code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=UpperCamelCase__ ): UpperCAmelCase__ = ["""note_seq"""] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> int: requires_backends(self , ['note_seq'] ) @classmethod def A_ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Any ) -> Optional[int]: requires_backends(cls , ['note_seq'] ) @classmethod def A_ ( cls : Dict , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[Any] ) -> Optional[Any]: requires_backends(cls , ['note_seq'] )
50
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __lowerCAmelCase : List[str] ={ "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : Dict ={ "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : Union[str, Any] ={ "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __lowerCAmelCase : str ={ "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Tuple ={ "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } __lowerCAmelCase : Dict ={ "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def UpperCamelCase ( _lowerCamelCase : Tuple ): if isinstance(_lowerCamelCase , _lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int]=False ): A__ = checkpoint[F"{old_prefix}.in_layers.0.weight"] A__ = checkpoint[F"{old_prefix}.in_layers.0.bias"] A__ = checkpoint[F"{old_prefix}.in_layers.2.weight"] A__ = checkpoint[F"{old_prefix}.in_layers.2.bias"] A__ = checkpoint[F"{old_prefix}.emb_layers.1.weight"] A__ = checkpoint[F"{old_prefix}.emb_layers.1.bias"] A__ = checkpoint[F"{old_prefix}.out_layers.0.weight"] A__ = checkpoint[F"{old_prefix}.out_layers.0.bias"] A__ = checkpoint[F"{old_prefix}.out_layers.3.weight"] A__ = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: A__ = checkpoint[F"{old_prefix}.skip_connection.weight"] A__ = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=None ): A__, A__, A__ = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) A__, A__, A__ = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) A__ = checkpoint[F"{old_prefix}.norm.weight"] A__ = checkpoint[F"{old_prefix}.norm.bias"] A__ = weight_q.squeeze(-1 ).squeeze(-1 ) A__ = bias_q.squeeze(-1 ).squeeze(-1 ) A__ = weight_k.squeeze(-1 ).squeeze(-1 ) A__ = bias_k.squeeze(-1 ).squeeze(-1 ) A__ = weight_v.squeeze(-1 ).squeeze(-1 ) A__ = bias_v.squeeze(-1 ).squeeze(-1 ) A__ = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) A__ = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : List[str] ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) A__ = {} A__ = checkpoint["time_embed.0.weight"] A__ = checkpoint["time_embed.0.bias"] A__ = checkpoint["time_embed.2.weight"] A__ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: A__ = checkpoint["label_emb.weight"] A__ = checkpoint["input_blocks.0.0.weight"] A__ = checkpoint["input_blocks.0.0.bias"] A__ = unet_config["down_block_types"] A__ = unet_config["layers_per_block"] A__ = unet_config["attention_head_dim"] A__ = unet_config["block_out_channels"] A__ = 1 A__ = channels_list[0] for i, layer_type in enumerate(_lowerCamelCase ): A__ = channels_list[i] A__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_lowerCamelCase ): A__ = F"down_blocks.{i}.resnets.{j}" A__ = F"input_blocks.{current_layer}.0" A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_lowerCamelCase ): A__ = F"down_blocks.{i}.resnets.{j}" A__ = F"input_blocks.{current_layer}.0" A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) A__ = F"down_blocks.{i}.attentions.{j}" A__ = F"input_blocks.{current_layer}.1" A__ = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"down_blocks.{i}.downsamplers.0" A__ = F"input_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 A__ = current_channels # hardcoded the mid-block for now A__ = "mid_block.resnets.0" A__ = "middle_block.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "mid_block.attentions.0" A__ = "middle_block.1" A__ = convert_attention(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "mid_block.resnets.1" A__ = "middle_block.2" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = 0 A__ = unet_config["up_block_types"] for i, layer_type in enumerate(_lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): A__ = F"up_blocks.{i}.resnets.{j}" A__ = F"output_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"up_blocks.{i}.upsamplers.0" A__ = F"output_blocks.{current_layer-1}.1" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): A__ = F"up_blocks.{i}.resnets.{j}" A__ = F"output_blocks.{current_layer}.0" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) A__ = F"up_blocks.{i}.attentions.{j}" A__ = F"output_blocks.{current_layer}.1" A__ = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: A__ = F"up_blocks.{i}.upsamplers.0" A__ = F"output_blocks.{current_layer-1}.2" A__ = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = checkpoint["out.0.weight"] A__ = checkpoint["out.0.bias"] A__ = checkpoint["out.2.weight"] A__ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __lowerCAmelCase : Optional[Any] =parser.parse_args() __lowerCAmelCase : List[Any] =strabool(args.class_cond) __lowerCAmelCase : List[str] =os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __lowerCAmelCase : List[str] =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : List[str] =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __lowerCAmelCase : Any =TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __lowerCAmelCase : Dict =None __lowerCAmelCase : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) __lowerCAmelCase : Dict =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __lowerCAmelCase : List[str] =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __lowerCAmelCase : Dict =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __lowerCAmelCase : Dict =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") __lowerCAmelCase : Dict =CMStochasticIterativeScheduler(**scheduler_config) __lowerCAmelCase : str =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
237
0
import argparse from collections import defaultdict import yaml _snake_case = "docs/source/en/_toctree.yml" def lowerCAmelCase_ ( snake_case_ ): _A : Any = defaultdict(snake_case_ ) _A : Optional[Any] = [] _A : List[Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(snake_case_ ) _A : List[str] = new_doc_list _A : List[str] = [key for key, value in counts.items() if value > 1] _A : List[str] = [] for duplicate_key in duplicates: _A : Optional[Any] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(snake_case_ ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _A : List[Any] = sorted(snake_case_,key=lambda snake_case_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case_ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(snake_case_ ) # Sort return overview_doc def lowerCAmelCase_ ( snake_case_=False ): with open(snake_case_,encoding="""utf-8""" ) as f: _A : List[str] = yaml.safe_load(f.read() ) # Get to the API doc _A : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A : Dict = content[api_idx]["""sections"""] # Then to the model doc _A : Dict = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _A : Union[str, Any] = api_doc[scheduler_idx]["""sections"""] _A : Optional[int] = clean_doc_toc(snake_case_ ) _A : List[Any] = False if new_scheduler_doc != scheduler_doc: _A : str = True if overwrite: _A : Optional[Any] = new_scheduler_doc if diff: if overwrite: _A : List[Any] = api_doc with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case_,allow_unicode=snake_case_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowerCAmelCase_ ( snake_case_=False ): with open(snake_case_,encoding="""utf-8""" ) as f: _A : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc _A : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A : Any = content[api_idx]["""sections"""] # Then to the model doc _A : str = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _A : Any = False _A : Optional[int] = api_doc[pipeline_idx]["""sections"""] _A : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _A : Dict = pipeline_doc["""section"""] _A : Dict = clean_doc_toc(snake_case_ ) if overwrite: _A : str = new_sub_pipeline_doc new_pipeline_docs.append(snake_case_ ) # sort overall pipeline doc _A : int = clean_doc_toc(snake_case_ ) if new_pipeline_docs != pipeline_docs: _A : Union[str, Any] = True if overwrite: _A : int = new_pipeline_docs if diff: if overwrite: _A : Union[str, Any] = api_doc with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case_,allow_unicode=snake_case_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _snake_case = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
343
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
1
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowercase_ = input('Enter image url: ').strip() print(F'''Downloading image from {url} ...''') lowercase_ = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image lowercase_ = soup.find('meta', {'property': 'og:image'})['content'] lowercase_ = requests.get(image_url).content lowercase_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, 'wb') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
266
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): A = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: A = 'sgugger/tiny-distilbert-classification' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,only_pretrain_model=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,torchscript=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,fpaa=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` A = None A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' ,'Can\'t do half precision' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,fpaa=A_ ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = 'sshleifer/tinier_bart' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'sshleifer/tinier_bart' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,save_to_csv=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(A_ ,'inf_time.csv' ) ,train_memory_csv_file=os.path.join(A_ ,'train_mem.csv' ) ,inference_memory_csv_file=os.path.join(A_ ,'inf_mem.csv' ) ,train_time_csv_file=os.path.join(A_ ,'train_time.csv' ) ,env_info_csv_file=os.path.join(A_ ,'env.csv' ) ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'env.csv' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: A = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A_ : Optional[int] ): self.assertTrue(hasattr(A_ ,'sequential' ) ) self.assertTrue(hasattr(A_ ,'cumulative' ) ) self.assertTrue(hasattr(A_ ,'current' ) ) self.assertTrue(hasattr(A_ ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(A_ ,'log.txt' ) ,log_print=A_ ,trace_memory_line_by_line=A_ ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ ,'log.txt' ) ).exists() )
74
0
import datasets from .evaluate import evaluate __lowerCAmelCase : List[Any] ="\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" __lowerCAmelCase : int ="\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" __lowerCAmelCase : int ="\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[str] )-> List[Any]: A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=lowercase_ , predictions=lowercase_ ) return score
356
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase : def __init__( self :str , lowercase_ :str , )-> str: A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = False A__ = True A__ = 99 A__ = 32 A__ = 2 A__ = 4 A__ = 37 A__ = "gelu" A__ = 0.1 A__ = 0.1 A__ = 5_12 A__ = 16 A__ = 2 A__ = 0.0_2 A__ = 3 A__ = 4 A__ = None def UpperCAmelCase_ ( self :Union[str, Any] )-> int: A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self :str , lowercase_ :Optional[int] , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :Union[str, Any] , lowercase_ :Optional[int] , lowercase_ :str )-> List[str]: A__ = TFDistilBertModel(config=lowercase_ ) A__ = {"input_ids": input_ids, "attention_mask": input_mask} A__ = model(lowercase_ ) A__ = [input_ids, input_mask] A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :str , lowercase_ :Optional[Any] , lowercase_ :Optional[int] , lowercase_ :Optional[int] , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] )-> Optional[int]: A__ = TFDistilBertForMaskedLM(config=lowercase_ ) A__ = {"input_ids": input_ids, "attention_mask": input_mask} A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self :Any , lowercase_ :str , lowercase_ :str , lowercase_ :Optional[int] , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Union[str, Any] )-> Optional[int]: A__ = TFDistilBertForQuestionAnswering(config=lowercase_ ) A__ = { "input_ids": input_ids, "attention_mask": input_mask, } A__ = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :Optional[int] , lowercase_ :Any , lowercase_ :Dict , lowercase_ :Tuple , lowercase_ :Optional[Any] , lowercase_ :Optional[int] )-> Any: A__ = self.num_labels A__ = TFDistilBertForSequenceClassification(lowercase_ ) A__ = {"input_ids": input_ids, "attention_mask": input_mask} A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self :str , lowercase_ :Optional[Any] , lowercase_ :List[Any] , lowercase_ :Dict , lowercase_ :Tuple , lowercase_ :int , lowercase_ :Union[str, Any] )-> str: A__ = self.num_choices A__ = TFDistilBertForMultipleChoice(lowercase_ ) A__ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) A__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self :str , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :int , lowercase_ :List[Any] , lowercase_ :Tuple )-> Tuple: A__ = self.num_labels A__ = TFDistilBertForTokenClassification(lowercase_ ) A__ = {"input_ids": input_ids, "attention_mask": input_mask} A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: A__ = self.prepare_config_and_inputs() ((A__), (A__), (A__), (A__), (A__), (A__)) = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __lowercase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __lowercase = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :Optional[Any] )-> List[Any]: A__ = TFDistilBertModelTester(self ) A__ = ConfigTester(self , config_class=lowercase_ , dim=37 ) def UpperCAmelCase_ ( self :Tuple )-> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self :int )-> Tuple: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] )-> Optional[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase_ ) def UpperCAmelCase_ ( self :str )-> str: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Dict: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase_ ) def UpperCAmelCase_ ( self :str )-> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self :List[str] )-> Dict: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): A__ = TFDistilBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self :List[Any] )-> Any: A__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(lowercase_ )[0] A__ = [1, 6, 7_68] self.assertEqual(output.shape , lowercase_ ) A__ = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1E-4 )
123
0
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCAmelCase__ : Union[str, Any] = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def a_ ( lowerCamelCase , lowerCamelCase ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a_ ( lowerCamelCase ): UpperCAmelCase__ = _TestCommandArgs(dataset=lowerCamelCase , all_configs=lowerCamelCase , save_infos=lowerCamelCase ) UpperCAmelCase__ = TestCommand(*lowerCamelCase ) test_command.run() UpperCAmelCase__ = os.path.join(lowerCamelCase , 'README.md' ) assert os.path.exists(lowerCamelCase ) UpperCAmelCase__ = DatasetInfosDict.from_directory(lowerCamelCase ) UpperCAmelCase__ = DatasetInfosDict( { 'default': DatasetInfo( features=Features( { 'tokens': Sequence(Value('string' ) ), 'ner_tags': Sequence( ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ), 'langs': Sequence(Value('string' ) ), 'spans': Sequence(Value('string' ) ), } ) , splits=[ { 'name': 'train', 'num_bytes': 2_3_5_1_5_6_3, 'num_examples': 1_0_0_0_0, }, { 'name': 'validation', 'num_bytes': 2_3_8_4_1_8, 'num_examples': 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ = getattr(dataset_infos['default'] , lowerCamelCase ), getattr(expected_dataset_infos['default'] , lowerCamelCase ) if key == "num_bytes": assert is_apercent_close(lowerCamelCase , lowerCamelCase ) elif key == "splits": assert list(lowerCamelCase ) == list(lowerCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
98
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ : Optional[int] = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowerCAmelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowerCAmelCase__ : int = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ : Dict = F"""down_blocks.{i}.resnets.{j}.""" lowerCAmelCase__ : Union[str, Any] = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ : Tuple = F"""down_blocks.{i}.attentions.{j}.""" lowerCAmelCase__ : int = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ : Tuple = F"""up_blocks.{i}.resnets.{j}.""" lowerCAmelCase__ : int = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ : Any = F"""up_blocks.{i}.attentions.{j}.""" lowerCAmelCase__ : List[str] = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ : List[str] = F"""down_blocks.{i}.downsamplers.0.conv.""" lowerCAmelCase__ : Union[str, Any] = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ : Dict = F"""up_blocks.{i}.upsamplers.0.""" lowerCAmelCase__ : List[Any] = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ : str = 'mid_block.attentions.0.' lowerCAmelCase__ : Union[str, Any] = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ : int = F"""mid_block.resnets.{j}.""" lowerCAmelCase__ : List[str] = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def a_ ( lowerCamelCase ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. UpperCAmelCase__ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCAmelCase__ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCAmelCase__ = v.replace(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCAmelCase__ = v.replace(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = v UpperCAmelCase__ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ : List[str] = F"""encoder.down_blocks.{i}.resnets.{j}.""" lowerCAmelCase__ : List[Any] = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ : Dict = F"""down_blocks.{i}.downsamplers.0.""" lowerCAmelCase__ : str = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ : int = F"""up_blocks.{i}.upsamplers.0.""" lowerCAmelCase__ : str = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ : Dict = F"""decoder.up_blocks.{i}.resnets.{j}.""" lowerCAmelCase__ : Optional[int] = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ : Any = F"""mid_block.resnets.{i}.""" lowerCAmelCase__ : Any = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def a_ ( lowerCamelCase ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCAmelCase__ = v.replace(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCAmelCase__ = v.replace(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = v UpperCAmelCase__ = {v: vae_state_dict[k] for k, v in mapping.items()} UpperCAmelCase__ = ['q', 'k', 'v', 'proj_out'] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'''mid.attn_1.{weight_name}.weight''' in k: print(f'''Reshaping {k} for SD format''' ) UpperCAmelCase__ = reshape_weight_for_sd(lowerCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ : Optional[int] = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowerCAmelCase__ : List[Any] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ : int = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ : Optional[int] = {'q': 0, 'k': 1, 'v': 2} def a_ ( lowerCamelCase ): UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): UpperCAmelCase__ = k[: -len('.q_proj.weight' )] UpperCAmelCase__ = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: UpperCAmelCase__ = [None, None, None] UpperCAmelCase__ = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): UpperCAmelCase__ = k[: -len('.q_proj.bias' )] UpperCAmelCase__ = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: UpperCAmelCase__ = [None, None, None] UpperCAmelCase__ = v continue UpperCAmelCase__ = textenc_pattern.sub(lambda lowerCamelCase : protected[re.escape(m.group(0 ) )] , lowerCamelCase ) UpperCAmelCase__ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) UpperCAmelCase__ = textenc_pattern.sub(lambda lowerCamelCase : protected[re.escape(m.group(0 ) )] , lowerCamelCase ) UpperCAmelCase__ = torch.cat(lowerCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) UpperCAmelCase__ = textenc_pattern.sub(lambda lowerCamelCase : protected[re.escape(m.group(0 ) )] , lowerCamelCase ) UpperCAmelCase__ = torch.cat(lowerCamelCase ) return new_state_dict def a_ ( lowerCamelCase ): return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowerCAmelCase__ : Optional[int] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ : Tuple = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowerCAmelCase__ : List[str] = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowerCAmelCase__ : int = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ : Union[str, Any] = load_file(unet_path, device='cpu') else: lowerCAmelCase__ : str = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowerCAmelCase__ : Dict = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowerCAmelCase__ : Optional[Any] = load_file(vae_path, device='cpu') else: lowerCAmelCase__ : Optional[int] = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowerCAmelCase__ : List[str] = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowerCAmelCase__ : Tuple = load_file(text_enc_path, device='cpu') else: lowerCAmelCase__ : Any = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowerCAmelCase__ : Any = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowerCAmelCase__ : Any = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ : Dict = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ : List[Any] = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ : str = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ : List[Any] = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ : Tuple = {'transformer.' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ : List[str] = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ : str = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ : Optional[Any] = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ : Optional[Any] = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ : List[Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ : int = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ : List[str] = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
98
1
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) UpperCamelCase_ = logging.getLogger(__name__) def lowercase__( __UpperCamelCase: Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = git.Repo(search_parent_directories=a__ ) SCREAMING_SNAKE_CASE : List[str] = { '''repo_id''': str(a__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(a__ ,'git_log.json' ) ,'w' ) as f: json.dump(a__ ,a__ ,indent=4 ) def lowercase__( __UpperCamelCase: str ): """simple docstring""" if params.n_gpu <= 0: SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = -1 SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 SCREAMING_SNAKE_CASE : Tuple = int(os.environ['WORLD_SIZE'] ) SCREAMING_SNAKE_CASE : Optional[int] = int(os.environ['N_GPU_NODE'] ) SCREAMING_SNAKE_CASE : List[Any] = int(os.environ['RANK'] ) # number of nodes / node ID SCREAMING_SNAKE_CASE : List[Any] = params.world_size // params.n_gpu_per_node SCREAMING_SNAKE_CASE : Optional[int] = params.global_rank // params.n_gpu_per_node SCREAMING_SNAKE_CASE : Optional[Any] = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode SCREAMING_SNAKE_CASE : str = params.node_id == 0 and params.local_rank == 0 SCREAMING_SNAKE_CASE : Union[str, Any] = params.n_nodes > 1 # summary SCREAMING_SNAKE_CASE : Optional[Any] = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' ,backend='nccl' ,) def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
369
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "facebook/nllb-large-en-ro": 1_0_2_4, "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off UpperCamelCase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Any = ['''input_ids''', '''attention_mask'''] A : Dict = NllbTokenizer A : List[int] = [] A : List[int] = [] def __init__( self, A=None, A=None, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=None, A=None, A=None, A=False, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token SCREAMING_SNAKE_CASE : Tuple = legacy_behaviour super().__init__( vocab_file=A, tokenizer_file=A, bos_token=A, eos_token=A, sep_token=A, cls_token=A, unk_token=A, pad_token=A, mask_token=A, src_lang=A, tgt_lang=A, additional_special_tokens=A, legacy_behaviour=A, **A, ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : Optional[int] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : Optional[Any] = { lang_code: self.convert_tokens_to_ids(A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : Dict = src_lang if src_lang is not None else 'eng_Latn' SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self, A, A, A, A, **A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[Any] = self(A, add_special_tokens=A, return_tensors=A, **A ) SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : int = tgt_lang_id return inputs def UpperCamelCase_ ( self, A, A = "eng_Latn", A = None, A = "fra_Latn", **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[Any] = tgt_lang return super().prepare_seqaseq_batch(A, A, **A ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Tuple = [self.cur_lang_code] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Dict = [self.cur_lang_code] SCREAMING_SNAKE_CASE : str = [self.eos_token_id] SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return SCREAMING_SNAKE_CASE : int = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file, A ) return (out_vocab_file,)
246
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """detr""" a__ = ["""past_key_values"""] a__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : List[Any] , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : int=100 , UpperCamelCase__ : Dict=6 , UpperCamelCase__ : str=2048 , UpperCamelCase__ : Optional[int]=8 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : List[str]=2048 , UpperCamelCase__ : Dict=8 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : int=True , UpperCamelCase__ : List[str]="relu" , UpperCamelCase__ : Dict=256 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : Tuple=0.02 , UpperCamelCase__ : Tuple=1.0 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Any="sine" , UpperCamelCase__ : Optional[Any]="resnet50" , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : List[str]=0.1 , **UpperCamelCase__ : Any , ) -> Any: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __magic_name__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): __magic_name__ = backbone_config.get("""model_type""" ) __magic_name__ = CONFIG_MAPPING[backbone_model_type] __magic_name__ = config_class.from_dict(UpperCamelCase__ ) # set timm attributes to None __magic_name__ , __magic_name__ , __magic_name__ = None, None, None __magic_name__ = use_timm_backbone __magic_name__ = backbone_config __magic_name__ = num_channels __magic_name__ = num_queries __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = init_xavier_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = encoder_layers __magic_name__ = auxiliary_loss __magic_name__ = position_embedding_type __magic_name__ = backbone __magic_name__ = use_pretrained_backbone __magic_name__ = dilation # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = mask_loss_coefficient __magic_name__ = dice_loss_coefficient __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowercase ( self : List[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Dict ) -> int: """simple docstring""" return self.d_model @classmethod def _lowercase ( cls : Optional[Any] , UpperCamelCase__ : PretrainedConfig , **UpperCamelCase__ : str ) -> int: """simple docstring""" return cls(backbone_config=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Dict ) -> Dict[str, any]: """simple docstring""" __magic_name__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __magic_name__ = self.backbone_config.to_dict() __magic_name__ = self.__class__.model_type return output class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = version.parse("""1.11""" ) @property def _lowercase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase ( self : Tuple ) -> float: """simple docstring""" return 1E-5 @property def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" return 12
88
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """pegasus""" a__ = ["""past_key_values"""] a__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , UpperCamelCase__ : Optional[int]=5_0265 , UpperCamelCase__ : Optional[int]=1024 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : List[str]=4096 , UpperCamelCase__ : Tuple=16 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : List[Any]=1024 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : int=False , UpperCamelCase__ : Any=0 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Tuple=1 , **UpperCamelCase__ : Union[str, Any] , ) -> str: """simple docstring""" __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) @property def _lowercase ( self : List[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Dict ) -> int: """simple docstring""" return self.d_model
88
1
"""simple docstring""" class a_ : # Public class to implement a graph '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = row lowerCamelCase__ : Optional[Any] = col lowerCamelCase__ : Any = graph def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCamelCase__ : Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCamelCase__ : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k], j + col_nbr[k], lowerCamelCase_ ): self.diffs(i + row_nbr[k], j + col_nbr[k], lowerCamelCase_ ) def a__ (self ): # And finally, count all islands. '''simple docstring''' lowerCamelCase__ : int = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCamelCase__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) count += 1 return count
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE = """docs/source/en/_toctree.yml""" def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = defaultdict(UpperCamelCase_ ) UpperCamelCase = [] UpperCamelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(UpperCamelCase_ ) UpperCamelCase = new_doc_list UpperCamelCase = [key for key, value in counts.items() if value > 1] UpperCamelCase = [] for duplicate_key in duplicates: UpperCamelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(UpperCamelCase_ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) UpperCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCamelCase_ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(UpperCamelCase_ ) # Sort return overview_doc def lowercase( UpperCamelCase_=False ) -> List[str]: '''simple docstring''' with open(UpperCamelCase_ , encoding="""utf-8""" ) as f: UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase = api_doc[scheduler_idx]["""sections"""] UpperCamelCase = clean_doc_toc(UpperCamelCase_ ) UpperCamelCase = False if new_scheduler_doc != scheduler_doc: UpperCamelCase = True if overwrite: UpperCamelCase = new_scheduler_doc if diff: if overwrite: UpperCamelCase = api_doc with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase_ , allow_unicode=UpperCamelCase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowercase( UpperCamelCase_=False ) -> int: '''simple docstring''' with open(UpperCamelCase_ , encoding="""utf-8""" ) as f: UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase = False UpperCamelCase = api_doc[pipeline_idx]["""sections"""] UpperCamelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase = pipeline_doc["""section"""] UpperCamelCase = clean_doc_toc(UpperCamelCase_ ) if overwrite: UpperCamelCase = new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase_ ) # sort overall pipeline doc UpperCamelCase = clean_doc_toc(UpperCamelCase_ ) if new_pipeline_docs != pipeline_docs: UpperCamelCase = True if overwrite: UpperCamelCase = new_pipeline_docs if diff: if overwrite: UpperCamelCase = api_doc with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase_ , allow_unicode=UpperCamelCase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _SCREAMING_SNAKE_CASE = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
343
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a__ ( ): raise RuntimeError('CUDA out of memory.' ) class __lowercase (nn.Module ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : int = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE_ : Tuple = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE_ : str = nn.Linear(4 , 5 ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = mock_training_loop_function('hello' ) self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ ): pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function(1_2_8 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE_ : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = release_memory(lowerCAmelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , lowerCAmelCase__ )
162
import socket def a__ ( ): SCREAMING_SNAKE_CASE_ : Dict = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE_ : Any = socket.gethostname() SCREAMING_SNAKE_CASE_ : List[str] = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file', 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: SCREAMING_SNAKE_CASE_ : Tuple = sock.recv(1_0_2_4 ) if not data: break out_file.write(A__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
162
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _snake_case ( unittest.TestCase ): def snake_case__ ( self): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase__ : Optional[int] = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=_lowerCamelCase , cache_dir=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = [t[-1] for t in os.walk(os.path.join(_lowerCamelCase , os.listdir(_lowerCamelCase)[0] , """snapshots"""))] UpperCAmelCase__ : Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""") for f in files) @slow @require_flax class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=_lowerCamelCase) UpperCAmelCase__ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : Any = jax.device_count() UpperCAmelCase__ : List[str] = num_samples * [prompt] UpperCAmelCase__ : List[Any] = pipeline.prepare_inputs(_lowerCamelCase) # shard inputs and rng UpperCAmelCase__ : str = replicate(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = jax.random.split(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Any = shard(_lowerCamelCase) UpperCAmelCase__ : Any = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1514745) < 1e-3 assert np.abs(np.abs(_lowerCamelCase , dtype=np.floataa).sum() - 4_9947.875) < 5e-1 UpperCAmelCase__ : str = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(_lowerCamelCase) == num_samples def snake_case__ ( self): UpperCAmelCase__ : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=_lowerCamelCase) UpperCAmelCase__ : Dict = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0) UpperCAmelCase__ : str = 50 UpperCAmelCase__ : List[Any] = jax.device_count() UpperCAmelCase__ : Optional[int] = num_samples * [prompt] UpperCAmelCase__ : Dict = pipeline.prepare_inputs(_lowerCamelCase) # shard inputs and rng UpperCAmelCase__ : List[str] = replicate(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = jax.random.split(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Tuple = shard(_lowerCamelCase) UpperCAmelCase__ : List[str] = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05652401)) < 1e-3 assert np.abs((np.abs(_lowerCamelCase , dtype=np.floataa).sum() - 238_3808.2)) < 5e-1 def snake_case__ ( self): UpperCAmelCase__ : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=_lowerCamelCase) UpperCAmelCase__ : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase__ : Any = jax.random.PRNGKey(0) UpperCAmelCase__ : Any = 50 UpperCAmelCase__ : Union[str, Any] = jax.device_count() UpperCAmelCase__ : Any = num_samples * [prompt] UpperCAmelCase__ : int = pipeline.prepare_inputs(_lowerCamelCase) # shard inputs and rng UpperCAmelCase__ : List[Any] = replicate(_lowerCamelCase) UpperCAmelCase__ : str = jax.random.split(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Any = shard(_lowerCamelCase) UpperCAmelCase__ : str = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_lowerCamelCase , dtype=np.floataa).sum() - 237_3516.75)) < 5e-1 def snake_case__ ( self): UpperCAmelCase__ : Any = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa) UpperCAmelCase__ : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0) UpperCAmelCase__ : Union[str, Any] = 50 UpperCAmelCase__ : Any = jax.device_count() UpperCAmelCase__ : List[str] = num_samples * [prompt] UpperCAmelCase__ : Optional[int] = pipeline.prepare_inputs(_lowerCamelCase) # shard inputs and rng UpperCAmelCase__ : List[Any] = replicate(_lowerCamelCase) UpperCAmelCase__ : Tuple = jax.random.split(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : str = shard(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_lowerCamelCase , dtype=np.floataa).sum() - 237_3516.75)) < 5e-1 def snake_case__ ( self): UpperCAmelCase__ : Any = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) UpperCAmelCase__ : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , ) UpperCAmelCase__ : Any = scheduler.create_state() UpperCAmelCase__ : List[str] = scheduler_state UpperCAmelCase__ : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase__ : Union[str, Any] = jax.random.PRNGKey(0) UpperCAmelCase__ : Tuple = 50 UpperCAmelCase__ : List[Any] = jax.device_count() UpperCAmelCase__ : int = num_samples * [prompt] UpperCAmelCase__ : int = pipeline.prepare_inputs(_lowerCamelCase) # shard inputs and rng UpperCAmelCase__ : Tuple = replicate(_lowerCamelCase) UpperCAmelCase__ : List[str] = jax.random.split(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = shard(_lowerCamelCase) UpperCAmelCase__ : int = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.045043945)) < 1e-3 assert np.abs((np.abs(_lowerCamelCase , dtype=np.floataa).sum() - 234_7693.5)) < 5e-1 def snake_case__ ( self): UpperCAmelCase__ : Dict = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) UpperCAmelCase__ : List[str] = jax.device_count() UpperCAmelCase__ : int = num_samples * [prompt] UpperCAmelCase__ : List[Any] = jax.random.split(jax.random.PRNGKey(0) , _lowerCamelCase) UpperCAmelCase__ : int = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=_lowerCamelCase , ) UpperCAmelCase__ : Dict = replicate(_lowerCamelCase) UpperCAmelCase__ : Dict = pipeline.prepare_inputs(_lowerCamelCase) UpperCAmelCase__ : int = shard(_lowerCamelCase) UpperCAmelCase__ : int = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase__ : Optional[Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase__ : int = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=_lowerCamelCase , use_memory_efficient_attention=_lowerCamelCase , ) UpperCAmelCase__ : Any = replicate(_lowerCamelCase) UpperCAmelCase__ : List[Any] = pipeline.prepare_inputs(_lowerCamelCase) UpperCAmelCase__ : Dict = shard(_lowerCamelCase) UpperCAmelCase__ : List[Any] = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase__ : Union[str, Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
163
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Any: __snake_case : List[Any] = dataset __snake_case : Optional[int] = process __snake_case : str = params def __len__( self : Optional[Any] ) -> Any: return len(self.dataset ) def __getitem__( self : Dict , lowerCamelCase : List[Any] ) -> List[str]: __snake_case : List[Any] = self.dataset[i] __snake_case : Tuple = self.process(lowerCamelCase , **self.params ) return processed class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict=None ) -> int: __snake_case : List[Any] = loader __snake_case : Dict = infer __snake_case : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __snake_case : Union[str, Any] = None __snake_case : Optional[Any] = loader_batch_size # Internal bookkeeping __snake_case : int = None __snake_case : Optional[int] = None def __len__( self : Optional[Any] ) -> Tuple: return len(self.loader ) def __iter__( self : str ) -> Tuple: __snake_case : int = iter(self.loader ) return self def __snake_case ( self : int ) -> Any: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __snake_case : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __snake_case : int = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase , lowerCamelCase ): # Convert ModelOutput to tuple first __snake_case : Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __snake_case : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase , lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __snake_case : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : str = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __snake_case : Union[str, Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : List[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : Optional[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __snake_case : Tuple = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __snake_case : str = self._loader_batch_data.__class__(lowerCamelCase ) self._loader_batch_index += 1 return result def __snake_case ( self : Dict ) -> Union[str, Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __snake_case : List[str] = next(self.iterator ) __snake_case : int = self.infer(lowerCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase , torch.Tensor ): __snake_case : List[Any] = processed else: __snake_case : Optional[Any] = list(processed.keys() )[0] __snake_case : List[Any] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[str] = len(lowerCamelCase ) else: __snake_case : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Optional[Any] = observed_batch_size # Setting internal index to unwrap the batch __snake_case : Union[str, Any] = processed __snake_case : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=None ) -> Any: super().__init__(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __iter__( self : Optional[int] ) -> Optional[int]: __snake_case : Union[str, Any] = iter(self.loader ) __snake_case : int = None return self def __snake_case ( self : List[Any] ) -> List[Any]: if self.subiterator is None: __snake_case : Optional[int] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __snake_case : int = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __snake_case : Union[str, Any] = self.infer(next(self.iterator ) , **self.params ) __snake_case : int = next(self.subiterator ) return processed class a (_lowerCAmelCase ): """simple docstring""" def __iter__( self : Any ) -> Optional[Any]: __snake_case : str = iter(self.loader ) return self def __snake_case ( self : Tuple ) -> str: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __snake_case : Dict = False __snake_case : Dict = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __snake_case : Union[str, Any] = self.loader_batch_item() __snake_case : Any = item.pop("is_last" ) accumulator.append(lowerCamelCase ) if is_last: return accumulator while not is_last: __snake_case : str = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase , torch.Tensor ): __snake_case : Optional[int] = processed else: __snake_case : Union[str, Any] = list(processed.keys() )[0] __snake_case : Optional[Any] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : int = len(lowerCamelCase ) else: __snake_case : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Dict = observed_batch_size __snake_case : Union[str, Any] = processed __snake_case : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: __snake_case : str = self.loader_batch_item() __snake_case : str = item.pop("is_last" ) accumulator.append(lowerCamelCase ) if is_last: return accumulator else: __snake_case : List[str] = processed __snake_case : Tuple = item.pop("is_last" ) accumulator.append(lowerCamelCase ) return accumulator class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Dataset , lowerCamelCase : str ) -> Optional[Any]: __snake_case : int = dataset __snake_case : Union[str, Any] = key def __len__( self : Tuple ) -> Union[str, Any]: return len(self.dataset ) def __getitem__( self : Optional[Any] , lowerCamelCase : str ) -> Optional[int]: return self.dataset[i][self.key] class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : Dataset , lowerCamelCase : str , lowerCamelCase : str ) -> List[str]: __snake_case : Any = dataset __snake_case : Any = keya __snake_case : Union[str, Any] = keya def __len__( self : Optional[int] ) -> Tuple: return len(self.dataset ) def __getitem__( self : Tuple , lowerCamelCase : List[str] ) -> Optional[Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
123
0
"""simple docstring""" import itertools import os import re lowercase__ = re.compile(R"""([A-Z]+)([A-Z][a-z])""") lowercase__ = re.compile(R"""([a-z\d])([A-Z])""") lowercase__ = re.compile(R"""(?<!_)_(?!_)""") lowercase__ = re.compile(R"""(_{2,})""") lowercase__ = R"""^\w+(\.\w+)*$""" lowercase__ = R"""<>:/\|?*""" def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = _uppercase_uppercase_re.sub(r'\1_\2' , lowercase__ ) _lowerCamelCase : Dict = _lowercase_uppercase_re.sub(r'\1_\2' , lowercase__ ) return name.lower() def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = _single_underscore_re.split(lowercase__ ) _lowerCamelCase : Any = [_multiple_underscores_re.split(lowercase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowercase__ ) if n != '' ) def _snake_case ( lowercase__ ): if os.path.basename(lowercase__ ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): if os.path.basename(lowercase__ ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , lowercase__ ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(lowercase__ )}-{split}''' def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): _lowerCamelCase : str = filename_prefix_for_split(lowercase__ , lowercase__ ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' _lowerCamelCase : str = os.path.join(lowercase__ , lowercase__ ) return f'''{filepath}*''' def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): _lowerCamelCase : List[Any] = filename_prefix_for_split(lowercase__ , lowercase__ ) _lowerCamelCase : Union[str, Any] = os.path.join(lowercase__ , lowercase__ ) if shard_lengths: _lowerCamelCase : int = len(lowercase__ ) _lowerCamelCase : Optional[int] = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowercase__ )] if filetype_suffix: _lowerCamelCase : str = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: _lowerCamelCase : Dict = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
357
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """data2vec-audio""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=16 , lowercase=19 , lowercase=5 , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : str = hidden_size _lowerCamelCase : str = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Dict = list(lowercase ) _lowerCamelCase : Optional[Any] = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[Any] = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = conv_pos_kernel_size _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Tuple = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : Tuple = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # adapter _lowerCamelCase : Union[str, Any] = add_adapter _lowerCamelCase : List[Any] = adapter_kernel_size _lowerCamelCase : Optional[Any] = adapter_stride _lowerCamelCase : List[Any] = num_adapter_layers _lowerCamelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Any = list(lowercase ) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def A_ ( self ): return math.prod(self.conv_stride )
12
0
def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(_UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
13
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _UpperCAmelCase ( __a): __a : Optional[torch.FloatTensor] = None __a : torch.FloatTensor = None __a : Optional[Tuple[torch.FloatTensor]] = None __a : Optional[Tuple[torch.FloatTensor]] = None class _UpperCAmelCase ( __a): def __init__( self , _A=1 , _A=0 , _A=2 , _A=5_12 , _A="cls" , _A=False , _A=True , **_A , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCAmelCase : int = project_dim _UpperCAmelCase : str = pooler_fn _UpperCAmelCase : Union[str, Any] = learn_encoder _UpperCAmelCase : Tuple = use_attention_mask class _UpperCAmelCase ( __a): __a : str = [R"""pooler""", R"""logit_scale"""] __a : str = [R"""position_ids""", R"""predictions.decoder.bias"""] __a : int = """roberta""" __a : Optional[int] = RobertaSeriesConfig def __init__( self , _A ) -> List[Any]: '''simple docstring''' super().__init__(_A ) _UpperCAmelCase : Dict = XLMRobertaModel(_A ) _UpperCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase : Optional[int] = getattr(_A , """has_pre_transformation""" , _A ) if self.has_pre_transformation: _UpperCAmelCase : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase : Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __snake_case ( self , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Any = self.base_model( input_ids=_A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_attentions=_A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_A , ) if self.has_pre_transformation: _UpperCAmelCase : Optional[int] = outputs["""hidden_states"""][-2] _UpperCAmelCase : str = self.pre_LN(_A ) _UpperCAmelCase : str = self.transformation_pre(_A ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCAmelCase : Union[str, Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
246
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self , *, lowerCAmelCase__ = 4 , lowerCAmelCase__ = 768 , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Union[str, Any]: super().__init__() a : List[Any] = nn.Parameter(torch.zeros(_a ) ) # parameters for additional clip time embeddings a : Tuple = nn.Linear(_a , _a ) a : int = nn.Linear(_a , _a ) # parameters for encoder hidden states a : List[Any] = clip_extra_context_tokens a : Any = nn.Linear( _a , self.clip_extra_context_tokens * cross_attention_dim ) a : Any = nn.Linear(_a , _a ) a : Tuple = nn.LayerNorm(_a ) def __a ( self , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings a : List[str] = image_embeddings.shape[0] a : str = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) a : Any = classifier_free_guidance_embeddings.expand( _a , -1 ) a : Optional[Any] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] a : Tuple = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... a : List[str] = self.embedding_proj(_a ) a : Dict = self.clip_image_embeddings_project_to_time_embeddings(_a ) a : str = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" a : str = self.clip_extra_context_tokens_proj(_a ) a : Any = clip_extra_context_tokens.reshape(_a , -1 , self.clip_extra_context_tokens ) a : Optional[int] = clip_extra_context_tokens.permute(0 , 2 , 1 ) a : int = self.encoder_hidden_states_proj(_a ) a : Any = self.text_encoder_hidden_states_norm(_a ) a : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
369
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE ( _lowercase : dict ) ->tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->XGBClassifier: '''simple docstring''' a : List[Any] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' a : List[str] = load_iris() a, a : Optional[int] = data_handling(_lowercase ) a, a, a, a : Tuple = train_test_split( _lowercase , _lowercase , test_size=0.25 ) a : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data a : Dict = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
79
0
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=[30, 30] , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=8 , __UpperCAmelCase=10 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = scope __UpperCamelCase = n_targets __UpperCamelCase = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __UpperCamelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size) __UpperCamelCase = num_patches + 1 + self.num_detection_tokens def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __UpperCamelCase = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __UpperCamelCase = [] for i in range(self.batch_size ): __UpperCamelCase = {} __UpperCamelCase = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__UpperCAmelCase ) __UpperCamelCase = torch.rand(self.n_targets , 4 , device=__UpperCAmelCase ) labels.append(__UpperCAmelCase ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = YolosModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = YolosForObjectDetection(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(pixel_values=__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __UpperCamelCase = model(pixel_values=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __UpperCamelCase = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __UpperCamelCase = [] for i in range(self.model_tester.batch_size ): __UpperCamelCase = {} __UpperCamelCase = torch.ones( size=(self.model_tester.n_targets,) , device=__UpperCAmelCase , dtype=torch.long ) __UpperCamelCase = torch.ones( self.model_tester.n_targets , 4 , device=__UpperCAmelCase , dtype=torch.float ) labels.append(__UpperCAmelCase ) __UpperCamelCase = labels return inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = YolosModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True # in YOLOS, the seq_len is different __UpperCamelCase = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCamelCase = True __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __UpperCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = 1 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.hidden_states __UpperCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # YOLOS has a different seq_length __UpperCamelCase = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = YolosModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> Optional[Any]: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(inputs.pixel_values ) # verify outputs __UpperCamelCase = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__UpperCAmelCase , ) __UpperCamelCase = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify postprocessing __UpperCamelCase = image_processor.post_process_object_detection( __UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __UpperCamelCase = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__UpperCAmelCase ) __UpperCamelCase = [75, 75, 17, 63, 17] __UpperCamelCase = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__UpperCAmelCase ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , __UpperCAmelCase , atol=1E-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , __UpperCAmelCase ) self.assertTrue(torch.allclose(results['boxes'][0, :] , __UpperCAmelCase ) )
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : int = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''xlnet''' lowerCAmelCase_ = ['''mems'''] lowerCAmelCase_ = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , __SCREAMING_SNAKE_CASE=3_20_00 , __SCREAMING_SNAKE_CASE=10_24 , __SCREAMING_SNAKE_CASE=24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=40_96 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="bi" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-1_2 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="last" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="tanh" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Dict = vocab_size lowercase_ : str = d_model lowercase_ : List[str] = n_layer lowercase_ : Dict = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) lowercase_ : Dict = d_model // n_head lowercase_ : int = ff_activation lowercase_ : Tuple = d_inner lowercase_ : List[Any] = untie_r lowercase_ : List[str] = attn_type lowercase_ : str = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Union[str, Any] = dropout lowercase_ : Optional[int] = mem_len lowercase_ : int = reuse_len lowercase_ : Union[str, Any] = bi_data lowercase_ : Union[str, Any] = clamp_len lowercase_ : Tuple = same_length lowercase_ : Any = summary_type lowercase_ : Dict = summary_use_proj lowercase_ : int = summary_activation lowercase_ : Any = summary_last_dropout lowercase_ : Optional[int] = start_n_top lowercase_ : Dict = end_n_top lowercase_ : Optional[int] = bos_token_id lowercase_ : Optional[int] = pad_token_id lowercase_ : Optional[Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[Any] = kwargs['''use_cache'''] lowercase_ : Optional[int] = use_mems_eval lowercase_ : List[Any] = use_mems_train super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _snake_case ( self ): """simple docstring""" logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
264
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = num_of_nodes lowercase_ : list[list[int]] = [] lowercase_ : dict[int, int] = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase_ : Optional[int] = self.find_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase_ : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(__SCREAMING_SNAKE_CASE ) elif component_size[u_node] >= component_size[v_node]: lowercase_ : int = self.find_component(__SCREAMING_SNAKE_CASE ) component_size[u_node] += component_size[v_node] self.set_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = [] lowercase_ : Optional[Any] = 0 lowercase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase_ : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase_ , lowercase_ , lowercase_ : List[Any] = edge lowercase_ : Dict = self.m_component[u] lowercase_ : Any = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase_ : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ , lowercase_ : str = edge lowercase_ : Tuple = self.m_component[u] lowercase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 lowercase_ : str = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
264
1
'''simple docstring''' import math from datetime import datetime, timedelta def UpperCAmelCase__ ( UpperCAmelCase__ ) -> datetime: A_ = year % 19 A_ = year % 4 A_ = year % 7 A_ = math.floor(year / 1_00 ) A_ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) A_ = leap_day_inhibits / 4 A_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 A_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 A_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon A_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase__, 4, 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase__, 4, 18 ) else: return datetime(UpperCAmelCase__, 3, 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __lowerCamelCase = '''will be''' if year > datetime.now().year else '''was''' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
162
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A__ ( unittest.TestCase ): lowercase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = TextaTextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = generator("""Something there""" ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) A_ = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) A_ = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility A_ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] ) A_ = 3 A_ = generator( """Something there""" , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , ) A_ = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = generator("""This is a test""" , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) A_ = generator.model.config.eos_token_id A_ = """<pad>""" A_ = generator( ["""This is a test""", """This is a second test"""] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility A_ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] )
162
1
def snake_case (__lowercase ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case (__lowercase ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
370
import logging from transformers import PretrainedConfig __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class lowercase_ ( __snake_case ): _lowerCamelCase = 'bertabs' def __init__( self , lowercase_=30_522 , lowercase_=512 , lowercase_=6 , lowercase_=512 , lowercase_=8 , lowercase_=512 , lowercase_=0.2 , lowercase_=6 , lowercase_=768 , lowercase_=8 , lowercase_=2_048 , lowercase_=0.2 , **lowercase_ , ): super().__init__(**lowercase_ ) _snake_case : List[Any] = vocab_size _snake_case : int = max_pos _snake_case : Tuple = enc_layers _snake_case : Optional[Any] = enc_hidden_size _snake_case : Union[str, Any] = enc_heads _snake_case : str = enc_ff_size _snake_case : Any = enc_dropout _snake_case : Tuple = dec_layers _snake_case : Optional[Any] = dec_hidden_size _snake_case : Dict = dec_heads _snake_case : str = dec_ff_size _snake_case : List[str] = dec_dropout
284
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __lowerCAmelCase : int = logging.get_logger(__name__) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" __magic_name__ = question_encoder __magic_name__ = generator __magic_name__ = self.question_encoder def _lowercase ( self : List[str] , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __magic_name__ = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" ) __magic_name__ = os.path.join(UpperCamelCase_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase_ ) self.generator.save_pretrained(UpperCamelCase_ ) @classmethod def _lowercase ( cls : List[Any] , UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ) -> int: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer __magic_name__ = kwargs.pop("""config""" , UpperCamelCase_ ) if config is None: __magic_name__ = RagConfig.from_pretrained(UpperCamelCase_ ) __magic_name__ = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __magic_name__ = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ ) def __call__( self : Tuple , *UpperCamelCase__ : int , **UpperCamelCase__ : int ) -> str: """simple docstring""" return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowercase ( self : Tuple , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowercase ( self : Optional[Any] , *UpperCamelCase__ : str , **UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.question_encoder def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.generator def _lowercase ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "longest" , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = True , **UpperCamelCase__ : int , ) -> Union[str, Any]: """simple docstring""" warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase_ , ) if max_length is None: __magic_name__ = self.current_tokenizer.model_max_length __magic_name__ = self( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __magic_name__ = self.current_tokenizer.model_max_length __magic_name__ = self( text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ = labels["""input_ids"""] return model_inputs
88
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Dict = { '''google/realm-cc-news-pretrained-embedder''': 5_1_2, '''google/realm-cc-news-pretrained-encoder''': 5_1_2, '''google/realm-cc-news-pretrained-scorer''': 5_1_2, '''google/realm-cc-news-pretrained-openqa''': 5_1_2, '''google/realm-orqa-nq-openqa''': 5_1_2, '''google/realm-orqa-nq-reader''': 5_1_2, '''google/realm-orqa-wq-openqa''': 5_1_2, '''google/realm-orqa-wq-reader''': 5_1_2, } lowerCAmelCase_ : Optional[Any] = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class UpperCamelCase_ ( a_ ): _A : Dict = VOCAB_FILES_NAMES _A : List[str] = PRETRAINED_VOCAB_FILES_MAP _A : Tuple = PRETRAINED_INIT_CONFIGURATION _A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[str] = RealmTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ) -> List[Any]: """simple docstring""" super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case__ ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(snake_case__ , normalizer_state.pop("""type""" ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**snake_case__ ) UpperCAmelCase = do_lower_case def UpperCamelCase_ ( self , snake_case__ , **snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = PaddingStrategy.MAX_LENGTH UpperCAmelCase = text UpperCAmelCase = kwargs.pop("""text_pair""" , snake_case__ ) UpperCAmelCase = kwargs.pop("""return_tensors""" , snake_case__ ) UpperCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case__ ): if batch_text_pair is not None: UpperCAmelCase = batch_text_pair[idx] else: UpperCAmelCase = None UpperCAmelCase = super().__call__(snake_case__ , snake_case__ , return_tensors=snake_case__ , **snake_case__ ) UpperCAmelCase = encoded_candidates.get("""input_ids""" ) UpperCAmelCase = encoded_candidates.get("""attention_mask""" ) UpperCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case__ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case__ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case__ ) UpperCAmelCase = {key: item for key, item in output_data.items() if len(snake_case__ ) != 0} return BatchEncoding(snake_case__ , tensor_type=snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__=None ) -> Tuple: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
248
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return (data["data"], data["target"]) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase , lowerCAmelCase ) # Predict target for test data UpperCAmelCase = xgb.predict(lowerCAmelCase ) UpperCAmelCase = predictions.reshape(len(lowerCAmelCase ) , 1 ) return predictions def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = fetch_california_housing() UpperCAmelCase , UpperCAmelCase = data_handling(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split( lowerCAmelCase , lowerCAmelCase , test_size=0.25 , random_state=1 ) UpperCAmelCase = xgboost(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase , lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCAmelCase , lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
248
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' assert isinstance(__lowercase , __lowercase ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: _A = F'''The input value of [n={number}] has to be > 0''' raise ValueError(__lowercase ) else: _A = sylvester(number - 1 ) _A = num - 1 _A = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
79
0
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_sql_dataset(__lowerCAmelCase , __lowerCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : Tuple = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ : Union[str, Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ : Dict = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_sql_dataset(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: with contextlib.closing(sqlitea.connect(__lowerCAmelCase ) ) as con: SCREAMING_SNAKE_CASE__ : Tuple = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : str = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() SCREAMING_SNAKE_CASE__ : Tuple = iter_sql_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = iter_sql_file(__lowerCAmelCase ) for rowa, rowa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() SCREAMING_SNAKE_CASE__ : List[str] = iter_sql_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = iter_sql_file(__lowerCAmelCase ) for rowa, rowa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Any = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : List[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() with pytest.raises(__lowerCAmelCase ): SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
364
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_sql_dataset(__lowerCAmelCase , __lowerCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : Tuple = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ : Union[str, Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ : Dict = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_sql_dataset(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Optional[int]: with contextlib.closing(sqlitea.connect(__lowerCAmelCase ) ) as con: SCREAMING_SNAKE_CASE__ : Tuple = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : str = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() SCREAMING_SNAKE_CASE__ : Tuple = iter_sql_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = iter_sql_file(__lowerCAmelCase ) for rowa, rowa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : int = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() SCREAMING_SNAKE_CASE__ : List[str] = iter_sql_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = iter_sql_file(__lowerCAmelCase ) for rowa, rowa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Any = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(__lowerCAmelCase , """tmp.sql""" ) SCREAMING_SNAKE_CASE__ : List[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__lowerCAmelCase ).read() with pytest.raises(__lowerCAmelCase ): SqlDatasetWriter(__lowerCAmelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
56
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : int = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } lowercase__ : Optional[int] = {'''allegro/herbert-base-cased''': 5_14} lowercase__ : List[Any] = {} class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Any = VOCAB_FILES_NAMES _lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : List[Any] = HerbertTokenizer def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : str=None , lowercase_ : List[Any]="<s>" , lowercase_ : Tuple="<unk>" , lowercase_ : Tuple="<pad>" , lowercase_ : List[Any]="<mask>" , lowercase_ : Dict="</s>" , **lowercase_ : Union[str, Any] , ): super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sep_token=lowercase_ , **lowercase_ , ) def _snake_case ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : Union[str, Any] = [self.cls_token_id] snake_case_ : List[str] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] def _snake_case ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ): snake_case_ : Union[str, Any] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
264
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int=13 , lowercase_ : Optional[int]=7 , lowercase_ : Any=True , lowercase_ : Dict=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : str=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Any=37 , lowercase_ : Tuple="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[Any]=16 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[Any]=None , ): snake_case_ : Any = parent snake_case_ : List[str] = batch_size snake_case_ : List[Any] = seq_length snake_case_ : Optional[int] = is_training snake_case_ : Union[str, Any] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Union[str, Any] = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : int = type_vocab_size snake_case_ : Tuple = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : Tuple = num_labels snake_case_ : str = num_choices snake_case_ : Any = scope snake_case_ : Dict = self.vocab_size - 1 def _snake_case ( self : int ): snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = None if self.use_token_type_ids: snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : str = None snake_case_ : Dict = None snake_case_ : str = None if self.use_labels: snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : int = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case_ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , *lowercase_ : Dict ): snake_case_ : List[Any] = OpenAIGPTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Any = model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ ) snake_case_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ ) snake_case_ : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , *lowercase_ : Optional[Any] ): snake_case_ : Union[str, Any] = OpenAIGPTLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Union[str, Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict , *lowercase_ : Union[str, Any] ): snake_case_ : Tuple = OpenAIGPTDoubleHeadsModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Dict = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Any , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , *lowercase_ : Any ): snake_case_ : int = self.num_labels snake_case_ : Any = OpenAIGPTForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): snake_case_ : Dict = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) : str = config_and_inputs snake_case_ : str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _lowerCAmelCase : int = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _lowerCAmelCase : Union[str, Any] = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str]=False ): snake_case_ : Dict = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ , ) snake_case_ : int = inputs_dict['''labels'''] snake_case_ : Optional[Any] = inputs_dict['''labels'''] snake_case_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase_ , ) snake_case_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def _snake_case ( self : Any ): snake_case_ : List[str] = OpenAIGPTModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def _snake_case ( self : List[str] ): self.config_tester.run_common_tests() def _snake_case ( self : Optional[Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) def _snake_case ( self : int ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ ) @slow def _snake_case ( self : Dict ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = OpenAIGPTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : Optional[int] ): snake_case_ : Optional[Any] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowercase_ ) snake_case_ : List[str] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase_ ) # the president is snake_case_ : List[Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case_ : Optional[Any] = model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() , lowercase_ )
264
1
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _A : Union[str, Any] =logging.getLogger() def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : Any = {} lowerCamelCase__ : List[Any] = os.path.join(_UpperCamelCase , """all_results.json""" ) if os.path.exists(_UpperCamelCase ): with open(_UpperCamelCase , """r""" ) as f: lowerCamelCase__ : Dict = json.load(_UpperCamelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results _A : List[str] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _lowercase ( SCREAMING_SNAKE_CASE__ ): def lowerCamelCase_ ( self: Tuple ): import xla_spawn lowerCamelCase__ : Any = self.get_auto_remove_tmp_dir() lowerCamelCase__ : List[str] = F'''\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '''.split() with patch.object(a_ , """argv""" , a_ ): lowerCamelCase__ : List[Any] = time() xla_spawn.main() lowerCamelCase__ : List[Any] = time() lowerCamelCase__ : Optional[int] = get_results(a_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowerCamelCase_ ( self: Optional[Any] ): import xla_spawn lowerCamelCase__ : Union[str, Any] = """\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n """.split() with patch.object(a_ , """argv""" , a_ ): xla_spawn.main()
359
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan _A : List[str] =637_8137.0 _A : Dict =635_6752.31_4245 _A : int =6_378_137 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> float: lowerCamelCase__ : str = (AXIS_A - AXIS_B) / AXIS_A lowerCamelCase__ : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) lowerCamelCase__ : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) lowerCamelCase__ : Optional[Any] = radians(UpperCamelCase ) lowerCamelCase__ : List[Any] = radians(UpperCamelCase ) # Equation lowerCamelCase__ : Tuple = sin((phi_a - phi_a) / 2 ) lowerCamelCase__ : List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowerCamelCase__ : Tuple = sqrt(sin_sq_phi + (cos(UpperCamelCase ) * cos(UpperCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
129
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowercase__ :Optional[int] = pytest.mark.integration @require_faiss class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): lowercase = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(A__) for x in np.arange(3_0).tolist()]}) return dset def A__ ( self): import faiss lowercase = self._create_dummy_dataset() lowercase = dset.map( lambda A__ ,A__: {"vecs": i * np.ones(5 ,dtype=np.floataa)} ,with_indices=A__ ,keep_in_memory=A__) lowercase = dset.add_faiss_index('''vecs''' ,batch_size=1_0_0 ,metric_type=faiss.METRIC_INNER_PRODUCT) lowercase , lowercase = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') dset.drop_index('''vecs''') def A__ ( self): import faiss lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''' ,batch_size=1_0_0 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) lowercase , lowercase = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') def A__ ( self): import faiss lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__) as tmp_file: dset.save_faiss_index('''vecs''' ,tmp_file.name) dset.load_faiss_index('''vecs2''' ,tmp_file.name) os.unlink(tmp_file.name) lowercase , lowercase = dset.get_nearest_examples('''vecs2''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') def A__ ( self): lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''') dset.drop_index('''vecs''') self.assertRaises(A__ ,partial(dset.get_nearest_examples ,'''vecs2''' ,np.ones(5 ,dtype=np.floataa))) def A__ ( self): from elasticsearch import Elasticsearch lowercase = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''') as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''') as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''') as mocked_bulk: lowercase = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0) lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} lowercase = Elasticsearch() dset.add_elasticsearch_index('''filename''' ,es_client=A__) lowercase , lowercase = dset.get_nearest_examples('''filename''' ,'''my_name-train_29''') self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') @require_faiss class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal ,5) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal ,1_0) # single query lowercase = np.zeros(5 ,dtype=np.floataa) lowercase = 1 lowercase , lowercase = index.search(A__) self.assertRaises(A__ ,index.search ,query.reshape(-1 ,1)) self.assertGreater(scores[0] ,0) self.assertEqual(indices[0] ,1) # batched queries lowercase = np.eye(5 ,dtype=np.floataa)[::-1] lowercase , lowercase = index.search_batch(A__) self.assertRaises(A__ ,index.search_batch ,queries[0]) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([4, 3, 2, 1, 0] ,A__) def A__ ( self): import faiss lowercase = FaissIndex(string_factory='''Flat''') index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat) lowercase = FaissIndex(string_factory='''LSH''') index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH) with self.assertRaises(A__): lowercase = FaissIndex(string_factory='''Flat''' ,custom_index=faiss.IndexFlat(5)) def A__ ( self): import faiss lowercase = faiss.IndexFlat(5) lowercase = FaissIndex(custom_index=A__) index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat) def A__ ( self): import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 ,dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__) as tmp_file: index.save(tmp_file.name) lowercase = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) lowercase = np.zeros(5 ,dtype=np.floataa) lowercase = 1 lowercase , lowercase = index.search(A__) self.assertGreater(scores[0] ,0) self.assertEqual(indices[0] ,1) @require_faiss def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowercase = '''index.faiss''' lowercase = f'mock://{index_name}' index.save(lowerCAmelCase__ , storage_options=mockfs.storage_options ) lowercase = FaissIndex.load(lowerCAmelCase__ , storage_options=mockfs.storage_options ) lowercase = np.zeros(5 , dtype=np.floataa ) lowercase = 1 lowercase , lowercase = index.search(lowerCAmelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''') as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''') as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''') as mocked_bulk: lowercase = Elasticsearch() lowercase = {'''acknowledged''': True} lowercase = ElasticSearchIndex(es_client=A__) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['''foo''', '''bar''', '''foobar''']) # single query lowercase = '''foo''' lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase , lowercase = index.search(A__) self.assertEqual(scores[0] ,1) self.assertEqual(indices[0] ,0) # single query with timeout lowercase = '''foo''' lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase , lowercase = index.search(A__ ,request_timeout=3_0) self.assertEqual(scores[0] ,1) self.assertEqual(indices[0] ,0) # batched queries lowercase = ['''foo''', '''bar''', '''foobar'''] lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase , lowercase = index.search_batch(A__) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([1, 1, 1] ,A__) # batched queries with timeout lowercase = ['''foo''', '''bar''', '''foobar'''] lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase , lowercase = index.search_batch(A__ ,request_timeout=3_0) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([1, 1, 1] ,A__)
101
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : List[Any] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """beit""" def __init__( self : List[Any] , lowerCAmelCase_ : Tuple=8_1_9_2 , lowerCAmelCase_ : Optional[int]=7_6_8 , lowerCAmelCase_ : int=1_2 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Any=3_0_7_2 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : int=1e-12 , lowerCAmelCase_ : int=2_2_4 , lowerCAmelCase_ : str=1_6 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=[3, 5, 7, 1_1] , lowerCAmelCase_ : Optional[Any]=[1, 2, 3, 6] , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=0.4 , lowerCAmelCase_ : Tuple=2_5_6 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Optional[int]=2_5_5 , **lowerCAmelCase_ : Any , ) -> Dict: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_mask_token __lowerCAmelCase = use_absolute_position_embeddings __lowerCAmelCase = use_relative_position_bias __lowerCAmelCase = use_shared_relative_position_bias __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = drop_path_rate __lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase = out_indices __lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = auxiliary_channels __lowerCAmelCase = auxiliary_num_convs __lowerCAmelCase = auxiliary_concat_input __lowerCAmelCase = semantic_loss_ignore_index class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = version.parse("""1.11""" ) @property def lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase ( self : Optional[Any] ) -> float: return 1e-4
284
0
from __future__ import annotations import pandas as pd def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [0] * no_of_processes SCREAMING_SNAKE_CASE = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE = burst_time[i] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 9_99_99_99_99 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False # Process until all processes are completed while complete != no_of_processes: for j in range(__lowerCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: SCREAMING_SNAKE_CASE = remaining_time[j] SCREAMING_SNAKE_CASE = j SCREAMING_SNAKE_CASE = True if not check: increment_time += 1 continue remaining_time[short] -= 1 SCREAMING_SNAKE_CASE = remaining_time[short] if minm == 0: SCREAMING_SNAKE_CASE = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 SCREAMING_SNAKE_CASE = False # Find finish time of current process SCREAMING_SNAKE_CASE = increment_time + 1 # Calculate waiting time SCREAMING_SNAKE_CASE = finish_time - arrival_time[short] SCREAMING_SNAKE_CASE = finar - burst_time[short] if waiting_time[short] < 0: SCREAMING_SNAKE_CASE = 0 # Increment time increment_time += 1 return waiting_time def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [0] * no_of_processes for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE = burst_time[i] + waiting_time[i] return turn_around_time def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE = total_waiting_time + waiting_time[i] SCREAMING_SNAKE_CASE = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") SCREAMING_SNAKE_CASE_ = int(input()) SCREAMING_SNAKE_CASE_ = [0] * no_of_processes SCREAMING_SNAKE_CASE_ = [0] * no_of_processes SCREAMING_SNAKE_CASE_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = map(int, input().split()) SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = burst_time SCREAMING_SNAKE_CASE_ = no_of_processes SCREAMING_SNAKE_CASE_ = waiting_time SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) SCREAMING_SNAKE_CASE_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
362
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Any = BertTokenizer __snake_case : Dict = BertTokenizerFast __snake_case : Tuple = True __snake_case : List[Any] = True __snake_case : Optional[Any] = filter_non_english def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() SCREAMING_SNAKE_CASE = """a\n'll !!to?'d of, can't.""" SCREAMING_SNAKE_CASE = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCamelCase__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,return_offsets_mapping=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__ ,"""do_lower_case""" ) else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
193
0
from random import randint from tempfile import TemporaryFile import numpy as np def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : Optional[int] = 0 if start < end: a_ : List[Any] = randint(a__ , a__) a_ : List[str] = a[end] a_ : str = a[pivot] a_ : Dict = temp a_ , a_ : List[Any] = _in_place_partition(a__ , a__ , a__) count += _in_place_quick_sort(a__ , a__ , p - 1) count += _in_place_quick_sort(a__ , p + 1 , a__) return count def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : Dict = 0 a_ : Tuple = randint(a__ , a__) a_ : Tuple = a[end] a_ : List[str] = a[pivot] a_ : List[Any] = temp a_ : Tuple = start - 1 for index in range(a__ , a__): count += 1 if a[index] < a[end]: # check if current val is less than pivot value a_ : Optional[Any] = new_pivot_index + 1 a_ : List[str] = a[new_pivot_index] a_ : Union[str, Any] = a[index] a_ : int = temp a_ : Optional[Any] = a[new_pivot_index + 1] a_ : int = a[end] a_ : Optional[Any] = temp return new_pivot_index + 1, count __snake_case : Union[str, Any] = TemporaryFile() __snake_case : List[Any] = 1_00 # 1000 elements are to be sorted __snake_case , __snake_case : List[Any] = 0, 1 # mean and standard deviation __snake_case : List[str] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array __snake_case : Tuple = np.load(outfile) __snake_case : Optional[Any] = len(M) - 1 __snake_case : Optional[int] = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
248
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__(a_ ): """simple docstring""" def __init__( self , *_lowercase , _lowercase=None , _lowercase=None , **_lowercase ) -> Optional[Any]: super().__init__(*_lowercase , **_lowercase ) a_ : Optional[int] = eval_examples a_ : Tuple = post_process_function def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = "eval" ) -> Union[str, Any]: a_ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset a_ : List[str] = self.get_eval_dataloader(_lowercase ) a_ : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ : Optional[int] = self.compute_metrics a_ : List[str] = None a_ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Any = time.time() try: a_ : Union[str, Any] = eval_loop( _lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Dict = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a_ : List[Any] = self.post_process_function(_lowercase , _lowercase , output.predictions ) a_ : Optional[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : List[str] = metrics.pop(_lowercase ) metrics.update(output.metrics ) else: a_ : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowercase ) return metrics def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase = "test" ) -> str: a_ : Tuple = self.get_test_dataloader(_lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a_ : List[Any] = self.compute_metrics a_ : int = None a_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Union[str, Any] = time.time() try: a_ : List[str] = eval_loop( _lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Optional[Any] = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a_ : Optional[int] = self.post_process_function(_lowercase , _lowercase , output.predictions , """predict""" ) a_ : List[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : int = metrics.pop(_lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowercase )
248
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def a_ ( lowerCamelCase : dict , lowerCamelCase : str , lowerCamelCase : set , lowerCamelCase : set , lowerCamelCase : dict , lowerCamelCase : dict , lowerCamelCase : PriorityQueue , lowerCamelCase : dict , lowerCamelCase : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCAmelCase = cst_fwd.get(lowerCamelCase , np.inf ) lowerCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCAmelCase = new_cost_f lowerCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a_ ( lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : dict , lowerCamelCase : dict ): lowerCAmelCase = -1 lowerCAmelCase = set() lowerCAmelCase = set() lowerCAmelCase = {source: 0} lowerCAmelCase = {destination: 0} lowerCAmelCase = {source: None} lowerCAmelCase = {destination: None} lowerCAmelCase = PriorityQueue() lowerCAmelCase = PriorityQueue() lowerCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCAmelCase , lowerCAmelCase = queue_forward.get() visited_forward.add(lowerCamelCase ) lowerCAmelCase , lowerCAmelCase = queue_backward.get() visited_backward.add(lowerCamelCase ) lowerCAmelCase = pass_and_relaxation( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) lowerCAmelCase = pass_and_relaxation( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCAmelCase = shortest_distance return shortest_path_distance __snake_case ={ """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } __snake_case ={ """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Any = StableUnCLIPPipeline lowerCamelCase : int = TEXT_TO_IMAGE_PARAMS lowerCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase = 3_2 lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=UpperCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=UpperCAmelCase__ , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=UpperCAmelCase__ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase__ ) lowerCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase__ , layers_per_block=1 , upcast_attention=UpperCAmelCase__ , use_linear_projection=UpperCAmelCase__ , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL() lowerCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]: if str(UpperCAmelCase__ ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: lowerCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: lowerCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase__ ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase = pipe('anime turle' , generator=UpperCAmelCase__ , output_type='np' ) lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
55
1
def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : str = [] lowerCamelCase : List[Any] = [] lowerCamelCase : Union[str, Any] = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowerCamelCase : List[str] = len(__UpperCAmelCase ) if (len(__UpperCAmelCase ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(__UpperCAmelCase ) , "Postfix".center(__UpperCAmelCase ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__UpperCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__UpperCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__UpperCAmelCase ) == 0: stack.append(__UpperCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__UpperCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__UpperCAmelCase ) # push x to stack print( x.center(8 ) , ("".join(__UpperCAmelCase )).ljust(__UpperCAmelCase ) , ("".join(__UpperCAmelCase )).ljust(__UpperCAmelCase ) , sep=" | " , ) # Output in tabular format while len(__UpperCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(__UpperCAmelCase )).ljust(__UpperCAmelCase ) , ("".join(__UpperCAmelCase )).ljust(__UpperCAmelCase ) , sep=" | " , ) # Output in tabular format return "".join(__UpperCAmelCase ) # return Postfix as str def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[int] = list(infix[::-1] ) # reverse the infix equation for i in range(len(__UpperCAmelCase ) ): if infix[i] == "(": lowerCamelCase : Tuple = ")" # change "(" to ")" elif infix[i] == ")": lowerCamelCase : Union[str, Any] = "(" # change ")" to "(" return (infix_2_postfix("".join(__UpperCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _snake_case = input('''\nEnter an Infix Equation = ''') # Input an Infix equation _snake_case = ''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
283
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters a : Dict = (720, 1280) # Height, Width a : Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it. a : Dict = 1 / 100 a : str = '' a : Any = '' a : Optional[int] = '' a : List[str] = 250 def __magic_name__ ( ) -> None: '''simple docstring''' snake_case_ ,snake_case_ = get_dataset(__UpperCAmelCase, __UpperCAmelCase ) for index in range(__UpperCAmelCase ): snake_case_ = random.sample(range(len(__UpperCAmelCase ) ), 4 ) snake_case_ ,snake_case_ ,snake_case_ = update_image_and_anno( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, filter_scale=__UpperCAmelCase, ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ = random_chars(32 ) snake_case_ = path.split(os.sep )[-1].rsplit('''.''', 1 )[0] snake_case_ = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg", __UpperCAmelCase, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) snake_case_ = [] for anno in new_annos: snake_case_ = anno[3] - anno[1] snake_case_ = anno[4] - anno[2] snake_case_ = anno[1] + width / 2 snake_case_ = anno[2] + height / 2 snake_case_ = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(__UpperCAmelCase ) with open(F"{file_root}.txt", '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> tuple[list, list]: '''simple docstring''' snake_case_ = [] snake_case_ = [] for label_file in glob.glob(os.path.join(__UpperCAmelCase, '''*.txt''' ) ): snake_case_ = label_file.split(os.sep )[-1].rsplit('''.''', 1 )[0] with open(__UpperCAmelCase ) as in_file: snake_case_ = in_file.readlines() snake_case_ = os.path.join(__UpperCAmelCase, F"{label_name}.jpg" ) snake_case_ = [] for obj_list in obj_lists: snake_case_ = obj_list.rstrip('''\n''' ).split(''' ''' ) snake_case_ = float(obj[1] ) - float(obj[3] ) / 2 snake_case_ = float(obj[2] ) - float(obj[4] ) / 2 snake_case_ = float(obj[1] ) + float(obj[3] ) / 2 snake_case_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__UpperCAmelCase ) labels.append(__UpperCAmelCase ) return img_paths, labels def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = 0.0, ) -> tuple[list, list, str]: '''simple docstring''' snake_case_ = np.zeros([output_size[0], output_size[1], 3], dtype=np.uinta ) snake_case_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ = int(scale_x * output_size[1] ) snake_case_ = int(scale_y * output_size[0] ) snake_case_ = [] snake_case_ = [] for i, index in enumerate(__UpperCAmelCase ): snake_case_ = all_img_list[index] path_list.append(__UpperCAmelCase ) snake_case_ = all_annos[index] snake_case_ = cva.imread(__UpperCAmelCase ) if i == 0: # top-left snake_case_ = cva.resize(__UpperCAmelCase, (divid_point_x, divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = bbox[1] * scale_x snake_case_ = bbox[2] * scale_y snake_case_ = bbox[3] * scale_x snake_case_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case_ = cva.resize(__UpperCAmelCase, (output_size[1] - divid_point_x, divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = scale_x + bbox[1] * (1 - scale_x) snake_case_ = bbox[2] * scale_y snake_case_ = scale_x + bbox[3] * (1 - scale_x) snake_case_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case_ = cva.resize(__UpperCAmelCase, (divid_point_x, output_size[0] - divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = bbox[1] * scale_x snake_case_ = scale_y + bbox[2] * (1 - scale_y) snake_case_ = bbox[3] * scale_x snake_case_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case_ = cva.resize( __UpperCAmelCase, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case_ = img for bbox in img_annos: snake_case_ = scale_x + bbox[1] * (1 - scale_x) snake_case_ = scale_y + bbox[2] * (1 - scale_y) snake_case_ = scale_x + bbox[3] * (1 - scale_x) snake_case_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" snake_case_ = ascii_lowercase + digits return "".join(random.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
56
0
"""simple docstring""" def lowerCamelCase (a_ :int , a_ :int) -> str: if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''') lowercase :Union[str, Any] = str(bin(a_)) binary_number += "0" * shift_amount return binary_number def lowerCamelCase (a_ :int , a_ :int) -> str: if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''') lowercase :int = str(bin(a_))[2:] if shift_amount >= len(a_): return "0b0" lowercase :str = binary_number[: len(a_) - shift_amount] return "0b" + shifted_binary_number def lowerCamelCase (a_ :int , a_ :int) -> str: if number >= 0: # Get binary representation of positive number lowercase :Dict = '''0''' + str(bin(a_)).strip('''-''')[2:] else: # Get binary (2's complement) representation of negative number lowercase :str = len(bin(a_)[3:]) # Find 2's complement of number lowercase :Optional[int] = bin(abs(a_) - (1 << binary_number_length))[3:] lowercase :Optional[int] = ( '''1''' + '''0''' * (binary_number_length - len(a_)) + binary_number ) if shift_amount >= len(a_): return "0b" + binary_number[0] * len(a_) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(a_) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class __magic_name__ ( __UpperCAmelCase ): __A : str = "imagegpt" __A : str = ["past_key_values"] __A : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=5_1_2 + 1 , snake_case__ : Optional[int]=3_2 * 3_2 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[str]=2_4 , snake_case__ : Any=8 , snake_case__ : str=None , snake_case__ : Any="quick_gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=1e-5 , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : str=False , snake_case__ : Optional[int]=False , snake_case__ : Union[str, Any]=False , **snake_case__ : Union[str, Any] , ): '''simple docstring''' lowercase :int = vocab_size lowercase :str = n_positions lowercase :List[str] = n_embd lowercase :int = n_layer lowercase :List[str] = n_head lowercase :Tuple = n_inner lowercase :Tuple = activation_function lowercase :Optional[Any] = resid_pdrop lowercase :Tuple = embd_pdrop lowercase :Dict = attn_pdrop lowercase :List[Any] = layer_norm_epsilon lowercase :List[Any] = initializer_range lowercase :List[Any] = scale_attn_weights lowercase :Dict = use_cache lowercase :List[str] = scale_attn_by_inverse_layer_idx lowercase :List[str] = reorder_and_upcast_attn lowercase :Dict = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class __magic_name__ ( __UpperCAmelCase ): @property def __snake_case ( self : Any ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __snake_case ( self : Union[str, Any] , snake_case__ : "FeatureExtractionMixin" , snake_case__ : int = 1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 3_2 , snake_case__ : int = 3_2 , ): '''simple docstring''' lowercase :Union[str, Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :List[str] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
172
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Dict = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__ ( ): '''simple docstring''' with parallel_backend('''spark'''): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase__ : Any = [1, 2, 3] with pytest.raises(lowerCamelCase_): with parallel_backend('''unsupported backend'''): map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=2) with pytest.raises(lowerCamelCase_): with parallel_backend('''unsupported backend'''): map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=-1) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' ,[2, -1]) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : List[str] = [1, 2] lowerCAmelCase__ : Tuple = {'''a''': 1, '''b''': 2} lowerCAmelCase__ : Union[str, Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowerCAmelCase__ : Any = {'''a''': {'''1''': 1}, '''b''': 2} lowerCAmelCase__ : Union[str, Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowerCAmelCase__ : int = [2, 3] lowerCAmelCase__ : List[str] = {'''a''': 2, '''b''': 3} lowerCAmelCase__ : str = {'''a''': [2, 3], '''b''': [4, 5]} lowerCAmelCase__ : List[str] = {'''a''': {'''1''': 2}, '''b''': 3} lowerCAmelCase__ : Optional[int] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark'''): assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa
129
0
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp _A = 5 _A = 1_0 @require_sentencepiece @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = SpeechaTextTokenizer lowercase_ = False lowercase_ = True def _UpperCamelCase ( self ) -> Optional[int]: super().setUp() lowerCamelCase : Union[str, Any] = sp.SentencePieceProcessor() spm_model.Load(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(UpperCAmelCase_ ) )] lowerCamelCase : List[str] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCamelCase : List[str] = Path(self.tmpdirname ) save_json(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) lowerCamelCase : Tuple = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : str = '<pad>' lowerCamelCase : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(UpperCAmelCase_ ) , 1001 ) def _UpperCamelCase ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCamelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [289, 50, 14, 174, 386] , ) lowerCamelCase : Optional[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCamelCase : int = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _UpperCamelCase ( self ) -> List[str]: # fmt: off lowerCamelCase : Dict = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class _lowercase ( unittest.TestCase ): lowercase_ = 'valhalla/s2t_mustc_multilinguial_medium' lowercase_ = 'C\'est trop cool' lowercase_ = 'Esto es genial' @classmethod def _UpperCamelCase ( cls ) -> List[Any]: lowerCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _UpperCamelCase ( self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.vocab_size , 10000 ) def _UpperCamelCase ( self ) -> List[str]: self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) lowerCamelCase : Tuple = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCamelCase : int = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : Dict = 'fr' lowerCamelCase : List[Any] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , UpperCAmelCase_ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : Dict = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCamelCase : Optional[int] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
361
"""simple docstring""" from __future__ import annotations _A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase ( a_, a_, a_, a_, a_, ): '''simple docstring''' lowerCamelCase : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the reference grid lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the action grid lowerCamelCase : List[str] = init[0] lowerCamelCase : Optional[Any] = init[1] lowerCamelCase : List[Any] = 0 lowerCamelCase : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase : Union[str, Any] = [[f, g, x, y]] lowerCamelCase : Union[str, Any] = False # flag that is set when search is complete lowerCamelCase : str = False # flag set if we can't find expand while not found and not resign: if len(a_ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase : int = cell.pop() lowerCamelCase : str = next_cell[2] lowerCamelCase : Union[str, Any] = next_cell[3] lowerCamelCase : List[str] = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase : Any = True else: for i in range(len(a_ ) ): # to try out different valid actions lowerCamelCase : Tuple = x + DIRECTIONS[i][0] lowerCamelCase : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(a_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase : str = g + cost lowerCamelCase : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Any = i lowerCamelCase : Any = [] lowerCamelCase : Optional[int] = goal[0] lowerCamelCase : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase : Dict = x - DIRECTIONS[action[x][y]][0] lowerCamelCase : Dict = y - DIRECTIONS[action[x][y]][1] lowerCamelCase : Optional[Any] = xa lowerCamelCase : Union[str, Any] = ya invpath.append([x, y] ) lowerCamelCase : Optional[int] = [] for i in range(len(a_ ) ): path.append(invpath[len(a_ ) - 1 - i] ) return path, action if __name__ == "__main__": _A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _A = [0, 0] # all coordinates are given in format [y,x] _A = [len(grid) - 1, len(grid[0]) - 1] _A = 1 # the cost map which pushes the path closer to the goal _A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _A = 9_9 _A , _A = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
205
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _lowercase = logging.getLogger(__name__) torch.set_grad_enabled(False) _lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _snake_case ( snake_case__ : str , snake_case__ : Dict=100 , snake_case__ : int=" " ): A = text.split(snake_case__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(snake_case__ ) , snake_case__ )] def _snake_case ( snake_case__ : dict ): A , A = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(snake_case__ ): titles.append(title if title is not None else '' ) texts.append(snake_case__ ) return {"title": titles, "text": texts} def _snake_case ( snake_case__ : dict , snake_case__ : DPRContextEncoder , snake_case__ : DPRContextEncoderTokenizerFast ): A = ctx_tokenizer( documents['title'] , documents['text'] , truncation=snake_case__ , padding='longest' , return_tensors='pt' )['input_ids'] A = ctx_encoder(input_ids.to(device=snake_case__ ) , return_dict=snake_case__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _snake_case ( snake_case__ : "RagExampleArguments" , snake_case__ : "ProcessingArguments" , snake_case__ : "IndexHnswArguments" , ): ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way A = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words A = dataset.map(snake_case__ , batched=snake_case__ , num_proc=processing_args.num_proc ) # And compute the embeddings A = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=snake_case__ ) A = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) A = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space A = dataset.map( partial(snake_case__ , ctx_encoder=snake_case__ , ctx_tokenizer=snake_case__ ) , batched=snake_case__ , batch_size=processing_args.batch_size , features=snake_case__ , ) # And finally save your dataset A = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(snake_case__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search A = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=snake_case__ ) # And save the index A = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(snake_case__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( default=str(Path(_lowercase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) _lowerCamelCase: str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) _lowerCamelCase: str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) _lowerCamelCase: Optional[str] = field( default=str(Path(_lowercase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: Optional[int] = field( default=_lowercase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) _lowerCamelCase: int = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: int = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) _lowerCamelCase: int = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _lowercase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _lowercase , _lowercase , _lowercase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _lowercase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
74
class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = set_counts A__ = max(__lowerCamelCase ) A__ = len(__lowerCamelCase ) A__ = [1] * num_sets A__ = list(range(__lowerCamelCase ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.get_parent(__lowerCamelCase ) A__ = self.get_parent(__lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A__ = 0 A__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A__ = 0 A__ = src_parent A__ = self.set_counts[src_parent] A__ = max(self.max_set,__lowerCamelCase ) return True def UpperCamelCase ( self,__lowerCamelCase ): if self.parents[disj_set] == disj_set: return disj_set A__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
193
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __UpperCamelCase =FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=A_ , cache_dir=A_ ) __UpperCamelCase =[t[-1] for t in os.walk(os.path.join(A_ , os.listdir(A_ )[0] , 'snapshots' ) )] __UpperCamelCase =[item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase =FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=A_ ) __UpperCamelCase =( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __UpperCamelCase =jax.random.PRNGKey(0 ) __UpperCamelCase =4 __UpperCamelCase =jax.device_count() __UpperCamelCase =num_samples * [prompt] __UpperCamelCase =pipeline.prepare_inputs(A_ ) # shard inputs and rng __UpperCamelCase =replicate(A_ ) __UpperCamelCase =jax.random.split(A_ , A_ ) __UpperCamelCase =shard(A_ ) __UpperCamelCase =pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1E-3 assert np.abs(np.abs(A_ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5E-1 __UpperCamelCase =pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(A_ ) == num_samples def _a ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase =FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=A_ ) __UpperCamelCase =( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __UpperCamelCase =jax.random.PRNGKey(0 ) __UpperCamelCase =50 __UpperCamelCase =jax.device_count() __UpperCamelCase =num_samples * [prompt] __UpperCamelCase =pipeline.prepare_inputs(A_ ) # shard inputs and rng __UpperCamelCase =replicate(A_ ) __UpperCamelCase =jax.random.split(A_ , A_ ) __UpperCamelCase =shard(A_ ) __UpperCamelCase =pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1E-3 assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5E-1 def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ ) __UpperCamelCase =( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __UpperCamelCase =jax.random.PRNGKey(0 ) __UpperCamelCase =50 __UpperCamelCase =jax.device_count() __UpperCamelCase =num_samples * [prompt] __UpperCamelCase =pipeline.prepare_inputs(A_ ) # shard inputs and rng __UpperCamelCase =replicate(A_ ) __UpperCamelCase =jax.random.split(A_ , A_ ) __UpperCamelCase =shard(A_ ) __UpperCamelCase =pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def _a ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase =FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) __UpperCamelCase =( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __UpperCamelCase =jax.random.PRNGKey(0 ) __UpperCamelCase =50 __UpperCamelCase =jax.device_count() __UpperCamelCase =num_samples * [prompt] __UpperCamelCase =pipeline.prepare_inputs(A_ ) # shard inputs and rng __UpperCamelCase =replicate(A_ ) __UpperCamelCase =jax.random.split(A_ , A_ ) __UpperCamelCase =shard(A_ ) __UpperCamelCase =pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def _a ( self ) -> Tuple: __UpperCamelCase =FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=A_ , steps_offset=1 , ) __UpperCamelCase , __UpperCamelCase =FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=A_ , safety_checker=A_ , ) __UpperCamelCase =scheduler.create_state() __UpperCamelCase =scheduler_state __UpperCamelCase =( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __UpperCamelCase =jax.random.PRNGKey(0 ) __UpperCamelCase =50 __UpperCamelCase =jax.device_count() __UpperCamelCase =num_samples * [prompt] __UpperCamelCase =pipeline.prepare_inputs(A_ ) # shard inputs and rng __UpperCamelCase =replicate(A_ ) __UpperCamelCase =jax.random.split(A_ , A_ ) __UpperCamelCase =shard(A_ ) __UpperCamelCase =pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1E-3 assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5E-1 def _a ( self ) -> Any: __UpperCamelCase =( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __UpperCamelCase =jax.device_count() __UpperCamelCase =num_samples * [prompt] __UpperCamelCase =jax.random.split(jax.random.PRNGKey(0 ) , A_ ) __UpperCamelCase , __UpperCamelCase =FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ , ) __UpperCamelCase =replicate(A_ ) __UpperCamelCase =pipeline.prepare_inputs(A_ ) __UpperCamelCase =shard(A_ ) __UpperCamelCase =pipeline(A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) __UpperCamelCase =images[2, 0, 256, 10:17, 1] # With memory efficient attention __UpperCamelCase , __UpperCamelCase =FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ , use_memory_efficient_attention=A_ , ) __UpperCamelCase =replicate(A_ ) __UpperCamelCase =pipeline.prepare_inputs(A_ ) __UpperCamelCase =shard(A_ ) __UpperCamelCase =pipeline(A_ , A_ , A_ , jit=A_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __UpperCamelCase =images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
117
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A_ ): """simple docstring""" UpperCAmelCase__ : Any = ["speech"] def __init__( self , *A_ , **A_ ) -> Any: requires_backends(self , ['speech'] ) class UpperCAmelCase__ ( metaclass=A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ["speech"] def __init__( self , *A_ , **A_ ) -> Union[str, Any]: requires_backends(self , ['speech'] )
117
1
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ : str = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ a_ : int = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ a_ : Tuple = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=False ): """simple docstring""" if rouge_types is None: lowerCamelCase_ = ["rouge1", "rouge2", "rougeL", "rougeLsum"] lowerCamelCase_ = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase , use_stemmer=UpperCamelCase ) if use_aggregator: lowerCamelCase_ = scoring.BootstrapAggregator() else: lowerCamelCase_ = [] for ref, pred in zip(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = scorer.score(UpperCamelCase , UpperCamelCase ) if use_aggregator: aggregator.add_scores(UpperCamelCase ) else: scores.append(UpperCamelCase ) if use_aggregator: lowerCamelCase_ = aggregator.aggregate() else: lowerCamelCase_ = {} for key in scores[0]: lowerCamelCase_ = [score[key] for score in scores] return result
55
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): return math.pow(UpperCAmelCase_ , 2 ) - a def __snake_case ( UpperCAmelCase_ : float ): return 2 * x def __snake_case ( UpperCAmelCase_ : float ): lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(UpperCAmelCase_ , 2 ) return start def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError("math domain error" ) lowerCamelCase_ = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
55
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase_ = 'UperNetConfig' class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : int ,_snake_case : Union[int, Tuple[int, int]] ,_snake_case : Union[int, Tuple[int, int], str] = 0 ,_snake_case : bool = False ,_snake_case : Union[int, Tuple[int, int]] = 1 ,) -> None: """simple docstring""" super().__init__() lowercase__ : Optional[int] = nn.Convad( in_channels=_snake_case ,out_channels=_snake_case ,kernel_size=_snake_case ,padding=_snake_case ,bias=_snake_case ,dilation=_snake_case ,) lowercase__ : Tuple = nn.BatchNormad(_snake_case ) lowercase__ : List[str] = nn.ReLU() def UpperCAmelCase ( self : str ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.conv(_snake_case ) lowercase__ : List[str] = self.batch_norm(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" super().__init__() lowercase__ : List[Any] = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case ,_snake_case ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Any = input for layer in self.layers: lowercase__ : int = layer(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : Tuple[int, ...] ,_snake_case : int ,_snake_case : int ,_snake_case : bool ) -> None: """simple docstring""" super().__init__() lowercase__ : int = pool_scales lowercase__ : Dict = align_corners lowercase__ : Optional[Any] = in_channels lowercase__ : Optional[Any] = channels lowercase__ : int = [] for i, pool_scale in enumerate(_snake_case ): lowercase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_snake_case ,in_channels=_snake_case ,channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : torch.Tensor ) -> List[torch.Tensor]: """simple docstring""" lowercase__ : int = [] for ppm in self.blocks: lowercase__ : Any = ppm(_snake_case ) lowercase__ : int = nn.functional.interpolate( _snake_case ,size=x.size()[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : str = config lowercase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__ : Optional[Any] = in_channels lowercase__ : Any = config.hidden_size lowercase__ : Optional[Any] = False lowercase__ : Optional[int] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module lowercase__ : Dict = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) lowercase__ : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module lowercase__ : Any = nn.ModuleList() lowercase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__ : List[Any] = UperNetConvModule(_snake_case ,self.channels ,kernel_size=1 ) lowercase__ : Optional[int] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) lowercase__ : int = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Dict = inputs[-1] lowercase__ : Optional[int] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) lowercase__ : Optional[Any] = torch.cat(_snake_case ,dim=1 ) lowercase__ : List[str] = self.bottleneck(_snake_case ) return output def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path lowercase__ : List[Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Union[str, Any] = laterals[i - 1].shape[2:] lowercase__ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=_snake_case ,mode='''bilinear''' ,align_corners=self.align_corners ) # build outputs lowercase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): lowercase__ : Any = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='''bilinear''' ,align_corners=self.align_corners ) lowercase__ : Any = torch.cat(_snake_case ,dim=1 ) lowercase__ : Any = self.fpn_bottleneck(_snake_case ) lowercase__ : str = self.classifier(_snake_case ) return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : List[Any] ,_snake_case : int = 2 ,_snake_case : int = 3 ,_snake_case : Union[int, Tuple[int, int]] = 1 ) -> None: """simple docstring""" super().__init__() lowercase__ : int = config lowercase__ : Dict = config.auxiliary_in_channels lowercase__ : Optional[int] = config.auxiliary_channels lowercase__ : List[Any] = config.auxiliary_num_convs lowercase__ : List[Any] = config.auxiliary_concat_input lowercase__ : str = in_index lowercase__ : Any = (kernel_size // 2) * dilation lowercase__ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=_snake_case ,padding=_snake_case ,dilation=_snake_case ) ) if self.num_convs == 0: lowercase__ : List[str] = nn.Identity() else: lowercase__ : Dict = nn.Sequential(*_snake_case ) if self.concat_input: lowercase__ : int = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=_snake_case ,padding=kernel_size // 2 ) lowercase__ : List[str] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.apply(self._init_weights ) def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase ( self : List[str] ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowercase__ : str = encoder_hidden_states[self.in_index] lowercase__ : List[str] = self.convs(_snake_case ) if self.concat_input: lowercase__ : Any = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) lowercase__ : Dict = self.classifier(_snake_case ) return output class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = UperNetConfig lowerCAmelCase : str = "pixel_values" lowerCAmelCase : Dict = True def UpperCAmelCase ( self : int ,_snake_case : str ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : str=False ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[Any] = value lowerCAmelCase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__ : Any = UperNetHead(_snake_case ,in_channels=self.backbone.channels ) lowercase__ : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[torch.Tensor] = None ,_snake_case : Optional[bool] = None ,) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Any = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( _snake_case ,output_hidden_states=_snake_case ,output_attentions=_snake_case ) lowercase__ : Optional[int] = outputs.feature_maps lowercase__ : Tuple = self.decode_head(_snake_case ) lowercase__ : Optional[int] = nn.functional.interpolate(_snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : List[str] = None if self.auxiliary_head is not None: lowercase__ : str = self.auxiliary_head(_snake_case ) lowercase__ : Dict = nn.functional.interpolate( _snake_case ,size=pixel_values.shape[2:] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__ : Union[str, Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : List[str] = loss_fct(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__ : Tuple = (logits,) + outputs[1:] else: lowercase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
302
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = """lilt""" def __init__( self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Optional[int]=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : List[str]=1E-12 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]="absolute" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[int]=1_024 , **UpperCAmelCase_ : Union[str, Any] , ) ->Tuple: """simple docstring""" super().__init__(pad_token_id=_A , **_A ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = classifier_dropout snake_case_ = channel_shrink_ratio snake_case_ = max_ad_position_embeddings
347
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Optional[Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Optional[Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 0, a __snake_case , __snake_case , __snake_case : int = 0, 1, m while va != 0: __snake_case : Union[str, Any] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _snake_case : Optional[Any] = logging.getLogger() def a_ ( lowerCAmelCase_ : Path, lowerCAmelCase_ : list ): __lowerCAmelCase = '\n'.join(lowerCAmelCase_ ) Path(lowerCAmelCase_ ).open('w' ).writelines(lowerCAmelCase_ ) _snake_case : Dict = 'patrickvonplaten/t5-tiny-random' _snake_case : Dict = 'sshleifer/bart-tiny-random' _snake_case : Any = 'sshleifer/tiny-mbart' _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Dict , lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' __lowerCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __lowerCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) __lowerCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' __lowerCAmelCase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCAmelCase_ , 'argv' , lowerCAmelCase_ ): run_generate() assert Path(lowerCAmelCase_ ).exists() # os.remove(Path(output_file_name)) def lowercase ( self : Dict ) -> Optional[int]: self.run_eval_tester(lowerCAmelCase_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowercase ( self : List[str] , lowerCAmelCase_ : Any ) -> Tuple: self.run_eval_tester(lowerCAmelCase_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowercase ( self : Any , lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' __lowerCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __lowerCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } __lowerCAmelCase = Path(self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = str(tmp_dir / 'scores.json' ) __lowerCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(lowerCAmelCase_ , text['en'] ) _dump_articles(lowerCAmelCase_ , text['de'] ) __lowerCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' __lowerCAmelCase = f""" run_eval_search.py {model} {str(lowerCAmelCase_ )} {str(lowerCAmelCase_ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(lowerCAmelCase_ , 'argv' , lowerCAmelCase_ ): with CaptureStdout() as cs: run_search() __lowerCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] __lowerCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(lowerCAmelCase_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCAmelCase_ ).exists() os.remove(Path(lowerCAmelCase_ ) )
207
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = DanceDiffusionPipeline a_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a_ = False a_ = False def lowercase ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCAmelCase_ , use_timestep_embedding=lowerCAmelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __lowerCAmelCase = IPNDMScheduler() __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=0 ) -> Any: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = DanceDiffusionPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowerCAmelCase = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self : Union[str, Any] ) -> Tuple: return super().test_save_load_local() @skip_mps def lowercase ( self : List[str] ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase ( self : str ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def lowercase ( self : List[Any] ) -> List[str]: return super().test_attention_slicing_forward_pass() def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
207
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart _snake_case = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } _snake_case = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE : Optional[Any] = BartTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="replace" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase , **_UpperCamelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _UpperCamelCase ) != add_prefix_space: _lowercase : str = getattr(_UpperCamelCase , pre_tok_state.pop("type" ) ) _lowercase : List[str] = add_prefix_space _lowercase : str = pre_tok_class(**_UpperCamelCase ) _lowercase : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowercase : List[Any] = "post_processor" _lowercase : Optional[int] = getattr(self.backend_tokenizer , _UpperCamelCase , _UpperCamelCase ) if tokenizer_component_instance: _lowercase : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowercase : Optional[int] = tuple(state["sep"] ) if "cls" in state: _lowercase : Dict = tuple(state["cls"] ) _lowercase : Tuple = False if state.get("add_prefix_space" , _UpperCamelCase ) != add_prefix_space: _lowercase : Tuple = add_prefix_space _lowercase : List[str] = True if state.get("trim_offsets" , _UpperCamelCase ) != trim_offsets: _lowercase : Dict = trim_offsets _lowercase : List[str] = True if changes_to_apply: _lowercase : Union[str, Any] = getattr(_UpperCamelCase , state.pop("type" ) ) _lowercase : int = component_class(**_UpperCamelCase ) setattr(self.backend_tokenizer , _UpperCamelCase , _UpperCamelCase ) @property def _lowerCamelCase ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else value _lowercase : Dict = value def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : Any = kwargs.get("is_split_into_words" , _UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : Dict = kwargs.get("is_split_into_words" , _UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : Optional[Any] = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" _lowercase : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : Any = [self.sep_token_id] _lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
250
from __future__ import annotations def a ( A__ : list[int] ) -> int: """simple docstring""" if not nums: return 0 _lowercase =nums[0] _lowercase =0 for num in nums[1:]: _lowercase , _lowercase =( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
205
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() snake_case__ : str = logging.get_logger(__name__) snake_case__ : str = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } snake_case__ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _a ( lowerCamelCase: int , lowerCamelCase: List[str] , lowerCamelCase: Any , lowerCamelCase: List[str] , lowerCamelCase: Optional[int] ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split('''.''' ): __A = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: __A = getattr(lowerCamelCase , lowerCamelCase ).shape else: __A = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __A = value elif weight_type == "weight_g": __A = value elif weight_type == "weight_v": __A = value elif weight_type == "bias": __A = value else: __A = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _a ( lowerCamelCase: List[Any] , lowerCamelCase: List[str] ) -> str: '''simple docstring''' __A = [] __A = fairseq_model.state_dict() __A = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __A = None for name, value in fairseq_dict.items(): __A = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) __A = True elif name.split('''.''' )[0] == "proj": __A = fairseq_model.proj __A = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A = True if "*" in mapped_key: __A = name.split(lowerCamelCase )[0].split('''.''' )[-2] __A = mapped_key.replace('''*''' , lowerCamelCase ) if "weight_g" in name: __A = '''weight_g''' elif "weight_v" in name: __A = '''weight_v''' elif "bias" in name: __A = '''bias''' elif "weight" in name: __A = '''weight''' else: __A = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def _a ( lowerCamelCase: Optional[int] , lowerCamelCase: Union[str, Any] , lowerCamelCase: Optional[Any] , lowerCamelCase: str , lowerCamelCase: Any ) -> Dict: '''simple docstring''' __A = full_name.split('''conv_layers.''' )[-1] __A = name.split('''.''' ) __A = int(items[0] ) __A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __A = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase ) def _a ( lowerCamelCase: int ) -> Optional[int]: '''simple docstring''' __A , __A = emb.weight.shape __A = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __A = emb.weight.data return lin_layer def _a ( lowerCamelCase: int ) -> Optional[int]: '''simple docstring''' with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: __A = f.readlines() __A = [line.split(''' ''' )[0] for line in lines] __A = len(lowerCamelCase ) __A = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(lowerCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _a ( lowerCamelCase: Any , lowerCamelCase: List[str] , lowerCamelCase: Dict , lowerCamelCase: Any , lowerCamelCase: List[str] , lowerCamelCase: List[Any] , lowerCamelCase: Any , ) -> Dict: '''simple docstring''' __A = WavaVecaConfig.from_pretrained(lowerCamelCase ) __A = SpeechaTextaConfig.from_pretrained( lowerCamelCase , vocab_size=lowerCamelCase , decoder_layers=lowerCamelCase , do_stable_layer_norm=lowerCamelCase ) __A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) __A , __A , __A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A = model[0].eval() # set weights for wav2vec2 encoder __A = WavaVecaModel(lowerCamelCase ) __A = recursively_load_weights_wavaveca(model.encoder , lowerCamelCase ) __A = SpeechaTextaForCausalLM(lowerCamelCase ) __A , __A = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __A = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __A = SpeechEncoderDecoderModel(encoder=lowerCamelCase , decoder=lowerCamelCase ) __A = False # add projection layer __A = nn.Parameter(projection_layer.weight ) __A = nn.Parameter(projection_layer.bias ) __A = create_vocab_dict(lowerCamelCase ) with open(os.path.join(lowerCamelCase , '''vocab.json''' ) , '''w''' ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) __A = SpeechaTextaTokenizer(os.path.join(lowerCamelCase , '''vocab.json''' ) ) tokenizer.save_pretrained(lowerCamelCase ) __A = hf_wavavec.config.to_dict() __A = tokenizer.pad_token_id __A = tokenizer.bos_token_id __A = tokenizer.eos_token_id __A = '''speech_to_text_2''' __A = '''wav2vec2''' __A = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase ) hf_wavavec.save_pretrained(lowerCamelCase ) feature_extractor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=10224, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') snake_case__ : List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
117
def _a ( lowerCamelCase: int = 2_00 ) -> int: '''simple docstring''' __A = [1, 2, 5, 10, 20, 50, 1_00, 2_00] __A = [0] * (pence + 1) __A = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
117
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCAmelCase_ ): A_ = ["transformers", "torch", "note_seq"] def __init__( self , *__a , **__a ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def __UpperCAmelCase ( cls , *__a , **__a ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def __UpperCAmelCase ( cls , *__a , **__a ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
294
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __UpperCamelCase ( lowerCAmelCase_ ): A_ = None A_ = None A_ = None A_ = None class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a=1 , __a=0 , __a=2 , __a=512 , __a="cls" , __a=False , __a=True , **__a , ): '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __a : Any = project_dim __a : Optional[Any] = pooler_fn __a : int = learn_encoder __a : str = use_attention_mask class __UpperCamelCase ( lowerCAmelCase_ ): A_ = [r"pooler", r"logit_scale"] A_ = [r"position_ids", r"predictions.decoder.bias"] A_ = "roberta" A_ = RobertaSeriesConfig def __init__( self , __a ): '''simple docstring''' super().__init__(__a ) __a : Optional[Any] = XLMRobertaModel(__a ) __a : str = nn.Linear(config.hidden_size , config.project_dim ) __a : Optional[int] = getattr(__a , 'has_pre_transformation' , __a ) if self.has_pre_transformation: __a : int = nn.Linear(config.hidden_size , config.project_dim ) __a : List[str] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __UpperCAmelCase ( self , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , ): '''simple docstring''' __a : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __a : Tuple = self.base_model( input_ids=__a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_attentions=__a , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__a , ) if self.has_pre_transformation: __a : Optional[Any] = outputs['hidden_states'][-2] __a : Optional[int] = self.pre_LN(__a ) __a : Union[str, Any] = self.transformation_pre(__a ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __a : Optional[Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
294
1
import doctest from collections import deque import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] ): '''simple docstring''' __a = [2, 1, 2, -1] __a = [1, 2, 3, 4] def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = len(self.first_signal ) __a = len(self.second_signal ) __a = max(__lowercase , __lowercase ) # create a zero matrix of max_length x max_length __a = [[0] * max_length for i in range(__lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowercase ): __a = deque(self.second_signal ) rotated_signal.rotate(__lowercase ) for j, item in enumerate(__lowercase ): matrix[i][j] += item # multiply the matrix with the first signal __a = np.matmul(np.transpose(__lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
302
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
1
def a_ ( lowerCAmelCase_ : int = 50 ): __lowerCAmelCase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
207
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _snake_case : Dict = 0 _snake_case : Dict = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _snake_case : Tuple = tuple[int, int] class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Node | None , ) -> None: __lowerCAmelCase = pos_x __lowerCAmelCase = pos_y __lowerCAmelCase = (pos_y, pos_x) __lowerCAmelCase = goal_x __lowerCAmelCase = goal_y __lowerCAmelCase = g_cost __lowerCAmelCase = parent __lowerCAmelCase = self.calculate_heuristic() __lowerCAmelCase = self.g_cost + self.h_cost def lowercase ( self : Any ) -> float: __lowerCAmelCase = self.pos_x - self.goal_x __lowerCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase_ ) + abs(lowerCAmelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Union[str, Any] , lowerCAmelCase_ : Node ) -> bool: return self.f_cost < other.f_cost class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : TPosition , lowerCAmelCase_ : TPosition ) -> Tuple: __lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase_ ) __lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , lowerCAmelCase_ ) __lowerCAmelCase = [self.start] __lowerCAmelCase = [] __lowerCAmelCase = False def lowercase ( self : str ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase_ ) self.closed_nodes.append(lowerCAmelCase_ ) __lowerCAmelCase = self.get_successors(lowerCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path __lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase_ ) else: self.open_nodes.append(lowerCAmelCase_ ) return [self.start.pos] def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Node ) -> list[Node]: __lowerCAmelCase = [] for action in delta: __lowerCAmelCase = parent.pos_x + action[1] __lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase_ , lowerCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase_ , ) ) return successors def lowercase ( self : Tuple , lowerCAmelCase_ : Node | None ) -> list[TPosition]: __lowerCAmelCase = node __lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase = current_node.parent path.reverse() return path class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : TPosition , lowerCAmelCase_ : TPosition ) -> None: __lowerCAmelCase = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = False def lowercase ( self : Dict ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 ) __lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase_ , lowerCAmelCase_ ) self.fwd_astar.closed_nodes.append(lowerCAmelCase_ ) self.bwd_astar.closed_nodes.append(lowerCAmelCase_ ) __lowerCAmelCase = current_bwd_node __lowerCAmelCase = current_fwd_node __lowerCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path __lowerCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase_ ) else: astar.open_nodes.append(lowerCAmelCase_ ) return [self.fwd_astar.start.pos] def lowercase ( self : Dict , lowerCAmelCase_ : Node , lowerCAmelCase_ : Node ) -> list[TPosition]: __lowerCAmelCase = self.fwd_astar.retrace_path(lowerCAmelCase_ ) __lowerCAmelCase = self.bwd_astar.retrace_path(lowerCAmelCase_ ) bwd_path.pop() bwd_path.reverse() __lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _snake_case : List[Any] = (0, 0) _snake_case : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case : int = time.time() _snake_case : Optional[int] = AStar(init, goal) _snake_case : int = a_star.search() _snake_case : Union[str, Any] = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") _snake_case : Any = time.time() _snake_case : Dict = BidirectionalAStar(init, goal) _snake_case : Optional[int] = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
207
1
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1024 , UpperCAmelCase=1024 , UpperCAmelCase=False , **UpperCAmelCase ): lowercase__ : Any = AutoTokenizer.from_pretrained(lowerCamelCase__ ) lowercase__ : Union[str, Any] = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path='''train''' , **lowerCamelCase__ ) lowercase__ : Optional[Any] = tok.pad_token_id def get_lens(UpperCAmelCase ): lowercase__ : int = tqdm( DataLoader(lowerCamelCase__ , batch_size=512 , num_workers=8 , shuffle=lowerCamelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowercase__ : int = [] for batch in dl: lowercase__ : str = batch["""input_ids"""].ne(lowerCamelCase__ ).sum(1 ).tolist() lowercase__ : Tuple = batch["""labels"""].ne(lowerCamelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCamelCase__ , lowerCamelCase__ ): max_lens.append(max(lowerCamelCase__ , lowerCamelCase__ ) ) else: max_lens.extend(lowerCamelCase__ ) return max_lens lowercase__ : str = get_lens(lowerCamelCase__ ) lowercase__ : Dict = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path='''val''' , **lowerCamelCase__ ) lowercase__ : List[Any] = get_lens(lowerCamelCase__ ) pickle_save(lowerCamelCase__ , train_ds.len_file ) pickle_save(lowerCamelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
198
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0.2 , lowercase=0.2 ): A_ : str = bp_numa A_ : Optional[int] = bp_numa A_ : Optional[Any] = bp_numa A_ : str = conva_get[:2] A_ : Union[str, Any] = conva_get[2] A_ : Union[str, Any] = size_pa A_ : List[str] = rate_w A_ : Dict = rate_t A_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] A_ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A_ : Tuple = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A_ : List[Any] = -2 * np.random.rand(self.conva[1] ) + 1 A_ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 A_ : Any = -2 * np.random.rand(self.num_bpa ) + 1 def _a (self , lowercase ): # save model dict with pickle A_ : Union[str, Any] = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowercase , """wb""" ) as f: pickle.dump(lowercase , lowercase ) print(F'Model saved: {save_path}' ) @classmethod def _a (cls , lowercase ): # read saved model with open(lowercase , """rb""" ) as f: A_ : Optional[int] = pickle.load(lowercase ) # noqa: S301 A_ : Optional[int] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) A_ : Tuple = model_dic.get("""size_pooling1""" ) A_ : Optional[Any] = model_dic.get("""num_bp1""" ) A_ : List[str] = model_dic.get("""num_bp2""" ) A_ : Dict = model_dic.get("""num_bp3""" ) A_ : Tuple = model_dic.get("""rate_weight""" ) A_ : List[Any] = model_dic.get("""rate_thre""" ) # create model instance A_ : List[str] = CNN(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) # modify model parameter A_ : int = model_dic.get("""w_conv1""" ) A_ : str = model_dic.get("""wkj""" ) A_ : str = model_dic.get("""vji""" ) A_ : int = model_dic.get("""thre_conv1""" ) A_ : Union[str, Any] = model_dic.get("""thre_bp2""" ) A_ : List[Any] = model_dic.get("""thre_bp3""" ) return conv_ins def _a (self , lowercase ): return 1 / (1 + np.exp(-1 * x )) def _a (self , lowercase ): return round(lowercase , 3 ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase ): # convolution process A_ : Dict = convs[0] A_ : Any = convs[1] A_ : Tuple = np.shape(lowercase )[0] # get the data slice of original image data, data_focus A_ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase ): A_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix A_ : int = [] A_ : List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase ): A_ : List[Any] = [] for i_focus in range(len(lowercase ) ): A_ : List[str] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase ) ) A_ : Tuple = np.asmatrix(lowercase ).reshape( lowercase , lowercase ) data_featuremap.append(lowercase ) # expanding the data slice to One dimenssion A_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase ) ) A_ : Dict = np.asarray(lowercase ) return focus_list, data_featuremap def _a (self , lowercase , lowercase , lowercase="average_pool" ): # pooling process A_ : Union[str, Any] = len(featuremaps[0] ) A_ : str = int(size_map / size_pooling ) A_ : List[str] = [] for i_map in range(len(lowercase ) ): A_ : Any = featuremaps[i_map] A_ : Any = [] for i_focus in range(0 , lowercase , lowercase ): for j_focus in range(0 , lowercase , lowercase ): A_ : Tuple = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase ) ) A_ : List[str] = np.asmatrix(lowercase ).reshape(lowercase , lowercase ) featuremap_pooled.append(lowercase ) return featuremap_pooled def _a (self , lowercase ): # expanding three dimension data to one dimension list A_ : List[Any] = [] for i in range(len(lowercase ) ): A_ : Tuple = np.shape(data[i] ) A_ : str = data[i].reshape(1 , shapes[0] * shapes[1] ) A_ : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(lowercase ) A_ : Optional[Any] = np.asarray(lowercase ) return data_expanded def _a (self , lowercase ): # expanding matrix to one dimension list A_ : str = np.asarray(lowercase ) A_ : Any = np.shape(lowercase ) A_ : int = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[str] = [] A_ : Union[str, Any] = 0 for i_map in range(lowercase ): A_ : Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , lowercase , lowercase ): for j in range(0 , lowercase , lowercase ): A_ : str = pd_pool[ i_pool ] A_ : Optional[Any] = i_pool + 1 A_ : Union[str, Any] = np.multiply( lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase ) return pd_all def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=bool ): # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowercase )) ) print((""" - - Shape: Teach_Data """, np.shape(lowercase )) ) A_ : Optional[Any] = 0 A_ : Dict = [] A_ : List[Any] = 10000 while rp < n_repeat and mse >= error_accuracy: A_ : List[Any] = 0 print(F'-------------Learning Time {rp}--------------' ) for p in range(len(lowercase ) ): # print('------------Learning Image: %d--------------'%p) A_ : Optional[Any] = np.asmatrix(datas_train[p] ) A_ : str = np.asarray(datas_teach[p] ) A_, A_ : Dict = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Any = self.pooling(lowercase , self.size_poolinga ) A_ : int = np.shape(lowercase ) A_ : Union[str, Any] = self._expand(lowercase ) A_ : Dict = data_bp_input A_ : int = np.dot(lowercase , self.vji.T ) - self.thre_bpa A_ : Any = self.sig(lowercase ) A_ : Optional[int] = np.dot(lowercase , self.wkj.T ) - self.thre_bpa A_ : List[str] = self.sig(lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- A_ : Optional[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase , (1 - bp_outa) ) ) A_ : Tuple = np.multiply( np.dot(lowercase , self.wkj ) , np.multiply(lowercase , (1 - bp_outa) ) ) A_ : Union[str, Any] = np.dot(lowercase , self.vji ) A_ : int = pd_i_all / (self.size_poolinga * self.size_poolinga) A_ : str = pd_conva_pooled.T.getA().tolist() A_ : List[Any] = self._calculate_gradient_from_pool( lowercase , lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): A_ : int = self._expand_mat(pd_conva_all[k_conv] ) A_ : Any = self.rate_weight * np.dot(lowercase , lowercase ) A_ : Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) A_ : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer A_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight A_ : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight A_ : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre A_ : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image A_ : Optional[int] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) A_ : List[Any] = rp + 1 A_ : Union[str, Any] = error_count / patterns all_mse.append(lowercase ) def draw_error(): A_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase , """+-""" ) plt.plot(lowercase , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowercase , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def _a (self , lowercase ): # model predict A_ : Tuple = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowercase )) ) for p in range(len(lowercase ) ): A_ : int = np.asmatrix(datas_test[p] ) A_, A_ : str = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Dict = self.pooling(lowercase , self.size_poolinga ) A_ : Tuple = self._expand(lowercase ) A_ : int = data_bp_input A_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa A_ : List[str] = self.sig(lowercase ) A_ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa A_ : List[Any] = self.sig(lowercase ) produce_out.extend(bp_outa.getA().tolist() ) A_ : Any = [list(map(self.do_round , lowercase ) ) for each in produce_out] return np.asarray(lowercase ) def _a (self , lowercase ): # return the data of image after convoluting process so we can check it out A_ : Optional[Any] = np.asmatrix(lowercase ) A_, A_ : Optional[Any] = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ : Union[str, Any] = self.pooling(lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
206
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: __SCREAMING_SNAKE_CASE = 10_24 __SCREAMING_SNAKE_CASE = 40_96 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = [5, 11, 17, 23] __SCREAMING_SNAKE_CASE = [2_56, 5_12, 10_24, 10_24] __SCREAMING_SNAKE_CASE = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: __SCREAMING_SNAKE_CASE = 7_68 __SCREAMING_SNAKE_CASE = [1, 1, 1, 0.5] __SCREAMING_SNAKE_CASE = [2_56, 5_12, 7_68, 7_68] __SCREAMING_SNAKE_CASE = 1_50 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = (1, 3_84, 3_84) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = """project""" if "ade" in checkpoint_url: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = 7_68 __SCREAMING_SNAKE_CASE = [1, 1, 1, 0.5] __SCREAMING_SNAKE_CASE = 1_50 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = """ade20k-id2label.json""" __SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(a__ , a__ , repo_type="""dataset""" ) ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = [1, 1_50, 4_80, 4_80] return config, expected_shape def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(a__ , a__ ) def a__ ( a__ ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __SCREAMING_SNAKE_CASE = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __SCREAMING_SNAKE_CASE = name.replace("""proj""" , """projection""" ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: __SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: __SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __SCREAMING_SNAKE_CASE = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __SCREAMING_SNAKE_CASE = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __SCREAMING_SNAKE_CASE = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __SCREAMING_SNAKE_CASE = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __SCREAMING_SNAKE_CASE = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __SCREAMING_SNAKE_CASE = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __SCREAMING_SNAKE_CASE = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __SCREAMING_SNAKE_CASE = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __SCREAMING_SNAKE_CASE = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __SCREAMING_SNAKE_CASE = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __SCREAMING_SNAKE_CASE = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __SCREAMING_SNAKE_CASE = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __SCREAMING_SNAKE_CASE = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __SCREAMING_SNAKE_CASE = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __SCREAMING_SNAKE_CASE = name.replace("""bn""" , """batch_norm""" ) if "head" in name: __SCREAMING_SNAKE_CASE = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __SCREAMING_SNAKE_CASE = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: __SCREAMING_SNAKE_CASE = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: __SCREAMING_SNAKE_CASE = name.replace("""..""" , """.""" ) if "stem.conv" in name: __SCREAMING_SNAKE_CASE = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: __SCREAMING_SNAKE_CASE = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: __SCREAMING_SNAKE_CASE = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: __SCREAMING_SNAKE_CASE = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: __SCREAMING_SNAKE_CASE = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def a__ ( a__ , a__ ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) __SCREAMING_SNAKE_CASE = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[: config.hidden_size, :] __SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] __SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def a__ ( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_dpt_config(a__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(a__ ) # rename keys for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) __SCREAMING_SNAKE_CASE = val # read in qkv matrices read_in_q_k_v(a__ , a__ ) # load HuggingFace model __SCREAMING_SNAKE_CASE = DPTForSemanticSegmentation(a__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(a__ ) model.load_state_dict(a__ ) model.eval() # Check outputs on an image __SCREAMING_SNAKE_CASE = 4_80 if """ade""" in checkpoint_url else 3_84 __SCREAMING_SNAKE_CASE = DPTImageProcessor(size=a__ ) __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(a__ , return_tensors="""pt""" ) # forward pass __SCREAMING_SNAKE_CASE = model(**a__ ).logits if """ade""" in checkpoint_url else model(**a__ ).predicted_depth if show_prediction: __SCREAMING_SNAKE_CASE = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=a__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(a__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(a__ ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
331
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Any = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : Optional[Any] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) UpperCAmelCase : str = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCAmelCase__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : argparse.Namespace , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict="base" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert hasattr(self.config , __SCREAMING_SNAKE_CASE ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __SCREAMING_SNAKE_CASE , getattr(self.hparams , __SCREAMING_SNAKE_CASE ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = model def UpperCAmelCase__ ( self : List[str] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model __SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.weight"""] __SCREAMING_SNAKE_CASE = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE = Adafactor( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=__SCREAMING_SNAKE_CASE , relative_step=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = AdamW( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE = optimizer __SCREAMING_SNAKE_CASE = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" return self.validation_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" return self.validation_end(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" if stage == "test": __SCREAMING_SNAKE_CASE = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(self.train_dataloader().dataset ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> int: """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.train_loader def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( __SCREAMING_SNAKE_CASE , list(filter(__SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.output_dir.joinpath("""best_tfmr""" ) __SCREAMING_SNAKE_CASE = self.step_count self.model.save_pretrained(__SCREAMING_SNAKE_CASE ) self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=__SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(__SCREAMING_SNAKE_CASE ).parent / """test_run""" / """cache""" ) , type=__SCREAMING_SNAKE_CASE , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=__SCREAMING_SNAKE_CASE , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=__SCREAMING_SNAKE_CASE , metavar=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__SCREAMING_SNAKE_CASE , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=__SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=__SCREAMING_SNAKE_CASE , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--train_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = trainer.lr_schedulers[0]["""scheduler"""] __SCREAMING_SNAKE_CASE = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> List[Any]: """simple docstring""" rank_zero_info("""***** Validation results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log results for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> str: """simple docstring""" rank_zero_info("""***** Test results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def a__ ( a__ , a__ ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(a__ ).parent / """test_run""" / """model_checkpoints""" ) , type=a__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=a__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=a__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=a__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=a__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=a__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(a__ ).parent / """test_run""" / """dummy-train-data""" ) , type=a__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def a__ ( a__ , a__ , a__=None , a__=True , a__=[] , a__=None , a__=None , **a__ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a__ ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a__ ) if logging_callback is None: __SCREAMING_SNAKE_CASE = LoggingCallback() __SCREAMING_SNAKE_CASE = {} if args.fpaa: __SCREAMING_SNAKE_CASE = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = """ddp""" __SCREAMING_SNAKE_CASE = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = pl.Trainer.from_argparse_args( a__ , weights_summary=a__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a__ , val_check_interval=1 , num_sanity_val_steps=2 , **a__ , ) if args.do_train: trainer.fit(a__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
331
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __A : Dict = '''\ Text data. Second line of data.''' __A : Optional[Any] = '''file''' @pytest.fixture(scope="""session""" ) def A_ ( snake_case_ : Any ): '''simple docstring''' UpperCamelCase : str = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") UpperCamelCase : List[Any] = bytes(snake_case_ ,"""utf-8""" ) with zstd.open(snake_case_ ,"""wb""" ) as f: f.write(snake_case_ ) return path @pytest.fixture def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir ,snake_case_ ) ,"""w""" ) as f: f.write(snake_case_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" ,["""gzip""", """xz""", """zstd"""] ) def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : Optional[int] ,snake_case_ : List[Any] ,snake_case_ : str ,snake_case_ : str ): '''simple docstring''' UpperCamelCase : Optional[Any] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} UpperCamelCase : str = input_paths[compression_format] UpperCamelCase : Union[str, Any] = tmp_path / """cache""" UpperCamelCase : List[Any] = DownloadConfig(cache_dir=snake_case_ ,extract_compressed_file=snake_case_ ) UpperCamelCase : Tuple = cached_path(snake_case_ ,download_config=snake_case_ ) with open(snake_case_ ) as f: UpperCamelCase : Dict = f.read() with open(snake_case_ ) as f: UpperCamelCase : Optional[int] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" ,[True, False] ) @pytest.mark.parametrize("""default_cache_dir""" ,[True, False] ) def A_ ( snake_case_ : Optional[Any] ,snake_case_ : List[Any] ,snake_case_ : Optional[int] ,snake_case_ : Dict ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : Union[str, Any] = """custom_cache""" UpperCamelCase : str = """custom_extracted_dir""" UpperCamelCase : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: UpperCamelCase : Optional[Any] = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" ,snake_case_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" ,str(snake_case_ ) ) UpperCamelCase : str = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCamelCase : int = xz_file UpperCamelCase : List[str] = ( DownloadConfig(extract_compressed_file=snake_case_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir ,extract_compressed_file=snake_case_ ) ) UpperCamelCase : List[Any] = cached_path(snake_case_ ,download_config=snake_case_ ) assert Path(snake_case_ ).parent.parts[-2:] == expected def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : Tuple = str(Path(snake_case_ ).resolve() ) assert cached_path(snake_case_ ) == text_file # relative path UpperCamelCase : str = str(Path(snake_case_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(snake_case_ ) == text_file def A_ ( snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : Any = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(snake_case_ ): cached_path(snake_case_ ) # relative path UpperCamelCase : Any = """./__missing_file__.txt""" with pytest.raises(snake_case_ ): cached_path(snake_case_ ) def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : str = get_from_cache(f'tmp://{tmpfs_file}' ) with open(snake_case_ ) as f: UpperCamelCase : Any = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" ,snake_case_ ) def A_ ( ): '''simple docstring''' with pytest.raises(snake_case_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" ,snake_case_ ) def A_ ( snake_case_ : Any ): '''simple docstring''' UpperCamelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(snake_case_ ): http_get("""https://huggingface.co""" ,temp_file=snake_case_ ) with pytest.raises(snake_case_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" ,snake_case_ ) def A_ ( snake_case_ : Union[str, Any] ): '''simple docstring''' UpperCamelCase : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(snake_case_ ): ftp_get("""ftp://huggingface.co""" ,temp_file=snake_case_ ) with pytest.raises(snake_case_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" ,snake_case_ ) def A_ ( snake_case_ : Any ): '''simple docstring''' UpperCamelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(snake_case_ ): fsspec_get("""s3://huggingface.co""" ,temp_file=snake_case_ ) with pytest.raises(snake_case_ ): fsspec_head("""s3://huggingface.co""" )
361
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class lowerCamelCase ( _UpperCAmelCase ): lowercase : Optional[int] = 'mvp' lowercase : Optional[Any] = ['past_key_values'] lowercase : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=5_0267 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=800 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Dict = max_position_embeddings UpperCamelCase : Optional[int] = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Any = encoder_layers UpperCamelCase : List[Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Dict = decoder_attention_heads UpperCamelCase : List[str] = dropout UpperCamelCase : List[str] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : Dict = activation_function UpperCamelCase : List[str] = init_std UpperCamelCase : int = encoder_layerdrop UpperCamelCase : Dict = decoder_layerdrop UpperCamelCase : Any = classifier_dropout UpperCamelCase : Tuple = use_cache UpperCamelCase : Dict = encoder_layers UpperCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : Optional[Any] = use_prompt UpperCamelCase : Any = prompt_length UpperCamelCase : List[Any] = prompt_mid_dim super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" )
27
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _snake_case = 12_8022 _snake_case = 12_8028 @require_sentencepiece class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = MaMaaaTokenizer UpperCamelCase : str = False UpperCamelCase : Any = False UpperCamelCase : Tuple = True def _lowercase ( self : int ) -> Tuple: super().setUp() _a : List[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] _a : int = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) _a : List[Any] = Path(self.tmpdirname ) save_json(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) _a : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : Dict , **UpperCAmelCase__ : List[str] ) -> Optional[int]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : int ) -> List[str]: return ( "This is a test", "This is a test", ) def _lowercase ( self : Tuple ) -> str: _a : List[Any] = """</s>""" _a : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : str ) -> List[str]: _a : Dict = self.get_tokenizer() _a : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(UpperCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass def _lowercase ( self : List[Any] ) -> Optional[int]: _a : Optional[Any] = self.get_tokenizer() _a : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [2, 3, 4, 5, 6] , ) _a : List[str] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) _a : List[Any] = tokenizer.convert_tokens_to_string(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , """This is a test""" ) @slow def _lowercase ( self : Any ) -> int: # fmt: off _a : Optional[int] = {"""input_ids""": [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): UpperCamelCase : Dict = '''facebook/m2m100_418M''' UpperCamelCase : Tuple = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCamelCase : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCamelCase : int = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def _lowercase ( cls : int ) -> Any: _a : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) _a : Any = 1 return cls def _lowercase ( self : str ) -> List[Any]: self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 128063 ) def _lowercase ( self : Optional[Any] ) -> Dict: _a : str = self.tokenizer.get_vocab() self.assertEqual(len(UpperCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , UpperCAmelCase__ ) def _lowercase ( self : Any ) -> Any: _a : List[Any] = """en""" _a : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase__ ) def _lowercase ( self : int ) -> Dict: self.assertIn(UpperCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off _a : Dict = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on _a : int = self.tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) _a : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase__ ) def _lowercase ( self : str ) -> Any: _a : Any = tempfile.mkdtemp() _a : Any = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCAmelCase__ ) _a : Dict = MaMaaaTokenizer.from_pretrained(UpperCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCAmelCase__ ) @require_torch def _lowercase ( self : Optional[int] ) -> Dict: _a : List[str] = """en""" _a : Tuple = """fr""" _a : Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase__ , return_tensors="""pt""" ) _a : str = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a : Optional[int] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _lowercase ( self : Tuple ) -> List[Any]: _a : Optional[int] = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a : Tuple = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _lowercase ( self : List[Any] ) -> List[Any]: _a : Union[str, Any] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a : Tuple = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _lowercase ( self : Union[str, Any] ) -> Any: _a : Dict = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , { # en_XX, A, test, EOS """input_ids""": [[128022, 58, 4183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 128006, } , )
294
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class UpperCamelCase ( snake_case_ ): def __init__( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Any="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : int="<sep>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : Any="<cls>" , UpperCAmelCase__ : Optional[Any]="<mask>" , UpperCAmelCase__ : int=["<eop>", "<eod>"] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : List[str] , ) -> None: _a : Optional[int] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token _a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) _a : Optional[Any] = 3 _a : Tuple = do_lower_case _a : Tuple = remove_space _a : Tuple = keep_accents _a : Tuple = vocab_file _a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _a : int = jieba _a : Tuple = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowercase ( self : Optional[Any] ) -> Any: return len(self.sp_model ) def _lowercase ( self : str ) -> Union[str, Any]: _a : int = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: _a : Tuple = self.__dict__.copy() _a : Tuple = None return state def __setstate__( self : Any , UpperCAmelCase__ : Dict ) -> Dict: _a : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple = {} _a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: if self.remove_space: _a : Optional[int] = """ """.join(inputs.strip().split() ) else: _a : List[Any] = inputs _a : int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _a : Optional[Any] = unicodedata.normalize("""NFKD""" , UpperCAmelCase__ ) _a : Dict = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: _a : Union[str, Any] = outputs.lower() return outputs def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: _a : str = self.preprocess_text(UpperCAmelCase__ ) _a : Dict = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) _a : Union[str, Any] = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _a : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _a : Dict = cur_pieces[1:] else: _a : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : int ) -> int: return self.sp_model.PieceToId(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> Any: return self.sp_model.IdToPiece(UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : Any ) -> Dict: _a : Dict = """""".join(UpperCAmelCase__ ).replace(UpperCAmelCase__ , """ """ ).strip() return out_string def _lowercase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Optional[Any] = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def _lowercase ( self : str , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Any = [self.sep_token_id] _a : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Union[str, Any] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , """wb""" ) as fi: _a : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[str] ) -> List[str]: _a : Tuple = super()._decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
294
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Any = LayoutLMTokenizer __lowerCAmelCase :str = LayoutLMTokenizerFast __lowerCAmelCase :Optional[int] = True __lowerCAmelCase :str = True def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" super().setUp() a__ : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> Optional[int]: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = """UNwant\u00E9d,running""" a__ : str = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : int = self.tokenizer_class(self.vocab_file ) a__ : Optional[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [7, 4, 5, 1_0, 8, 9] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" pass
266
def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase): raise TypeError("""only integers accepted as input""") else: a__ : Any = str(abs(_lowercase)) a__ : str = [list(_lowercase) for char in range(len(_lowercase))] for index in range(len(_lowercase)): num_transpositions[index].pop(_lowercase) return max( int("""""".join(list(_lowercase))) for transposition in num_transpositions) if __name__ == "__main__": __import__("doctest").testmod()
266
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = 10 def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = [1, 2, 3, 4] lowercase__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCamelCase, self.block_size, 0 ), lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] lowercase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase, self.block_size, 0 ), lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] lowercase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase, self.block_size, 0 ), lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' lowercase__ , lowercase__ = process_story(lowerCamelCase ) self.assertEqual(lowerCamelCase, [] ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = '''''' lowercase__ , lowercase__ = process_story(lowerCamelCase ) self.assertEqual(lowerCamelCase, [] ) self.assertEqual(lowerCamelCase, [] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) lowercase__ , lowercase__ = process_story(lowerCamelCase ) lowercase__ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = ['''It was the best of times.'''] self.assertEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = torch.tensor([1, 2, 3, 4] ) lowercase__ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCamelCase, 0 ).numpy(), expected.numpy() ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) lowercase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase, 23 ).numpy(), expected.numpy() ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowercase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase, 1 ).numpy(), expected.numpy() ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = 101 lowercase__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) lowercase__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowercase__ = compute_token_type_ids(lowerCamelCase, lowerCamelCase ) np.testing.assert_array_equal(lowerCamelCase, lowerCamelCase )
207
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A__ : List[Any] = logging.get_logger(__name__) A__ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : int = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } A__ : Optional[Any] = { 'distilbert-base-uncased': 5_12, 'distilbert-base-uncased-distilled-squad': 5_12, 'distilbert-base-cased': 5_12, 'distilbert-base-cased-distilled-squad': 5_12, 'distilbert-base-german-cased': 5_12, 'distilbert-base-multilingual-cased': 5_12, } A__ : List[str] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = DistilBertTokenizer def __init__( self : List[Any], lowerCamelCase : List[Any]=None, lowerCamelCase : Dict=None, lowerCamelCase : str=True, lowerCamelCase : Optional[int]="[UNK]", lowerCamelCase : Optional[Any]="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Any="[CLS]", lowerCamelCase : Union[str, Any]="[MASK]", lowerCamelCase : str=True, lowerCamelCase : int=None, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : List[Any]=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : str, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
207
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : int , __A : Union[str, Any] , __A : List[str] ) -> int: _SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(__A , config=__A ) _SCREAMING_SNAKE_CASE = downstream_dict["projector.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["projector.bias"] _SCREAMING_SNAKE_CASE = downstream_dict["model.post_net.linear.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["model.post_net.linear.bias"] return model def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Optional[Any] , __A : Any ) -> str: _SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(__A , config=__A ) _SCREAMING_SNAKE_CASE = downstream_dict["model.linear.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["model.linear.bias"] return model def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : str , __A : str ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(__A , config=__A ) _SCREAMING_SNAKE_CASE = downstream_dict["connector.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _SCREAMING_SNAKE_CASE = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] _SCREAMING_SNAKE_CASE = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] _SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _SCREAMING_SNAKE_CASE = downstream_dict["objective.W"] return model @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Optional[int] , __A : Dict , __A : List[str] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = torch.load(__A , map_location="cpu" ) _SCREAMING_SNAKE_CASE = checkpoint["Downstream"] _SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(__A ) _SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( __A , return_attention_mask=__A , do_normalize=__A ) _SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _SCREAMING_SNAKE_CASE = convert_classification(__A , __A , __A ) elif arch.endswith("ForAudioFrameClassification" ): _SCREAMING_SNAKE_CASE = convert_diarization(__A , __A , __A ) elif arch.endswith("ForXVector" ): _SCREAMING_SNAKE_CASE = convert_xvector(__A , __A , __A ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: _SCREAMING_SNAKE_CASE = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(__A ) hf_model.save_pretrained(__A ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCamelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
371
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase_ : """simple docstring""" def lowerCAmelCase_ ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): """simple docstring""" return None class lowercase_ : """simple docstring""" def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): """simple docstring""" return None class lowercase_ ( unittest.TestCase ): """simple docstring""" lowerCamelCase_ = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 1_2 , **__lowerCamelCase ) @require_torch @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 1_2 , **__lowerCamelCase ) @require_torch @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" from transformers import BertModel _SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() _SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 1_2 , __lowerCamelCase ) @require_tf @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 1_2 , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 1_2 , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : int ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: _SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" from transformers import BertModel _SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def lowerCAmelCase_ ( self : Any ): """simple docstring""" from transformers import TFBertModel _SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] _SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
111
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Dict = logging.get_logger(__name__) def lowerCamelCase ( lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : List[Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: __magic_name__ : Dict = 1024 __magic_name__ : str = 4096 __magic_name__ : Optional[int] = 24 __magic_name__ : str = 16 __magic_name__ : str = [5, 11, 17, 23] __magic_name__ : Optional[Any] = [256, 512, 1024, 1024] __magic_name__ : Optional[Any] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __magic_name__ : List[Any] = 768 __magic_name__ : List[str] = [1, 1, 1, 0.5] __magic_name__ : List[str] = [256, 512, 768, 768] __magic_name__ : Any = 150 __magic_name__ : Union[str, Any] = 16 __magic_name__ : List[Any] = (1, 384, 384) __magic_name__ : Dict = False __magic_name__ : Dict = 'project' if "ade" in checkpoint_url: __magic_name__ : int = True __magic_name__ : List[str] = 768 __magic_name__ : Dict = [1, 1, 1, 0.5] __magic_name__ : Tuple = 150 __magic_name__ : str = 16 __magic_name__ : Union[str, Any] = 'huggingface/label-files' __magic_name__ : Union[str, Any] = 'ade20k-id2label.json' __magic_name__ : str = json.load(open(cached_download(hf_hub_url(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) ) , 'r' ) ) __magic_name__ : List[Any] = {int(lowerCAmelCase ): v for k, v in idalabel.items()} __magic_name__ : List[str] = idalabel __magic_name__ : List[Any] = {v: k for k, v in idalabel.items()} __magic_name__ : Optional[int] = [1, 150, 480, 480] return config, expected_shape def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : str = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __magic_name__ : Optional[Any] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: __magic_name__ : List[Any] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: __magic_name__ : Any = name.replace('patch_embed' , '' ) if "pos_embed" in name: __magic_name__ : Optional[int] = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: __magic_name__ : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: __magic_name__ : Union[str, Any] = name.replace('proj' , 'projection' ) if "blocks" in name: __magic_name__ : List[str] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: __magic_name__ : Any = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __magic_name__ : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: __magic_name__ : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: __magic_name__ : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: __magic_name__ : List[str] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: __magic_name__ : Union[str, Any] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: __magic_name__ : Dict = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: __magic_name__ : Optional[int] = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: __magic_name__ : List[str] = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: __magic_name__ : Union[str, Any] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: __magic_name__ : Tuple = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __magic_name__ : str = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __magic_name__ : int = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: __magic_name__ : List[str] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: __magic_name__ : Dict = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: __magic_name__ : Any = name.replace('conv1' , 'convolution1' ) if "conv2" in name: __magic_name__ : Union[str, Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __magic_name__ : Optional[int] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __magic_name__ : List[Any] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __magic_name__ : Union[str, Any] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __magic_name__ : Dict = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __magic_name__ : int = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __magic_name__ : str = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __magic_name__ : str = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __magic_name__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __magic_name__ : Optional[int] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __magic_name__ : Union[str, Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __magic_name__ : str = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __magic_name__ : Union[str, Any] = name.replace('pretrained' , 'dpt' ) if "bn" in name: __magic_name__ : Dict = name.replace('bn' , 'batch_norm' ) if "head" in name: __magic_name__ : Optional[Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: __magic_name__ : Dict = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: __magic_name__ : int = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: __magic_name__ : Tuple = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: __magic_name__ : Optional[int] = name.replace('..' , '.' ) if "stem.conv" in name: __magic_name__ : Dict = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __magic_name__ : Tuple = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: __magic_name__ : Optional[int] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: __magic_name__ : List[str] = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: __magic_name__ : Optional[int] = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: __magic_name__ : int = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: __magic_name__ : Optional[int] = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : int ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : int = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) __magic_name__ : str = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Optional[Any] = in_proj_weight[: config.hidden_size, :] __magic_name__ : Any = in_proj_bias[: config.hidden_size] __magic_name__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : List[str] = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __magic_name__ : str = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ , __magic_name__ : Tuple = get_dpt_config(lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __magic_name__ : int = torch.load(lowerCAmelCase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): __magic_name__ : Union[str, Any] = state_dict.pop(lowerCAmelCase ) __magic_name__ : Tuple = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model __magic_name__ : str = DPTForSemanticSegmentation(lowerCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() # Check outputs on an image __magic_name__ : Tuple = 480 if 'ade' in checkpoint_url else 384 __magic_name__ : Union[str, Any] = DPTImageProcessor(size=lowerCAmelCase ) __magic_name__ : int = prepare_img() __magic_name__ : Optional[Any] = image_processor(lowerCAmelCase , return_tensors='pt' ) # forward pass __magic_name__ : Optional[Any] = model(**lowerCAmelCase ).logits if 'ade' in checkpoint_url else model(**lowerCAmelCase ).predicted_depth if show_prediction: __magic_name__ : str = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": lowerCAmelCase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) lowerCAmelCase :Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
331
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
1
"""simple docstring""" import math import os import sys def a__ ( __lowercase ) -> str: _A = "" try: with open(__lowercase , "rb" ) as binary_file: _A = binary_file.read() for dat in data: _A = f"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> None: lexicon.pop(__lowercase ) _A = last_match_id if math.loga(__lowercase ).is_integer(): for curr_key in lexicon: _A = "0" + lexicon[curr_key] _A = bin(__lowercase )[2:] def a__ ( __lowercase ) -> str: _A = {"0": "0", "1": "1"} _A , _A = "", "" _A = len(__lowercase ) for i in range(len(__lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _A = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__lowercase , __lowercase , __lowercase , __lowercase ) index += 1 _A = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _A = lexicon[curr_string] result += last_match_id return result def a__ ( __lowercase , __lowercase ) -> str: _A = os.path.getsize(__lowercase ) _A = bin(__lowercase )[2:] _A = len(__lowercase ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( __lowercase , __lowercase ) -> None: _A = 8 try: with open(__lowercase , "wb" ) as opened_file: _A = [ to_write[i : i + byte_length] for i in range(0 , len(__lowercase ) , __lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__lowercase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def a__ ( __lowercase , __lowercase ) -> None: _A = read_file_binary(__lowercase ) _A = compress_data(__lowercase ) _A = add_file_length(__lowercase , __lowercase ) write_file_binary(__lowercase , __lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
163
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
163
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _UpperCAmelCase : Tuple = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
285
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = ort.SessionOptions() __a : Dict = False return options def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __a : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default __a : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __a : Tuple = 'A red cat sitting on a park bench' __a : int = np.random.RandomState(0 ) __a : Tuple = pipe( prompt=__a , image=__a , mask_image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__a , output_type='np' , ) __a : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
27
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase="eval" ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , f"""{split}_results.json""" ) if os.path.exists(UpperCamelCase ): with open(UpperCamelCase , """r""" ) as f: return json.load(UpperCamelCase ) raise ValueError(f"""can't find {path}""" ) _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[int] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_flax_glue.main() lowerCAmelCase__ : List[Any] = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.7_5 ) @slow def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : str = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[Any] = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_clm_flax.main() lowerCAmelCase__ : Any = get_results(__UpperCAmelCase ) self.assertLess(result["""eval_perplexity"""] ,100 ) @slow def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Any = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Union[str, Any] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_summarization_flax.main() lowerCAmelCase__ : List[str] = get_results(__UpperCAmelCase ,split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] ,10 ) self.assertGreaterEqual(result["""test_rouge2"""] ,2 ) self.assertGreaterEqual(result["""test_rougeL"""] ,7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] ,7 ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_mlm_flax.main() lowerCAmelCase__ : List[Any] = get_results(__UpperCAmelCase ) self.assertLess(result["""eval_perplexity"""] ,42 ) @slow def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : List[str] = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_ta_mlm_flax.main() lowerCAmelCase__ : Tuple = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.4_2 ) @slow def UpperCAmelCase_ ( self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowerCAmelCase__ : Optional[Any] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase__ : Any = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : List[str] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_flax_ner.main() lowerCAmelCase__ : int = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] ,0.3 ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[int] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(__UpperCAmelCase ,"""argv""" ,__UpperCAmelCase ): run_qa.main() lowerCAmelCase__ : str = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_f1"""] ,30 ) self.assertGreaterEqual(result["""eval_exact"""] ,30 )
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
184
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowercase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: __A = XLMProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) __A , __A = XLMProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) else: __A = ProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) __A , __A = ProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) __A = ['''key_proj''', '''value_proj''', '''query_proj'''] __A = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __A = key.split('''.''' ) if attributes[0] == "lm_head": __A = prophet __A = prophet_old else: __A = prophet.prophetnet __A = prophet_old.model __A = False for attribute in attributes: if attribute in mapping: __A = mapping[attribute] if not hasattr(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) > 0: __A = attribute elif hasattr(__UpperCamelCase , __UpperCamelCase ): __A = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __A = old_model.weight logger.info(f'{attribute} is initialized.' ) __A = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __A = old_model.bias logger.info(f'{attribute} is initialized' ) __A = True break elif attribute in special_keys and hasattr(__UpperCamelCase , '''in_proj_weight''' ): __A = old_model.in_proj_weight.shape[0] // 3 __A = getattr(__UpperCamelCase , __UpperCamelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __A = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __A = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __A = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __A = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __A = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __A = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __A = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." __A = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) __A = True break if attribute.isdigit(): __A = model[int(__UpperCamelCase )] __A = old_model[int(__UpperCamelCase )] else: __A = getattr(__UpperCamelCase , __UpperCamelCase ) if old_attribute == "": __A = old_model else: if not hasattr(__UpperCamelCase , __UpperCamelCase ): raise ValueError(f'{old_model} does not have {old_attribute}' ) __A = getattr(__UpperCamelCase , __UpperCamelCase ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
266
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase_ = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowercase_ = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowercase_ = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), id='''references''' ), } ), ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[List[List[str]]], _lowerCamelCase : List[List[str]], _lowerCamelCase : int = 1, _lowerCamelCase : int = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCamelCase, hypotheses=_lowerCamelCase, min_len=_lowerCamelCase, max_len=_lowerCamelCase ) }
266
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : str = logging.get_logger(__name__) A_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} A_ : Tuple = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } A_ : List[str] = { "gpt-neox-20b": 20_48, } class a_ ( __a ): '''simple docstring''' lowerCamelCase__ : Any = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="<|endoftext|>", lowerCamelCase_="<|endoftext|>", lowerCamelCase_="<|endoftext|>", lowerCamelCase_=False, **lowerCamelCase_, ): '''simple docstring''' super().__init__( a__, a__, tokenizer_file=a__, unk_token=a__, bos_token=a__, eos_token=a__, add_prefix_space=a__, **a__, ) lowerCamelCase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', a__ ) != add_prefix_space: lowerCamelCase__ : str = getattr(a__, pre_tok_state.pop('type' ) ) lowerCamelCase__ : Any = add_prefix_space lowerCamelCase__ : Dict = pre_tok_class(**a__ ) lowerCamelCase__ : int = add_prefix_space def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._tokenizer.model.save(a__, name=a__ ) return tuple(a__ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__, add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: lowerCamelCase__ : Tuple = input_ids[-self.model_max_length :] return input_ids
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] def __init__(self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = size if size is not None else {"""shortest_edge""": 2_24} UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ , param_name="""crop_size""" ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase__ = do_convert_rgb def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCamelCase__ = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size["""shortest_edge"""] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size["""height"""], size["""width"""]) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name="""size""" , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name="""crop_size""" , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase__ = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase__ = [convert_to_rgb(SCREAMING_SNAKE_CASE_ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase__ = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
244
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = GPTSanJapaneseTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCAmelCase__ ( self : Union[str, Any] ): super().setUp() # fmt: off __snake_case: str = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __snake_case: List[Any] = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 __snake_case: Optional[int] = {"""unk_token""": """<unk>"""} __snake_case: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def UpperCAmelCase__ ( self : Optional[int] , **A : int ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ ( self : Optional[Any] , A : Dict ): __snake_case: Tuple = """こんにちは、世界。 \nこんばんは、㔺界。😀""" __snake_case: str = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] , A : Optional[int] ): __snake_case , __snake_case: Optional[int] = self.get_input_output_texts(A ) __snake_case: Optional[Any] = tokenizer.encode(A , add_special_tokens=A ) __snake_case: int = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def UpperCAmelCase__ ( self : int ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Dict ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Optional[int] ): pass # TODO add if relevant def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Dict = self.get_tokenizer() # Testing tokenization __snake_case: List[str] = """こんにちは、世界。 こんばんは、㔺界。""" __snake_case: Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] __snake_case: Any = tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens __snake_case: str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __snake_case: str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens __snake_case: Optional[int] = tokens + [tokenizer.unk_token] __snake_case: List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __snake_case: str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ ( self : str ): __snake_case: Union[str, Any] = self.get_tokenizer() # Testing tokenization __snake_case: Optional[Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" __snake_case: Optional[Any] = """こんにちは、、、、世界。こんばんは、、、、世界。""" __snake_case: Union[str, Any] = tokenizer.encode(A ) __snake_case: List[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) @slow def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __snake_case: Any = """こんにちは、世界。""" __snake_case: Tuple = """こんばんは、㔺界。😀""" __snake_case: Optional[Any] = """こんにちは、世界。こんばんは、世界。😀""" __snake_case: int = tokenizer.encode(prefix_text + input_text ) __snake_case: Union[str, Any] = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) __snake_case: Tuple = tokenizer.encode(A , prefix_text=A ) __snake_case: Union[str, Any] = tokenizer.decode(A ) __snake_case: Dict = tokenizer.decode(A ) __snake_case: Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , A ) self.assertEqual(A , A ) self.assertEqual(A , A ) @slow def UpperCAmelCase__ ( self : List[str] ): __snake_case: int = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __snake_case: Optional[int] = """こんにちは、世界。""" __snake_case: Any = """こんばんは、㔺界。😀""" __snake_case: Optional[int] = len(tokenizer.encode(A ) ) - 2 __snake_case: str = len(tokenizer.encode(A ) ) - 2 __snake_case: Dict = [1] + [0] * (len_prefix + len_text + 1) __snake_case: str = [1] * (len_prefix + len_text + 1) + [0] __snake_case: List[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __snake_case: int = tokenizer(prefix_text + input_text ).token_type_ids __snake_case: Optional[int] = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids __snake_case: Tuple = tokenizer(A , prefix_text=A ).token_type_ids self.assertListEqual(A , A ) self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __snake_case: int = tokenizer.encode("""あンいワ""" ) __snake_case: Optional[int] = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) __snake_case: List[Any] = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) , tokenizer.decode(A ) ) self.assertNotEqual(A , A ) self.assertNotEqual(A , A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCAmelCase__ ( self : int ): __snake_case: List[str] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __snake_case: Union[str, Any] = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] __snake_case: Optional[int] = tokenizer(A , padding=A ) __snake_case: int = tokenizer.batch_encode_plus(A , padding=A ) # fmt: off __snake_case: List[str] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] __snake_case: int = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __snake_case: Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A ) self.assertListEqual(x_token.token_type_ids , A ) self.assertListEqual(x_token.attention_mask , A ) self.assertListEqual(x_token_a.input_ids , A ) self.assertListEqual(x_token_a.token_type_ids , A ) self.assertListEqual(x_token_a.attention_mask , A ) def UpperCAmelCase__ ( self : Union[str, Any] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCAmelCase__ ( self : List[str] ): # tokenizer has no padding token pass
111
0
def lowerCAmelCase_ ( _lowercase : str) -> int: """simple docstring""" assert column_title.isupper() a__ : Union[str, Any] = 0 a__ : Any = len(_lowercase) - 1 a__ : Dict = 0 while index >= 0: a__ : Optional[Any] = (ord(column_title[index]) - 64) * pow(26 , _lowercase) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
266
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowercase : Any ="\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowercase : str ="\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _lowercase : Optional[Any] ="\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , ) -> Any: """simple docstring""" a__ : Any = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) a__ : str = [[refs[i] for refs in references] for i in range(__lowercase )] a__ : int = TER( normalized=__lowercase , no_punct=__lowercase , asian_support=__lowercase , case_sensitive=__lowercase , ) a__ : Optional[int] = sb_ter.corpus_score(__lowercase , __lowercase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
266
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :int = AlbertTokenizer lowerCAmelCase :int = AlbertTokenizerFast lowerCAmelCase :List[str] = True lowerCAmelCase :List[str] = True lowerCAmelCase :str = True def snake_case__ ( self): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Optional[int] = AlbertTokenizer(_lowerCamelCase) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Dict = """this is a test""" UpperCAmelCase__ : int = """this is a test""" return input_text, output_text def snake_case__ ( self): UpperCAmelCase__ : Tuple = """<pad>""" UpperCAmelCase__ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase) , _lowerCamelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase) , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<pad>""") self.assertEqual(vocab_keys[1] , """<unk>""") self.assertEqual(vocab_keys[-1] , """▁eloquent""") self.assertEqual(len(_lowerCamelCase) , 3_0000) def snake_case__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000) def snake_case__ ( self): if not self.test_rust_tokenizer: return UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase__ : Any = tokenizer.tokenize(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = rust_tokenizer.tokenize(_lowerCamelCase) self.assertListEqual(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[str] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase) self.assertListEqual(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[str] = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_lowerCamelCase) UpperCAmelCase__ : Dict = rust_tokenizer.encode(_lowerCamelCase) self.assertListEqual(_lowerCamelCase , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[str] = AlbertTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = tokenizer.tokenize("""This is a test""") self.assertListEqual(_lowerCamelCase , ["""▁this""", """▁is""", """▁a""", """▁test"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase) , [48, 25, 21, 1289]) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowerCamelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""]) UpperCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase) self.assertListEqual(_lowerCamelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]) UpperCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(_lowerCamelCase) self.assertListEqual( _lowerCamelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def snake_case__ ( self): UpperCAmelCase__ : Tuple = AlbertTokenizer(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = tokenizer.encode("""sequence builders""") UpperCAmelCase__ : Optional[Any] = tokenizer.encode("""multi-sequence build""") UpperCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self): # fmt: off UpperCAmelCase__ : Union[str, Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
163
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __A =namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = _TestCommandArgs(dataset=UpperCamelCase__ , all_configs=UpperCamelCase__ , save_infos=UpperCamelCase__ ) UpperCAmelCase__ : Any = TestCommand(*UpperCamelCase__ ) test_command.run() UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , """README.md""" ) assert os.path.exists(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) UpperCAmelCase__ : Any = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = getattr(dataset_infos["""default"""] , UpperCamelCase__ ), getattr(expected_dataset_infos["""default"""] , UpperCamelCase__ ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase__ , UpperCamelCase__ ) elif key == "splits": assert list(UpperCamelCase__ ) == list(UpperCamelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
163
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a ( unittest.TestCase ): def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[10, 20, 30, 40] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Any = image_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Union[str, Any] = embeddings_size _UpperCAmelCase : List[str] = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Union[str, Any] = scope _UpperCAmelCase : Optional[Any] = len(A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = self.get_config() return config, pixel_values def _UpperCAmelCase ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = FlaxRegNetModel(config=A_ ) _UpperCAmelCase : List[str] = model(A_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : List[Any] = FlaxRegNetForImageClassification(config=A_ ) _UpperCAmelCase : Tuple = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase : Optional[Any] = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class a ( __UpperCamelCase , unittest.TestCase ): _lowercase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _lowercase = False _lowercase = False _lowercase = False def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = FlaxRegNetModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ): '''simple docstring''' return def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(A_ ) _UpperCAmelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(A_ , A_ , A_ ): _UpperCAmelCase : Union[str, Any] = model_class(A_ ) _UpperCAmelCase : Tuple = model(**self._prepare_for_class(A_ , A_ ) ) _UpperCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Any = True check_hidden_states_output(A_ , A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Optional[int] = self._prepare_for_class(A_ , A_ ) _UpperCAmelCase : str = model_class(A_ ) @jax.jit def model_jitted(A_ , **A_ ): return model(pixel_values=A_ , **A_ ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : List[str] = model_jitted(**A_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : List[Any] = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def __SCREAMING_SNAKE_CASE ( ) -> Any: _UpperCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class a ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) _UpperCAmelCase : int = self.default_image_processor _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=A_ , return_tensors="np" ) _UpperCAmelCase : int = model(**A_ ) # verify the logits _UpperCAmelCase : Optional[int] = (1, 1000) self.assertEqual(outputs.logits.shape , A_ ) _UpperCAmelCase : Union[str, Any] = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
356
from __future__ import annotations class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = order # a_{0} ... a_{k} _UpperCAmelCase : Tuple = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase : Optional[Any] = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase : Dict = [0.0] * self.order def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if len(A_ ) < self.order: _UpperCAmelCase : List[str] = [1.0, *a_coeffs] if len(A_ ) != self.order + 1: _UpperCAmelCase : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) if len(A_ ) != self.order + 1: _UpperCAmelCase : int = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) _UpperCAmelCase : Optional[Any] = a_coeffs _UpperCAmelCase : Union[str, Any] = b_coeffs def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase : Optional[Any] = self.input_history[:-1] _UpperCAmelCase : Optional[int] = self.output_history[:-1] _UpperCAmelCase : Optional[Any] = sample _UpperCAmelCase : str = result return result
189
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[Any] = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
class _lowercase : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = size lowerCamelCase__ : List[str] = [0] * size lowerCamelCase__ : str = [0] * size @staticmethod def lowerCAmelCase ( __lowerCamelCase : int ): '''simple docstring''' return index | (index + 1) @staticmethod def lowerCAmelCase ( __lowerCamelCase : int ): '''simple docstring''' return (index & (index + 1)) - 1 def lowerCAmelCase ( self : int , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = value while index < self.size: lowerCamelCase__ : Tuple = self.get_prev(__lowerCamelCase ) + 1 if current_left_border == index: lowerCamelCase__ : Optional[Any] = value else: lowerCamelCase__ : str = max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict = self.get_next(__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' right -= 1 # Because of right is exclusive lowerCamelCase__ : str = 0 while left <= right: lowerCamelCase__ : Optional[Any] = self.get_prev(__lowerCamelCase ) if left <= current_left: lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , self.tree[right] ) lowerCamelCase__ : Any = current_left else: lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
184
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch UpperCamelCase__ =random.Random() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=1.0, __lowerCamelCase=None, __lowerCamelCase=None ): if rng is None: _SCREAMING_SNAKE_CASE : List[str] = global_rng _SCREAMING_SNAKE_CASE : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=4_0_0 , __lowerCamelCase=2_0_0_0 , __lowerCamelCase=1 , __lowerCamelCase=0.0 , __lowerCamelCase=1_6_0_0_0 , __lowerCamelCase=True , __lowerCamelCase=8_0 , __lowerCamelCase=1_6 , __lowerCamelCase=6_4 , __lowerCamelCase="hann_window" , __lowerCamelCase=8_0 , __lowerCamelCase=7_6_0_0 , __lowerCamelCase=1E-10 , __lowerCamelCase=True , ) -> List[str]: _SCREAMING_SNAKE_CASE : Any = parent _SCREAMING_SNAKE_CASE : int = batch_size _SCREAMING_SNAKE_CASE : str = min_seq_length _SCREAMING_SNAKE_CASE : Any = max_seq_length _SCREAMING_SNAKE_CASE : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _SCREAMING_SNAKE_CASE : Dict = feature_size _SCREAMING_SNAKE_CASE : List[Any] = padding_value _SCREAMING_SNAKE_CASE : Union[str, Any] = sampling_rate _SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize _SCREAMING_SNAKE_CASE : Tuple = num_mel_bins _SCREAMING_SNAKE_CASE : List[str] = hop_length _SCREAMING_SNAKE_CASE : Optional[Any] = win_length _SCREAMING_SNAKE_CASE : List[str] = win_function _SCREAMING_SNAKE_CASE : Dict = fmin _SCREAMING_SNAKE_CASE : Tuple = fmax _SCREAMING_SNAKE_CASE : Optional[int] = mel_floor _SCREAMING_SNAKE_CASE : Dict = return_attention_mask def UpperCamelCase_ ( self ) -> Dict: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCamelCase_ ( self , __lowerCamelCase=False , __lowerCamelCase=False ) -> Union[str, Any]: def _flatten(__lowerCamelCase ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: _SCREAMING_SNAKE_CASE : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE : str = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs def UpperCamelCase_ ( self , __lowerCamelCase=False , __lowerCamelCase=False ) -> Tuple: if equal_length: _SCREAMING_SNAKE_CASE : List[str] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE : str = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = SpeechTaFeatureExtractor def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(__lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase_ ( self ) -> Dict: # Tests that all call wrap to encode_plus and batch_encode_plus _SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input _SCREAMING_SNAKE_CASE : Any = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values _SCREAMING_SNAKE_CASE : str = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) # Test batched _SCREAMING_SNAKE_CASE : Any = feat_extract(__lowerCamelCase , return_tensors="np" ).input_values _SCREAMING_SNAKE_CASE : Optional[int] = feat_extract(__lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _SCREAMING_SNAKE_CASE : str = ["longest", "max_length", "do_not_pad"] _SCREAMING_SNAKE_CASE : Dict = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors="np" ) _SCREAMING_SNAKE_CASE : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE : str = range(8_0_0 , 1_4_0_0 , 2_0_0 ) _SCREAMING_SNAKE_CASE : List[str] = [floats_list((1, x) )[0] for x in lengths] _SCREAMING_SNAKE_CASE : int = ["longest", "max_length", "do_not_pad"] _SCREAMING_SNAKE_CASE : int = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = feat_extract(__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE : int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _SCREAMING_SNAKE_CASE : int = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) _SCREAMING_SNAKE_CASE : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _SCREAMING_SNAKE_CASE : Tuple = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) _SCREAMING_SNAKE_CASE : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) _SCREAMING_SNAKE_CASE : int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _SCREAMING_SNAKE_CASE : Any = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) _SCREAMING_SNAKE_CASE : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE : str = np.random.rand(1_0_0 ).astype(np.floataa ) _SCREAMING_SNAKE_CASE : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _SCREAMING_SNAKE_CASE : Any = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _SCREAMING_SNAKE_CASE : Any = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase_ ( self ) -> int: # Tests that all call wrap to encode_plus and batch_encode_plus _SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _SCREAMING_SNAKE_CASE : Tuple = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test feature size _SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(audio_target=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values _SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) # Test batched _SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_values _SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _SCREAMING_SNAKE_CASE : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _SCREAMING_SNAKE_CASE : List[str] = np.asarray(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_values _SCREAMING_SNAKE_CASE : Dict = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.feat_extract_tester.prepare_inputs_for_target() _SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _SCREAMING_SNAKE_CASE : List[str] = feat_extract.model_input_names[0] _SCREAMING_SNAKE_CASE : Dict = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__lowerCamelCase ) == len(__lowerCamelCase ) for x, y in zip(__lowerCamelCase , processed_features[input_name] ) ) ) _SCREAMING_SNAKE_CASE : Any = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) _SCREAMING_SNAKE_CASE : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _SCREAMING_SNAKE_CASE : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict ) _SCREAMING_SNAKE_CASE : List[Any] = feat_extract.model_input_names[0] _SCREAMING_SNAKE_CASE : str = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) _SCREAMING_SNAKE_CASE : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _SCREAMING_SNAKE_CASE : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() _SCREAMING_SNAKE_CASE : Optional[int] = feat_extract.model_input_names[0] _SCREAMING_SNAKE_CASE : Optional[int] = BatchFeature({input_name: speech_inputs} ) _SCREAMING_SNAKE_CASE : int = feat_extract.num_mel_bins # hack! _SCREAMING_SNAKE_CASE : Optional[int] = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] _SCREAMING_SNAKE_CASE : List[str] = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : str = self.feat_extract_dict _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.feat_extract_tester.prepare_inputs_for_target() _SCREAMING_SNAKE_CASE : List[Any] = [len(__lowerCamelCase ) for x in speech_inputs] _SCREAMING_SNAKE_CASE : Any = feat_extract.model_input_names[0] _SCREAMING_SNAKE_CASE : Dict = BatchFeature({input_name: speech_inputs} ) _SCREAMING_SNAKE_CASE : Dict = feat_extract.num_mel_bins # hack! _SCREAMING_SNAKE_CASE : Any = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = self.feat_extract_dict _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.feat_extract_tester.prepare_inputs_for_target() _SCREAMING_SNAKE_CASE : Any = [len(__lowerCamelCase ) for x in speech_inputs] _SCREAMING_SNAKE_CASE : str = feat_extract.model_input_names[0] _SCREAMING_SNAKE_CASE : str = BatchFeature({input_name: speech_inputs} ) _SCREAMING_SNAKE_CASE : List[Any] = min(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = feat_extract.num_mel_bins # hack! _SCREAMING_SNAKE_CASE : Tuple = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: from datasets import load_dataset _SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _SCREAMING_SNAKE_CASE : Tuple = ds.sort("id" ).select(range(__lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self ) -> Tuple: # fmt: off _SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on _SCREAMING_SNAKE_CASE : List[str] = self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaFeatureExtractor() _SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(__lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , __lowerCamelCase , atol=1E-6 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: # fmt: off _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on _SCREAMING_SNAKE_CASE : Optional[Any] = self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaFeatureExtractor() _SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(audio_target=__lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __lowerCamelCase , atol=1E-4 ) )
370
from math import factorial def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( 'If a class of 40 students must be arranged into groups of', f"4 for group projects, there are {combinations(40, 4)} ways", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"are {combinations(10, 3)} ways that first, second and", 'third place can be awarded.', )
325
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , **lowerCamelCase__ , ) -> str: '''simple docstring''' super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits __lowerCamelCase = self.builder.as_dataset( split='train' , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __lowerCamelCase = dataset __lowerCamelCase = name __lowerCamelCase = con __lowerCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCamelCase = num_proc __lowerCamelCase = to_sql_kwargs def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.to_sql_kwargs.pop('sql' , lowerCamelCase__ ) __lowerCamelCase = self.to_sql_kwargs.pop('con' , lowerCamelCase__ ) __lowerCamelCase = self.to_sql_kwargs.pop('index' , lowerCamelCase__ ) __lowerCamelCase = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = args __lowerCamelCase = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs __lowerCamelCase = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCamelCase = batch.to_pandas() __lowerCamelCase = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __lowerCamelCase , __lowerCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
90
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : str UpperCamelCase_ : str = None @staticmethod def _snake_case ( ) -> int: '''simple docstring''' raise NotImplementedError def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: '''simple docstring''' raise NotImplementedError def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def _snake_case ( cls : Optional[int] ) -> Tuple: '''simple docstring''' return f"""`pip install {cls.pip_package or cls.name}`""" class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = """optuna""" @staticmethod def _snake_case ( ) -> Dict: '''simple docstring''' return is_optuna_available() def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_optuna(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: '''simple docstring''' return default_hp_space_optuna(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : List[Any] = """ray""" UpperCamelCase_ : Any = """'ray[tune]'""" @staticmethod def _snake_case ( ) -> Dict: '''simple docstring''' return is_ray_available() def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: '''simple docstring''' return run_hp_search_ray(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: '''simple docstring''' return default_hp_space_ray(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = """sigopt""" @staticmethod def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' return is_sigopt_available() def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' return run_hp_search_sigopt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return default_hp_space_sigopt(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = """wandb""" @staticmethod def _snake_case ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Tuple ) -> int: '''simple docstring''' return run_hp_search_wandb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]: '''simple docstring''' return default_hp_space_wandb(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE( ) -> str: A: Any = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowercase ) > 0: A: List[str] = available_backends[0].name if len(__lowercase ) > 1: logger.info( F"""{len(__lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
334
'''simple docstring''' import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def SCREAMING_SNAKE_CASE( __lowercase ) -> None: # fetching a list of articles in json format A: Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
334
1
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : List[str] = KandinskyVaaPriorPipeline A_ : Dict = ["prompt"] A_ : Any = ["prompt", "negative_prompt"] A_ : Union[str, Any] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] A_ : str = False @property def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' return 1_00 @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' __A = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __A = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) return CLIPTextModelWithProjection(_lowerCamelCase ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __A = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __A = PriorTransformer(**_lowerCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __A = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=2_24, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, ) __A = CLIPVisionModelWithProjection(_lowerCamelCase ) return model @property def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = CLIPImageProcessor( crop_size=2_24, do_center_crop=_lowerCamelCase, do_normalize=_lowerCamelCase, do_resize=_lowerCamelCase, image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], resample=3, size=2_24, ) return image_processor def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = self.dummy_prior __A = self.dummy_image_encoder __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_image_processor __A = UnCLIPScheduler( variance_type='''fixed_small_log''', prediction_type='''sample''', num_train_timesteps=10_00, clip_sample=_lowerCamelCase, clip_sample_range=10.0, ) __A = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : str, _lowerCamelCase : Any=0 ): '''simple docstring''' if str(_lowerCamelCase ).startswith('''mps''' ): __A = torch.manual_seed(_lowerCamelCase ) else: __A = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __A = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = '''cpu''' __A = self.get_dummy_components() __A = self.pipeline_class(**_lowerCamelCase ) __A = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __A = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) __A = output.image_embeds __A = pipe( **self.get_dummy_inputs(_lowerCamelCase ), return_dict=_lowerCamelCase, )[0] __A = image[0, -10:] __A = image_from_tuple[0, -10:] assert image.shape == (1, 32) __A = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = torch_device == '''cpu''' __A = True __A = False self._test_inference_batch_single_identical( test_max_difference=_lowerCamelCase, relax_max_difference=_lowerCamelCase, test_mean_pixel_difference=_lowerCamelCase, ) @skip_mps def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = torch_device == '''cpu''' __A = False self._test_attention_slicing_forward_pass( test_max_difference=_lowerCamelCase, test_mean_pixel_difference=_lowerCamelCase, )
266
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = PegasusTokenizer A_ : int = PegasusTokenizerFast A_ : Optional[Any] = True A_ : Union[str, Any] = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A = PegasusTokenizer(_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def _SCREAMING_SNAKE_CASE ( self : int, **_lowerCamelCase : List[Any] ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : Dict ): '''simple docstring''' return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = '''</s>''' __A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ), _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<pad>''' ) self.assertEqual(vocab_keys[1], '''</s>''' ) self.assertEqual(vocab_keys[-1], '''v''' ) self.assertEqual(len(_lowerCamelCase ), 11_03 ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 11_03 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __A = self.tokenizer_class.from_pretrained(self.tmpdirname ) __A = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) __A = rust_tokenizer([raw_input_str], return_tensors=_lowerCamelCase, add_special_tokens=_lowerCamelCase ).input_ids[0] __A = py_tokenizer([raw_input_str], return_tensors=_lowerCamelCase, add_special_tokens=_lowerCamelCase ).input_ids[0] self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __A = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' __A = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __A = tokenizer([raw_input_str], return_tensors=_lowerCamelCase ).input_ids[0] self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 __A = '''To ensure a smooth flow of bank resolutions.''' __A = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __A = tokenizer([raw_input_str], return_tensors=_lowerCamelCase ).input_ids[0] self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = ['''This is going to be way too long.''' * 1_50, '''short example'''] __A = ['''not super long but more than 5 tokens''', '''tiny'''] __A = self._large_tokenizer(_lowerCamelCase, padding=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='''pt''' ) __A = self._large_tokenizer( text_target=_lowerCamelCase, max_length=5, padding=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCamelCase ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' # fmt: off __A = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase, model_name='''google/bigbird-pegasus-large-arxiv''', revision='''ba85d0851d708441f91440d509690f1ab6353415''', ) @require_sentencepiece @require_tokenizers class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : str = PegasusTokenizer A_ : Union[str, Any] = PegasusTokenizerFast A_ : Any = True A_ : str = True def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A = PegasusTokenizer(_lowerCamelCase, offset=0, mask_token_sent=_lowerCamelCase, mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], **_lowerCamelCase : Dict ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : List[str] ): '''simple docstring''' return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __A = self.tokenizer_class.from_pretrained(self.tmpdirname ) __A = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) __A = rust_tokenizer([raw_input_str], return_tensors=_lowerCamelCase, add_special_tokens=_lowerCamelCase ).input_ids[0] __A = py_tokenizer([raw_input_str], return_tensors=_lowerCamelCase, add_special_tokens=_lowerCamelCase ).input_ids[0] self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = ['''This is going to be way too long.''' * 10_00, '''short example'''] __A = ['''not super long but more than 5 tokens''', '''tiny'''] __A = self._large_tokenizer(_lowerCamelCase, padding=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='''pt''' ) __A = self._large_tokenizer( text_target=_lowerCamelCase, max_length=5, padding=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCamelCase ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) __A = self._large_tokenizer(_lowerCamelCase ).input_ids self.assertListEqual( _lowerCamelCase, [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1], )
266
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ): """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
359
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase="shi-labs/oneformer_demo" ) -> Tuple: with open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: UpperCamelCase__ : Optional[Any] = json.load(__lowerCAmelCase ) UpperCamelCase__ : str = {} UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [] for key, info in class_info.items(): UpperCamelCase__ : List[str] = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(__lowerCAmelCase ) ) UpperCamelCase__ : Dict = thing_ids UpperCamelCase__ : Optional[int] = class_names return metadata class __a ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=7 , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Tuple=30 , SCREAMING_SNAKE_CASE : Dict=4_00 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : List[str]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Optional[Any]=10 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : int=2_55 , SCREAMING_SNAKE_CASE : str="shi-labs/oneformer_demo" , SCREAMING_SNAKE_CASE : List[Any]="ade20k_panoptic.json" , SCREAMING_SNAKE_CASE : Tuple=10 , ): '''simple docstring''' UpperCamelCase__ : Tuple = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : Optional[int] = min_resolution UpperCamelCase__ : Union[str, Any] = max_resolution UpperCamelCase__ : Optional[int] = do_resize UpperCamelCase__ : List[Any] = {"shortest_edge": 32, "longest_edge": 13_33} if size is None else size UpperCamelCase__ : Dict = do_normalize UpperCamelCase__ : Optional[int] = image_mean UpperCamelCase__ : Union[str, Any] = image_std UpperCamelCase__ : Union[str, Any] = class_info_file UpperCamelCase__ : Tuple = prepare_metadata(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = num_text UpperCamelCase__ : int = repo_path # for the post_process_functions UpperCamelCase__ : int = 2 UpperCamelCase__ : str = 10 UpperCamelCase__ : Any = 10 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : List[Any] = 4 UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : Tuple = do_reduce_labels UpperCamelCase__ : List[str] = ignore_index def __lowercase ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' if not batched: UpperCamelCase__ : str = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = image.size else: UpperCamelCase__ , UpperCamelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ : Any = int(self.size["shortest_edge"] * h / w ) UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] elif w > h: UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] UpperCamelCase__ : int = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase__ : Optional[Any] = self.size["shortest_edge"] UpperCamelCase__ : str = self.size["shortest_edge"] else: UpperCamelCase__ : Tuple = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ : List[str] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase__ : int = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def __lowercase ( self : Any ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : Tuple = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCAmelCase : List[str] = image_processing_class def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "ignore_index" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "class_info_file" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_text" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "repo_path" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "metadata" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_reduce_labels" ) ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase__ : Optional[int] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Dict = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase__ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase__ : List[Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Tuple = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Any="np" ): '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase__ : Any = self.image_processing_tester.num_labels UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) if with_segmentation_maps: UpperCamelCase__ : Tuple = num_labels if is_instance_map: UpperCamelCase__ : List[str] = list(range(SCREAMING_SNAKE_CASE ) ) * 2 UpperCamelCase__ : Optional[Any] = dict(enumerate(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase__ : List[str] = [Image.fromarray(SCREAMING_SNAKE_CASE ) for annotation in annotations] UpperCamelCase__ : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , return_tensors="pt" , instance_id_to_semantic_id=SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE , ) return inputs def __lowercase ( self : int ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' def common(SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : str=None ): UpperCamelCase__ : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=SCREAMING_SNAKE_CASE , is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = inputs["mask_labels"] UpperCamelCase__ : Optional[Any] = inputs["class_labels"] UpperCamelCase__ : List[str] = inputs["pixel_values"] UpperCamelCase__ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=SCREAMING_SNAKE_CASE ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = np.zeros((20, 50) ) UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : int = binary_mask_to_rle(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : int = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase__ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase__ : Optional[Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE , target_sizes=SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Optional[int] = image_processor.post_process_instance_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Tuple = image_processor.post_process_panoptic_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
189
0
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = 'PoolFormerConfig' # Base docstring UpperCAmelCase_ = 'sail/poolformer_s12' UpperCAmelCase_ = [1, 5_1_2, 7, 7] # Image classification docstring UpperCAmelCase_ = 'sail/poolformer_s12' UpperCAmelCase_ = 'tabby, tabby cat' UpperCAmelCase_ = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input UpperCAmelCase__ = 1 - drop_prob UpperCAmelCase__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets UpperCAmelCase__ = keep_prob + torch.rand(SCREAMING_SNAKE_CASE__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize UpperCAmelCase__ = input.div(SCREAMING_SNAKE_CASE__ ) * random_tensor return output class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Optional[float] = None ): """simple docstring""" super().__init__() UpperCAmelCase__ = drop_prob def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : torch.Tensor ): """simple docstring""" return drop_path(_UpperCAmelCase , self.drop_prob , self.training ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return "p={}".format(self.drop_prob ) class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=None ): """simple docstring""" super().__init__() UpperCAmelCase__ = patch_size if isinstance(_UpperCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) UpperCAmelCase__ = stride if isinstance(_UpperCAmelCase , collections.abc.Iterable ) else (stride, stride) UpperCAmelCase__ = padding if isinstance(_UpperCAmelCase , collections.abc.Iterable ) else (padding, padding) UpperCAmelCase__ = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=_UpperCAmelCase ) UpperCAmelCase__ = norm_layer(_UpperCAmelCase ) if norm_layer else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.projection(_UpperCAmelCase ) UpperCAmelCase__ = self.norm(_UpperCAmelCase ) return embeddings class lowerCAmelCase_ ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : str , **_UpperCAmelCase : Dict ): """simple docstring""" super().__init__(1 , _UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : Tuple ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.AvgPoolad(_UpperCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : List[str] ): """simple docstring""" return self.pool(_UpperCAmelCase ) - hidden_states class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) UpperCAmelCase__ = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) UpperCAmelCase__ = PoolFormerDropPath(_UpperCAmelCase ) if isinstance(config.hidden_act , _UpperCAmelCase ): UpperCAmelCase__ = ACTaFN[config.hidden_act] else: UpperCAmelCase__ = config.hidden_act def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.conva(_UpperCAmelCase ) UpperCAmelCase__ = self.act_fn(_UpperCAmelCase ) UpperCAmelCase__ = self.drop(_UpperCAmelCase ) UpperCAmelCase__ = self.conva(_UpperCAmelCase ) UpperCAmelCase__ = self.drop(_UpperCAmelCase ) return hidden_states class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ): """simple docstring""" super().__init__() UpperCAmelCase__ = PoolFormerPooling(_UpperCAmelCase ) UpperCAmelCase__ = PoolFormerOutput(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = PoolFormerGroupNorm(_UpperCAmelCase ) UpperCAmelCase__ = PoolFormerGroupNorm(_UpperCAmelCase ) # Useful for training neural nets UpperCAmelCase__ = PoolFormerDropPath(_UpperCAmelCase ) if drop_path > 0.0 else nn.Identity() UpperCAmelCase__ = config.use_layer_scale if config.use_layer_scale: UpperCAmelCase__ = nn.Parameter( config.layer_scale_init_value * torch.ones((_UpperCAmelCase) ) , requires_grad=_UpperCAmelCase ) UpperCAmelCase__ = nn.Parameter( config.layer_scale_init_value * torch.ones((_UpperCAmelCase) ) , requires_grad=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str ): """simple docstring""" if self.use_layer_scale: UpperCAmelCase__ = self.pooling(self.before_norm(_UpperCAmelCase ) ) UpperCAmelCase__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection UpperCAmelCase__ = hidden_states + self.drop_path(_UpperCAmelCase ) UpperCAmelCase__ = () UpperCAmelCase__ = self.output(self.after_norm(_UpperCAmelCase ) ) UpperCAmelCase__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection UpperCAmelCase__ = hidden_states + self.drop_path(_UpperCAmelCase ) UpperCAmelCase__ = (output,) + outputs return outputs else: UpperCAmelCase__ = self.drop_path(self.pooling(self.before_norm(_UpperCAmelCase ) ) ) # First residual connection UpperCAmelCase__ = pooling_output + hidden_states UpperCAmelCase__ = () # Second residual connection inside the PoolFormerOutput block UpperCAmelCase__ = self.drop_path(self.output(self.after_norm(_UpperCAmelCase ) ) ) UpperCAmelCase__ = hidden_states + layer_output UpperCAmelCase__ = (output,) + outputs return outputs class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Optional[Any] ): """simple docstring""" super().__init__() UpperCAmelCase__ = config # stochastic depth decay rule UpperCAmelCase__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings UpperCAmelCase__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) UpperCAmelCase__ = nn.ModuleList(_UpperCAmelCase ) # Transformer blocks UpperCAmelCase__ = [] UpperCAmelCase__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers UpperCAmelCase__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _UpperCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_UpperCAmelCase ) ) UpperCAmelCase__ = nn.ModuleList(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Any=True ): """simple docstring""" UpperCAmelCase__ = () if output_hidden_states else None UpperCAmelCase__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): UpperCAmelCase__ , UpperCAmelCase__ = layers # Get patch embeddings from hidden_states UpperCAmelCase__ = embedding_layer(_UpperCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(_UpperCAmelCase ): UpperCAmelCase__ = blk(_UpperCAmelCase ) UpperCAmelCase__ = layer_outputs[0] if output_hidden_states: UpperCAmelCase__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = PoolFormerConfig lowerCAmelCase_ : Union[str, Any] = """poolformer""" lowerCAmelCase_ : Union[str, Any] = """pixel_values""" lowerCAmelCase_ : Optional[int] = True def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[Any] ): """simple docstring""" if isinstance(_UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_UpperCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = value UpperCAmelCase_ = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCAmelCase_ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , lowerCamelCase_ , ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[str] ): """simple docstring""" super().__init__(_UpperCAmelCase ) UpperCAmelCase__ = config UpperCAmelCase__ = PoolFormerEncoder(_UpperCAmelCase ) # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ): """simple docstring""" UpperCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) UpperCAmelCase__ = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , ) UpperCAmelCase__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : int ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Linear(config.hidden_size , config.hidden_size ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = self.dense(_UpperCAmelCase ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , lowerCamelCase_ , ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any] ): """simple docstring""" super().__init__(_UpperCAmelCase ) UpperCAmelCase__ = config.num_labels UpperCAmelCase__ = PoolFormerModel(_UpperCAmelCase ) # Final norm UpperCAmelCase__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head UpperCAmelCase__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ): """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.poolformer( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , ) UpperCAmelCase__ = outputs[0] UpperCAmelCase__ = self.classifier(self.norm(_UpperCAmelCase ).mean([-2, -1] ) ) UpperCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase__ = """single_label_classification""" else: UpperCAmelCase__ = """multi_label_classification""" if self.config.problem_type == "regression": UpperCAmelCase__ = MSELoss() if self.num_labels == 1: UpperCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase__ = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase__ = CrossEntropyLoss() UpperCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase__ = BCEWithLogitsLoss() UpperCAmelCase__ = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: UpperCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
61
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = """yolos""" def __init__( self : str , _UpperCAmelCase : int=7_68 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Tuple=30_72 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[Any]=1E-12 , _UpperCAmelCase : Tuple=[5_12, 8_64] , _UpperCAmelCase : str=16 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=1_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=5 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Tuple=0.1 , **_UpperCAmelCase : List[Any] , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = num_detection_tokens UpperCAmelCase__ = use_mid_position_embeddings UpperCAmelCase__ = auxiliary_loss # Hungarian matcher UpperCAmelCase__ = class_cost UpperCAmelCase__ = bbox_cost UpperCAmelCase__ = giou_cost # Loss coefficients UpperCAmelCase__ = bbox_loss_coefficient UpperCAmelCase__ = giou_loss_coefficient UpperCAmelCase__ = eos_coefficient class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return 12
61
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class a ( lowerCAmelCase__ , lowerCAmelCase__ ): _snake_case : Any = "swin" _snake_case : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , __lowerCAmelCase : int=224 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Optional[Any]=96 , __lowerCAmelCase : str=[2, 2, 6, 2] , __lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , __lowerCAmelCase : Union[str, Any]=7 , __lowerCAmelCase : int=4.0 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : Union[str, Any]=1e-5 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Optional[int] , ): super().__init__(**_UpperCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) _UpperCAmelCase = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(_UpperCAmelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names ) class a ( lowerCAmelCase__ ): _snake_case : str = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : List[Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : int ): return 1e-4
289
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Dict =BertJapaneseTokenizer a : Optional[Any] =False a : int =True def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" __lowerCAmelCase = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.get_input_output_texts(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.decode(__SCREAMING_SNAKE_CASE,clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return text, ids def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase = os.path.join(self.tmpdirname,"""tokenizer.bin""" ) with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as handle: pickle.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as handle: __lowerCAmelCase = pickle.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' try: __lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' try: __lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = MecabTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' try: __lowerCAmelCase = MecabTokenizer( do_lower_case=__SCREAMING_SNAKE_CASE,normalize_text=__SCREAMING_SNAKE_CASE,mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = MecabTokenizer(normalize_text=__SCREAMING_SNAKE_CASE,mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""],) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase = os.path.join(self.tmpdirname,"""tokenizer.bin""" ) with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as handle: pickle.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as handle: __lowerCAmelCase = pickle.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """],) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""",sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ),["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""",sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ),["""外国人""", """参政権"""] ) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""",sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ),["""外国人参政権"""] ) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),[""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """],) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(normalize_text=__SCREAMING_SNAKE_CASE,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """],) @require_sudachi def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = SudachiTokenizer(trim_whitespace=__SCREAMING_SNAKE_CASE,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase = os.path.join(self.tmpdirname,"""tokenizer.bin""" ) with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as handle: pickle.dump(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE,"""rb""" ) as handle: __lowerCAmelCase = pickle.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer(normalize_text=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer(trim_whitespace=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ),["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""],) @require_jumanpp def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ),["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""],) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __lowerCAmelCase = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = i __lowerCAmelCase = WordpieceTokenizer(vocab=__SCREAMING_SNAKE_CASE,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ),[] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ),["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ),["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ),["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) __lowerCAmelCase = tokenizer.subword_tokenizer __lowerCAmelCase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) __lowerCAmelCase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE,["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) __lowerCAmelCase = tokenizer.encode("""ありがとう。""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode("""どういたしまして。""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[Any] =BertJapaneseTokenizer a : int =False def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname,subword_tokenizer_type="""character""",**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" __lowerCAmelCase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class(self.vocab_file,subword_tokenizer_type="""character""" ) __lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE,["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ),[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowerCAmelCase = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = i __lowerCAmelCase = CharacterTokenizer(vocab=__SCREAMING_SNAKE_CASE,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ),[] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ),["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ),["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) __lowerCAmelCase = tokenizer.encode("""ありがとう。""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.encode("""どういたしまして。""",add_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cl-tohoku/bert-base-japanese""" __lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""",level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) __lowerCAmelCase = """bert-base-cased""" with self.assertLogs("""transformers""",level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
46
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _lowerCAmelCase ( lowercase , lowercase , lowercase = False ) -> list[float]: if radian_mode: return [magnitude * cos(lowercase ), magnitude * sin(lowercase )] return [magnitude * cos(radians(lowercase ) ), magnitude * sin(radians(lowercase ) )] def _lowerCAmelCase ( lowercase , lowercase , lowercase = 10**-1 ) -> bool: __lowerCAmelCase = cross(lowercase , lowercase ) __lowerCAmelCase = sum(lowercase ) return abs(lowercase ) < eps if __name__ == "__main__": # Test to check if it works _a : Any = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) _a : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _a : List[Any] = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) _a : Optional[int] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _a : Union[str, Any] = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) _a : Optional[int] = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
46
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _lowerCamelCase =logging.get_logger(__name__) class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None @staticmethod def _lowerCAmelCase ( ): raise NotImplementedError def _lowerCAmelCase ( self : Dict ,snake_case : Any ,snake_case : int ,snake_case : str ,**snake_case : Optional[Any] ): raise NotImplementedError def _lowerCAmelCase ( self : str ,snake_case : List[Any] ): raise NotImplementedError def _lowerCAmelCase ( self : List[Any] ): if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def _lowerCAmelCase ( cls : Optional[int] ): return f'`pip install {cls.pip_package or cls.name}`' class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'optuna' @staticmethod def _lowerCAmelCase ( ): return is_optuna_available() def _lowerCAmelCase ( self : int ,snake_case : str ,snake_case : int ,snake_case : str ,**snake_case : List[str] ): return run_hp_search_optuna(snake_case ,snake_case ,snake_case ,**snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Optional[int] ): return default_hp_space_optuna(snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'ray' __UpperCAmelCase = '\'ray[tune]\'' @staticmethod def _lowerCAmelCase ( ): return is_ray_available() def _lowerCAmelCase ( self : int ,snake_case : Union[str, Any] ,snake_case : int ,snake_case : str ,**snake_case : List[str] ): return run_hp_search_ray(snake_case ,snake_case ,snake_case ,**snake_case ) def _lowerCAmelCase ( self : str ,snake_case : int ): return default_hp_space_ray(snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'sigopt' @staticmethod def _lowerCAmelCase ( ): return is_sigopt_available() def _lowerCAmelCase ( self : int ,snake_case : Optional[Any] ,snake_case : int ,snake_case : str ,**snake_case : Union[str, Any] ): return run_hp_search_sigopt(snake_case ,snake_case ,snake_case ,**snake_case ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[Any] ): return default_hp_space_sigopt(snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'wandb' @staticmethod def _lowerCAmelCase ( ): return is_wandb_available() def _lowerCAmelCase ( self : List[Any] ,snake_case : Tuple ,snake_case : int ,snake_case : str ,**snake_case : List[str] ): return run_hp_search_wandb(snake_case ,snake_case ,snake_case ,**snake_case ) def _lowerCAmelCase ( self : Tuple ,snake_case : Any ): return default_hp_space_wandb(snake_case ) _lowerCamelCase ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =[backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE =available_backends[0].name if len(lowerCAmelCase_ ) > 1: logger.info( F'{len(lowerCAmelCase_ )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
334
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCAmelCase = 1 _lowerCAmelCase = 1 while repunit: _lowerCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
1
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : List[str]=30 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Tuple=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = decoder_seq_length # For common tests UpperCAmelCase__ = self.decoder_seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = d_model UpperCAmelCase__ = d_model UpperCAmelCase__ = decoder_layers UpperCAmelCase__ = decoder_layers UpperCAmelCase__ = decoder_ffn_dim UpperCAmelCase__ = decoder_attention_heads UpperCAmelCase__ = decoder_attention_heads UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = bos_token_id UpperCAmelCase__ = pad_token_id UpperCAmelCase__ = decoder_start_token_id UpperCAmelCase__ = use_cache UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = None UpperCAmelCase__ = decoder_seq_length UpperCAmelCase__ = 2 UpperCAmelCase__ = 1 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , ): """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() UpperCAmelCase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCAmelCase__ = model(snake_case__ , use_cache=snake_case__ ) UpperCAmelCase__ = model(snake_case__ ) UpperCAmelCase__ = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) UpperCAmelCase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ = model(snake_case__ )['''last_hidden_state'''] UpperCAmelCase__ = model(snake_case__ , past_key_values=snake_case__ )['''last_hidden_state'''] # select random slice UpperCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCAmelCase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase_ : int = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase_ : Tuple = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) UpperCAmelCase__ = ConfigTester(self , config_class=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return @unittest.skip("""The model doesn\'t support left padding""" ) # and it's not used enough to be worth fixing :) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" pass
346
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class a ( UpperCAmelCase ): _lowercase = "facebook/bart-large-mnli" _lowercase = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) _lowercase = "text_classifier" _lowercase = AutoTokenizer _lowercase = AutoModelForSequenceClassification _lowercase = ["text", ["text"]] _lowercase = ["text"] def _UpperCAmelCase ( self ): '''simple docstring''' super().setup() _UpperCAmelCase : List[str] = self.model.config _UpperCAmelCase : Any = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): _UpperCAmelCase : str = int(A_ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = labels return self.pre_processor( [text] * len(A_ ) , [f'This example is {label}' for label in labels] , return_tensors="pt" , padding="max_length" , ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = outputs.logits _UpperCAmelCase : Optional[Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
356
from __future__ import annotations class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = order # a_{0} ... a_{k} _UpperCAmelCase : Tuple = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase : Optional[Any] = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase : Dict = [0.0] * self.order def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if len(A_ ) < self.order: _UpperCAmelCase : List[str] = [1.0, *a_coeffs] if len(A_ ) != self.order + 1: _UpperCAmelCase : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) if len(A_ ) != self.order + 1: _UpperCAmelCase : int = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) _UpperCAmelCase : Optional[Any] = a_coeffs _UpperCAmelCase : Union[str, Any] = b_coeffs def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase : Optional[Any] = self.input_history[:-1] _UpperCAmelCase : Optional[int] = self.output_history[:-1] _UpperCAmelCase : Optional[Any] = sample _UpperCAmelCase : str = result return result
189
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _a = False try: _a = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class A_ : '''simple docstring''' def __init__( self , lowercase_ = None , lowercase_ = [] ): """simple docstring""" UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Optional[Any] = choices UpperCAmelCase_ : List[Any] = prompt if sys.platform == "win32": UpperCAmelCase_ : Optional[int] = "*" else: UpperCAmelCase_ : int = "➔ " def UpperCamelCase__ ( self , lowercase_ , lowercase_ = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , lowercase_ ) else: forceWrite(self.choices[index] , lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(lowercase_ ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 1 ): """simple docstring""" UpperCAmelCase_ : List[str] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(lowercase_ ) move_cursor(lowercase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def UpperCamelCase__ ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def UpperCamelCase__ ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def UpperCamelCase__ ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def UpperCamelCase__ ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(lowercase_ )] for number in range(10 )] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = int(chr(self.current_selection ) ) UpperCAmelCase_ : Optional[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , lowercase_ ) else: return else: return def UpperCamelCase__ ( self , lowercase_ = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) UpperCAmelCase_ : Optional[Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(lowercase_ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase_ : Tuple = int(builtins.input() ) except ValueError: UpperCAmelCase_ : List[Any] = default_choice else: UpperCAmelCase_ : Optional[int] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(lowercase_ , "\n" ) return choice
61
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _a = 'src/diffusers' # Matches is_xxx_available() _a = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _a = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _a = '\n{0} = None\n' _a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = _re_backend.findall(__lowerCamelCase ) if len(__lowerCamelCase ) == 0: return None return "_and_".join(__lowerCamelCase ) def __a ( ): with open(os.path.join(__lowerCamelCase, "__init__.py" ), "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = {} # Go through the end of the file while line_index < len(__lowerCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ : Union[str, Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ : List[str] = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCamelCase ) and len(lines[line_index] ) > 1: UpperCAmelCase_ : Union[str, Any] = lines[line_index] UpperCAmelCase_ : Optional[Any] = _re_single_line_import.search(__lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : Optional[int] = objects else: line_index += 1 return backend_specific_objects def __a ( __lowerCamelCase, __lowerCamelCase ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCamelCase, __lowerCamelCase ) else: return DUMMY_CLASS.format(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase=None ): if backend_specific_objects is None: UpperCAmelCase_ : Tuple = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ : str = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ : int = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ : Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCamelCase, __lowerCamelCase ) for o in objects] ) UpperCAmelCase_ : int = dummy_file return dummy_files def __a ( __lowerCamelCase=False ): UpperCAmelCase_ : Optional[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ : Union[str, Any] = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ : List[str] = os.path.join(__lowerCamelCase, "utils" ) UpperCAmelCase_ : Optional[int] = { backend: os.path.join(__lowerCamelCase, f"""dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py""" ) for backend in dummy_files.keys() } UpperCAmelCase_ : Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.read() else: UpperCAmelCase_ : Any = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend], "w", encoding="utf-8", newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"""diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _a = parser.parse_args() check_dummies(args.fix_and_overwrite)
61
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __A : Any = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ['DPTFeatureExtractor'] __A : Any = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import functools def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = len(lowerCamelCase_ ) snake_case_ : Dict = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if openai_config_file == "": lowerCAmelCase = OpenAIGPTConfig() else: lowerCAmelCase = OpenAIGPTConfig.from_json_file(SCREAMING_SNAKE_CASE ) lowerCAmelCase = OpenAIGPTModel(SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_openai_gpt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
46
"""simple docstring""" import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE__ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" SCREAMING_SNAKE_CASE__ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" SCREAMING_SNAKE_CASE__ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def _snake_case ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _snake_case ( self , lowercase , lowercase , lowercase=None , lowercase=False , lowercase=False , lowercase=False , ) -> Optional[Any]: if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCAmelCase = np.array([re.sub(lowercase , """""" , lowercase ) for x in predictions] ) lowerCAmelCase = np.array([re.sub(lowercase , """""" , lowercase ) for x in references] ) else: lowerCAmelCase = np.asarray(lowercase ) lowerCAmelCase = np.asarray(lowercase ) if ignore_case: lowerCAmelCase = np.char.lower(lowercase ) lowerCAmelCase = np.char.lower(lowercase ) if ignore_punctuation: lowerCAmelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) lowerCAmelCase = np.char.translate(lowercase , table=lowercase ) lowerCAmelCase = np.char.translate(lowercase , table=lowercase ) if ignore_numbers: lowerCAmelCase = string.digits.maketrans("""""" , """""" , string.digits ) lowerCAmelCase = np.char.translate(lowercase , table=lowercase ) lowerCAmelCase = np.char.translate(lowercase , table=lowercase ) lowerCAmelCase = predictions == references return {"exact_match": np.mean(lowercase ) * 100}
46
1
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __lowerCAmelCase ( UpperCamelCase__ = "" ) -> dict[str, float]: __lowerCamelCase = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' __lowerCamelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __lowerCamelCase = soup.find_all('''td''' , attrs='''titleColumn''' ) __lowerCamelCase = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(UpperCamelCase__ , UpperCamelCase__ ) } def __lowerCAmelCase ( UpperCamelCase__ = "IMDb_Top_250_Movies.csv" ) -> None: __lowerCamelCase = get_imdb_top_aaa_movies() with open(UpperCamelCase__ , '''w''' , newline='''''' ) as out_file: __lowerCamelCase = csv.writer(UpperCamelCase__ ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
237
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict =["pixel_values"] def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : int = 0.9 , a : PILImageResampling = PILImageResampling.BICUBIC , a : bool = True , a : Dict[str, int] = None , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Dict , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24} __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = crop_pct __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : Any , a : np.ndarray , a : Dict[str, int] , a : Optional[float] = None , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ): """simple docstring""" __lowerCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __lowerCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __lowerCamelCase = int(size['''height'''] / crop_pct ) else: __lowerCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) __lowerCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a ) else: if "shortest_edge" in size: __lowerCamelCase = get_resize_output_image_size(a , size=size['''shortest_edge'''] , default_to_square=a ) elif "height" in size and "width" in size: __lowerCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ): """simple docstring""" __lowerCamelCase = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a , size=(size['''height'''], size['''width''']) , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ): """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ): """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ): """simple docstring""" __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(a ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] __lowerCamelCase = [to_channel_dimension_format(a , a ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=a , tensor_type=a )
237
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowercase_ = s_dict.pop(__lowerCAmelCase ) elif "subsample" in key: lowercase_ = s_dict.pop(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) lowercase_ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowercase_ = mam_aaa["""args"""] lowercase_ = mam_aaa["""model"""] lowercase_ = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(__lowerCAmelCase ) rename_keys(__lowerCAmelCase ) lowercase_ = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowercase_ = args.share_decoder_input_output_embed lowercase_ = [int(__lowerCAmelCase ) for i in args.conv_kernel_sizes.split(""",""" )] lowercase_ = SpeechaTextConfig( vocab_size=__lowerCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(__lowerCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__lowerCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__lowerCAmelCase , num_beams=5 , max_length=2_00 , use_cache=__lowerCAmelCase , decoder_start_token_id=2 , early_stopping=__lowerCAmelCase , ) lowercase_ = SpeechaTextForConditionalGeneration(__lowerCAmelCase ) lowercase_ , lowercase_ = model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: lowercase_ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase_ = lm_head_weights model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : Optional[int] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
136
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A =logging.getLogger(__name__) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ): UpperCAmelCase__ : str = bnb_quantization_config.load_in_abit UpperCAmelCase__ : str = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) UpperCAmelCase__ : List[Any] = [] # custom device map if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(device_map.keys() ) > 1: UpperCAmelCase__ : Dict = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase__ : Any = get_keys_to_not_convert(UpperCamelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase__ ) # compatibility with peft UpperCAmelCase__ : Optional[int] = load_in_abit UpperCAmelCase__ : List[Any] = load_in_abit UpperCAmelCase__ : Dict = get_parameter_device(UpperCamelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) UpperCAmelCase__ : Optional[int] = replace_with_bnb_layers(UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) # convert param to the right dtype UpperCAmelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase__ : List[str] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) UpperCAmelCase__ : int = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase__ ): param.to(UpperCamelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): UpperCAmelCase__ : Tuple = replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) UpperCAmelCase__ : Any = get_quantized_model_device_map( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_memory=UpperCamelCase__ , no_split_module_classes=UpperCamelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Any = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase__ , offload_state_dict=UpperCamelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase__ , device_map=UpperCamelCase__ , offload_dir=UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ): if device_map is None: if torch.cuda.is_available(): UpperCAmelCase__ : Any = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) UpperCAmelCase__ : List[Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Union[str, Any] = special_dtypes UpperCAmelCase__ : Optional[int] = no_split_module_classes UpperCAmelCase__ : Optional[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase__ : Optional[int] = get_balanced_memory( UpperCamelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase__ : str = max_memory UpperCAmelCase__ : Any = infer_auto_device_map(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # check if don't have any quantized module on the cpu UpperCAmelCase__ : Optional[int] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase__ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): if modules_to_not_convert is None: UpperCAmelCase__ : Any = [] UpperCAmelCase__ , UpperCAmelCase__ : List[str] = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , ): UpperCAmelCase__ : List[str] = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase__ : Dict = [] current_key_name.append(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase__ : List[str] = """.""".join(UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase__ : Union[str, Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase__ : Optional[Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase__ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) UpperCAmelCase__ : int = module.weight.data if module.bias is not None: UpperCAmelCase__ : Dict = module.bias.data bnb_module.requires_grad_(UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = True if len(list(module.children() ) ) > 0: UpperCAmelCase__ , UpperCAmelCase__ : str = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Any = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _UpperCamelCase ( UpperCamelCase__ ): # Create a copy of the model with init_empty_weights(): UpperCAmelCase__ : Optional[int] = deepcopy(UpperCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase__ : Any = find_tied_parameters(UpperCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase__ : str = sum(UpperCamelCase__ , [] ) UpperCAmelCase__ : int = len(UpperCamelCase__ ) > 0 # Check if it is a base model UpperCAmelCase__ : int = False if hasattr(UpperCamelCase__ , """base_model_prefix""" ): UpperCAmelCase__ : Tuple = not hasattr(UpperCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase__ : Optional[Any] = list(model.named_children() ) UpperCAmelCase__ : int = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase__ : Optional[int] = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) UpperCAmelCase__ : Any = list(set(UpperCamelCase__ ) ) + list(UpperCamelCase__ ) # remove ".weight" from the keys UpperCAmelCase__ : int = [""".weight""", """.bias"""] UpperCAmelCase__ : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase__ : List[Any] = name.replace(UpperCamelCase__ , """""" ) filtered_module_names.append(UpperCamelCase__ ) return filtered_module_names def _UpperCamelCase ( UpperCamelCase__ ): for m in model.modules(): if isinstance(UpperCamelCase__ , bnb.nn.Linearabit ): return True return False def _UpperCamelCase ( UpperCamelCase__ ): return next(parameter.parameters() ).device def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 0 , dtype=UpperCamelCase__ , value=UpperCamelCase__ ) UpperCAmelCase__ : Any = param_name UpperCAmelCase__ : Dict = model if "." in tensor_name: UpperCAmelCase__ : List[Any] = tensor_name.split(""".""" ) for split in splits[:-1]: UpperCAmelCase__ : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) UpperCAmelCase__ : List[str] = new_module UpperCAmelCase__ : Dict = splits[-1] # offload weights UpperCAmelCase__ : Any = False offload_weight(module._parameters[tensor_name] , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , UpperCamelCase__ , index=UpperCamelCase__ , ) else: offload_weight(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) offload_weight(UpperCamelCase__ , param_name.replace("""weight""" , """SCB""" ) , UpperCamelCase__ , index=UpperCamelCase__ ) set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , """meta""" , dtype=UpperCamelCase__ , value=torch.empty(*param.size() ) )
283
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCAmelCase (A__ ): """simple docstring""" _UpperCAmelCase :Any = '''realm''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=128 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=8 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=256 , _UpperCAmelCase=10 , _UpperCAmelCase=1e-3 , _UpperCAmelCase=5 , _UpperCAmelCase=320 , _UpperCAmelCase=13353718 , _UpperCAmelCase=5000 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) # Common config lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = max_position_embeddings lowercase__: Tuple = hidden_size lowercase__: Dict = retriever_proj_size lowercase__: Dict = num_hidden_layers lowercase__: str = num_attention_heads lowercase__: Dict = num_candidates lowercase__: List[Any] = intermediate_size lowercase__: Optional[int] = hidden_act lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Tuple = type_vocab_size lowercase__: List[str] = layer_norm_eps # Reader config lowercase__: int = span_hidden_size lowercase__: Any = max_span_width lowercase__: int = reader_layer_norm_eps lowercase__: Union[str, Any] = reader_beam_size lowercase__: Any = reader_seq_len # Retrieval config lowercase__: int = num_block_records lowercase__: List[str] = searcher_beam_size
177
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase="shi-labs/oneformer_demo" ) -> Tuple: with open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: UpperCamelCase__ : Optional[Any] = json.load(__lowerCAmelCase ) UpperCamelCase__ : str = {} UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [] for key, info in class_info.items(): UpperCamelCase__ : List[str] = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(__lowerCAmelCase ) ) UpperCamelCase__ : Dict = thing_ids UpperCamelCase__ : Optional[int] = class_names return metadata class __a ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=7 , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Tuple=30 , SCREAMING_SNAKE_CASE : Dict=4_00 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : List[str]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Optional[Any]=10 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : int=2_55 , SCREAMING_SNAKE_CASE : str="shi-labs/oneformer_demo" , SCREAMING_SNAKE_CASE : List[Any]="ade20k_panoptic.json" , SCREAMING_SNAKE_CASE : Tuple=10 , ): '''simple docstring''' UpperCamelCase__ : Tuple = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : Optional[int] = min_resolution UpperCamelCase__ : Union[str, Any] = max_resolution UpperCamelCase__ : Optional[int] = do_resize UpperCamelCase__ : List[Any] = {"shortest_edge": 32, "longest_edge": 13_33} if size is None else size UpperCamelCase__ : Dict = do_normalize UpperCamelCase__ : Optional[int] = image_mean UpperCamelCase__ : Union[str, Any] = image_std UpperCamelCase__ : Union[str, Any] = class_info_file UpperCamelCase__ : Tuple = prepare_metadata(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = num_text UpperCamelCase__ : int = repo_path # for the post_process_functions UpperCamelCase__ : int = 2 UpperCamelCase__ : str = 10 UpperCamelCase__ : Any = 10 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : List[Any] = 4 UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : Tuple = do_reduce_labels UpperCamelCase__ : List[str] = ignore_index def __lowercase ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' if not batched: UpperCamelCase__ : str = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = image.size else: UpperCamelCase__ , UpperCamelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ : Any = int(self.size["shortest_edge"] * h / w ) UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] elif w > h: UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] UpperCamelCase__ : int = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase__ : Optional[Any] = self.size["shortest_edge"] UpperCamelCase__ : str = self.size["shortest_edge"] else: UpperCamelCase__ : Tuple = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ : List[str] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase__ : int = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def __lowercase ( self : Any ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : Tuple = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCAmelCase : List[str] = image_processing_class def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "ignore_index" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "class_info_file" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_text" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "repo_path" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "metadata" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_reduce_labels" ) ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase__ : Optional[int] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Dict = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase__ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase__ : List[Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Tuple = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Any="np" ): '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase__ : Any = self.image_processing_tester.num_labels UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) if with_segmentation_maps: UpperCamelCase__ : Tuple = num_labels if is_instance_map: UpperCamelCase__ : List[str] = list(range(SCREAMING_SNAKE_CASE ) ) * 2 UpperCamelCase__ : Optional[Any] = dict(enumerate(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase__ : List[str] = [Image.fromarray(SCREAMING_SNAKE_CASE ) for annotation in annotations] UpperCamelCase__ : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , return_tensors="pt" , instance_id_to_semantic_id=SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE , ) return inputs def __lowercase ( self : int ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' def common(SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : str=None ): UpperCamelCase__ : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=SCREAMING_SNAKE_CASE , is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = inputs["mask_labels"] UpperCamelCase__ : Optional[Any] = inputs["class_labels"] UpperCamelCase__ : List[str] = inputs["pixel_values"] UpperCamelCase__ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=SCREAMING_SNAKE_CASE ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = np.zeros((20, 50) ) UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : int = binary_mask_to_rle(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : int = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase__ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase__ : Optional[Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE , target_sizes=SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Optional[int] = image_processor.post_process_instance_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Tuple = image_processor.post_process_panoptic_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
189
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __UpperCamelCase = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> str: SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __A ( cls ) -> int: try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def __A ( self ) -> str: SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE = FlaxBertModel(lowerCAmelCase__ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase__ , repo_id='test-model-flax' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=F'{key} not identical' ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE = FlaxBertModel(lowerCAmelCase__ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase__ , repo_id='valid_org/test-model-flax-org' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=F'{key} not identical' ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE = False return models_are_equal @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) SCREAMING_SNAKE_CASE = FlaxBertModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) with self.assertRaises(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertTrue(check_models_equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) SCREAMING_SNAKE_CASE = FlaxBertModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , max_shard_size='10KB' ) with self.assertRaises(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertTrue(check_models_equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = 'bert' SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = 'bert' SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ )
38
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'r' ) as f: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'MLukeTokenizer' with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE = state_dict[bias_name] SCREAMING_SNAKE_CASE = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE = F'encoder.layer.{layer_index}.attention.self.' SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE = state_dict[key] else: SCREAMING_SNAKE_CASE = state_dict[key] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task='entity_classification' ) SCREAMING_SNAKE_CASE = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE = (0, 9) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE = (24, 30) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] SCREAMING_SNAKE_CASE = {} for entry in data: SCREAMING_SNAKE_CASE = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE = entity_id break SCREAMING_SNAKE_CASE = F'{language}:{entity_name}' SCREAMING_SNAKE_CASE = entity_id return new_mapping if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
38
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case_ = 16 snake_case_ = 32 def lowerCamelCase__ ( snake_case_ : Any ) -> Dict: return int(x / 2**20 ) class SCREAMING_SNAKE_CASE__ : def __enter__(self : Any ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __snake_case = torch.cuda.memory_allocated() return self def __exit__(self : List[str] , *a__ : str ): """simple docstring""" gc.collect() torch.cuda.empty_cache() __snake_case = torch.cuda.memory_allocated() __snake_case = torch.cuda.max_memory_allocated() __snake_case = bamb(self.end - self.begin ) __snake_case = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCamelCase__ ( snake_case_ : int , snake_case_ : Dict = 16 , snake_case_ : List[Any] = "bert-base-cased" , snake_case_ : Any = 320 , snake_case_ : int = 160 , ) -> Tuple: __snake_case = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) __snake_case = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f"""train[:{n_train}]""", '''validation''': f"""validation[:{n_val}]"""} ) def tokenize_function(snake_case_ : int ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=SCREAMING_SNAKE_CASE__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) __snake_case = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] ) -> Dict: # Initialize accelerator __snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config['''lr'''] __snake_case = int(config['''num_epochs'''] ) __snake_case = int(config['''seed'''] ) __snake_case = int(config['''batch_size'''] ) __snake_case = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE__ ) __snake_case , __snake_case = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) # Instantiate optimizer __snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __snake_case = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) if accelerator.state.deepspeed_plugin is not None: __snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __snake_case = 1 __snake_case = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __snake_case = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE__ , ) else: __snake_case = DummyScheduler(SCREAMING_SNAKE_CASE__ , total_num_steps=SCREAMING_SNAKE_CASE__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over __snake_case = 0 # We also need to keep track of the stating epoch so files are named properly __snake_case = 0 # Now we train the model __snake_case = {} for epoch in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): __snake_case = model(**SCREAMING_SNAKE_CASE__ ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __snake_case = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCamelCase__ ( ) -> Optional[Any]: __snake_case = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=SCREAMING_SNAKE_CASE__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=SCREAMING_SNAKE_CASE__ , ) parser.add_argument( '''--output_dir''' , type=SCREAMING_SNAKE_CASE__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=SCREAMING_SNAKE_CASE__ , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=SCREAMING_SNAKE_CASE__ , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='''Number of train epochs.''' , ) __snake_case = parser.parse_args() __snake_case = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
24
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
"""simple docstring""" import qiskit def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int ) ->qiskit.result.counts.Counts: '''simple docstring''' a : Optional[int] = qiskit.Aer.get_backend("aer_simulator" ) a : Dict = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator a : int = qiskit.execute(_lowercase , _lowercase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_lowercase ) if __name__ == "__main__": a : List[Any] = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
355
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : list[list[int]] ) ->int: '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowercase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowercase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
79
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase : def UpperCAmelCase_ ( self :List[Any] , lowercase_ :List[Any] , lowercase_ :Tuple , lowercase_ :Any )-> str: return None class UpperCAmelCase : def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :Tuple , lowercase_ :Any , lowercase_ :Union[str, Any] , lowercase_ :Dict )-> Union[str, Any]: return None class UpperCAmelCase ( unittest.TestCase ): __lowercase = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase_ ( self :int )-> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowercase_ , "tf" , 12 , **lowercase_ ) @require_torch @slow def UpperCAmelCase_ ( self :Optional[int] )-> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowercase_ , "pt" , 12 , **lowercase_ ) @require_torch @slow def UpperCAmelCase_ ( self :str )-> List[str]: from transformers import BertModel A__ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowercase_ ) ) vocab_file.flush() A__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: A__ = BertModel(BertConfig(vocab_size=len(lowercase_ ) ) ) model.save_pretrained(lowercase_ ) self._test_export(lowercase_ , "pt" , 12 , lowercase_ ) @require_tf @slow def UpperCAmelCase_ ( self :Dict )-> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ = self._test_export(lowercase_ , "tf" , 12 , **lowercase_ ) A__ = quantize(Path(lowercase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowercase_ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def UpperCAmelCase_ ( self :Union[str, Any] )-> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ = self._test_export(lowercase_ , "pt" , 12 , **lowercase_ ) A__ = quantize(lowercase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowercase_ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def UpperCAmelCase_ ( self :int , lowercase_ :List[str] , lowercase_ :Dict , lowercase_ :Optional[int] , lowercase_ :int=None , **lowercase_ :str )-> Optional[int]: try: # Compute path with TemporaryDirectory() as tempdir: A__ = Path(lowercase_ ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) return path except Exception as e: self.fail(lowercase_ ) @require_torch @require_tokenizers @slow def UpperCAmelCase_ ( self :Optional[Any] )-> Any: from transformers import BertModel A__ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) A__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowercase_ , lowercase_ , "pt" ) @require_tf @require_tokenizers @slow def UpperCAmelCase_ ( self :List[Any] )-> Optional[Any]: from transformers import TFBertModel A__ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) A__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowercase_ , lowercase_ , "tf" ) def UpperCAmelCase_ ( self :Any , lowercase_ :List[str] , lowercase_ :Optional[int] , lowercase_ :str )-> Tuple: A__ = FeatureExtractionPipeline(lowercase_ , lowercase_ ) A__ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] A__, A__, A__, A__ = infer_shapes(lowercase_ , lowercase_ ) # Assert all variables are present self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowercase_ ) self.assertSequenceEqual(variable_names[3:] , lowercase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def UpperCAmelCase_ ( self :Union[str, Any] )-> Any: A__ = ["input_ids", "attention_mask", "token_type_ids"] A__ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} A__, A__ = ensure_valid_input(FuncContiguousArgs() , lowercase_ , lowercase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowercase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowercase_ ) , set(lowercase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowercase_ , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) A__, A__ = ensure_valid_input(FuncNonContiguousArgs() , lowercase_ , lowercase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowercase_ ) , 1 ) self.assertEqual(len(lowercase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def UpperCAmelCase_ ( self :List[Any] )-> List[Any]: A__ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
237
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """char""" __lowercase = """bpe""" __lowercase = """wp""" __lowerCAmelCase : Union[str, Any] =(DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = ["""image_processor""", """char_tokenizer"""] __lowercase = """ViTImageProcessor""" __lowercase = """MgpstrTokenizer""" def __init__( self :int , lowercase_ :int=None , lowercase_ :List[str]=None , **lowercase_ :List[Any] )-> Optional[Any]: A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) A__ = tokenizer A__ = AutoTokenizer.from_pretrained("gpt2" ) A__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :Optional[Any] , lowercase_ :Any=None , lowercase_ :Tuple=None , lowercase_ :List[str]=None , **lowercase_ :Union[str, Any] )-> Optional[Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: A__ = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None: A__ = self.char_tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is None: return inputs elif images is None: return encodings else: A__ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self :List[str] , lowercase_ :int )-> int: A__, A__, A__ = sequences A__ = char_preds.size(0 ) A__, A__ = self._decode_helper(lowercase_ , "char" ) A__, A__ = self._decode_helper(lowercase_ , "bpe" ) A__, A__ = self._decode_helper(lowercase_ , "wp" ) A__ = [] A__ = [] for i in range(lowercase_ ): A__ = [char_scores[i], bpe_scores[i], wp_scores[i]] A__ = [char_strs[i], bpe_strs[i], wp_strs[i]] A__ = scores.index(max(lowercase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) A__ = {} A__ = final_strs A__ = final_scores A__ = char_strs A__ = bpe_strs A__ = wp_strs return out def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[str] , lowercase_ :str )-> Optional[Any]: if format == DecodeType.CHARACTER: A__ = self.char_decode A__ = 1 A__ = "[s]" elif format == DecodeType.BPE: A__ = self.bpe_decode A__ = 2 A__ = "#" elif format == DecodeType.WORDPIECE: A__ = self.wp_decode A__ = 1_02 A__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) A__, A__ = [], [] A__ = pred_logits.size(0 ) A__ = pred_logits.size(1 ) A__, A__ = pred_logits.topk(1 , dim=-1 , largest=lowercase_ , sorted=lowercase_ ) A__ = preds_index.view(-1 , lowercase_ )[:, 1:] A__ = decoder(lowercase_ ) A__, A__ = torch.nn.functional.softmax(lowercase_ , dim=2 ).max(dim=2 ) A__ = preds_max_prob[:, 1:] for index in range(lowercase_ ): A__ = preds_str[index].find(lowercase_ ) A__ = preds_str[index][:pred_eos] A__ = preds_index[index].cpu().tolist() A__ = pred_index.index(lowercase_ ) if eos_token in pred_index else -1 A__ = preds_max_prob[index][: pred_eos_index + 1] A__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowercase_ ) conf_scores.append(lowercase_ ) return dec_strs, conf_scores def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] )-> int: A__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowercase_ )] return decode_strs def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[Any] )-> List[str]: return self.bpe_tokenizer.batch_decode(lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :List[str] )-> Union[str, Any]: A__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowercase_ )] return decode_strs
237
1
from collections import Counter from timeit import timeit def a_ ( __lowercase : str = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def a_ ( __lowercase : str = "" ) -> bool: if len(__lowercase ) == 0: return True _snake_case = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _snake_case = {} for character in lower_case_input_str: _snake_case = character_freq_dict.get(__lowercase , 0 ) + 1 _snake_case = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def a_ ( __lowercase : str = "" ) -> None: print('\nFor string = ' , __lowercase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(__lowercase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(__lowercase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": _lowerCamelCase : List[str] = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) _lowerCamelCase : Optional[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
130
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a_ ( __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : str , __lowercase : Optional[int] , __lowercase : str ) -> Union[str, Any]: # Load configuration defined in the metadata file with open(__lowercase ) as metadata_file: _snake_case = json.load(__lowercase ) _snake_case = LukeConfig(use_entity_aware_attention=__lowercase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _snake_case = torch.load(__lowercase , map_location='cpu' )['module'] # Load the entity vocab file _snake_case = load_original_entity_vocab(__lowercase ) # add an entry for [MASK2] _snake_case = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _snake_case = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _snake_case = AddedToken('<ent>' , lstrip=__lowercase , rstrip=__lowercase ) _snake_case = AddedToken('<ent2>' , lstrip=__lowercase , rstrip=__lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , 'tokenizer_config.json' ) , 'r' ) as f: _snake_case = json.load(__lowercase ) _snake_case = 'MLukeTokenizer' with open(os.path.join(__lowercase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(__lowercase , __lowercase ) _snake_case = MLukeTokenizer.from_pretrained(__lowercase ) # Initialize the embeddings of the special tokens _snake_case = tokenizer.convert_tokens_to_ids(['@'] )[0] _snake_case = tokenizer.convert_tokens_to_ids(['#'] )[0] _snake_case = state_dict['embeddings.word_embeddings.weight'] _snake_case = word_emb[ent_init_index].unsqueeze(0 ) _snake_case = word_emb[enta_init_index].unsqueeze(0 ) _snake_case = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _snake_case = state_dict[bias_name] _snake_case = decoder_bias[ent_init_index].unsqueeze(0 ) _snake_case = decoder_bias[enta_init_index].unsqueeze(0 ) _snake_case = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _snake_case = f'''encoder.layer.{layer_index}.attention.self.''' _snake_case = state_dict[prefix + matrix_name] _snake_case = state_dict[prefix + matrix_name] _snake_case = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _snake_case = state_dict['entity_embeddings.entity_embeddings.weight'] _snake_case = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) _snake_case = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _snake_case = state_dict['entity_predictions.bias'] _snake_case = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) _snake_case = torch.cat([entity_prediction_bias, entity_mask_bias] ) _snake_case = LukeForMaskedLM(config=__lowercase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) _snake_case = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): _snake_case = state_dict[key] else: _snake_case = state_dict[key] _snake_case , _snake_case = model.load_state_dict(__lowercase , strict=__lowercase ) if set(__lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(__lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _snake_case = MLukeTokenizer.from_pretrained(__lowercase , task='entity_classification' ) _snake_case = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' _snake_case = (0, 9) _snake_case = tokenizer(__lowercase , entity_spans=[span] , return_tensors='pt' ) _snake_case = model(**__lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _snake_case = torch.Size((1, 33, 768) ) _snake_case = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _snake_case = torch.Size((1, 1, 768) ) _snake_case = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _snake_case = MLukeTokenizer.from_pretrained(__lowercase ) _snake_case = 'Tokyo is the capital of <mask>.' _snake_case = (24, 30) _snake_case = tokenizer(__lowercase , entity_spans=[span] , return_tensors='pt' ) _snake_case = model(**__lowercase ) _snake_case = encoding['input_ids'][0].tolist() _snake_case = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) _snake_case = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__lowercase ) _snake_case = outputs.entity_logits[0][0].argmax().item() _snake_case = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(__lowercase ) ) model.save_pretrained(__lowercase ) def a_ ( __lowercase : int ) -> int: _snake_case = ['[MASK]', '[PAD]', '[UNK]'] _snake_case = [json.loads(__lowercase ) for line in open(__lowercase )] _snake_case = {} for entry in data: _snake_case = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _snake_case = entity_id break _snake_case = f'''{language}:{entity_name}''' _snake_case = entity_id return new_mapping if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _lowerCamelCase : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
130
1
from math import factorial A__ : Optional[int] = {str(d): factorial(d) for d in range(10)} def a ( lowerCamelCase_ ): '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(SCREAMING_SNAKE_CASE_ ) ) def a ( ): '''simple docstring''' lowercase__ = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , SCREAMING_SNAKE_CASE_ ) if sum_of_digit_factorial(SCREAMING_SNAKE_CASE_ ) == i ) if __name__ == "__main__": print(F"{solution() = }")
207
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' lowerCamelCase : Tuple = "backbone." if is_semantic else "" lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", "beit.embeddings.cls_token"), (f"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"), (f"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"), (f"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): lowerCamelCase : Optional[Any] = "backbone." if is_semantic else "" # queries, keys and values lowerCamelCase : Optional[Any] = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) lowerCamelCase : Optional[Any] = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) lowerCamelCase : Tuple = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase : Any = q_bias lowerCamelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase : Any = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) lowerCamelCase : Any = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) lowerCamelCase : int = gamma_a lowerCamelCase : Optional[Any] = gamma_a def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = dct.pop(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = val def lowercase_( ): '''simple docstring''' lowerCamelCase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' lowerCamelCase : List[Any] = False if "rvlcdip" in checkpoint_url else True lowerCamelCase : str = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE_ , use_mask_token=SCREAMING_SNAKE_CASE_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase : Union[str, Any] = 1024 lowerCamelCase : Any = 4096 lowerCamelCase : str = 24 lowerCamelCase : List[Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase : Optional[Any] = 16 lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : List[str] = "rvlcdip-id2label.json" lowerCamelCase : str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) lowerCamelCase : Any = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowerCamelCase : Tuple = idalabel lowerCamelCase : Dict = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase : int = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model"] lowerCamelCase : Tuple = create_rename_keys(SCREAMING_SNAKE_CASE_ , has_lm_head=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , has_lm_head=SCREAMING_SNAKE_CASE_ ) # load HuggingFace model lowerCamelCase : List[Any] = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image lowerCamelCase : str = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = prepare_img() lowerCamelCase : Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) lowerCamelCase : Optional[Any] = encoding["pixel_values"] lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = outputs.logits # verify logits lowerCamelCase : List[Any] = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE_ ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: if has_lm_head: lowerCamelCase : Optional[Any] = "dit-base" if "base" in checkpoint_url else "dit-large" else: lowerCamelCase : Dict = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) _snake_case = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
283
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = """markuplm""" def __init__( self : Any , __lowerCamelCase : Tuple=3_0522 , __lowerCamelCase : List[Any]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : str=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : int="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Dict=0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Tuple=256 , __lowerCamelCase : Union[str, Any]=1024 , __lowerCamelCase : int=216 , __lowerCamelCase : Union[str, Any]=1001 , __lowerCamelCase : str=32 , __lowerCamelCase : List[Any]=50 , __lowerCamelCase : Dict="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : Optional[int] , ) -> int: super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout # additional properties SCREAMING_SNAKE_CASE__ = max_depth SCREAMING_SNAKE_CASE__ = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE__ = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE__ = tag_pad_id SCREAMING_SNAKE_CASE__ = subs_pad_id SCREAMING_SNAKE_CASE__ = xpath_unit_hidden_size
366
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "transfo-xl" a = ["mems"] a = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , __lowerCamelCase : int=26_7735 , __lowerCamelCase : Any=[2_0000, 4_0000, 20_0000] , __lowerCamelCase : Dict=1024 , __lowerCamelCase : Optional[int]=1024 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Union[str, Any]=64 , __lowerCamelCase : Dict=4096 , __lowerCamelCase : int=4 , __lowerCamelCase : Dict=False , __lowerCamelCase : Tuple=18 , __lowerCamelCase : Optional[int]=1600 , __lowerCamelCase : str=1000 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : int=-1 , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : int=True , __lowerCamelCase : str="normal" , __lowerCamelCase : List[str]=0.01 , __lowerCamelCase : Any=0.01 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : List[str]=1e-5 , __lowerCamelCase : Union[str, Any]=0 , **__lowerCamelCase : int , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = [] self.cutoffs.extend(__lowerCamelCase ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE__ = [False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE__ = [False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = d_embed SCREAMING_SNAKE_CASE__ = d_head SCREAMING_SNAKE_CASE__ = d_inner SCREAMING_SNAKE_CASE__ = div_val SCREAMING_SNAKE_CASE__ = pre_lnorm SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = mem_len SCREAMING_SNAKE_CASE__ = same_length SCREAMING_SNAKE_CASE__ = attn_type SCREAMING_SNAKE_CASE__ = clamp_len SCREAMING_SNAKE_CASE__ = sample_softmax SCREAMING_SNAKE_CASE__ = adaptive SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = dropatt SCREAMING_SNAKE_CASE__ = untie_r SCREAMING_SNAKE_CASE__ = init SCREAMING_SNAKE_CASE__ = init_range SCREAMING_SNAKE_CASE__ = proj_init_std SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = layer_norm_epsilon super().__init__(eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @property def lowercase_ ( self : str ) -> Dict: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowercase_ ( self : List[str] , __lowerCamelCase : Any ) -> List[Any]: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
218
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCamelCase :Optional[int] = torch.load(__magic_name__ , map_location="""cpu""" ) if "model" in sd.keys(): UpperCamelCase :Any = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCamelCase :str = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(__magic_name__ ) UpperCamelCase :Dict = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCamelCase :Optional[Any] = sd.pop(__magic_name__ ) UpperCamelCase :Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCamelCase :List[str] = sd[key] # We split QKV in separate Q,K,V UpperCamelCase :List[str] = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCamelCase :Optional[int] = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCamelCase :Any = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCamelCase :str = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = torch.split(__magic_name__ , depth // 3 , dim=0 ) UpperCamelCase :List[Any] = q UpperCamelCase :Tuple = k UpperCamelCase :Optional[Any] = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" UpperCamelCase :Optional[Any] = load_checkpoint(__magic_name__ ) if config is not None: UpperCamelCase :Optional[Any] = OPTConfig.from_pretrained(__magic_name__ ) else: UpperCamelCase :List[Any] = OPTConfig() UpperCamelCase :Union[str, Any] = OPTModel(__magic_name__ ).half().eval() model.load_state_dict(__magic_name__ ) # Check results Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') UpperCAmelCase_ : Dict = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
38
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCAmelCase_ : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Optional[int] , **__lowerCamelCase : Optional[int] ): requires_backends(self , ["""bs4"""] ) super().__init__(**__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : Any ): UpperCamelCase :Optional[int] = [] UpperCamelCase :List[str] = [] UpperCamelCase :Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase :Optional[Any] = parent.find_all(child.name , recursive=__lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__lowerCamelCase ) else next(i for i, s in enumerate(__lowerCamelCase , 1 ) if s is child ) ) UpperCamelCase :Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _A ( self : Any , __lowerCamelCase : Tuple ): UpperCamelCase :Any = BeautifulSoup(__lowerCamelCase , """html.parser""" ) UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Tuple = [] UpperCamelCase :Tuple = [] for element in html_code.descendants: if type(__lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase :Any = html.unescape(__lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[Any] = self.xpath_soup(__lowerCamelCase ) stringaxtag_seq.append(__lowerCamelCase ) stringaxsubs_seq.append(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _A ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Tuple = """""" for tagname, subs in zip(__lowerCamelCase , __lowerCamelCase ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : Any , __lowerCamelCase : Dict ): UpperCamelCase :Any = False # Check that strings has a valid type if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = True elif isinstance(__lowerCamelCase , (list, tuple) ): if len(__lowerCamelCase ) == 0 or isinstance(html_strings[0] , __lowerCamelCase ): UpperCamelCase :Any = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"""but is of type {type(__lowerCamelCase )}.""" ) UpperCamelCase :str = bool(isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __lowerCamelCase )) ) if not is_batched: UpperCamelCase :Any = [html_strings] # Get nodes + xpaths UpperCamelCase :Union[str, Any] = [] UpperCamelCase :str = [] for html_string in html_strings: UpperCamelCase , UpperCamelCase , UpperCamelCase :int = self.get_three_from_single(__lowerCamelCase ) nodes.append(__lowerCamelCase ) UpperCamelCase :int = [] for node, tag_list, sub_list in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = self.construct_xpath(__lowerCamelCase , __lowerCamelCase ) xpath_strings.append(__lowerCamelCase ) xpaths.append(__lowerCamelCase ) # return as Dict UpperCamelCase :Optional[int] = {"""nodes""": nodes, """xpaths""": xpaths} UpperCamelCase :Any = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
38
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCAmelCase__ ( ): print("Making key files..." ) make_key_files("rsa" , 10_24 ) print("Key files generation successful." ) def lowerCAmelCase__ ( _a : int ): print("Generating prime p..." ) snake_case_ : Union[str, Any] = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ ) print("Generating prime q..." ) snake_case_ : str = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ ) snake_case_ : int = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: snake_case_ : List[Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) snake_case_ : str = cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) ) snake_case_ : Union[str, Any] = (n, e) snake_case_ : Optional[Any] = (n, d) return (public_key, private_key) def lowerCAmelCase__ ( _a : str , _a : int ): if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("\nWARNING:" ) print( F'''\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n''' "Use a different name or delete these files and re-run this program." ) sys.exit() snake_case_ , snake_case_ : Any = generate_key(SCREAMING_SNAKE_CASE_ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , "w" ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , "w" ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
363
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : Dict = logging.get_logger(__name__) lowercase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase : Optional[int] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } lowercase : Dict = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = ['input_ids', 'attention_mask'] A : Dict = GPTaTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Dict: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : Tuple = kwargs.pop("add_bos_token" , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _SCREAMING_SNAKE_CASE ) != add_prefix_space: snake_case_ : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) snake_case_ : int = add_prefix_space snake_case_ : str = pre_tok_class(**_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = add_prefix_space def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: snake_case_ : Dict = kwargs.get("is_split_into_words" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: snake_case_ : Dict = kwargs.get("is_split_into_words" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: snake_case_ : str = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[int]: snake_case_ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(_SCREAMING_SNAKE_CASE ) > self.model_max_length: snake_case_ : Dict = input_ids[-self.model_max_length :] return input_ids
36
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def UpperCAmelCase ( UpperCAmelCase ) -> Callable: @wraps(UpperCAmelCase ) def _inner_fn(*UpperCAmelCase , **UpperCAmelCase ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , UpperCAmelCase , ) return fn(*UpperCAmelCase , **UpperCAmelCase ) return _inner_fn
69
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') lowerCamelCase_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" snake_case = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) snake_case = field( default=snake_case_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) snake_case = field( default=snake_case_ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) snake_case = field(default=snake_case_ , metadata={'''help''': '''A folder containing the training data.'''} ) snake_case = field(default=snake_case_ , metadata={'''help''': '''A folder containing the validation data.'''} ) snake_case = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) snake_case = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) snake_case = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class _UpperCAmelCase : """simple docstring""" snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) snake_case = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) snake_case = field(default=snake_case_ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : Optional[int]=192 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : int=4 , __UpperCAmelCase : int=0.6 ): '''simple docstring''' _A = input_size _A = mask_patch_size _A = model_patch_size _A = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) _A = self.input_size // self.mask_patch_size _A = self.mask_patch_size // self.model_patch_size _A = self.rand_size**2 _A = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Any ): '''simple docstring''' _A = np.random.permutation(self.token_count )[: self.mask_count] _A = np.zeros(self.token_count , dtype=__UpperCAmelCase ) _A = 1 _A = mask.reshape((self.rand_size, self.rand_size) ) _A = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __lowercase ( __lowercase ) -> str: '''simple docstring''' _A = torch.stack([example["pixel_values"] for example in examples] ) _A = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __lowercase ( ) -> Dict: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0: _A = ds["train"].train_test_split(data_args.train_val_split ) _A = split["train"] _A = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _A = AutoConfig.from_pretrained(model_args.config_name_or_path , **__lowercase ) elif model_args.model_name_or_path: _A = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: _A = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__lowercase , "decoder_type" ): _A = "simmim" # adapt config _A = model_args.image_size if model_args.image_size is not None else config.image_size _A = model_args.patch_size if model_args.patch_size is not None else config.patch_size _A = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _A = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__lowercase ) elif model_args.model_name_or_path: _A = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: _A = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _A = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _A = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) _A = AutoModelForMaskedImageModeling.from_config(__lowercase ) if training_args.do_train: _A = ds["train"].column_names else: _A = ds["validation"].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = "image" elif "img" in column_names: _A = "img" else: _A = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _A = Compose( [ Lambda(lambda __lowercase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _A = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__lowercase ): _A = [transforms(__lowercase ) for image in examples[image_column_name]] _A = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _A = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _A = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowercase ) # Initialize our trainer _A = Trainer( model=__lowercase , args=__lowercase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics("eval" , __lowercase ) trainer.save_metrics("eval" , __lowercase ) # Write model card and (optionally) push to hub _A = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
79
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """hidden_sizes""")) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """num_attention_heads""")) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Optional[int]=6_4 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[Any]=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase_ : Union[str, Any]=[4, 6, 8] , lowerCAmelCase_ : Union[str, Any]=[2, 3, 4] , lowerCAmelCase_ : Union[str, Any]=[1_6, 1_6, 1_6] , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : List[str]=[2, 2, 2] , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=2 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = kernel_size lowercase_ = stride lowercase_ = padding lowercase_ = hidden_sizes lowercase_ = num_attention_heads lowercase_ = depths lowercase_ = key_dim lowercase_ = drop_path_rate lowercase_ = patch_size lowercase_ = attention_ratio lowercase_ = mlp_ratio lowercase_ = initializer_range lowercase_ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase_ = is_training lowercase_ = use_labels lowercase_ = num_labels lowercase_ = initializer_range def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.num_labels) lowercase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = LevitModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) lowercase_ = (self.image_size, self.image_size) lowercase_ , lowercase_ = image_size[0], image_size[1] for _ in range(4): lowercase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) lowercase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = LevitForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = LevitModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Tuple): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self : int): """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""") def _UpperCAmelCase ( self : List[str]): """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" pass def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple): lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)) lowercase_ = outputs.hidden_states lowercase_ = len(self.model_tester.depths) + 1 self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_) lowercase_ = (self.model_tester.image_size, self.model_tester.image_size) lowercase_ , lowercase_ = image_size[0], image_size[1] for _ in range(4): lowercase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) lowercase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" pass def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase_) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase_ = model_class(lowerCAmelCase_) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase_), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}'''): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1).repeat(1 , problem_type["""num_labels"""]) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase_) as warning_list: lowercase_ = model(**lowerCAmelCase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''') loss.backward() @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = LevitModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowerCAmelCase_) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) # verify the logits lowercase_ = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor([1.0_448, -0.3_745, -1.8_317]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ : Any = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(SCREAMING_SNAKE_CASE ) ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ : Optional[Any] = [sequences] lowercase__ : Any = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(SCREAMING_SNAKE_CASE )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_UpperCamelCase ) class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : Dict=ZeroShotClassificationArgumentHandler() , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : int = args_parser super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def snake_case ( self : List[str] ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def snake_case ( self : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Union[str, Any]=TruncationStrategy.ONLY_FIRST , **SCREAMING_SNAKE_CASE : Any ): lowercase__ : List[str] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) lowercase__ : str = self.tokenizer.eos_token try: lowercase__ : str = self.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , ) except Exception as e: if "too short" in str(SCREAMING_SNAKE_CASE ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowercase__ : Union[str, Any] = self.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def snake_case ( self : List[Any] , **SCREAMING_SNAKE_CASE : Tuple ): if kwargs.get("multi_class" , SCREAMING_SNAKE_CASE ) is not None: lowercase__ : Dict = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) lowercase__ : Tuple = {} if "candidate_labels" in kwargs: lowercase__ : Optional[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: lowercase__ : List[Any] = kwargs["hypothesis_template"] lowercase__ : Dict = {} if "multi_label" in kwargs: lowercase__ : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : Any , SCREAMING_SNAKE_CASE : Union[str, List[str]] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): if len(SCREAMING_SNAKE_CASE ) == 0: pass elif len(SCREAMING_SNAKE_CASE ) == 1 and "candidate_labels" not in kwargs: lowercase__ : Optional[Any] = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Dict="This example is {}." ): lowercase__ , lowercase__ : List[str] = self._args_parser(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i, (candidate_label, sequence_pair) in enumerate(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): lowercase__ : List[str] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(SCREAMING_SNAKE_CASE ) - 1, **model_input, } def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ): lowercase__ : Tuple = inputs["candidate_label"] lowercase__ : Optional[Any] = inputs["sequence"] lowercase__ : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} lowercase__ : List[str] = self.model(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str]=False ): lowercase__ : Tuple = [outputs["candidate_label"] for outputs in model_outputs] lowercase__ : Union[str, Any] = [outputs["sequence"] for outputs in model_outputs] lowercase__ : List[str] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) lowercase__ : Any = logits.shape[0] lowercase__ : str = len(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = N // n lowercase__ : Optional[int] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(SCREAMING_SNAKE_CASE ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowercase__ : Optional[int] = self.entailment_id lowercase__ : Union[str, Any] = -1 if entailment_id == 0 else 0 lowercase__ : List[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] lowercase__ : Optional[int] = np.exp(SCREAMING_SNAKE_CASE ) / np.exp(SCREAMING_SNAKE_CASE ).sum(-1 , keepdims=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowercase__ : Any = reshaped_outputs[..., self.entailment_id] lowercase__ : List[Any] = np.exp(SCREAMING_SNAKE_CASE ) / np.exp(SCREAMING_SNAKE_CASE ).sum(-1 , keepdims=SCREAMING_SNAKE_CASE ) lowercase__ : Any = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
130
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : List[str] ): lowercase__ : int = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) lowercase__ : Dict = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids lowercase__ : Any = tokenizer("Hi I am" , return_tensors="tf" ).input_ids lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).loss lowercase__ : Dict = -tf.math.reduce_mean(SCREAMING_SNAKE_CASE ).numpy() lowercase__ : Optional[Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
130
1
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): __a = MODEL_FOR_MASKED_LM_MAPPING __a = TF_MODEL_FOR_MASKED_LM_MAPPING def lowercase ( self : Optional[int] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowercase ( self : Tuple ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 38015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 25506, '''token_str''': ''' accuser'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 38015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 25506, '''token_str''': ''' accuser''', }, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowercase ( self : List[str] ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13606, '''token_str''': ''' Clara'''}, ] , ) _snake_case = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def lowercase ( self : Optional[Any] ): _snake_case = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() _snake_case = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) @slow @require_torch def lowercase ( self : Dict ): _snake_case = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowerCamelCase ) @slow @require_tf def lowercase ( self : Tuple ): _snake_case = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowerCamelCase ) def lowercase ( self : Tuple , _lowerCamelCase : Optional[int] ): _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_0_8, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_0_7, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_5_1, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_1_4, '''token''': 12790, '''token_str''': ''' Lyon''', }, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_0_5, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_0_0, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_0_0, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowercase ( self : str ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) _snake_case = None _snake_case = None self.run_pipeline_test(_lowerCamelCase , [] ) @require_tf def lowercase ( self : Any ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) _snake_case = None _snake_case = None self.run_pipeline_test(_lowerCamelCase , [] ) def lowercase ( self : int , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def lowercase ( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ): _snake_case = fill_masker.tokenizer _snake_case = fill_masker.model _snake_case = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , ) with self.assertRaises(_lowerCamelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowerCamelCase ): fill_masker('''This is''' ) self.run_test_top_k(_lowerCamelCase , _lowerCamelCase ) self.run_test_targets(_lowerCamelCase , _lowerCamelCase ) self.run_test_top_k_targets(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_multiple_masks(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): _snake_case = tokenizer.get_vocab() _snake_case = sorted(vocab.keys() )[:2] # Pipeline argument _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , targets=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) _snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Call argument _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) _snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Score equivalence _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) _snake_case = [top_mask['''token_str'''] for top_mask in outputs] _snake_case = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ) == set(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) _snake_case = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) # Raises with invalid with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def lowercase ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Tuple ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , top_k=2 ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : List[str] ): _snake_case = tokenizer.get_vocab() _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) # top_k=2, ntargets=3 _snake_case = sorted(vocab.keys() )[:3] _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowerCamelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results _snake_case = [el['''token_str'''] for el in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x["score"] , reverse=_lowerCamelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ).issubset(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowerCamelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = tokenizer.get_vocab() # String duplicates + id duplicates _snake_case = sorted(vocab.keys() )[:3] _snake_case = [targets[0], targets[1], targets[0], targets[2], targets[1]] _snake_case = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=_lowerCamelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowerCamelCase ) , 3 ) def lowercase ( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , )
40
"""simple docstring""" from __future__ import annotations class lowerCAmelCase__ : def __init__( self : Optional[int] , _lowerCamelCase : int = 0 ): _snake_case = key def lowercase ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : int ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) _snake_case = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCamelCase ) ^ key ) for ch in content] def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : int ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) _snake_case = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCamelCase ) ^ key ) for ch in content] def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : int = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) _snake_case = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _snake_case = '''''' for ch in content: ans += chr(ord(_lowerCamelCase ) ^ key ) return ans def lowercase ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : int = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) _snake_case = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _snake_case = '''''' for ch in content: ans += chr(ord(_lowerCamelCase ) ^ key ) return ans def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : int = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) try: with open(_lowerCamelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_lowerCamelCase , _lowerCamelCase ) ) except OSError: return False return True def lowercase ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : int ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) try: with open(_lowerCamelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_lowerCamelCase , _lowerCamelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
40
1
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a_ : List[str] = """sshleifer/bart-tiny-random""" a_ : Union[str, Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return AutoConfig.from_pretrained(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,*lowerCamelCase_ = create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,*lowerCamelCase_ = create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=1 , d=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,*lowerCamelCase_ = create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=1 , d=UpperCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,*lowerCamelCase_ = create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def snake_case ( self ): """simple docstring""" with self.assertRaises(UpperCamelCase ): create_student_by_copying_alternating_layers(UpperCamelCase , tempfile.mkdtemp() , e=UpperCamelCase , d=UpperCamelCase )
55
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[Any] = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = GPTSwaTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =GPTSwaTokenizer(__snake_case , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , __snake_case ) -> Tuple: '''simple docstring''' __a ='This is a test' __a ='This is a test' return input_text, output_text def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a ='<s>' __a =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__snake_case ) , 2000 ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =GPTSwaTokenizer(__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [465, 287, 265, 631, 842] ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( __snake_case , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) # fmt: off self.assertListEqual( __snake_case , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =GPTSwaTokenizer(__snake_case ) __a =['This is a test', 'I was born in 92000, and this is falsé.'] __a =[ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__snake_case , __snake_case ): self.assertListEqual(tokenizer.encode_fast(__snake_case ) , __snake_case ) # Test that decode_fast returns the input text for text, token_ids in zip(__snake_case , __snake_case ): self.assertEqual(tokenizer.decode_fast(__snake_case ) , __snake_case ) @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =[ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off __a ={'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='AI-Sweden/gpt-sw3-126m' , sequences=__snake_case , )
218
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __magic_name__ ( __a : Optional[int] , __a : Optional[Any] , __a : Any ): '''simple docstring''' UpperCamelCase__ = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase__ = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } UpperCamelCase__ = f"{src_lang}-{tgt_lang}" UpperCamelCase__ = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) UpperCamelCase__ = os.path.join(__a , """README.md""" ) print(f"Generating {path}" ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase_ = Path(__file__).resolve().parent.parent.parent lowerCamelCase_ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = model_name.split('''-''') lowerCamelCase_ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
178
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
178
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase__ :List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Union[str, Any] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase__ :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
101
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _snake_case = get_tests_dir("fixtures") class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = mock.Mock() _lowerCAmelCase : int = 500 _lowerCAmelCase : Tuple = {} _lowerCAmelCase : str = HTTPError _lowerCAmelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request", return_value=__a) as mock_head: _lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json") def snake_case__ ( self): '''simple docstring''' with self.assertRaises(__a): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase : int = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") _lowerCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor") self.assertIsNotNone(__a) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase): @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TOKEN HfFolder.save_token(__a) @classmethod def snake_case__ ( cls): '''simple docstring''' try: delete_repo(token=cls._token, repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-image-processor") except HTTPError: pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(__a) image_processor.push_to_hub("test-image-processor", use_auth_token=self._token) _lowerCAmelCase : str = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a)) # Reset repo delete_repo(token=self._token, repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __a, repo_id="test-image-processor", push_to_hub=__a, use_auth_token=self._token) _lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ViTImageProcessor.from_pretrained(__a) image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token) _lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a)) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __a, repo_id="valid_org/test-image-processor-org", push_to_hub=__a, use_auth_token=self._token) _lowerCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a)) def snake_case__ ( self): '''simple docstring''' CustomImageProcessor.register_for_auto_class() _lowerCAmelCase : List[str] = CustomImageProcessor.from_pretrained(__a) image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"}, ) _lowerCAmelCase : Tuple = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor", trust_remote_code=__a) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")
36
0
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'file.csv' _UpperCAmelCase = textwrap.dedent( """\\n header1,header2\n 1,2\n 10,20\n """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'malformed_file.csv' _UpperCAmelCase = textwrap.dedent( """\\n header1,header2\n 1,2\n 10,20,\n """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'csv_with_image.csv' _UpperCAmelCase = textwrap.dedent( f'''\ image {image_file} ''' ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'csv_with_label.csv' _UpperCAmelCase = textwrap.dedent( """\\n label\n good\n bad\n good\n """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'csv_with_int_list.csv' _UpperCAmelCase = textwrap.dedent( """\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = Csv() _UpperCAmelCase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_UpperCAmelCase ,match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(_UpperCAmelCase ) in record.message for record in caplog.records ) @require_pil def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(_UpperCAmelCase ,encoding="""utf-8""" ) as f: _UpperCAmelCase = f.read().splitlines()[1] _UpperCAmelCase = Csv(encoding="""utf-8""" ,features=Features({"""image""": Image()} ) ) _UpperCAmelCase = csv._generate_tables([[csv_file_with_image]] ) _UpperCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() _UpperCAmelCase = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(_UpperCAmelCase ,encoding="""utf-8""" ) as f: _UpperCAmelCase = f.read().splitlines()[1:] _UpperCAmelCase = Csv(encoding="""utf-8""" ,features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) _UpperCAmelCase = csv._generate_tables([[csv_file_with_label]] ) _UpperCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() _UpperCAmelCase = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(_UpperCAmelCase ) for label in labels] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = Csv(encoding="""utf-8""" ,sep=""",""" ,converters={"""int_list""": lambda lowercase : [int(_UpperCAmelCase ) for i in x.split()]} ) _UpperCAmelCase = csv._generate_tables([[csv_file_with_int_list]] ) _UpperCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) _UpperCAmelCase = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0