`
UpperCAmelCase__ : Tuple = None
UpperCAmelCase__ : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : List[Any] = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
UpperCAmelCase__ : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = """sshleifer/tiny-gpt2"""
UpperCAmelCase__ : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : int = PyTorchBenchmark(_lowerCamelCase )
UpperCAmelCase__ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = """sshleifer/tiny-gpt2"""
UpperCAmelCase__ : str = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCamelCase , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : List[Any] = PyTorchBenchmark(_lowerCamelCase )
UpperCAmelCase__ : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = """sshleifer/tiny-gpt2"""
UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : Tuple = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
UpperCAmelCase__ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = """sshleifer/tinier_bart"""
UpperCAmelCase__ : str = AutoConfig.from_pretrained(_lowerCamelCase )
UpperCAmelCase__ : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
UpperCAmelCase__ : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2"""
UpperCAmelCase__ : int = AutoConfig.from_pretrained(_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
UpperCAmelCase__ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Union[str, Any] = """sshleifer/tinier_bart"""
UpperCAmelCase__ : int = AutoConfig.from_pretrained(_lowerCamelCase )
UpperCAmelCase__ : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : Dict = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
UpperCAmelCase__ : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , save_to_csv=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCamelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_lowerCamelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_lowerCamelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_lowerCamelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(_lowerCamelCase , """env.csv""" ) , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : Dict = PyTorchBenchmark(_lowerCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCamelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """env.csv""" ) ).exists() )
def _a (self ):
"""simple docstring"""
UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(_lowerCamelCase ):
self.assertTrue(hasattr(_lowerCamelCase , """sequential""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """cumulative""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """current""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCamelCase , """log.txt""" ) , log_print=_lowerCamelCase , trace_memory_line_by_line=_lowerCamelCase , multi_process=_lowerCamelCase , )
UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """log.txt""" ) ).exists() )
| 171
| 1
|
from __future__ import annotations
import queue
class a_ :
'''simple docstring'''
def __init__( self , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ = data
lowerCAmelCase_ = None
lowerCAmelCase_ = None
def lowerCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower()
lowerCAmelCase_ = queue.Queue()
lowerCAmelCase_ = TreeNode(int(a_ ) )
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = left_node
q.put(a_ )
lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: '''
lowerCAmelCase_ = input(a_ ).strip().lower() or 'n'
if check == "n":
return tree_node
lowerCAmelCase_ = TreeNode(int(a_ ) )
lowerCAmelCase_ = right_node
q.put(a_ )
raise
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = queue.Queue()
q.put(a_ )
while not q.empty():
lowerCAmelCase_ = []
while not q.empty():
lowerCAmelCase_ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(a_ )
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(a_ )
lowerCAmelCase_ = n.left
# end of while means current node doesn't have left child
lowerCAmelCase_ = stack.pop()
# start to traverse its right child
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ = []
lowerCAmelCase_ = node
while n or stack:
while n:
stack.append(a_ )
lowerCAmelCase_ = n.left
lowerCAmelCase_ = stack.pop()
print(n.data , end=',' )
lowerCAmelCase_ = n.right
def lowerCamelCase ( a_ ) -> None:
if not isinstance(a_ , a_ ) or not node:
return
lowerCAmelCase_ , lowerCAmelCase_ = [], []
lowerCAmelCase_ = node
stacka.append(a_ )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCAmelCase_ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(a_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str:
if not s:
return "\n" + width * char
lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
lowerCamelCase_ = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 5_0 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14
|
lowerCamelCase_ = 6_5_5_2_1
def lowerCamelCase ( a_ ) -> int:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 0
for plain_chr in plain_text:
lowerCAmelCase_ = (a + ord(a_ )) % MOD_ADLER
lowerCAmelCase_ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14
| 1
|
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""Input value must be a 'int' type""" )
return bin(SCREAMING_SNAKE_CASE__ ).count("""1""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346
|
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346
| 1
|
import numpy as np
a__: Tuple = [
['a', 'b', 'c', 'd', 'e'],
['f', 'g', 'h', 'i', 'k'],
['l', 'm', 'n', 'o', 'p'],
['q', 'r', 's', 't', 'u'],
['v', 'w', 'x', 'y', 'z'],
]
class SCREAMING_SNAKE_CASE__ :
def __init__( self ):
A__ = np.array(__lowerCamelCase )
def UpperCamelCase ( self,__lowerCamelCase ):
A__ = np.where(letter == self.SQUARE )
A__ = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ):
A__ = self.SQUARE[indexa - 1, indexa - 1]
return letter
def UpperCamelCase ( self,__lowerCamelCase ):
A__ = message.lower()
A__ = message.replace(''' ''','''''' )
A__ = message.replace('''j''','''i''' )
A__ = np.empty((2, len(__lowerCamelCase )) )
for letter_index in range(len(__lowerCamelCase ) ):
A__ = self.letter_to_numbers(message[letter_index] )
A__ = numbers[0]
A__ = numbers[1]
A__ = first_step.reshape(2 * len(__lowerCamelCase ) )
A__ = ''''''
for numbers_index in range(len(__lowerCamelCase ) ):
A__ = int(second_step[numbers_index * 2] )
A__ = int(second_step[(numbers_index * 2) + 1] )
A__ = self.numbers_to_letter(__lowerCamelCase,__lowerCamelCase )
A__ = encoded_message + letter
return encoded_message
def UpperCamelCase ( self,__lowerCamelCase ):
A__ = message.lower()
message.replace(''' ''','''''' )
A__ = np.empty(2 * len(__lowerCamelCase ) )
for letter_index in range(len(__lowerCamelCase ) ):
A__ = self.letter_to_numbers(message[letter_index] )
A__ = numbers[0]
A__ = numbers[1]
A__ = first_step.reshape((2, len(__lowerCamelCase )) )
A__ = ''''''
for numbers_index in range(len(__lowerCamelCase ) ):
A__ = int(second_step[0, numbers_index] )
A__ = int(second_step[1, numbers_index] )
A__ = self.numbers_to_letter(__lowerCamelCase,__lowerCamelCase )
A__ = decoded_message + letter
return decoded_message
| 355
|
import os
import sys
a__: int = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
a__: Union[str, Any] = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] )->Any:
return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def UpperCamelCase__( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Any )->Dict:
return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
@add_start_docstrings(AutoModel.__doc__ )
def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any] )->int:
return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def UpperCamelCase__( *UpperCamelCase__ : int , **UpperCamelCase__ : Union[str, Any] )->Any:
return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] )->int:
return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def UpperCamelCase__( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Any )->Optional[Any]:
return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def UpperCamelCase__( *UpperCamelCase__ : Any , **UpperCamelCase__ : Union[str, Any] )->Tuple:
return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
| 39
| 0
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
_A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_A = {
'''vocab_file''': {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''unc-nlp/lxmert-base-uncased''': (
'''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
_A = {
'''unc-nlp/lxmert-base-uncased''': 512,
}
_A = {
'''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True},
}
class A ( __UpperCAmelCase ):
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_INIT_CONFIGURATION
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = LxmertTokenizer
def __init__( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=True, UpperCamelCase__="[UNK]", UpperCamelCase__="[SEP]", UpperCamelCase__="[PAD]", UpperCamelCase__="[CLS]", UpperCamelCase__="[MASK]", UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ):
"""simple docstring"""
super().__init__(
UpperCamelCase__, tokenizer_file=UpperCamelCase__, do_lower_case=UpperCamelCase__, unk_token=UpperCamelCase__, sep_token=UpperCamelCase__, pad_token=UpperCamelCase__, cls_token=UpperCamelCase__, mask_token=UpperCamelCase__, tokenize_chinese_chars=UpperCamelCase__, strip_accents=UpperCamelCase__, **UpperCamelCase__, )
lowerCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''', UpperCamelCase__ ) != do_lower_case
or normalizer_state.get('''strip_accents''', UpperCamelCase__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''', UpperCamelCase__ ) != tokenize_chinese_chars
):
lowerCAmelCase_ = getattr(UpperCamelCase__, normalizer_state.pop('''type''' ) )
lowerCAmelCase_ = do_lower_case
lowerCAmelCase_ = strip_accents
lowerCAmelCase_ = tokenize_chinese_chars
lowerCAmelCase_ = normalizer_class(**UpperCamelCase__ )
lowerCAmelCase_ = do_lower_case
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ):
"""simple docstring"""
lowerCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ):
"""simple docstring"""
lowerCAmelCase_ = [self.sep_token_id]
lowerCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ):
"""simple docstring"""
lowerCAmelCase_ = self._tokenizer.model.save(UpperCamelCase__, name=UpperCamelCase__ )
return tuple(UpperCamelCase__ )
| 278
|
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __UpperCamelCase ( _A ):
lowerCAmelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
lowerCAmelCase_ = [3, 3, 3, 3]
lowerCAmelCase_ = [5, 5, 5, 5]
elif "fl4" in model_name:
lowerCAmelCase_ = [4, 4, 4, 4]
lowerCAmelCase_ = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
lowerCAmelCase_ = [3, 3, 3, 3]
if "lrf" in model_name:
lowerCAmelCase_ = [3, 3, 3, 3]
else:
lowerCAmelCase_ = [2, 2, 2, 2]
if "tiny" in model_name:
lowerCAmelCase_ = 96
elif "small" in model_name:
lowerCAmelCase_ = 96
elif "base" in model_name:
lowerCAmelCase_ = 128
elif "large" in model_name:
lowerCAmelCase_ = 192
elif "xlarge" in model_name:
lowerCAmelCase_ = 256
elif "huge" in model_name:
lowerCAmelCase_ = 352
# set label information
lowerCAmelCase_ = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
lowerCAmelCase_ = '''imagenet-22k-id2label.json'''
else:
lowerCAmelCase_ = '''imagenet-1k-id2label.json'''
lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) )
lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()}
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ = FocalNetConfig(
embed_dim=_A , depths=_A , focal_levels=_A , focal_windows=_A , use_conv_embed=_A , idalabel=_A , labelaid=_A , use_post_layernorm=_A , use_layerscale=_A , )
return config
def __UpperCamelCase ( _A ):
if "patch_embed.proj" in name:
lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowerCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
lowerCAmelCase_ = '''encoder.''' + name
if "encoder.layers" in name:
lowerCAmelCase_ = name.replace('''encoder.layers''' , '''encoder.stages''' )
if "downsample.proj" in name:
lowerCAmelCase_ = name.replace('''downsample.proj''' , '''downsample.projection''' )
if "blocks" in name:
lowerCAmelCase_ = name.replace('''blocks''' , '''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
lowerCAmelCase_ = name.replace('''modulation.f''' , '''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
lowerCAmelCase_ = name.replace('''modulation.h''' , '''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
lowerCAmelCase_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' )
if name == "norm.weight":
lowerCAmelCase_ = '''layernorm.weight'''
if name == "norm.bias":
lowerCAmelCase_ = '''layernorm.bias'''
if "head" in name:
lowerCAmelCase_ = name.replace('''head''' , '''classifier''' )
else:
lowerCAmelCase_ = '''focalnet.''' + name
return name
def __UpperCamelCase ( _A , _A , _A=False ):
# fmt: off
lowerCAmelCase_ = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
lowerCAmelCase_ = model_name_to_url[model_name]
print('''Checkpoint URL: ''' , _A )
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
lowerCAmelCase_ = state_dict.pop(_A )
lowerCAmelCase_ = val
lowerCAmelCase_ = get_focalnet_config(_A )
lowerCAmelCase_ = FocalNetForImageClassification(_A )
model.eval()
# load state dict
model.load_state_dict(_A )
# verify conversion
lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase_ = BitImageProcessor(
do_resize=_A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_A , crop_size=224 , do_normalize=_A , image_mean=_A , image_std=_A , )
lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw )
lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' )
lowerCAmelCase_ = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
lowerCAmelCase_ = image_transforms(_A ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , _A , atol=1E-4 )
lowerCAmelCase_ = model(**_A )
lowerCAmelCase_ = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
lowerCAmelCase_ = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] )
elif model_name == "focalnet-tiny-lrf":
lowerCAmelCase_ = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] )
elif model_name == "focalnet-small":
lowerCAmelCase_ = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] )
elif model_name == "focalnet-small-lrf":
lowerCAmelCase_ = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] )
elif model_name == "focalnet-base":
lowerCAmelCase_ = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] )
elif model_name == "focalnet-base-lrf":
lowerCAmelCase_ = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] )
assert torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_A )
processor.save_pretrained(_A )
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub..." )
model.push_to_hub(f"{model_name}" )
processor.push_to_hub(f"{model_name}" )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''focalnet-tiny''',
type=str,
help='''Name of the FocalNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub.''',
)
_A = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 278
| 1
|
def UpperCamelCase ( _a , _a ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ :List[Any] = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
lowercase_ :Optional[Any] = n - k
# Calculate C(n,k)
for i in range(_a ):
result *= n - i
result //= i + 1
return result
def UpperCamelCase ( _a ) -> str:
'''simple docstring'''
return binomial_coefficient(2 * node_count , _a ) // (node_count + 1)
def UpperCamelCase ( _a ) -> int:
'''simple docstring'''
if n < 0:
raise ValueError('''factorial() not defined for negative values''' )
lowercase_ :str = 1
for i in range(1 , n + 1 ):
result *= i
return result
def UpperCamelCase ( _a ) -> int:
'''simple docstring'''
return catalan_number(_a ) * factorial(_a )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Any = int(input("Enter the number of nodes: ").strip() or 0)
if node_count <= 0:
raise ValueError("We need some nodes to work with.")
print(
f"Given {node_count} nodes, there are {binary_tree_count(node_count)} "
f"binary trees and {catalan_number(node_count)} binary search trees."
)
| 356
|
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def UpperCamelCase ( _a ) -> Union[str, Any]:
'''simple docstring'''
return getitem, k
def UpperCamelCase ( _a , _a ) -> int:
'''simple docstring'''
return setitem, k, v
def UpperCamelCase ( _a ) -> int:
'''simple docstring'''
return delitem, k
def UpperCamelCase ( _a , _a , *_a ) -> Any:
'''simple docstring'''
try:
return fun(_a , *_a ), None
except Exception as e:
return None, e
SCREAMING_SNAKE_CASE : List[Any] = (
_set("key_a", "val_a"),
_set("key_b", "val_b"),
)
SCREAMING_SNAKE_CASE : Tuple = [
_set("key_a", "val_a"),
_set("key_a", "val_b"),
]
SCREAMING_SNAKE_CASE : Any = [
_set("key_a", "val_a"),
_set("key_b", "val_b"),
_del("key_a"),
_del("key_b"),
_set("key_a", "val_a"),
_del("key_a"),
]
SCREAMING_SNAKE_CASE : Union[str, Any] = [
_get("key_a"),
_del("key_a"),
_set("key_a", "val_a"),
_del("key_a"),
_del("key_a"),
_get("key_a"),
]
SCREAMING_SNAKE_CASE : Any = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
SCREAMING_SNAKE_CASE : int = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("key_a", "val_b"),
]
@pytest.mark.parametrize(
'''operations''' , (
pytest.param(_add_items , id='''add items''' ),
pytest.param(_overwrite_items , id='''overwrite items''' ),
pytest.param(_delete_items , id='''delete items''' ),
pytest.param(_access_absent_items , id='''access absent items''' ),
pytest.param(_add_with_resize_up , id='''add with resize up''' ),
pytest.param(_add_with_resize_down , id='''add with resize down''' ),
) , )
def UpperCamelCase ( _a ) -> List[str]:
'''simple docstring'''
lowercase_ :Optional[Any] = HashMap(initial_block_size=4 )
lowercase_ :Optional[int] = {}
for _, (fun, *args) in enumerate(_a ):
lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a )
lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a )
assert my_res == py_res
assert str(_a ) == str(_a )
assert set(_a ) == set(_a )
assert len(_a ) == len(_a )
assert set(my.items() ) == set(py.items() )
def UpperCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
def is_public(_a ) -> bool:
return not name.startswith('''_''' )
lowercase_ :Dict = {name for name in dir({} ) if is_public(_a )}
lowercase_ :Dict = {name for name in dir(HashMap() ) if is_public(_a )}
assert dict_public_names > hash_public_names
| 252
| 0
|
from __future__ import annotations
def _UpperCamelCase ( lowercase__ ): # This function is recursive
__SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__SCREAMING_SNAKE_CASE : Dict = array[0]
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : List[str] = 1
__SCREAMING_SNAKE_CASE : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
__SCREAMING_SNAKE_CASE : List[Any] = True
__SCREAMING_SNAKE_CASE : Dict = [element for element in array[i:] if element >= array[i]]
__SCREAMING_SNAKE_CASE : Optional[Any] = longest_subsequence(lowercase__ )
if len(lowercase__ ) > len(lowercase__ ):
__SCREAMING_SNAKE_CASE : Optional[int] = temp_array
else:
i += 1
__SCREAMING_SNAKE_CASE : Dict = [element for element in array[1:] if element >= pivot]
__SCREAMING_SNAKE_CASE : Tuple = [pivot, *longest_subsequence(lowercase__ )]
if len(lowercase__ ) > len(lowercase__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9
|
from __future__ import annotations
import math
lowerCamelCase__ = """2020.9.26"""
lowerCamelCase__ = """xcodz-dot, cclaus, dhruvmanila"""
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[float, float]:
if not all(isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ) for val in locals().values() ):
lowerCAmelCase__ : List[str] = F'''Input values must either be float or int: {list(locals().values() )}'''
raise TypeError(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : Tuple = ((x * distance) / (z + distance)) * scale
lowerCAmelCase__ : Optional[int] = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[float, float, float]:
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise TypeError('Axis must be a str' )
lowerCAmelCase__ : Optional[int] = locals()
del input_variables["axis"]
if not all(isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ) for val in input_variables.values() ):
lowerCAmelCase__ : List[Any] = (
'Input values except axis must either be float or int: '
F'''{list(input_variables.values() )}'''
)
raise TypeError(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : int = (angle % 360) / 450 * 180 / math.pi
if axis == "z":
lowerCAmelCase__ : Tuple = x * math.cos(SCREAMING_SNAKE_CASE_ ) - y * math.sin(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : List[str] = y * math.cos(SCREAMING_SNAKE_CASE_ ) + x * math.sin(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : Optional[int] = z
elif axis == "x":
lowerCAmelCase__ : Dict = y * math.cos(SCREAMING_SNAKE_CASE_ ) - z * math.sin(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : List[str] = z * math.cos(SCREAMING_SNAKE_CASE_ ) + y * math.sin(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : Tuple = x
elif axis == "y":
lowerCAmelCase__ : str = x * math.cos(SCREAMING_SNAKE_CASE_ ) - z * math.sin(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : Optional[int] = z * math.cos(SCREAMING_SNAKE_CASE_ ) + x * math.sin(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ : List[Any] = y
else:
raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' )
return new_x, new_y, new_z
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""")
print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
| 212
| 0
|
"""simple docstring"""
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
a_ : Dict = """pixel_values"""
a_ : Optional[int] = False
a_ : str = TimmBackboneConfig
def __init__( self , __UpperCAmelCase , **__UpperCAmelCase) ->List[Any]:
requires_backends(self , "timm")
super().__init__(__UpperCAmelCase)
a_ = config
if config.backbone is None:
raise ValueError("backbone is not set in the config. Please set it to a timm model name.")
if config.backbone not in timm.list_models():
raise ValueError(F'''backbone {config.backbone} is not supported by timm.''')
if hasattr(__UpperCAmelCase , "out_features") and config.out_features is not None:
raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.")
a_ = getattr(__UpperCAmelCase , "use_pretrained_backbone" , __UpperCAmelCase)
if pretrained is None:
raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.")
# We just take the final layer by default. This matches the default for the transformers models.
a_ = config.out_indices if getattr(__UpperCAmelCase , "out_indices" , __UpperCAmelCase) is not None else (-1,)
a_ = timm.create_model(
config.backbone , pretrained=__UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCAmelCase , **__UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
a_ = self._backbone.return_layers
a_ = {layer["module"]: str(__UpperCAmelCase) for i, layer in enumerate(self._backbone.feature_info.info)}
super()._init_backbone(__UpperCAmelCase)
@classmethod
def UpperCAmelCase__ ( cls , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) ->Union[str, Any]:
requires_backends(cls , ["vision", "timm"])
from ...models.timm_backbone import TimmBackboneConfig
a_ = kwargs.pop("config" , TimmBackboneConfig())
a_ = kwargs.pop("use_timm_backbone" , __UpperCAmelCase)
if not use_timm:
raise ValueError("use_timm_backbone must be True for timm backbones")
a_ = kwargs.pop("num_channels" , config.num_channels)
a_ = kwargs.pop("features_only" , config.features_only)
a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone)
a_ = kwargs.pop("out_indices" , config.out_indices)
a_ = TimmBackboneConfig(
backbone=__UpperCAmelCase , num_channels=__UpperCAmelCase , features_only=__UpperCAmelCase , use_pretrained_backbone=__UpperCAmelCase , out_indices=__UpperCAmelCase , )
return super()._from_config(__UpperCAmelCase , **__UpperCAmelCase)
def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[Any]:
pass
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase) ->Union[BackboneOutput, Tuple[Tensor, ...]]:
a_ = return_dict if return_dict is not None else self.config.use_return_dict
a_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a_ = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("Cannot output attentions for timm backbones at the moment")
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
a_ = self._all_layers
a_ = self._backbone(__UpperCAmelCase , **__UpperCAmelCase)
a_ = self._return_layers
a_ = tuple(hidden_states[i] for i in self.out_indices)
else:
a_ = self._backbone(__UpperCAmelCase , **__UpperCAmelCase)
a_ = None
a_ = tuple(__UpperCAmelCase)
a_ = tuple(__UpperCAmelCase) if hidden_states is not None else None
if not return_dict:
a_ = (feature_maps,)
if output_hidden_states:
a_ = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=__UpperCAmelCase , hidden_states=__UpperCAmelCase , attentions=__UpperCAmelCase)
| 362
|
"""simple docstring"""
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class snake_case ( SCREAMING_SNAKE_CASE_ ):
def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str:
a_ = {
"pad": {"id": 0, "token": pad_token},
"eos": {"id": 1, "token": eos_token},
"unk": {"id": 2, "token": unk_token},
}
a_ = [None] * len(self.special_tokens)
for token_dict in self.special_tokens.values():
a_ = token_dict["token"]
a_ = Tokenizer(Unigram())
a_ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(" {2,}") , " "),
normalizers.Lowercase(),
])
a_ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase),
pre_tokenizers.Digits(individual_digits=__UpperCAmelCase),
pre_tokenizers.Punctuation(),
])
a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase)
a_ = TemplateProcessing(
single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , )
a_ = {
"model": "SentencePieceUnigram",
"replacement": replacement,
"add_prefix_space": add_prefix_space,
}
super().__init__(__UpperCAmelCase , __UpperCAmelCase)
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]:
a_ = trainers.UnigramTrainer(
vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , )
if isinstance(__UpperCAmelCase , __UpperCAmelCase):
a_ = [files]
self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase)
self.add_unk_id()
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int:
a_ = trainers.UnigramTrainer(
vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , )
self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase)
self.add_unk_id()
def UpperCAmelCase__ ( self) ->Union[str, Any]:
a_ = json.loads(self._tokenizer.to_str())
a_ = self.special_tokens["unk"]["id"]
a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
| 303
| 0
|
from __future__ import annotations
import queue
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase__ : str) ->Tuple:
'''simple docstring'''
A__ = data
A__ = None
A__ = None
def SCREAMING_SNAKE_CASE ( ) -> TreeNode:
"""simple docstring"""
print('''\n********Press N to stop entering at any point of time********\n''' )
A__ = input('''Enter the value of the root node: ''' ).strip().lower()
A__ = queue.Queue()
A__ = TreeNode(int(lowercase_ ) )
q.put(lowercase_ )
while not q.empty():
A__ = q.get()
A__ = f"""Enter the left node of {node_found.data}: """
A__ = input(lowercase_ ).strip().lower() or '''n'''
if check == "n":
return tree_node
A__ = TreeNode(int(lowercase_ ) )
A__ = left_node
q.put(lowercase_ )
A__ = f"""Enter the right node of {node_found.data}: """
A__ = input(lowercase_ ).strip().lower() or '''n'''
if check == "n":
return tree_node
A__ = TreeNode(int(lowercase_ ) )
A__ = right_node
q.put(lowercase_ )
raise
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ = queue.Queue()
q.put(lowercase_ )
while not q.empty():
A__ = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ = queue.Queue()
q.put(lowercase_ )
while not q.empty():
A__ = []
while not q.empty():
A__ = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ = []
A__ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(lowercase_ )
A__ = n.left
# end of while means current node doesn't have left child
A__ = stack.pop()
# start to traverse its right child
A__ = n.right
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ = []
A__ = node
while n or stack:
while n:
stack.append(lowercase_ )
A__ = n.left
A__ = stack.pop()
print(n.data , end=''',''' )
A__ = n.right
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ , A__ = [], []
A__ = node
stacka.append(lowercase_ )
while stacka: # to find the reversed order of post order, store it in stack2
A__ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(lowercase_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def SCREAMING_SNAKE_CASE ( lowercase_ = "" , lowercase_=50 , lowercase_="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
A__ , A__ = divmod(width - len(lowercase_ ) - 2 , 2 )
return f"""{left * char} {s} {(left + extra) * char}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
_lowerCamelCase : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14
|
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14
| 1
|
"""simple docstring"""
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = [
["""attention""", """attn"""],
["""encoder_attention""", """encoder_attn"""],
["""q_lin""", """q_proj"""],
["""k_lin""", """k_proj"""],
["""v_lin""", """v_proj"""],
["""out_lin""", """out_proj"""],
["""norm_embeddings""", """layernorm_embedding"""],
["""position_embeddings""", """embed_positions"""],
["""embeddings""", """embed_tokens"""],
["""ffn.lin""", """fc"""],
]
def __lowerCAmelCase (_UpperCamelCase ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__lowerCAmelCase : Optional[Any] = k.replace(_UpperCamelCase , _UpperCamelCase )
if k.startswith('encoder' ):
__lowerCAmelCase : Optional[Any] = k.replace('.attn' , '.self_attn' )
__lowerCAmelCase : str = k.replace('norm1' , 'self_attn_layer_norm' )
__lowerCAmelCase : List[Any] = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
__lowerCAmelCase : int = k.replace('norm1' , 'self_attn_layer_norm' )
__lowerCAmelCase : List[Any] = k.replace('norm2' , 'encoder_attn_layer_norm' )
__lowerCAmelCase : List[Any] = k.replace('norm3' , 'final_layer_norm' )
return k
def __lowerCAmelCase (_UpperCamelCase ):
__lowerCAmelCase : Dict = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
__lowerCAmelCase : Union[str, Any] = sd.pop(_UpperCamelCase )
__lowerCAmelCase : Optional[Any] = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
__lowerCAmelCase : Tuple = v
lowerCamelCase__ = ["""START"""]
@torch.no_grad()
def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase : Optional[int] = torch.load(_UpperCamelCase , map_location='cpu' )
__lowerCAmelCase : Optional[Any] = model['model']
__lowerCAmelCase : Optional[int] = BlenderbotConfig.from_json_file(_UpperCamelCase )
__lowerCAmelCase : Any = BlenderbotForConditionalGeneration(_UpperCamelCase )
__lowerCAmelCase : List[str] = m.model.state_dict().keys()
__lowerCAmelCase : Union[str, Any] = []
__lowerCAmelCase : Optional[int] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__lowerCAmelCase : Optional[Any] = rename_state_dict_key(_UpperCamelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__lowerCAmelCase : Optional[Any] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(_UpperCamelCase )
m.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase )
m.half()
m.save_pretrained(_UpperCamelCase )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""")
parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""")
parser.add_argument(
"""--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use"""
)
lowerCamelCase__ = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 362
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"""facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""",
}
class A__ ( _lowerCamelCase):
A_ : str = 'nllb-moe'
A_ : Optional[Any] = ['past_key_values']
A_ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , _SCREAMING_SNAKE_CASE=12_81_12 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_28 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ):
__lowerCAmelCase : int = vocab_size
__lowerCAmelCase : str = max_position_embeddings
__lowerCAmelCase : Dict = d_model
__lowerCAmelCase : Tuple = encoder_ffn_dim
__lowerCAmelCase : Optional[Any] = encoder_layers
__lowerCAmelCase : Any = encoder_attention_heads
__lowerCAmelCase : Tuple = decoder_ffn_dim
__lowerCAmelCase : Dict = decoder_layers
__lowerCAmelCase : str = decoder_attention_heads
__lowerCAmelCase : str = dropout
__lowerCAmelCase : List[str] = attention_dropout
__lowerCAmelCase : Optional[int] = activation_dropout
__lowerCAmelCase : List[Any] = activation_function
__lowerCAmelCase : List[str] = init_std
__lowerCAmelCase : Union[str, Any] = encoder_layerdrop
__lowerCAmelCase : List[Any] = decoder_layerdrop
__lowerCAmelCase : Optional[int] = use_cache
__lowerCAmelCase : Optional[Any] = encoder_layers
__lowerCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
__lowerCAmelCase : Union[str, Any] = router_z_loss_coef
__lowerCAmelCase : Optional[Any] = router_aux_loss_coef
__lowerCAmelCase : int = decoder_sparse_step
__lowerCAmelCase : str = encoder_sparse_step
__lowerCAmelCase : Tuple = num_experts
__lowerCAmelCase : Dict = expert_capacity
__lowerCAmelCase : Union[str, Any] = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" )
__lowerCAmelCase : Union[str, Any] = router_dtype
__lowerCAmelCase : Any = router_ignore_padding_tokens
__lowerCAmelCase : str = batch_prioritized_routing
__lowerCAmelCase : Tuple = second_expert_policy
__lowerCAmelCase : List[str] = normalize_router_prob_before_dropping
__lowerCAmelCase : Dict = moe_eval_capacity_token_fraction
__lowerCAmelCase : Union[str, Any] = moe_token_dropout
__lowerCAmelCase : List[Any] = output_router_logits
super().__init__(
pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
| 182
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : List[Any] = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
_lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 93
|
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_a = get_tests_dir('''fixtures/spiece.model''')
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( snake_case__ , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = AlbertTokenizer
UpperCamelCase__ = AlbertTokenizerFast
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
def UpperCamelCase ( self ):
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCAmelCase = AlbertTokenizer(UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase ( self , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = 'this is a test'
_UpperCAmelCase = 'this is a test'
return input_text, output_text
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = '<pad>'
_UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase )
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<pad>' )
self.assertEqual(vocab_keys[1] , '<unk>' )
self.assertEqual(vocab_keys[-1] , '▁eloquent' )
self.assertEqual(len(UpperCAmelCase ) , 3_0000 )
def UpperCamelCase ( self ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 )
def UpperCamelCase ( self ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = 'I was born in 92000, and this is falsé.'
_UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase )
_UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
_UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
_UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = tokenizer.encode(UpperCAmelCase )
_UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase )
_UpperCAmelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] )
_UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] )
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] )
_UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertListEqual(
UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , )
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = AlbertTokenizer(UpperCAmelCase )
_UpperCAmelCase = tokenizer.encode('sequence builders' )
_UpperCAmelCase = tokenizer.encode('multi-sequence build' )
_UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
_UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def UpperCamelCase ( self ):
"""simple docstring"""
_UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
| 39
| 0
|
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
snake_case_ = 1
for i in range(1, num + 1 ):
fact *= i
return fact
def __magic_name__ ( __UpperCAmelCase ) -> Dict:
'''simple docstring'''
snake_case_ = 0
while number > 0:
snake_case_ = number % 10
sum_of_digits += last_digit
snake_case_ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def __magic_name__ ( __UpperCAmelCase = 100 ) -> str:
'''simple docstring'''
snake_case_ = factorial(lowerCAmelCase__ )
snake_case_ = split_and_add(lowerCAmelCase__ )
return result
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 365
|
'''simple docstring'''
from datetime import datetime
import requests
def __magic_name__ ( __UpperCAmelCase ) -> bytes:
'''simple docstring'''
snake_case_ = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url='''
snake_case_ = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src''']
return requests.get(__UpperCAmelCase ).content
if __name__ == "__main__":
a : Optional[Any] = input('Enter Video/IGTV url: ').strip()
a : Union[str, Any] = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, 'wb') as fp:
fp.write(download_video(url))
print(f'''Done. Video saved to disk as {file_name}.''')
| 72
| 0
|
"""simple docstring"""
import os
import sys
_a : List[Any] = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
_a : Optional[Any] = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : Optional[Any] ) -> Any:
return AutoConfig.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : int ) -> List[str]:
return AutoTokenizer.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
@add_start_docstrings(AutoModel.__doc__ )
def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Any ,**_lowerCamelCase : str ) -> Any:
return AutoModel.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : List[Any] ) -> Dict:
return AutoModelForCausalLM.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[Any] ,**_lowerCamelCase : Optional[int] ) -> Union[str, Any]:
return AutoModelForMaskedLM.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[Any] ,**_lowerCamelCase : Dict ) -> Dict:
return AutoModelForSequenceClassification.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Union[str, Any] ,**_lowerCamelCase : List[Any] ) -> Optional[Any]:
return AutoModelForQuestionAnswering.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
| 44
|
import re
import string
import numpy as np
import datasets
UpperCAmelCase : List[str] = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
UpperCAmelCase : str = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
UpperCAmelCase : Dict = "\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowercase ( datasets.Metric ):
"""simple docstring"""
def __A ( self ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , reference_urls=[] , )
def __A ( self , A , A , A=None , A=False , A=False , A=False , ) -> List[str]:
'''simple docstring'''
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
lowerCamelCase = np.array([re.sub(A , """""" , A ) for x in predictions] )
lowerCamelCase = np.array([re.sub(A , """""" , A ) for x in references] )
else:
lowerCamelCase = np.asarray(A )
lowerCamelCase = np.asarray(A )
if ignore_case:
lowerCamelCase = np.char.lower(A )
lowerCamelCase = np.char.lower(A )
if ignore_punctuation:
lowerCamelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation )
lowerCamelCase = np.char.translate(A , table=A )
lowerCamelCase = np.char.translate(A , table=A )
if ignore_numbers:
lowerCamelCase = string.digits.maketrans("""""" , """""" , string.digits )
lowerCamelCase = np.char.translate(A , table=A )
lowerCamelCase = np.char.translate(A , table=A )
lowerCamelCase = predictions == references
return {"exact_match": np.mean(A ) * 1_00}
| 252
| 0
|
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__SCREAMING_SNAKE_CASE : Tuple = logging.getLogger()
@unittest.skip('Temporarily disable the doc tests.' )
@require_torch
@require_tf
@slow
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ):
_lowerCamelCase = [file for file in os.listdir(lowerCamelCase__ ) if os.path.isfile(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) )]
if identifier is not None:
_lowerCamelCase = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
for n_ in n_identifier:
_lowerCamelCase = [file for file in files if n_ not in file]
else:
_lowerCamelCase = [file for file in files if n_identifier not in file]
_lowerCamelCase = ignore_files or []
ignore_files.append('''__init__.py''' )
_lowerCamelCase = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('''Testing''' , lowerCamelCase__ )
if only_modules:
_lowerCamelCase = file.split('''.''' )[0]
try:
_lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
_lowerCamelCase = doctest.DocTestSuite(lowerCamelCase__ )
_lowerCamelCase = unittest.TextTestRunner().run(lowerCamelCase__ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
_lowerCamelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def snake_case__ ( self ):
_lowerCamelCase = Path('''src/transformers''' )
_lowerCamelCase = '''modeling'''
_lowerCamelCase = [
'''modeling_ctrl.py''',
'''modeling_tf_ctrl.py''',
]
self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ , ignore_files=lowerCamelCase__ )
def snake_case__ ( self ):
_lowerCamelCase = Path('''src/transformers''' )
_lowerCamelCase = '''tokenization'''
self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ )
def snake_case__ ( self ):
_lowerCamelCase = Path('''src/transformers''' )
_lowerCamelCase = '''configuration'''
self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ )
def snake_case__ ( self ):
_lowerCamelCase = Path('''src/transformers''' )
_lowerCamelCase = ['''configuration''', '''modeling''', '''tokenization''']
self.analyze_directory(lowerCamelCase__ , n_identifier=lowerCamelCase__ )
def snake_case__ ( self ):
_lowerCamelCase = Path('''docs/source''' )
_lowerCamelCase = ['''favicon.ico''']
self.analyze_directory(lowerCamelCase__ , ignore_files=lowerCamelCase__ , only_modules=lowerCamelCase__ )
| 366
|
"""simple docstring"""
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=3_2 , lowerCamelCase__=3 , lowerCamelCase__=1_0 , lowerCamelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ):
_lowerCamelCase = parent
_lowerCamelCase = batch_size
_lowerCamelCase = image_size
_lowerCamelCase = num_channels
_lowerCamelCase = embeddings_size
_lowerCamelCase = hidden_sizes
_lowerCamelCase = depths
_lowerCamelCase = is_training
_lowerCamelCase = use_labels
_lowerCamelCase = hidden_act
_lowerCamelCase = num_labels
_lowerCamelCase = scope
_lowerCamelCase = len(lowerCamelCase__ )
def snake_case__ ( self ):
_lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase = self.get_config()
return config, pixel_values
def snake_case__ ( self ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ):
_lowerCamelCase = FlaxRegNetModel(config=lowerCamelCase__ )
_lowerCamelCase = model(lowerCamelCase__ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ):
_lowerCamelCase = self.num_labels
_lowerCamelCase = FlaxRegNetForImageClassification(config=lowerCamelCase__ )
_lowerCamelCase = model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self ):
_lowerCamelCase = self.prepare_config_and_inputs()
_lowerCamelCase , _lowerCamelCase = config_and_inputs
_lowerCamelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class lowerCamelCase_( A__, unittest.TestCase ):
'''simple docstring'''
lowercase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
lowercase__ : List[Any] = False
lowercase__ : Tuple = False
lowercase__ : Union[str, Any] = False
def snake_case__ ( self ):
_lowerCamelCase = FlaxRegNetModelTester(self )
_lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def snake_case__ ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case__ ( self ):
return
def snake_case__ ( self ):
_lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def snake_case__ ( self ):
_lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def snake_case__ ( self ):
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def snake_case__ ( self ):
pass
def snake_case__ ( self ):
_lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase = model_class(lowerCamelCase__ )
_lowerCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase = [*signature.parameters.keys()]
_lowerCamelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
def snake_case__ ( self ):
def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
_lowerCamelCase = model_class(lowerCamelCase__ )
_lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) )
_lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCamelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 )
_lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase = True
check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase = True
check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def snake_case__ ( self ):
_lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
_lowerCamelCase = model_class(lowerCamelCase__ )
@jax.jit
def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ):
return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ )
with self.subTest('''JIT Enabled''' ):
_lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) )
for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase_( ) -> Optional[Any]:
_lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class lowerCamelCase_( unittest.TestCase ):
'''simple docstring'''
@cached_property
def snake_case__ ( self ):
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def snake_case__ ( self ):
_lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
_lowerCamelCase = self.default_image_processor
_lowerCamelCase = prepare_img()
_lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='''np''' )
_lowerCamelCase = model(**lowerCamelCase__ )
# verify the logits
_lowerCamelCase = (1, 1_0_0_0)
self.assertEqual(outputs.logits.shape , lowerCamelCase__ )
_lowerCamelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
| 73
| 0
|
import math
import os
import sys
def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> str:
SCREAMING_SNAKE_CASE_ = ''''''
try:
with open(__UpperCAmelCase , 'rb' ) as binary_file:
SCREAMING_SNAKE_CASE_ = binary_file.read()
for dat in data:
SCREAMING_SNAKE_CASE_ = f"{dat:08b}"
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any ) -> str:
lexicon.pop(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = last_match_id
if math.loga(__UpperCAmelCase ).is_integer():
for curr_key in lexicon:
SCREAMING_SNAKE_CASE_ = '''0''' + lexicon[curr_key]
SCREAMING_SNAKE_CASE_ = bin(__UpperCAmelCase )[2:]
def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> int:
SCREAMING_SNAKE_CASE_ = {'''0''': '''0''', '''1''': '''1'''}
SCREAMING_SNAKE_CASE_ = '''''', ''''''
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase )
for i in range(len(__UpperCAmelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
SCREAMING_SNAKE_CASE_ = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
index += 1
SCREAMING_SNAKE_CASE_ = ''''''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
SCREAMING_SNAKE_CASE_ = lexicon[curr_string]
result += last_match_id
return result
def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) -> str:
SCREAMING_SNAKE_CASE_ = os.path.getsize(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = bin(__UpperCAmelCase )[2:]
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase )
return "0" * (length_length - 1) + file_length_binary + compressed
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : List[Any] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = 8
try:
with open(__UpperCAmelCase , 'wb' ) as opened_file:
SCREAMING_SNAKE_CASE_ = [
to_write[i : i + byte_length]
for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> List[str]:
SCREAMING_SNAKE_CASE_ = read_file_binary(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = compress_data(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = add_file_length(__UpperCAmelCase , __UpperCAmelCase )
write_file_binary(__UpperCAmelCase , __UpperCAmelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 225
|
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
lowercase_ = importlib.util.find_spec("""s3fs""") is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
lowercase_ = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''')
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def a__ ( snake_case ):
"""simple docstring"""
if "://" in dataset_path:
__SCREAMING_SNAKE_CASE : Any = dataset_path.split('''://''' )[1]
return dataset_path
def a__ ( snake_case ):
"""simple docstring"""
if fs is not None and fs.protocol != "file":
return True
else:
return False
def a__ ( snake_case , snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(snake_case )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) )
else:
fs.mv(snake_case , snake_case , recursive=snake_case )
def a__ ( ):
"""simple docstring"""
if hasattr(fsspec.asyn , '''reset_lock''' ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
__SCREAMING_SNAKE_CASE : int = None
__SCREAMING_SNAKE_CASE : Union[str, Any] = None
__SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
| 303
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
__A = None
__A = logging.get_logger(__name__)
__A = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
__A = {
'''vocab_file''': {
'''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''',
'''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''',
'''moussaKam/barthez-orangesum-title''': (
'''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''',
'''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''',
'''moussaKam/barthez-orangesum-title''': (
'''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json'''
),
},
}
__A = {
'''moussaKam/mbarthez''': 1024,
'''moussaKam/barthez''': 1024,
'''moussaKam/barthez-orangesum-title''': 1024,
}
__A = '''▁'''
class _snake_case ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = ["input_ids", "attention_mask"]
snake_case__ = BarthezTokenizer
def __init__( self : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int="<s>" , UpperCAmelCase : Dict="</s>" , UpperCAmelCase : List[str]="</s>" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Dict="<unk>" , UpperCAmelCase : List[Any]="<pad>" , UpperCAmelCase : List[Any]="<mask>" , **UpperCAmelCase : Dict , ):
# Mask token behave like a normal word, i.e. include the space before it
__lowerCamelCase : Union[str, Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , )
__lowerCamelCase : Any = vocab_file
__lowerCamelCase : Dict = False if not self.vocab_file else True
def lowerCamelCase__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCamelCase : Optional[Any] = [self.cls_token_id]
__lowerCamelCase : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
__lowerCamelCase : int = [self.sep_token_id]
__lowerCamelCase : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCamelCase : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ):
copyfile(self.vocab_file , UpperCAmelCase )
return (out_vocab_file,)
| 358
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__A = {
'''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''],
'''tokenization_xlm''': ['''XLMTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMForMultipleChoice''',
'''XLMForQuestionAnswering''',
'''XLMForQuestionAnsweringSimple''',
'''XLMForSequenceClassification''',
'''XLMForTokenClassification''',
'''XLMModel''',
'''XLMPreTrainedModel''',
'''XLMWithLMHeadModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMForMultipleChoice''',
'''TFXLMForQuestionAnsweringSimple''',
'''TFXLMForSequenceClassification''',
'''TFXLMForTokenClassification''',
'''TFXLMMainLayer''',
'''TFXLMModel''',
'''TFXLMPreTrainedModel''',
'''TFXLMWithLMHeadModel''',
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 64
| 0
|
from __future__ import annotations
def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Dict ):
'''simple docstring'''
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = 0
__lowerCamelCase = sum(_lowercase )
create_state_space_tree(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
return result
def lowerCamelCase__ ( A__ : Tuple , A__ : int , A__ : List[Any] , A__ : Any , A__ : Union[str, Any] , A__ : int , ):
'''simple docstring'''
if sum(_lowercase ) > max_sum or (remaining_nums_sum + sum(_lowercase )) < max_sum:
return
if sum(_lowercase ) == max_sum:
result.append(_lowercase )
return
for index in range(_lowercase , len(_lowercase ) ):
create_state_space_tree(
_lowercase , _lowercase , index + 1 , [*path, nums[index]] , _lowercase , remaining_nums_sum - nums[index] , )
UpperCAmelCase_ = [3, 34, 4, 12, 5, 2]
UpperCAmelCase_ = 9
UpperCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 12
|
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def A ( _lowercase ):
if "model" in orig_key:
SCREAMING_SNAKE_CASE : int = orig_key.replace('''model.''' , '''''' )
if "norm1" in orig_key:
SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' )
if "norm2" in orig_key:
SCREAMING_SNAKE_CASE : str = orig_key.replace('''norm2''' , '''output.LayerNorm''' )
if "norm" in orig_key:
SCREAMING_SNAKE_CASE : Tuple = orig_key.replace('''norm''' , '''LayerNorm''' )
if "transformer" in orig_key:
SCREAMING_SNAKE_CASE : int = orig_key.split('''.''' )[0].split('''_''' )[-1]
SCREAMING_SNAKE_CASE : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" )
if "mha.attn" in orig_key:
SCREAMING_SNAKE_CASE : Any = orig_key.replace('''mha.attn''' , '''attention.self''' )
if "mha" in orig_key:
SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mha''' , '''attention''' )
if "W_q" in orig_key:
SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''W_q''' , '''self.query''' )
if "W_k" in orig_key:
SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''W_k''' , '''self.key''' )
if "W_v" in orig_key:
SCREAMING_SNAKE_CASE : str = orig_key.replace('''W_v''' , '''self.value''' )
if "ff1" in orig_key:
SCREAMING_SNAKE_CASE : Any = orig_key.replace('''ff1''' , '''intermediate.dense''' )
if "ff2" in orig_key:
SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''ff2''' , '''output.dense''' )
if "ff" in orig_key:
SCREAMING_SNAKE_CASE : Dict = orig_key.replace('''ff''' , '''output.dense''' )
if "mlm_class" in orig_key:
SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' )
if "mlm" in orig_key:
SCREAMING_SNAKE_CASE : str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' )
if "cls" not in orig_key:
SCREAMING_SNAKE_CASE : List[str] = '''yoso.''' + orig_key
return orig_key
def A ( _lowercase , _lowercase ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(_lowercase )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = val
SCREAMING_SNAKE_CASE : List[str] = orig_state_dict['''cls.predictions.decoder.bias''']
SCREAMING_SNAKE_CASE : Dict = torch.arange(_lowercase ).expand((1, -1) ) + 2
return orig_state_dict
def A ( _lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowercase , map_location='''cpu''' )['''model_state_dict''']
SCREAMING_SNAKE_CASE : List[Any] = YosoConfig.from_json_file(_lowercase )
SCREAMING_SNAKE_CASE : str = YosoForMaskedLM(_lowercase )
SCREAMING_SNAKE_CASE : Union[str, Any] = convert_checkpoint_helper(config.max_position_embeddings , _lowercase )
print(model.load_state_dict(_lowercase ) )
model.eval()
model.save_pretrained(_lowercase )
print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" )
if __name__ == "__main__":
__UpperCamelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The json file for YOSO model config.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__UpperCamelCase : Optional[Any] = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 182
| 0
|
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowercase ( snake_case_ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowercase ( unittest.TestCase ):
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any:
"""simple docstring"""
UpperCamelCase_ : int = ort.SessionOptions()
UpperCamelCase_ : Optional[Any] = False
return options
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/overture-creations-5sI6fQgYIuo.png' )
UpperCamelCase_ : Union[str, Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/overture-creations-5sI6fQgYIuo_mask.png' )
UpperCamelCase_ : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=snake_case , feature_extractor=snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case )
UpperCamelCase_ : Optional[Any] = 'A red cat sitting on a park bench'
UpperCamelCase_ : List[Any] = np.random.RandomState(0 )
UpperCamelCase_ : int = pipe(
prompt=snake_case , image=snake_case , mask_image=snake_case , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case , output_type='np' , )
UpperCamelCase_ : Dict = output.images
UpperCamelCase_ : List[str] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
UpperCamelCase_ : str = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int:
"""simple docstring"""
UpperCamelCase_ : str = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/overture-creations-5sI6fQgYIuo.png' )
UpperCamelCase_ : int = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/overture-creations-5sI6fQgYIuo_mask.png' )
UpperCamelCase_ : str = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' )
UpperCamelCase_ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case )
UpperCamelCase_ : Optional[Any] = 'A red cat sitting on a park bench'
UpperCamelCase_ : Dict = np.random.RandomState(0 )
UpperCamelCase_ : List[Any] = pipe(
prompt=snake_case , image=snake_case , mask_image=snake_case , guidance_scale=7.5 , num_inference_steps=2_0 , generator=snake_case , output_type='np' , )
UpperCamelCase_ : Union[str, Any] = output.images
UpperCamelCase_ : Optional[int] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
UpperCamelCase_ : Optional[int] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 369
|
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowercase ( unittest.TestCase ):
def __init__( self : List[Any] , snake_case : int , snake_case : Union[str, Any]=2 , snake_case : Optional[Any]=5_6 , snake_case : Dict=True , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : List[Any]=True , snake_case : Tuple=9_9 , snake_case : Any=3_2 , snake_case : List[Any]=2 , snake_case : Optional[Any]=2 , snake_case : str=7 , snake_case : Dict="gelu_new" , snake_case : List[str]=0.1 , snake_case : Dict=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : Tuple=1_6 , snake_case : Dict=2 , snake_case : List[str]=0.02 , snake_case : Optional[int]=4 , snake_case : str="block_sparse" , snake_case : List[Any]=True , snake_case : int=False , snake_case : Tuple=2 , snake_case : Optional[int]=3 , ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase_ : List[Any] = parent
UpperCamelCase_ : str = batch_size
UpperCamelCase_ : List[str] = seq_length
UpperCamelCase_ : Union[str, Any] = is_training
UpperCamelCase_ : Dict = use_attention_mask
UpperCamelCase_ : List[Any] = use_token_type_ids
UpperCamelCase_ : Optional[Any] = use_labels
UpperCamelCase_ : Dict = vocab_size
UpperCamelCase_ : Union[str, Any] = hidden_size
UpperCamelCase_ : Optional[Any] = num_hidden_layers
UpperCamelCase_ : Any = num_attention_heads
UpperCamelCase_ : Optional[Any] = intermediate_size
UpperCamelCase_ : Optional[Any] = hidden_act
UpperCamelCase_ : int = hidden_dropout_prob
UpperCamelCase_ : Union[str, Any] = attention_probs_dropout_prob
UpperCamelCase_ : List[str] = max_position_embeddings
UpperCamelCase_ : List[Any] = type_vocab_size
UpperCamelCase_ : Any = type_sequence_label_size
UpperCamelCase_ : Optional[int] = initializer_range
UpperCamelCase_ : int = num_choices
UpperCamelCase_ : str = rescale_embeddings
UpperCamelCase_ : List[Any] = attention_type
UpperCamelCase_ : Optional[Any] = use_bias
UpperCamelCase_ : List[str] = block_size
UpperCamelCase_ : int = num_random_blocks
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ : str = None
if self.use_attention_mask:
UpperCamelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase_ : int = None
if self.use_token_type_ids:
UpperCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase_ : Tuple = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int:
"""simple docstring"""
UpperCamelCase_ : Any = self.prepare_config_and_inputs()
UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : int = config_and_inputs
UpperCamelCase_ : Tuple = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask,
}
return config, inputs_dict
@require_flax
class _lowercase ( snake_case_ , unittest.TestCase ):
lowercase = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
lowercase = False
lowercase = False
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
UpperCamelCase_ : List[str] = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any:
"""simple docstring"""
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple:
"""simple docstring"""
super().test_hidden_states_output()
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCamelCase_ : Optional[Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' )
self.assertIsNotNone(snake_case )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int:
"""simple docstring"""
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_, UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase_ : Optional[Any] = self._prepare_for_class(snake_case , snake_case )
UpperCamelCase_ : Optional[Any] = model_class(snake_case )
@jax.jit
def model_jitted(snake_case : str , snake_case : List[str]=None , **snake_case : Tuple ):
return model(input_ids=snake_case , attention_mask=snake_case , **snake_case )
with self.subTest('JIT Enabled' ):
UpperCamelCase_ : List[str] = model_jitted(**snake_case ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase_ : List[str] = model_jitted(**snake_case ).to_tuple()
self.assertEqual(len(snake_case ) , len(snake_case ) )
for jitted_output, output in zip(snake_case , snake_case ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Optional[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Optional[int]=1e-5 , snake_case : Tuple="outputs" , snake_case : Dict=None ) -> Dict:
"""simple docstring"""
if name.startswith('outputs.attentions' ):
return
else:
super().check_pt_flax_outputs(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )
| 50
| 0
|
'''simple docstring'''
def _UpperCamelCase ( __A ) -> list:
'''simple docstring'''
def merge(__A , __A ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(__A ) <= 1:
return collection
UpperCamelCase__ = len(__A ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a__ : List[str] = input('Enter numbers separated by a comma:\n').strip()
a__ : Tuple = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 80
|
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def snake_case_ ( A_ : Any ):
'''simple docstring'''
_lowerCamelCase : Any = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(A_, A_ )
def snake_case_ ( A_ : Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase , _lowerCamelCase : Tuple = emb.weight.shape
_lowerCamelCase : Dict = nn.Linear(A_, A_, bias=A_ )
_lowerCamelCase : str = emb.weight.data
return lin_layer
def snake_case_ ( A_ : str, A_ : Optional[int]="facebook/mbart-large-en-ro", A_ : Union[str, Any]=False, A_ : List[str]=False ):
'''simple docstring'''
_lowerCamelCase : Tuple = torch.load(A_, map_location='''cpu''' )['''model''']
remove_ignore_keys_(A_ )
_lowerCamelCase : int = state_dict['''encoder.embed_tokens.weight'''].shape[0]
_lowerCamelCase : Any = MBartConfig.from_pretrained(A_, vocab_size=A_ )
if mbart_aa and finetuned:
_lowerCamelCase : Any = '''relu'''
_lowerCamelCase : Optional[int] = state_dict['''decoder.embed_tokens.weight''']
_lowerCamelCase : Any = MBartForConditionalGeneration(A_ )
model.model.load_state_dict(A_ )
if finetuned:
_lowerCamelCase : str = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''',
default='''facebook/mbart-large-cc25''',
type=str,
help='''Which huggingface architecture to use: mbart-large''',
)
parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''')
parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''')
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 72
| 0
|
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_lowerCamelCase : Tuple = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''pixel_values''']
def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Dict[str, int]] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : List[str] , ) ->None:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = size if size is not None else {'''shortest_edge''': 256}
A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__)
A__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
A__ = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''')
A__ = do_resize
A__ = size
A__ = resample
A__ = do_center_crop
A__ = crop_size
A__ = do_rescale
A__ = rescale_factor
A__ = do_normalize
A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : int , ) ->np.ndarray:
'''simple docstring'''
A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__)
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""")
A__ = get_resize_output_image_size(UpperCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase__)
return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) ->np.ndarray:
'''simple docstring'''
A__ = get_size_dict(UpperCAmelCase__)
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""")
return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int]) ->np.ndarray:
'''simple docstring'''
return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) ->np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : Dict , ) ->Any:
'''simple docstring'''
A__ = do_resize if do_resize is not None else self.do_resize
A__ = size if size is not None else self.size
A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__)
A__ = resample if resample is not None else self.resample
A__ = do_center_crop if do_center_crop is not None else self.do_center_crop
A__ = crop_size if crop_size is not None else self.crop_size
A__ = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''')
A__ = do_rescale if do_rescale is not None else self.do_rescale
A__ = rescale_factor if rescale_factor is not None else self.rescale_factor
A__ = do_normalize if do_normalize is not None else self.do_normalize
A__ = image_mean if image_mean is not None else self.image_mean
A__ = image_std if image_std is not None else self.image_std
A__ = make_list_of_images(UpperCAmelCase__)
if not valid_images(UpperCAmelCase__):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''')
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''')
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''')
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''')
# All transformations expect numpy arrays.
A__ = [to_numpy_array(UpperCAmelCase__) for image in images]
if do_resize:
A__ = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__) for image in images]
if do_center_crop:
A__ = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__) for image in images]
if do_rescale:
A__ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__) for image in images]
if do_normalize:
A__ = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__) for image in images]
A__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__) for image in images]
A__ = {'''pixel_values''': images}
return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Tuple] = None) ->Dict:
'''simple docstring'''
A__ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCAmelCase__) != len(UpperCAmelCase__):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''')
if is_torch_tensor(UpperCAmelCase__):
A__ = target_sizes.numpy()
A__ = []
for idx in range(len(UpperCAmelCase__)):
A__ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCAmelCase__)
A__ = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(UpperCAmelCase__)
else:
A__ = logits.argmax(dim=1)
A__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 231
|
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : float) ->float:
'''simple docstring'''
return 0.0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int | float, int | float]:
"""simple docstring"""
A__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
A__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None:
"""simple docstring"""
A__ = 512
A__ = [1] + [0] * (size - 1)
A__ = [filter_type.process(lowercase_ ) for item in inputs]
A__ = [0] * (samplerate - size) # zero-padding
outputs += filler
A__ = np.abs(np.fft.fft(lowercase_ ) )
A__ = 20 * np.logaa(lowercase_ )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
# Display within reasonable bounds
A__ = get_bounds(lowercase_ , lowercase_ )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel('''Gain (dB)''' )
plt.plot(lowercase_ )
plt.show()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None:
"""simple docstring"""
A__ = 512
A__ = [1] + [0] * (size - 1)
A__ = [filter_type.process(lowercase_ ) for item in inputs]
A__ = [0] * (samplerate - size) # zero-padding
outputs += filler
A__ = np.angle(np.fft.fft(lowercase_ ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel('''Phase shift (Radians)''' )
plt.plot(np.unwrap(lowercase_ , -2 * pi ) )
plt.show()
| 231
| 1
|
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , )-> Dict:
lowerCamelCase_ =parent
lowerCamelCase_ =batch_size
lowerCamelCase_ =image_size
lowerCamelCase_ =num_channels
lowerCamelCase_ =embeddings_size
lowerCamelCase_ =hidden_sizes
lowerCamelCase_ =depths
lowerCamelCase_ =is_training
lowerCamelCase_ =use_labels
lowerCamelCase_ =hidden_act
lowerCamelCase_ =num_labels
lowerCamelCase_ =scope
lowerCamelCase_ =len(SCREAMING_SNAKE_CASE__ )
def _snake_case ( self )-> str:
lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase_ =self.get_config()
return config, pixel_values
def _snake_case ( self )-> str:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict:
lowerCamelCase_ =FlaxRegNetModel(config=SCREAMING_SNAKE_CASE__ )
lowerCamelCase_ =model(SCREAMING_SNAKE_CASE__ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[Any]:
lowerCamelCase_ =self.num_labels
lowerCamelCase_ =FlaxRegNetForImageClassification(config=SCREAMING_SNAKE_CASE__ )
lowerCamelCase_ =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self )-> Optional[int]:
lowerCamelCase_ =self.prepare_config_and_inputs()
lowerCamelCase_ =config_and_inputs
lowerCamelCase_ ={'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase):
_UpperCamelCase:str = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
_UpperCamelCase:Optional[Any] = False
_UpperCamelCase:Optional[Any] = False
_UpperCamelCase:List[str] = False
def _snake_case ( self )-> Dict:
lowerCamelCase_ =FlaxRegNetModelTester(self )
lowerCamelCase_ =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ )
def _snake_case ( self )-> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self )-> int:
return
def _snake_case ( self )-> Optional[Any]:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ )
def _snake_case ( self )-> List[Any]:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ )
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def _snake_case ( self )-> Optional[Any]:
pass
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def _snake_case ( self )-> List[Any]:
pass
def _snake_case ( self )-> Union[str, Any]:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ =model_class(SCREAMING_SNAKE_CASE__ )
lowerCamelCase_ =inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ =[*signature.parameters.keys()]
lowerCamelCase_ =['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ )
def _snake_case ( self )-> Union[str, Any]:
def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
lowerCamelCase_ =model_class(SCREAMING_SNAKE_CASE__ )
lowerCamelCase_ =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
lowerCamelCase_ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase_ =self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 )
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ =True
check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase_ =True
check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def _snake_case ( self )-> int:
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCamelCase_ =self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowerCamelCase_ =model_class(SCREAMING_SNAKE_CASE__ )
@jax.jit
def model_jitted(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
return model(pixel_values=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with self.subTest("""JIT Enabled""" ):
lowerCamelCase_ =model_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowerCamelCase_ =model_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertEqual(jitted_output.shape , output.shape )
def __UpperCamelCase ( ) ->Any:
"""simple docstring"""
lowerCamelCase_ =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase):
@cached_property
def _snake_case ( self )-> Optional[int]:
return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None
@slow
def _snake_case ( self )-> List[Any]:
lowerCamelCase_ =FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" )
lowerCamelCase_ =self.default_image_processor
lowerCamelCase_ =prepare_img()
lowerCamelCase_ =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" )
lowerCamelCase_ =model(**SCREAMING_SNAKE_CASE__ )
# verify the logits
lowerCamelCase_ =(1, 1000)
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ )
lowerCamelCase_ =jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
| 154
|
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> str:
if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release:
# old versions of hfh don't url-encode the file path
__lowerCamelCase : int = quote(lowerCamelCase__ )
return hfh.hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' , revision=lowerCamelCase__ )
| 73
| 0
|
from __future__ import annotations
lowerCAmelCase__ : Dict =list[list[int]]
# assigning initial values to the grid
lowerCAmelCase__ : Matrix =[
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
lowerCAmelCase__ : Matrix =[
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def __lowercase ( a__ , a__ , a__ , a__ ) -> Union[str, Any]:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def __lowercase ( a__ ) -> Tuple:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def __lowercase ( a__ ) -> Any:
if location := find_empty_location(UpperCamelCase__ ):
__SCREAMING_SNAKE_CASE = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
__SCREAMING_SNAKE_CASE = digit
if sudoku(UpperCamelCase__ ) is not None:
return grid
__SCREAMING_SNAKE_CASE = 0
return None
def __lowercase ( a__ ) -> List[Any]:
for row in grid:
for cell in row:
print(UpperCamelCase__ , end=' ' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('''\nExample grid:\n''' + '''=''' * 20)
print_solution(example_grid)
print('''\nExample grid solution:''')
lowerCAmelCase__ : str =sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('''Cannot find a solution.''')
| 352
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase__ : Optional[int] ={'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : Optional[int] =['''FNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : Optional[Any] =['''FNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : Tuple =[
'''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FNetForMaskedLM''',
'''FNetForMultipleChoice''',
'''FNetForNextSentencePrediction''',
'''FNetForPreTraining''',
'''FNetForQuestionAnswering''',
'''FNetForSequenceClassification''',
'''FNetForTokenClassification''',
'''FNetLayer''',
'''FNetModel''',
'''FNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 118
| 0
|
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 100 ):
lowercase = set()
lowercase = 0
lowercase = n + 1 # maximum limit
for a in range(2 , snake_case__ ):
for b in range(2 , snake_case__ ):
lowercase = a**b # calculates the current power
collect_powers.add(snake_case__ ) # adds the result to the set
return len(snake_case__ )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 195
|
"""simple docstring"""
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
A_ = {
'''vocab_file''': {
'''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''',
},
'''merges_file''': {
'''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''Salesforce/codegen-350M-mono''': (
'''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json'''
),
},
}
A_ = {
'''Salesforce/codegen-350M-mono''': 20_48,
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = ["input_ids", "attention_mask"]
lowercase__ = CodeGenTokenizer
def __init__( self: Union[str, Any], a_: List[Any]=None, a_: str=None, a_: str=None, a_: Dict="<|endoftext|>", a_: Tuple="<|endoftext|>", a_: str="<|endoftext|>", a_: List[Any]=False, **a_: List[str], ):
'''simple docstring'''
super().__init__(
a_, a_, tokenizer_file=a_, unk_token=a_, bos_token=a_, eos_token=a_, add_prefix_space=a_, **a_, )
if kwargs.pop("""add_bos_token""", a_ ):
_snake_case : str = kwargs.pop("""name_or_path""", """""" )
raise ValueError(
"""Currenty GPT2's fast tokenizer does NOT support adding a BOS token."""
"""Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"""
f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
"""This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."""
""" so that the fast tokenizer works correctly.""" )
_snake_case : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""", a_ ) != add_prefix_space:
_snake_case : Dict = getattr(a_, pre_tok_state.pop("""type""" ) )
_snake_case : Dict = add_prefix_space
_snake_case : str = pre_tok_class(**a_ )
_snake_case : List[Any] = add_prefix_space
def UpperCamelCase_ ( self: Any, *a_: Any, **a_: int ):
'''simple docstring'''
_snake_case : Optional[int] = kwargs.get("""is_split_into_words""", a_ )
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*a_, **a_ )
def UpperCamelCase_ ( self: Optional[Any], *a_: Any, **a_: List[str] ):
'''simple docstring'''
_snake_case : Dict = kwargs.get("""is_split_into_words""", a_ )
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*a_, **a_ )
def UpperCamelCase_ ( self: Optional[int], a_: str, a_: Optional[str] = None ):
'''simple docstring'''
_snake_case : List[Any] = self._tokenizer.model.save(a_, name=a_ )
return tuple(a_ )
def UpperCamelCase_ ( self: str, a_: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], a_: bool = False, a_: bool = None, a_: Optional[List[str]] = None, **a_: List[str], ):
'''simple docstring'''
_snake_case : Any = super().decode(
token_ids=a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_, **a_, )
if truncate_before_pattern is not None and len(a_ ) > 0:
_snake_case : List[str] = self.truncate(a_, a_ )
return decoded_text
def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Optional[Any] ):
'''simple docstring'''
def find_re(a_: Dict, a_: str, a_: Union[str, Any] ):
_snake_case : Any = pattern.search(a_, a_ )
return m.start() if m else -1
_snake_case : Tuple = [re.compile(a_, re.MULTILINE ) for pattern in truncate_before_pattern]
_snake_case : List[Any] = list(re.finditer("""^print""", a_, re.MULTILINE ) )
if len(a_ ) > 1:
_snake_case : int = completion[: prints[1].start()]
_snake_case : List[str] = list(re.finditer("""^def""", a_, re.MULTILINE ) )
if len(a_ ) > 1:
_snake_case : List[Any] = completion[: defs[1].start()]
_snake_case : int = 0
_snake_case : List[Any] = [
pos for pos in [find_re(a_, a_, a_ ) for terminal in terminals] if pos != -1
]
if len(a_ ) > 0:
return completion[: min(a_ )]
else:
return completion
| 64
| 0
|
import json
import os
import unittest
from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
@require_tokenizers
class lowercase__ ( UpperCamelCase_ , unittest.TestCase):
UpperCamelCase_ = MvpTokenizer
UpperCamelCase_ = MvpTokenizerFast
UpperCamelCase_ = True
UpperCamelCase_ = filter_roberta_detectors
def __A ( self : str ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : Optional[int] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) )
SCREAMING_SNAKE_CASE : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
SCREAMING_SNAKE_CASE : Dict = {'''unk_token''': '''<unk>'''}
SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(UpperCamelCase__ ) )
def __A ( self : Optional[Any] , **UpperCamelCase__ : Tuple ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ )
def __A ( self : str , **UpperCamelCase__ : Any ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ )
def __A ( self : Dict , UpperCamelCase__ : Union[str, Any] ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def __A ( self : Optional[int] ):
'''simple docstring'''
return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' )
@cached_property
def __A ( self : int ):
'''simple docstring'''
return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' )
@require_torch
def __A ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
SCREAMING_SNAKE_CASE : str = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : Any = tokenizer(UpperCamelCase__ , max_length=len(UpperCamelCase__ ) , padding=UpperCamelCase__ , return_tensors='''pt''' )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
SCREAMING_SNAKE_CASE : str = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
# Test that special tokens are reset
@require_torch
def __A ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : List[str] = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors='''pt''' )
# check if input_ids are returned and no labels
self.assertIn('''input_ids''' , UpperCamelCase__ )
self.assertIn('''attention_mask''' , UpperCamelCase__ )
self.assertNotIn('''labels''' , UpperCamelCase__ )
self.assertNotIn('''decoder_attention_mask''' , UpperCamelCase__ )
@require_torch
def __A ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : List[str] = tokenizer(text_target=UpperCamelCase__ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def __A ( self : str ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : str = tokenizer(
['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 1024) )
@require_torch
def __A ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = ['''A long paragraph for summarization.''']
SCREAMING_SNAKE_CASE : List[Any] = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE : str = inputs['''input_ids''']
SCREAMING_SNAKE_CASE : Tuple = inputs['''labels''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
def __A ( self : List[str] ):
'''simple docstring'''
pass
def __A ( self : str ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ )
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = '''A, <mask> AllenNLP sentence.'''
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Dict = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
SCREAMING_SNAKE_CASE : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(
UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 258
|
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def A ( _lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : str = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
SCREAMING_SNAKE_CASE : Tuple = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(_lowercase ):
os.makedirs(_lowercase )
SCREAMING_SNAKE_CASE : List[str] = model.state_dict()
def to_tf_var_name(_lowercase ):
for patt, repl in iter(_lowercase ):
SCREAMING_SNAKE_CASE : Dict = name.replace(_lowercase , _lowercase )
return f"""bert/{name}"""
def create_tf_var(_lowercase , _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype )
SCREAMING_SNAKE_CASE : Tuple = tf.get_variable(dtype=_lowercase , shape=tensor.shape , name=_lowercase , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(_lowercase )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
SCREAMING_SNAKE_CASE : List[str] = to_tf_var_name(_lowercase )
SCREAMING_SNAKE_CASE : List[str] = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
SCREAMING_SNAKE_CASE : Any = torch_tensor.T
SCREAMING_SNAKE_CASE : str = create_tf_var(tensor=_lowercase , name=_lowercase , session=_lowercase )
tf.keras.backend.set_value(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE : Dict = session.run(_lowercase )
print(f"""Successfully created {tf_name}: {np.allclose(_lowercase , _lowercase )}""" )
SCREAMING_SNAKE_CASE : List[Any] = tf.train.Saver(tf.trainable_variables() )
saver.save(_lowercase , os.path.join(_lowercase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) )
def A ( _lowercase=None ):
SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=_lowercase , required=_lowercase , help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''' , type=_lowercase , default=_lowercase , required=_lowercase , help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''' , type=_lowercase , required=_lowercase , help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''' , type=_lowercase , required=_lowercase , help='''Directory in which to save tensorflow model''' )
SCREAMING_SNAKE_CASE : Dict = parser.parse_args(_lowercase )
SCREAMING_SNAKE_CASE : Any = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=_lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 258
| 1
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {"""vocab_file""": """spiece.model"""}
__snake_case = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
}
}
__snake_case = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
__snake_case = """▁"""
class _lowerCAmelCase ( __UpperCamelCase ):
__UpperCAmelCase : str = VOCAB_FILES_NAMES
__UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="[CLS]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="<unk>" , UpperCamelCase__="[SEP]" , UpperCamelCase__="<pad>" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None:
'''simple docstring'''
snake_case : int = (
AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ , normalized=UpperCamelCase__ )
if isinstance(UpperCamelCase__ , UpperCamelCase__ )
else mask_token
)
snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , )
snake_case : Optional[Any] = do_lower_case
snake_case : List[str] = remove_space
snake_case : Any = keep_accents
snake_case : Dict = vocab_file
snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCamelCase__ )
@property
def lowerCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
return len(self.sp_model )
def lowerCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case : Dict = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> int:
'''simple docstring'''
snake_case : List[Any] = self.__dict__.copy()
snake_case : List[Any] = None
return state
def __setstate__( self , UpperCamelCase__ ) -> Optional[int]:
'''simple docstring'''
snake_case : List[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
snake_case : Dict = {}
snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple:
'''simple docstring'''
if self.remove_space:
snake_case : int = ' '.join(inputs.strip().split() )
else:
snake_case : int = inputs
snake_case : List[Any] = outputs.replace("``" , "\"" ).replace("\'\'" , "\"" )
if not self.keep_accents:
snake_case : List[Any] = unicodedata.normalize("NFKD" , UpperCamelCase__ )
snake_case : Optional[Any] = ''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] )
if self.do_lower_case:
snake_case : Any = outputs.lower()
return outputs
def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]:
'''simple docstring'''
snake_case : Optional[int] = self.preprocess_text(UpperCamelCase__ )
snake_case : Dict = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ )
snake_case : List[Any] = []
for piece in pieces:
if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
snake_case : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case : List[str] = cur_pieces[1:]
else:
snake_case : List[Any] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCamelCase__ )
else:
new_pieces.append(UpperCamelCase__ )
return new_pieces
def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]:
'''simple docstring'''
return self.sp_model.PieceToId(UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ ) -> Any:
'''simple docstring'''
return self.sp_model.IdToPiece(UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[int]:
'''simple docstring'''
snake_case : str = []
snake_case : Tuple = ''
snake_case : Tuple = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCamelCase__ ) + token
snake_case : List[Any] = True
snake_case : str = []
else:
current_sub_tokens.append(UpperCamelCase__ )
snake_case : List[str] = False
out_string += self.sp_model.decode(UpperCamelCase__ )
return out_string.strip()
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]:
'''simple docstring'''
snake_case : Optional[Any] = [self.sep_token_id]
snake_case : List[str] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1]
return [1] + ([0] * len(UpperCamelCase__ )) + [1]
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]:
'''simple docstring'''
snake_case : Optional[int] = [self.sep_token_id]
snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCamelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
snake_case : Dict = os.path.join(
UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase__ , "wb" ) as fi:
snake_case : List[str] = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase__ )
return (out_vocab_file,)
| 203
|
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = """M-CLIP"""
def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict:
lowerCamelCase__ : Optional[int] = transformerDimSize
lowerCamelCase__ : Optional[Any] = imageDimSize
super().__init__(**UpperCAmelCase )
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = MCLIPConfig
def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict:
super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple:
lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0]
lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(UpperCAmelCase ), embs
| 50
| 0
|
import math
from datetime import datetime, timedelta
def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]:
__snake_case: Any = year % 19
__snake_case: Dict = year % 4
__snake_case: Dict = year % 7
__snake_case: Optional[Any] = math.floor(year / 100)
__snake_case: Union[str, Any] = math.floor((13 + 8 * leap_day_inhibits) / 25)
__snake_case: List[Any] = leap_day_inhibits / 4
__snake_case: Tuple = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
__snake_case: List[str] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__snake_case: int = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
__snake_case: Optional[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(lowerCAmelCase__ , 4 , 19)
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(lowerCAmelCase__ , 4 , 18)
else:
return datetime(lowerCAmelCase__ , 3 , 22) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday))
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
__UpperCAmelCase : str = "will be" if year > datetime.now().year else "was"
print(f'Easter in {year} {tense} {gauss_easter(year)}')
| 359
|
from __future__ import annotations
from decimal import Decimal
from numpy import array
def A__ ( SCREAMING_SNAKE_CASE__) -> list[list[float]]:
__snake_case: Any = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(SCREAMING_SNAKE_CASE__) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2:
# Calculate the determinant of the matrix
__snake_case: Tuple = float(
d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1]))
if determinant == 0:
raise ValueError("""This matrix has no inverse.""")
# Creates a copy of the matrix with swapped positions of the elements
__snake_case: Optional[int] = [[0.0, 0.0], [0.0, 0.0]]
__snake_case , __snake_case: Optional[Any] = matrix[1][1], matrix[0][0]
__snake_case , __snake_case: Union[str, Any] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(SCREAMING_SNAKE_CASE__)) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(SCREAMING_SNAKE_CASE__) == 3
and len(matrix[0]) == 3
and len(matrix[1]) == 3
and len(matrix[2]) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
__snake_case: Any = float(
(
(d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2]))
+ (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0]))
+ (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1]))
)
- (
(d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0]))
+ (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2]))
+ (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1]))
))
if determinant == 0:
raise ValueError("""This matrix has no inverse.""")
# Creating cofactor matrix
__snake_case: Tuple = [
[d(0.0), d(0.0), d(0.0)],
[d(0.0), d(0.0), d(0.0)],
[d(0.0), d(0.0), d(0.0)],
]
__snake_case: Dict = (d(matrix[1][1]) * d(matrix[2][2])) - (
d(matrix[1][2]) * d(matrix[2][1])
)
__snake_case: Tuple = -(
(d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0]))
)
__snake_case: Optional[int] = (d(matrix[1][0]) * d(matrix[2][1])) - (
d(matrix[1][1]) * d(matrix[2][0])
)
__snake_case: Union[str, Any] = -(
(d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1]))
)
__snake_case: str = (d(matrix[0][0]) * d(matrix[2][2])) - (
d(matrix[0][2]) * d(matrix[2][0])
)
__snake_case: List[Any] = -(
(d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0]))
)
__snake_case: Optional[Any] = (d(matrix[0][1]) * d(matrix[1][2])) - (
d(matrix[0][2]) * d(matrix[1][1])
)
__snake_case: List[str] = -(
(d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0]))
)
__snake_case: Optional[int] = (d(matrix[0][0]) * d(matrix[1][1])) - (
d(matrix[0][1]) * d(matrix[1][0])
)
# Transpose the cofactor matrix (Adjoint matrix)
__snake_case: List[Any] = array(SCREAMING_SNAKE_CASE__)
for i in range(3):
for j in range(3):
__snake_case: Tuple = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
__snake_case: List[Any] = array(SCREAMING_SNAKE_CASE__)
for i in range(3):
for j in range(3):
inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE__)
# Calculate the inverse of the matrix
return [[float(d(SCREAMING_SNAKE_CASE__)) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""")
| 293
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
_A = {
"configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"],
"processing_speech_to_text": ["Speech2TextProcessor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = ["Speech2TextTokenizer"]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = ["Speech2TextFeatureExtractor"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSpeech2TextForConditionalGeneration",
"TFSpeech2TextModel",
"TFSpeech2TextPreTrainedModel",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Speech2TextForConditionalGeneration",
"Speech2TextModel",
"Speech2TextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
_A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 231
|
import requests
_A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="
def lowerCamelCase__ ( __lowerCAmelCase : str ):
"""simple docstring"""
lowerCAmelCase_ = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["articles"] , 1 ):
print(F"""{i}.) {article['title']}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
| 231
| 1
|
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_lowerCamelCase : int = logging.getLogger(__name__)
@dataclass
class lowercase :
lowercase__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
lowercase__ : Optional[str] = field(
default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
lowercase__ : Optional[str] = field(
default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
lowercase__ : Optional[str] = field(
default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
lowercase__ : bool = field(default=a , metadata={"""help""": """Whether tp freeze the encoder."""} )
lowercase__ : bool = field(default=a , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowercase :
lowercase__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
lowercase__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
lowercase__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
lowercase__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
lowercase__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
lowercase__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
lowercase__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
lowercase__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
lowercase__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
lowercase__ : Optional[str] = field(default=a , metadata={"""help""": """Source language id for translation."""} )
lowercase__ : Optional[str] = field(default=a , metadata={"""help""": """Target language id for translation."""} )
lowercase__ : Optional[int] = field(default=a , metadata={"""help""": """# num_beams to use for evaluation."""} )
lowercase__ : bool = field(
default=a , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ):
logger.info(F"***** {split} metrics *****" )
for key in sorted(metrics.keys() ):
logger.info(F" {key} = {metrics[key]}" )
save_json(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , F"{split}_results.json" ) )
def __lowerCamelCase ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
check_output_dir(UpperCAmelCase__ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s" , UpperCAmelCase__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ):
assert hasattr(UpperCAmelCase__ , UpperCAmelCase__ ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute"
setattr(UpperCAmelCase__ , UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(UpperCAmelCase__ , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
SCREAMING_SNAKE_CASE = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(UpperCAmelCase__ , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
SCREAMING_SNAKE_CASE = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(UpperCAmelCase__ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
SCREAMING_SNAKE_CASE = SeqaSeqDataset
# Get datasets
SCREAMING_SNAKE_CASE = (
dataset_class(
UpperCAmelCase__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_train
else None
)
SCREAMING_SNAKE_CASE = (
dataset_class(
UpperCAmelCase__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
SCREAMING_SNAKE_CASE = (
dataset_class(
UpperCAmelCase__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
SCREAMING_SNAKE_CASE = (
build_compute_metrics_fn(data_args.task , UpperCAmelCase__ ) if training_args.predict_with_generate else None
)
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=UpperCAmelCase__ , args=UpperCAmelCase__ , data_args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , data_collator=SeqaSeqDataCollator(
UpperCAmelCase__ , UpperCAmelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , )
SCREAMING_SNAKE_CASE = {}
# Training
if training_args.do_train:
logger.info("*** Train ***" )
SCREAMING_SNAKE_CASE = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
SCREAMING_SNAKE_CASE = train_result.metrics
SCREAMING_SNAKE_CASE = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("train" , UpperCAmelCase__ , training_args.output_dir )
all_metrics.update(UpperCAmelCase__ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
SCREAMING_SNAKE_CASE = trainer.evaluate(metric_key_prefix="val" )
SCREAMING_SNAKE_CASE = data_args.n_val
SCREAMING_SNAKE_CASE = round(metrics["val_loss"] , 4 )
if trainer.is_world_process_zero():
handle_metrics("val" , UpperCAmelCase__ , training_args.output_dir )
all_metrics.update(UpperCAmelCase__ )
if training_args.do_predict:
logger.info("*** Predict ***" )
SCREAMING_SNAKE_CASE = trainer.predict(test_dataset=UpperCAmelCase__ , metric_key_prefix="test" )
SCREAMING_SNAKE_CASE = test_output.metrics
SCREAMING_SNAKE_CASE = data_args.n_test
if trainer.is_world_process_zero():
SCREAMING_SNAKE_CASE = round(metrics["test_loss"] , 4 )
handle_metrics("test" , UpperCAmelCase__ , training_args.output_dir )
all_metrics.update(UpperCAmelCase__ )
if training_args.predict_with_generate:
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = lmap(str.strip , UpperCAmelCase__ )
write_txt_file(UpperCAmelCase__ , os.path.join(training_args.output_dir , "test_generations.txt" ) )
if trainer.is_world_process_zero():
save_json(UpperCAmelCase__ , os.path.join(training_args.output_dir , "all_results.json" ) )
return all_metrics
def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 206
|
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowercase ( unittest.TestCase ):
@slow
def __snake_case( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" )
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("xlm-roberta-base" )
SCREAMING_SNAKE_CASE = "The dog is cute and lives in the garden house"
SCREAMING_SNAKE_CASE = jnp.array([tokenizer.encode(_UpperCamelCase )] )
SCREAMING_SNAKE_CASE = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
SCREAMING_SNAKE_CASE = jnp.array(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] )
SCREAMING_SNAKE_CASE = model(_UpperCamelCase )["last_hidden_state"]
self.assertEqual(output.shape , _UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , _UpperCamelCase , atol=1e-3 ) )
| 206
| 1
|
from __future__ import annotations
def lowerCAmelCase_ ( __A ) -> float:
'''simple docstring'''
UpperCAmelCase__ = 0.00
UpperCAmelCase__ = 0
for resistor in resistors:
if resistor <= 0:
UpperCAmelCase__ = f"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(__A )
first_sum += 1 / float(__A )
index += 1
return 1 / first_sum
def lowerCAmelCase_ ( __A ) -> float:
'''simple docstring'''
UpperCAmelCase__ = 0.00
UpperCAmelCase__ = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
UpperCAmelCase__ = f"""Resistor at index {index} has a negative value!"""
raise ValueError(__A )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 65
|
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
A : Tuple = "src/transformers"
A : Optional[Any] = "docs/source/en/tasks"
def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f:
SCREAMING_SNAKE_CASE_ = f.readlines()
# Find the start prompt.
SCREAMING_SNAKE_CASE_ = 0
while not lines[start_index].startswith(__UpperCamelCase ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE_ = start_index
while not lines[end_index].startswith(__UpperCamelCase ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
A : List[str] = direct_transformers_import(TRANSFORMERS_PATH)
A : List[Any] = {
"asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
"audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
"language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
"image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
"multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
"object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
"question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
"semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
"sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
"summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
"translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
"document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
"monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
A : Any = {
"summarization.md": ("nllb",),
"translation.md": ("nllb",),
}
def a__ ( __UpperCamelCase ):
SCREAMING_SNAKE_CASE_ = TASK_GUIDE_TO_MODELS[task_guide]
SCREAMING_SNAKE_CASE_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__UpperCamelCase , set() )
SCREAMING_SNAKE_CASE_ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n"
def a__ ( __UpperCamelCase , __UpperCamelCase=False ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _find_text_in_file(
filename=os.path.join(__UpperCamelCase , __UpperCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
SCREAMING_SNAKE_CASE_ = get_model_list_for_task(__UpperCamelCase )
if current_list != new_list:
if overwrite:
with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'''
" to fix this." )
if __name__ == "__main__":
A : Tuple = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
A : Dict = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 118
| 0
|
"""simple docstring"""
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class a__ ( SCREAMING_SNAKE_CASE__ ):
def lowercase ( self : Any ) -> Optional[int]:
lowercase : Any = tempfile.mkdtemp()
lowercase : Optional[Any] = 8
# DPR tok
lowercase : Dict = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
lowercase : List[Any] = os.path.join(self.tmpdirname, 'dpr_tokenizer' )
os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase )
lowercase : Union[str, Any] = os.path.join(lowerCAmelCase, DPR_VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
# BART tok
lowercase : Optional[Any] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
lowercase : Optional[Any] = dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) )
lowercase : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
lowercase : int = {'unk_token': '<unk>'}
lowercase : Union[str, Any] = os.path.join(self.tmpdirname, 'bart_tokenizer' )
os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase )
lowercase : int = os.path.join(lowerCAmelCase, BART_VOCAB_FILES_NAMES['vocab_file'] )
lowercase : str = os.path.join(lowerCAmelCase, BART_VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(lowerCAmelCase ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(lowerCAmelCase ) )
def lowercase ( self : int ) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'dpr_tokenizer' ) )
def lowercase ( self : Optional[Any] ) -> DPRContextEncoderTokenizer:
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'dpr_tokenizer' ) )
def lowercase ( self : Optional[int] ) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'bart_tokenizer' ) )
def lowercase ( self : int ) -> Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def lowercase ( self : Union[str, Any] ) -> Optional[int]:
lowercase : Dict = Dataset.from_dict(
{
'id': ['0', '1'],
'text': ['foo', 'bar'],
'title': ['Foo', 'Bar'],
'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('embeddings', string_factory='Flat', metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def lowercase ( self : Tuple ) -> Tuple:
lowercase : str = self.get_dummy_dataset()
lowercase : Tuple = RagConfig(
retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), )
with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset:
lowercase : Optional[Any] = dataset
lowercase : Dict = RagRetriever(
lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), )
return retriever
def lowercase ( self : List[Any], lowerCAmelCase : bool ) -> List[str]:
lowercase : List[Any] = self.get_dummy_dataset()
lowercase : Any = RagConfig(
retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name='custom', )
if from_disk:
lowercase : Optional[Any] = os.path.join(self.tmpdirname, 'dataset' )
lowercase : str = os.path.join(self.tmpdirname, 'index.faiss' )
dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname, 'index.faiss' ) )
dataset.drop_index('embeddings' )
dataset.save_to_disk(os.path.join(self.tmpdirname, 'dataset' ) )
del dataset
lowercase : Optional[Any] = RagRetriever(
lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), )
else:
lowercase : Tuple = RagRetriever(
lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), index=CustomHFIndex(config.retrieval_vector_size, lowerCAmelCase ), )
return retriever
def lowercase ( self : Dict ) -> str:
lowercase : int = Dataset.from_dict(
{
'id': ['0', '1'],
'text': ['foo', 'bar'],
'title': ['Foo', 'Bar'],
'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('embeddings', string_factory='Flat', metric_type=faiss.METRIC_INNER_PRODUCT )
lowercase : Dict = os.path.join(self.tmpdirname, 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' )
dataset.save_faiss_index('embeddings', index_file_name + '.index.dpr' )
pickle.dump(dataset['id'], open(index_file_name + '.index_meta.dpr', 'wb' ) )
lowercase : List[str] = os.path.join(self.tmpdirname, 'psgs_w100.tsv.pkl' )
lowercase : List[Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset}
pickle.dump(lowerCAmelCase, open(lowerCAmelCase, 'wb' ) )
lowercase : str = RagConfig(
retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name='legacy', index_path=self.tmpdirname, )
lowercase : List[Any] = RagRetriever(
lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def lowercase ( self : Optional[Any] ) -> Union[str, Any]:
lowercase : str = 1
lowercase : List[Any] = self.get_dummy_canonical_hf_index_retriever()
lowercase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : Tuple = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCAmelCase ), 2 )
self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase )
self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]] )
def lowercase ( self : List[Any] ) -> int:
lowercase : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset:
lowercase : str = self.get_dummy_dataset()
retriever.save_pretrained(lowerCAmelCase )
lowercase : Optional[Any] = RagRetriever.from_pretrained(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowercase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=1 )
self.assertTrue(out is not None )
def lowercase ( self : List[Any] ) -> int:
lowercase : Tuple = 1
lowercase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase )
lowercase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCAmelCase ), 2 )
self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase )
self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]] )
def lowercase ( self : Optional[int] ) -> List[Any]:
lowercase : Any = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCAmelCase )
lowercase : Tuple = RagRetriever.from_pretrained(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowercase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : List[Any] = retriever.retrieve(lowerCAmelCase, n_docs=1 )
self.assertTrue(out is not None )
def lowercase ( self : Dict ) -> Union[str, Any]:
lowercase : Dict = 1
lowercase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase )
lowercase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : Tuple = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCAmelCase ), 2 )
self.assertEqual(sorted(doc_dicts[0] ), ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ), lowerCAmelCase )
self.assertEqual(doc_dicts[0]['id'][0], '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0], '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]] )
def lowercase ( self : Tuple ) -> Dict:
lowercase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCAmelCase )
lowercase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowercase : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : int = retriever.retrieve(lowerCAmelCase, n_docs=1 )
self.assertTrue(out is not None )
def lowercase ( self : List[Any] ) -> Dict:
lowercase : str = 1
lowercase : str = self.get_dummy_legacy_index_retriever()
lowercase : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : Dict = retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCAmelCase ), 2 )
self.assertEqual(sorted(doc_dicts[0] ), ['text', 'title'] )
self.assertEqual(len(doc_dicts[0]['text'] ), lowerCAmelCase )
self.assertEqual(doc_dicts[0]['text'][0], 'bar' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['text'][0], 'foo' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]] )
def lowercase ( self : int ) -> Dict:
lowercase : Optional[Any] = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCAmelCase )
lowercase : List[str] = RagRetriever.from_pretrained(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowercase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : List[str] = retriever.retrieve(lowerCAmelCase, n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def lowercase ( self : List[str] ) -> int:
import torch
lowercase : int = 1
lowercase : List[str] = self.get_dummy_canonical_hf_index_retriever()
lowercase : Union[str, Any] = [[5, 7], [10, 11]]
lowercase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : Optional[Any] = retriever(lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase )
lowercase : Dict = (
out['context_input_ids'],
out['context_attention_mask'],
out['retrieved_doc_embeds'],
)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, np.ndarray )
lowercase : Optional[Any] = retriever(
lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase, return_tensors='pt', )
lowercase : Optional[Any] = ( # noqa: F841
out['context_input_ids'],
out['context_attention_mask'],
out['retrieved_doc_embeds'],
out['doc_ids'],
)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(lowerCAmelCase, torch.Tensor )
self.assertIsInstance(lowerCAmelCase, torch.Tensor )
self.assertIsInstance(lowerCAmelCase, torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def lowercase ( self : int ) -> Optional[Any]:
lowercase : Any = self.get_dpr_ctx_encoder_tokenizer()
lowercase : int = 1
lowercase : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase )
retriever.set_ctx_encoder_tokenizer(lowerCAmelCase )
lowercase : List[Any] = [[5, 7], [10, 11]]
lowercase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
lowercase : List[Any] = retriever(lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase )
self.assertEqual(
len(lowerCAmelCase ), 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ), lowerCAmelCase ) # check for doc token related keys in dictionary.
| 369
|
"""simple docstring"""
_UpperCamelCase: Dict = 2_5_6
# Modulus to hash a string
_UpperCamelCase: Union[str, Any] = 1_0_0_0_0_0_3
def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> bool:
'''simple docstring'''
lowercase : Dict = len(_UpperCAmelCase )
lowercase : Union[str, Any] = len(_UpperCAmelCase )
if p_len > t_len:
return False
lowercase : Union[str, Any] = 0
lowercase : Dict = 0
lowercase : Any = 1
# Calculating the hash of pattern and substring of text
for i in range(_UpperCAmelCase ):
lowercase : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
lowercase : Tuple = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
lowercase : Tuple = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
lowercase : str = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def lowercase__ ( ) -> None:
'''simple docstring'''
lowercase : Any = 'abc1abc12'
lowercase : int = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
lowercase : Optional[int] = 'alskfjaldsk23adsfabcabc'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) and not rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
# Test 2)
lowercase : str = 'ABABX'
lowercase : Tuple = 'ABABZABABYABABX'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
# Test 3)
lowercase : int = 'AAAB'
lowercase : Union[str, Any] = 'ABAAAAAB'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
# Test 4)
lowercase : Union[str, Any] = 'abcdabcy'
lowercase : List[str] = 'abcxabcdabxabcdabcdabcy'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
# Test 5)
lowercase : Dict = 'Lü'
lowercase : Dict = 'Lüsai'
assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
lowercase : List[Any] = 'Lue'
assert not rabin_karp(_UpperCAmelCase , _UpperCAmelCase )
print('Success.' )
if __name__ == "__main__":
test_rabin_karp()
| 53
| 0
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : str = {
'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __UpperCAmelCase ( A__ , A__ ):
'''simple docstring'''
__lowerCAmelCase = '''nat'''
__lowerCAmelCase = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__(self : int , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : List[Any]=64 , _lowerCAmelCase : Union[str, Any]=[3, 4, 6, 5] , _lowerCAmelCase : str=[2, 4, 8, 16] , _lowerCAmelCase : Union[str, Any]=7 , _lowerCAmelCase : Tuple=3.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Union[str, Any]="gelu" , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : str=1e-5 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict , ):
super().__init__(**_lowerCAmelCase )
A = patch_size
A = num_channels
A = embed_dim
A = depths
A = len(_lowerCAmelCase )
A = num_heads
A = kernel_size
A = mlp_ratio
A = qkv_bias
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = drop_path_rate
A = hidden_act
A = layer_norm_eps
A = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
A = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
A = layer_scale_init_value
A = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCAmelCase ) + 1 )]
A , A = get_aligned_output_features_output_indices(
out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
| 258
|
'''simple docstring'''
import datasets
from .evaluate import evaluate
_lowerCamelCase : List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n'
_lowerCamelCase : List[Any] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n'
_lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def A (self : int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {
"""id""": datasets.Value("""string""" ),
"""prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ),
},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , )
def A (self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ):
A = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
A = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
A = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase )
return score
| 258
| 1
|
def _UpperCamelCase ( UpperCamelCase_ : list[list[int | float]] ) -> int:
"""simple docstring"""
lowerCAmelCase__ = len(snake_case_ )
lowerCAmelCase__ = len(matrix[0] )
lowerCAmelCase__ = min(snake_case_ , snake_case_ )
for row in range(snake_case_ ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , snake_case_ ):
lowerCAmelCase__ = matrix[col][row] / matrix[row][row]
for i in range(snake_case_ , snake_case_ ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
lowerCAmelCase__ = True
for i in range(row + 1 , snake_case_ ):
if matrix[i][row] != 0:
lowerCAmelCase__ , lowerCAmelCase__ = matrix[i], matrix[row]
lowerCAmelCase__ = False
break
if reduce:
rank -= 1
for i in range(snake_case_ ):
lowerCAmelCase__ = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 368
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
def UpperCamelCase__ ( self ):
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = 3
lowerCAmelCase__ = (32, 32)
lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase )
return image
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_UpperCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , )
return CLIPTextModel(_UpperCamelCase )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.dummy_cond_unet_upscale
lowerCAmelCase__ = DDPMScheduler()
lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' )
lowerCAmelCase__ = self.dummy_vae
lowerCAmelCase__ = self.dummy_text_encoder
lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
lowerCAmelCase__ = StableDiffusionUpscalePipeline(
unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , )
lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
lowerCAmelCase__ = 'A painting of a squirrel eating a burger'
lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 )
lowerCAmelCase__ = sd_pipe(
[prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 )
lowerCAmelCase__ = sd_pipe(
[prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=_UpperCamelCase , )[0]
lowerCAmelCase__ = image[0, -3:, -3:, -1]
lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1]
lowerCAmelCase__ = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
lowerCAmelCase__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.dummy_cond_unet_upscale
lowerCAmelCase__ = DDPMScheduler()
lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' )
lowerCAmelCase__ = self.dummy_vae
lowerCAmelCase__ = self.dummy_text_encoder
lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
lowerCAmelCase__ = StableDiffusionUpscalePipeline(
unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , )
lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
lowerCAmelCase__ = 'A painting of a squirrel eating a burger'
lowerCAmelCase__ = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase__ = output.images
assert image.shape[0] == 2
lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 )
lowerCAmelCase__ = sd_pipe(
[prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
lowerCAmelCase__ = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase__ = self.dummy_cond_unet_upscale
lowerCAmelCase__ = DDPMScheduler()
lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' )
lowerCAmelCase__ = self.dummy_vae
lowerCAmelCase__ = self.dummy_text_encoder
lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
lowerCAmelCase__ = unet.half()
lowerCAmelCase__ = text_encoder.half()
# make sure here that pndm scheduler skips prk
lowerCAmelCase__ = StableDiffusionUpscalePipeline(
unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , )
lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
lowerCAmelCase__ = 'A painting of a squirrel eating a burger'
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = sd_pipe(
[prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type='np' , ).images
lowerCAmelCase__ = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
def UpperCamelCase__ ( self ):
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
lowerCAmelCase__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'
'/upsampled_cat.npy' )
lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler'
lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing()
lowerCAmelCase__ = 'a cat sitting on a park bench'
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = pipe(
prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , output_type='np' , )
lowerCAmelCase__ = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
lowerCAmelCase__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'
'/upsampled_cat_fp16.npy' )
lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler'
lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(
_UpperCamelCase , torch_dtype=torch.floataa , )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing()
lowerCAmelCase__ = 'a cat sitting on a park bench'
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = pipe(
prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , output_type='np' , )
lowerCAmelCase__ = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler'
lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(
_UpperCamelCase , torch_dtype=torch.floataa , )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase__ = 'a cat sitting on a park bench'
lowerCAmelCase__ = torch.manual_seed(0 )
lowerCAmelCase__ = pipe(
prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , output_type='np' , )
lowerCAmelCase__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 122
| 0
|
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> list:
"""simple docstring"""
__lowerCamelCase = int(UpperCamelCase__ )
if n_element < 1:
__lowerCamelCase = ValueError('a should be a positive number' )
raise my_error
__lowerCamelCase = [1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = (0, 0, 0)
__lowerCamelCase = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
__A = input("Enter the last number (nth term) of the Hamming Number Series: ")
print("Formula of Hamming Number Series => 2^i * 3^j * 5^k")
__A = hamming(int(n))
print("-----------------------------------------------------")
print(f'''The list with nth numbers is: {hamming_numbers}''')
print("-----------------------------------------------------")
| 90
|
"""simple docstring"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
__A = logging.getLogger(__name__)
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
"""simple docstring"""
if os.path.exists(_SCREAMING_SNAKE_CASE ):
if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) and os.path.isfile(
os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ):
os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) )
if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) and os.path.isfile(
os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ):
os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) )
else:
os.makedirs(_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Optional[int]:
"""simple docstring"""
lowerCAmelCase__ :Dict = 2
if unlogit:
lowerCAmelCase__ :List[str] = torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :str = p * torch.log(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :List[str] = 0
return -plogp.sum(dim=-1 )
def __A (_SCREAMING_SNAKE_CASE ) ->Dict:
"""simple docstring"""
logger.info('lv, h >\t' + '\t'.join(F"{x + 1}" for x in range(len(_SCREAMING_SNAKE_CASE ) ) ) )
for row in range(len(_SCREAMING_SNAKE_CASE ) ):
if tensor.dtype != torch.long:
logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:.5f}" for x in tensor[row].cpu().data ) )
else:
logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:d}" for x in tensor[row].cpu().data ) )
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ :Dict = model.config.num_hidden_layers, model.config.num_attention_heads
lowerCAmelCase__ :Any = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
lowerCAmelCase__ :Tuple = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
if head_mask is None:
lowerCAmelCase__ :Optional[int] = torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
head_mask.requires_grad_(requires_grad=_SCREAMING_SNAKE_CASE )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
lowerCAmelCase__ :List[str] = None
lowerCAmelCase__ :Any = 0.0
lowerCAmelCase__ :Any = 0.0
for step, inputs in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ):
lowerCAmelCase__ :str = tuple(t.to(args.device ) for t in inputs )
((lowerCAmelCase__) , ) :Dict = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
lowerCAmelCase__ :str = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(_SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ :Optional[Any] = entropy(attn.detach() , _SCREAMING_SNAKE_CASE )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(_SCREAMING_SNAKE_CASE ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
lowerCAmelCase__ :Union[str, Any] = 2
lowerCAmelCase__ :Tuple = torch.pow(torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
lowerCAmelCase__ :str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('Attention entropies' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
if compute_importance:
logger.info('Head importance scores' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
logger.info('Head ranked by importance scores' )
lowerCAmelCase__ :List[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
lowerCAmelCase__ :List[Any] = torch.arange(
head_importance.numel() , device=args.device )
lowerCAmelCase__ :int = head_ranks.view_as(_SCREAMING_SNAKE_CASE )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
return attn_entropy, head_importance, total_loss
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :List[Any] = 1 / loss # instead of downsteam score use the LM loss
logger.info('Pruning: original score: %f, threshold: %f' , _SCREAMING_SNAKE_CASE , original_score * args.masking_threshold )
lowerCAmelCase__ :Optional[int] = torch.ones_like(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
lowerCAmelCase__ :List[str] = original_score
while current_score >= original_score * args.masking_threshold:
lowerCAmelCase__ :List[str] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
lowerCAmelCase__ :str = float('Inf' )
lowerCAmelCase__ :List[str] = head_importance.view(-1 ).sort()[1]
if len(_SCREAMING_SNAKE_CASE ) <= num_to_mask:
print('BREAK BY num_to_mask' )
break
# mask heads
lowerCAmelCase__ :int = current_heads_to_mask[:num_to_mask]
logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) )
lowerCAmelCase__ :Dict = new_head_mask.view(-1 )
lowerCAmelCase__ :Any = 0.0
lowerCAmelCase__ :Tuple = new_head_mask.view_as(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Optional[int] = new_head_mask.clone().detach()
print_ad_tensor(_SCREAMING_SNAKE_CASE )
# Compute metric and head importance again
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Any = 1 / loss
logger.info(
'Masking: current score: %f, remaining heads %d (%.1f percents)' , _SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info('Final head mask' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() )
return head_mask
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ :Union[str, Any] = datetime.now()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Any = 1 / loss
lowerCAmelCase__ :Tuple = datetime.now() - before_time
lowerCAmelCase__ :List[str] = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ :List[Any] = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_SCREAMING_SNAKE_CASE ) )
}
for k, v in heads_to_prune.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ :Union[str, Any] = [
v,
]
assert sum(len(_SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Any = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ :int = datetime.now()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , actually_pruned=_SCREAMING_SNAKE_CASE , )
lowerCAmelCase__ :int = 1 / loss
lowerCAmelCase__ :Tuple = datetime.now() - before_time
logger.info(
'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 100 , )
logger.info('Pruning: score with masking: %f score with pruning: %f' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 )
save_model(_SCREAMING_SNAKE_CASE , args.output_dir )
def __A () ->Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--data_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , )
parser.add_argument(
'--model_name_or_path' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--output_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , )
# Other parameters
parser.add_argument(
'--config_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--tokenizer_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--cache_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Where do you want to store the pre-trained models downloaded from s3' , )
parser.add_argument(
'--data_subset' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' )
parser.add_argument(
'--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
parser.add_argument(
'--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' )
parser.add_argument(
'--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , )
parser.add_argument(
'--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' )
parser.add_argument(
'--masking_threshold' , default=0.9 , type=_SCREAMING_SNAKE_CASE , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , )
parser.add_argument(
'--masking_amount' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Amount to heads to masking at each masking step.' )
parser.add_argument('--metric_name' , default='acc' , type=_SCREAMING_SNAKE_CASE , help='Metric to use for head masking.' )
parser.add_argument(
'--max_seq_length' , default=128 , type=_SCREAMING_SNAKE_CASE , help=(
'The maximum total input sequence length after WordPiece tokenization. \n'
'Sequences longer than this will be truncated, sequences shorter padded.'
) , )
parser.add_argument('--batch_size' , default=1 , type=_SCREAMING_SNAKE_CASE , help='Batch size.' )
parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 )
parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='local_rank for distributed training on gpus' )
parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' )
parser.add_argument('--server_ip' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' )
lowerCAmelCase__ :Any = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
lowerCAmelCase__ :List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' )
lowerCAmelCase__ :Optional[int] = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
lowerCAmelCase__ :Dict = torch.device('cuda' , args.local_rank )
lowerCAmelCase__ :Tuple = 1
torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
lowerCAmelCase__ :int = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
lowerCAmelCase__ :Optional[Any] = nn.parallel.DistributedDataParallel(
_SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_SCREAMING_SNAKE_CASE )
elif args.n_gpu > 1:
lowerCAmelCase__ :Union[str, Any] = nn.DataParallel(_SCREAMING_SNAKE_CASE )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE )
torch.save(_SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , 'run_args.bin' ) )
logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE )
# Prepare dataset
lowerCAmelCase__ :Optional[int] = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
lowerCAmelCase__ :Union[str, Any] = (torch.from_numpy(_SCREAMING_SNAKE_CASE ),)
lowerCAmelCase__ :Optional[int] = TensorDataset(*_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :List[Any] = RandomSampler(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Dict = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
lowerCAmelCase__ :Optional[Any] = mask_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
prune_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 293
| 0
|
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase = logging.getLogger()
lowerCamelCase = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( _lowercase):
def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Tuple:
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : Union[str, Any] = {'''source''': '''What is love ?''', '''target''': '''life'''}
lowerCAmelCase__ : Any = {'''train''': 12, '''val''': 2, '''test''': 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
lowerCAmelCase__ : Tuple = '''\n'''.join([contents[field]] * n_lines[split] )
with open(os.path.join(_SCREAMING_SNAKE_CASE , F'{split}.{field}' ) , '''w''' ) as f:
f.write(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str = "pytorch" )-> Optional[int]:
lowerCAmelCase__ : Optional[int] = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , '''output''' )
lowerCAmelCase__ : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , '''data''' )
self._create_dummy_data(data_dir=_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : int = F'\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '.split()
if gpus > 0:
testargs.append(F'--gpus={gpus}' )
if is_apex_available():
testargs.append('''--fp16''' )
else:
testargs.append('''--gpus=0''' )
testargs.append('''--distributed_backend=ddp_cpu''' )
testargs.append('''--num_processes=2''' )
lowerCAmelCase__ : List[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=self.get_env() )
lowerCAmelCase__ : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , '''metrics.json''' )
with open(_SCREAMING_SNAKE_CASE ) as f:
lowerCAmelCase__ : int = json.load(_SCREAMING_SNAKE_CASE )
return result
@require_torch_gpu
def UpperCAmelCase__( self : List[str] )-> Dict:
lowerCAmelCase__ : int = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
@require_torch_multi_gpu
def UpperCAmelCase__( self : Union[str, Any] )-> Dict:
lowerCAmelCase__ : Optional[int] = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
@require_torch_gpu
@require_ray
def UpperCAmelCase__( self : Optional[Any] )-> List[Any]:
lowerCAmelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='''ray''' )
self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
@require_torch_multi_gpu
@require_ray
def UpperCAmelCase__( self : str )-> Union[str, Any]:
lowerCAmelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='''ray''' )
self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
| 365
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
lowerCamelCase = [
'''small''',
'''small-base''',
'''medium''',
'''medium-base''',
'''intermediate''',
'''intermediate-base''',
'''large''',
'''large-base''',
'''xlarge''',
'''xlarge-base''',
]
lowerCamelCase = {
'''vocab_file''': {
'''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''',
'''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''',
'''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''',
'''funnel-transformer/medium-base''': (
'''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'''
),
'''funnel-transformer/intermediate''': (
'''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'''
),
'''funnel-transformer/intermediate-base''': (
'''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'''
),
'''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''',
'''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''',
'''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''',
'''funnel-transformer/xlarge-base''': (
'''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''',
'''funnel-transformer/small-base''': (
'''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''',
'''funnel-transformer/medium-base''': (
'''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/intermediate''': (
'''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'''
),
'''funnel-transformer/intermediate-base''': (
'''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''',
'''funnel-transformer/large-base''': (
'''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''',
'''funnel-transformer/xlarge-base''': (
'''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'''
),
},
}
lowerCamelCase = {f'''funnel-transformer/{name}''': 512 for name in _model_names}
lowerCamelCase = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names}
class _a ( _lowercase):
_a : Tuple = VOCAB_FILES_NAMES
_a : Dict = PRETRAINED_VOCAB_FILES_MAP
_a : Dict = PRETRAINED_INIT_CONFIGURATION
_a : Union[str, Any] = FunnelTokenizer
_a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a : int = 2
def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Any="<unk>" , _SCREAMING_SNAKE_CASE : Dict="<sep>" , _SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , _SCREAMING_SNAKE_CASE : str="<cls>" , _SCREAMING_SNAKE_CASE : List[str]="<mask>" , _SCREAMING_SNAKE_CASE : Optional[int]="<s>" , _SCREAMING_SNAKE_CASE : Dict="</s>" , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : str="##" , **_SCREAMING_SNAKE_CASE : List[str] , )-> List[str]:
super().__init__(
_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , clean_text=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , wordpieces_prefix=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
lowerCAmelCase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _SCREAMING_SNAKE_CASE ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _SCREAMING_SNAKE_CASE ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars
):
lowerCAmelCase__ : int = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) )
lowerCAmelCase__ : Dict = do_lower_case
lowerCAmelCase__ : str = strip_accents
lowerCAmelCase__ : Dict = tokenize_chinese_chars
lowerCAmelCase__ : str = normalizer_class(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ : List[Any] = do_lower_case
def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None )-> Optional[int]:
lowerCAmelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]:
lowerCAmelCase__ : str = [self.sep_token_id]
lowerCAmelCase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]:
lowerCAmelCase__ : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE )
return tuple(_SCREAMING_SNAKE_CASE )
| 211
| 0
|
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowerCamelCase :int = logging.get_logger(__name__)
class _lowerCAmelCase :
__SCREAMING_SNAKE_CASE : int = None
@experimental
def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return _map_with_joblib(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
A_ : Dict = num_proc if num_proc <= len(lowerCamelCase__ ) else len(lowerCamelCase__ )
A_ : int = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowerCamelCase__ ):
A_ : Optional[int] = len(lowerCamelCase__ ) // num_proc
A_ : str = len(lowerCamelCase__ ) % num_proc
A_ : Union[str, Any] = div * index + min(lowerCamelCase__ , lowerCamelCase__ )
A_ : Union[str, Any] = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowerCamelCase__ ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
f'Error dividing inputs iterable among processes. '
f'Total number of objects {len(lowerCamelCase__ )}, '
f'length: {sum(len(i[1] ) for i in split_kwds )}' )
logger.info(
f'Spawning {num_proc} processes for {len(lowerCamelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}' )
A_, A_ : Optional[int] = None, None
if not disable_tqdm:
A_, A_ : Optional[int] = (RLock(),), tqdm.set_lock
with Pool(lowerCamelCase__ , initargs=lowerCamelCase__ , initializer=lowerCamelCase__ ) as pool:
A_ : Any = pool.map(lowerCamelCase__ , lowerCamelCase__ )
logger.info(f'Finished {num_proc} processes' )
A_ : Any = [obj for proc_res in mapped for obj in proc_res]
logger.info(f'Unpacked {len(lowerCamelCase__ )} objects' )
return mapped
def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=lowerCamelCase__ ):
return joblib.Parallel()(
joblib.delayed(lowerCamelCase__ )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a ( lowerCamelCase__ ):
'''simple docstring'''
A_ : List[Any] = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
A_ : str = None
| 206
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class _lowerCAmelCase ( unittest.TestCase ):
def _a (self ):
A_ : Optional[Any] = 10
def _a (self ):
A_ : Dict = [1, 2, 3, 4]
A_ : List[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase )
def _a (self ):
A_ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
A_ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase )
def _a (self ):
A_ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
A_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase )
def _a (self ):
A_ : List[str] = """It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this."""
A_, A_ : Dict = process_story(lowercase )
self.assertEqual(lowercase , [] )
def _a (self ):
A_ : Optional[int] = """"""
A_, A_ : List[str] = process_story(lowercase )
self.assertEqual(lowercase , [] )
self.assertEqual(lowercase , [] )
def _a (self ):
A_ : Optional[Any] = (
"""It was the year of Our Lord one thousand seven hundred and """
"""seventy-five\n\nSpiritual revelations were conceded to England """
"""at that favoured period, as at this.\n@highlight\n\nIt was the best of times"""
)
A_, A_ : int = process_story(lowercase )
A_ : Optional[Any] = [
"""It was the year of Our Lord one thousand seven hundred and seventy-five.""",
"""Spiritual revelations were conceded to England at that favoured period, as at this.""",
]
self.assertEqual(lowercase , lowercase )
A_ : Dict = ["""It was the best of times."""]
self.assertEqual(lowercase , lowercase )
def _a (self ):
A_ : Optional[int] = torch.tensor([1, 2, 3, 4] )
A_ : Dict = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(lowercase , 0 ).numpy() , expected.numpy() )
def _a (self ):
A_ : str = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
A_ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowercase , 23 ).numpy() , expected.numpy() )
def _a (self ):
A_ : Any = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
A_ : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowercase , 1 ).numpy() , expected.numpy() )
def _a (self ):
A_ : List[Any] = 101
A_ : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
A_ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
A_ : Dict = compute_token_type_ids(lowercase , lowercase )
np.testing.assert_array_equal(lowercase , lowercase )
| 206
| 1
|
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
__A = logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase :
"""simple docstring"""
snake_case_ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} )
snake_case_ = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
snake_case_ = field(
default=1_28 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=__magic_name__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.task_name.lower()
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''train'''
snake_case_ = '''dev'''
snake_case_ = '''test'''
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = Split.train , lowerCamelCase__ = None , ) -> int:
'''simple docstring'''
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , lowerCamelCase__ , )
__lowerCamelCase = args
__lowerCamelCase = glue_processors[args.task_name]()
__lowerCamelCase = glue_output_modes[args.task_name]
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
try:
__lowerCamelCase = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
__lowerCamelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , )
__lowerCamelCase = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__lowerCamelCase , __lowerCamelCase = label_list[2], label_list[1]
__lowerCamelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__lowerCamelCase = cached_features_file + '.lock'
with FileLock(lowerCamelCase__ ):
if os.path.exists(lowerCamelCase__ ) and not args.overwrite_cache:
__lowerCamelCase = time.time()
__lowerCamelCase = torch.load(lowerCamelCase__ )
logger.info(
f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start )
else:
logger.info(f"""Creating features from dataset file at {args.data_dir}""" )
if mode == Split.dev:
__lowerCamelCase = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
__lowerCamelCase = self.processor.get_test_examples(args.data_dir )
else:
__lowerCamelCase = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
__lowerCamelCase = examples[:limit_length]
__lowerCamelCase = glue_convert_examples_to_features(
lowerCamelCase__ , lowerCamelCase__ , max_length=args.max_seq_length , label_list=lowerCamelCase__ , output_mode=self.output_mode , )
__lowerCamelCase = time.time()
torch.save(self.features , lowerCamelCase__ )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" )
def __len__( self ) -> List[Any]:
'''simple docstring'''
return len(self.features )
def __getitem__( self , lowerCamelCase__ ) -> InputFeatures:
'''simple docstring'''
return self.features[i]
def lowercase_ ( self ) -> int:
'''simple docstring'''
return self.label_list
| 367
|
from __future__ import annotations
def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float:
"""simple docstring"""
__lowerCamelCase = sorted(numsa + numsa )
__lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = [float(x) for x in input("Enter the elements of first array: ").split()]
__A = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 348
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.