code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' lowercase__ = '''Tobias Carryer''' from time import time class A_ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : str=int(time() ) ) -> List[Any]: # noqa: B008 UpperCAmelCase : Any = multiplier UpperCAmelCase : Tuple = increment UpperCAmelCase : List[str] = modulo UpperCAmelCase : Union[str, Any] = seed def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowercase__ = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
151
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : Any , __A : Dict , __A : str , __A : List[Any]=1_0_2_4 , __A : Tuple=1_0_2_4 , __A : str=3.6 ): __UpperCamelCase = tokenizer __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = dataset __UpperCamelCase = seq_length __UpperCamelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self : Any ): __UpperCamelCase = iter(self.dataset ) __UpperCamelCase = True while more_examples: __UpperCamelCase , __UpperCamelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __UpperCamelCase = False break __UpperCamelCase = tokenizer(__A , truncation=__A )['input_ids'] __UpperCamelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__A ) , self.seq_length ): __UpperCamelCase = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def lowercase__ ( __lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'streaming': True} __UpperCamelCase = load_dataset(args.dataset_name , split='train' , **__lowercase ) __UpperCamelCase = ConstantLengthDataset(__lowercase , __lowercase , seq_length=args.seq_length ) __UpperCamelCase = DataLoader(__lowercase , batch_size=args.batch_size ) return eval_dataloader def lowercase__ ( __lowercase : Tuple ) -> Optional[Any]: """simple docstring""" model.eval() __UpperCamelCase = [] for step, batch in enumerate(__lowercase ): with torch.no_grad(): __UpperCamelCase = model(__lowercase , labels=__lowercase ) __UpperCamelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__lowercase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __UpperCamelCase = torch.mean(torch.cat(__lowercase ) ) try: __UpperCamelCase = torch.exp(__lowercase ) except OverflowError: __UpperCamelCase = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator a__ : int =Accelerator() # Parse configuration a__ : Dict =HfArgumentParser(EvaluationArguments) a__ : Union[str, Any] =parser.parse_args() set_seed(args.seed) # Logging a__ : List[Any] =logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer a__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(args.model_ckpt) a__ : List[Any] =AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader a__ : Union[str, Any] =create_dataloader(args) # Prepare everything with our `accelerator`. a__ , a__ : List[str] =accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') a__ , a__ : Any =evaluate(args) logger.info(f'loss/eval: {eval_loss}, perplexity: {perplexity}')
53
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def _A ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) lowerCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Any ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": lowerCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["lr"] lowerCAmelCase__ = int(config["num_epochs"] ) lowerCAmelCase__ = int(config["seed"] ) lowerCAmelCase__ = int(config["batch_size"] ) set_seed(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCAmelCase__ = os.path.split(lowerCAmelCase_ )[-1].split("." )[0] accelerator.init_trackers(lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCAmelCase__ = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCAmelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowerCAmelCase_ ), "epoch": epoch, } , step=lowerCAmelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _A ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCAmelCase_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
221
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : List[str]=("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple=(64,) , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : List[str]="silu" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , ) -> str: super().__init__() lowerCAmelCase__ = layers_per_block lowerCAmelCase__ = torch.nn.Convad( SCREAMING_SNAKE_CASE__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase__ = None lowerCAmelCase__ = nn.ModuleList([] ) # down lowerCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] lowerCAmelCase__ = i == len(SCREAMING_SNAKE_CASE__ ) - 1 lowerCAmelCase__ = get_down_block( SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , resnet_groups=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) self.down_blocks.append(SCREAMING_SNAKE_CASE__ ) # mid lowerCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) # out lowerCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=SCREAMING_SNAKE_CASE__ , eps=1e-6 ) lowerCAmelCase__ = nn.SiLU() lowerCAmelCase__ = 2 * out_channels if double_z else out_channels lowerCAmelCase__ = nn.Convad(block_out_channels[-1] , SCREAMING_SNAKE_CASE__ , 3 , padding=1 ) lowerCAmelCase__ = False def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict ) -> int: lowerCAmelCase__ = x lowerCAmelCase__ = self.conv_in(SCREAMING_SNAKE_CASE__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE__ : Optional[int] ): def custom_forward(*SCREAMING_SNAKE_CASE__ : Dict ): return module(*SCREAMING_SNAKE_CASE__ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) else: for down_block in self.down_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ ) else: # down for down_block in self.down_blocks: lowerCAmelCase__ = down_block(SCREAMING_SNAKE_CASE__ ) # middle lowerCAmelCase__ = self.mid_block(SCREAMING_SNAKE_CASE__ ) # post-process lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_act(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_out(SCREAMING_SNAKE_CASE__ ) return sample class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : int=("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple=(64,) , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : List[str]="silu" , SCREAMING_SNAKE_CASE__ : List[str]="group" , ) -> Union[str, Any]: super().__init__() lowerCAmelCase__ = layers_per_block lowerCAmelCase__ = nn.Convad( SCREAMING_SNAKE_CASE__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCAmelCase__ = None lowerCAmelCase__ = nn.ModuleList([] ) lowerCAmelCase__ = in_channels if norm_type == "spatial" else None # mid lowerCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) # up lowerCAmelCase__ = list(reversed(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = reversed_block_out_channels[i] lowerCAmelCase__ = i == len(SCREAMING_SNAKE_CASE__ ) - 1 lowerCAmelCase__ = get_up_block( SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , resnet_groups=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , resnet_time_scale_shift=SCREAMING_SNAKE_CASE__ , ) self.up_blocks.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = output_channel # out if norm_type == "spatial": lowerCAmelCase__ = SpatialNorm(block_out_channels[0] , SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=SCREAMING_SNAKE_CASE__ , eps=1e-6 ) lowerCAmelCase__ = nn.SiLU() lowerCAmelCase__ = nn.Convad(block_out_channels[0] , SCREAMING_SNAKE_CASE__ , 3 , padding=1 ) lowerCAmelCase__ = False def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Dict: lowerCAmelCase__ = z lowerCAmelCase__ = self.conv_in(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): def custom_forward(*SCREAMING_SNAKE_CASE__ : List[str] ): return module(*SCREAMING_SNAKE_CASE__ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) else: # middle lowerCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # middle lowerCAmelCase__ = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: lowerCAmelCase__ = up_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # post-process if latent_embeds is None: lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = self.conv_norm_out(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_act(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conv_out(SCREAMING_SNAKE_CASE__ ) return sample class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]="random" , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True ) -> List[Any]: super().__init__() lowerCAmelCase__ = n_e lowerCAmelCase__ = vq_embed_dim lowerCAmelCase__ = beta lowerCAmelCase__ = legacy lowerCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) lowerCAmelCase__ = self.used.shape[0] lowerCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCAmelCase__ = self.re_embed lowerCAmelCase__ = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: lowerCAmelCase__ = n_e lowerCAmelCase__ = sane_index_shape def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = inds.shape assert len(SCREAMING_SNAKE_CASE__ ) > 1 lowerCAmelCase__ = inds.reshape(ishape[0] , -1 ) lowerCAmelCase__ = self.used.to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() lowerCAmelCase__ = match.argmax(-1 ) lowerCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCAmelCase__ = self.unknown_index return new.reshape(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: lowerCAmelCase__ = inds.shape assert len(SCREAMING_SNAKE_CASE__ ) > 1 lowerCAmelCase__ = inds.reshape(ishape[0] , -1 ) lowerCAmelCase__ = self.used.to(SCREAMING_SNAKE_CASE__ ) if self.re_embed > self.used.shape[0]: # extra token lowerCAmelCase__ = 0 # simply set to zero lowerCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , SCREAMING_SNAKE_CASE__ ) return back.reshape(SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: # reshape z -> (batch, height, width, channel) and flatten lowerCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCAmelCase__ = torch.argmin(torch.cdist(SCREAMING_SNAKE_CASE__ , self.embedding.weight ) , dim=1 ) lowerCAmelCase__ = self.embedding(SCREAMING_SNAKE_CASE__ ).view(z.shape ) lowerCAmelCase__ = None lowerCAmelCase__ = None # compute loss for embedding if not self.legacy: lowerCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape lowerCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCAmelCase__ = self.remap_to_used(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def a ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis lowerCAmelCase__ = self.unmap_to_all(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCAmelCase__ = self.embedding(SCREAMING_SNAKE_CASE__ ) if shape is not None: lowerCAmelCase__ = z_q.view(SCREAMING_SNAKE_CASE__ ) # reshape back to match original input shape lowerCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any=False ) -> Optional[int]: lowerCAmelCase__ = parameters lowerCAmelCase__ , lowerCAmelCase__ = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 , dim=1 ) lowerCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) lowerCAmelCase__ = deterministic lowerCAmelCase__ = torch.exp(0.5 * self.logvar ) lowerCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: lowerCAmelCase__ = lowerCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCAmelCase__ = randn_tensor( self.mean.shape , generator=SCREAMING_SNAKE_CASE__ , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCAmelCase__ = self.mean + self.std * sample return x def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Union[str, Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=[1, 2, 3] ) -> Tuple: if self.deterministic: return torch.Tensor([0.0] ) lowerCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Dict: return self.mean
221
1
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=UpperCamelCase_ ): _a = ['''onnx'''] def __init__( self : str , *A_ : Dict , **A_ : Union[str, Any]): requires_backends(self , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *A_ : List[str] , **A_ : Optional[Any]): requires_backends(cls , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Dict , **A_ : List[str]): requires_backends(cls , ['''onnx'''])
103
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _A = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase_ ( unittest.TestCase ): A__ : List[str] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A__ : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A__ : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = ZeroShotClassificationPipeline( model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # No kwarg UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCamelCase_ = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(1 ) ] , ) UpperCamelCase_ = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__UpperCamelCase ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier(__UpperCamelCase , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels=__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__UpperCamelCase , ) self.run_entailment_id(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = zero_shot_classifier.model.config UpperCamelCase_ = config.labelaid UpperCamelCase_ = zero_shot_classifier.entailment_id UpperCamelCase_ = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) UpperCamelCase_ = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) UpperCamelCase_ = original_labelaid self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_0_0 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
122
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase , torch.Tensor ): return image elif isinstance(lowerCAmelCase , PIL.Image.Image ): _lowerCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] _lowerCAmelCase = np.concatenate(lowerCAmelCase , axis=0 ) _lowerCAmelCase = np.array(lowerCAmelCase ).astype(np.floataa ) / 255.0 _lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase = 2.0 * image - 1.0 _lowerCAmelCase = torch.from_numpy(lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(lowerCAmelCase , dim=0 ) return image def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=0.9_995 ): """simple docstring""" if not isinstance(lowerCAmelCase , np.ndarray ): _lowerCAmelCase = True _lowerCAmelCase = va.device _lowerCAmelCase = va.cpu().numpy() _lowerCAmelCase = va.cpu().numpy() _lowerCAmelCase = np.sum(va * va / (np.linalg.norm(lowerCAmelCase ) * np.linalg.norm(lowerCAmelCase )) ) if np.abs(lowerCAmelCase ) > DOT_THRESHOLD: _lowerCAmelCase = (1 - t) * va + t * va else: _lowerCAmelCase = np.arccos(lowerCAmelCase ) _lowerCAmelCase = np.sin(lowerCAmelCase ) _lowerCAmelCase = theta_a * t _lowerCAmelCase = np.sin(lowerCAmelCase ) _lowerCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase = sin_theta_t / sin_theta_a _lowerCAmelCase = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase = torch.from_numpy(lowerCAmelCase ).to(lowerCAmelCase ) return va def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = F.normalize(lowerCAmelCase , dim=-1 ) _lowerCAmelCase = F.normalize(lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase = value class UpperCAmelCase ( snake_case_ ): def __init__( self : Dict , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __snake_case : CLIPFeatureExtractor , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : str=None , ) -> Union[str, Any]: super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , clip_model=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , coca_model=__snake_case , coca_tokenizer=__snake_case , coca_transform=__snake_case , ) _lowerCAmelCase = ( feature_extractor.size if isinstance(feature_extractor.size , __snake_case ) else feature_extractor.size["""shortest_edge"""] ) _lowerCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __snake_case ) set_requires_grad(self.clip_model , __snake_case ) def lowercase__ ( self : Dict , __snake_case : Optional[Union[str, int]] = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowercase__ ( self : Tuple ) -> Dict: self.enable_attention_slicing(__snake_case ) def lowercase__ ( self : Dict ) -> List[Any]: set_requires_grad(self.vae , __snake_case ) def lowercase__ ( self : Dict ) -> Tuple: set_requires_grad(self.vae , __snake_case ) def lowercase__ ( self : Dict ) -> str: set_requires_grad(self.unet , __snake_case ) def lowercase__ ( self : Dict ) -> List[str]: set_requires_grad(self.unet , __snake_case ) def lowercase__ ( self : Any , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Any ) -> List[Any]: # get the original timestep using init_timestep _lowerCAmelCase = min(int(num_inference_steps * strength ) , __snake_case ) _lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : str , __snake_case : str , __snake_case : Any , __snake_case : List[Any] , __snake_case : int , __snake_case : str , __snake_case : Union[str, Any]=None ) -> List[str]: if not isinstance(__snake_case , torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(__snake_case )}" ) _lowerCAmelCase = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] _lowerCAmelCase = torch.cat(__snake_case , dim=0 ) else: _lowerCAmelCase = self.vae.encode(__snake_case ).latent_dist.sample(__snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase = 0.1_82_15 * init_latents _lowerCAmelCase = init_latents.repeat_interleave(__snake_case , dim=0 ) _lowerCAmelCase = randn_tensor(init_latents.shape , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents _lowerCAmelCase = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = init_latents return latents def lowercase__ ( self : int , __snake_case : Union[str, Any] ) -> int: _lowerCAmelCase = self.coca_transform(__snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def lowercase__ ( self : List[Any] , __snake_case : int , __snake_case : int ) -> Optional[Any]: _lowerCAmelCase = self.feature_extractor.preprocess(__snake_case ) _lowerCAmelCase = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase = self.clip_model.get_image_features(__snake_case ) _lowerCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) _lowerCAmelCase = image_embeddings_clip.repeat_interleave(__snake_case , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowercase__ ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[Any] , ) -> List[str]: _lowerCAmelCase = latents.detach().requires_grad_() _lowerCAmelCase = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual _lowerCAmelCase = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase = torch.sqrt(__snake_case ) _lowerCAmelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __snake_case ): _lowerCAmelCase = self.scheduler.sigmas[index] _lowerCAmelCase = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase = 1 / 0.1_82_15 * sample _lowerCAmelCase = self.vae.decode(__snake_case ).sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = transforms.Resize(self.feature_extractor_size )(__snake_case ) _lowerCAmelCase = self.normalize(__snake_case ).to(latents.dtype ) _lowerCAmelCase = self.clip_model.get_image_features(__snake_case ) _lowerCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) _lowerCAmelCase = spherical_dist_loss(__snake_case , __snake_case ).mean() * clip_guidance_scale _lowerCAmelCase = -torch.autograd.grad(__snake_case , __snake_case )[0] if isinstance(self.scheduler , __snake_case ): _lowerCAmelCase = latents.detach() + grads * (sigma**2) _lowerCAmelCase = noise_pred_original else: _lowerCAmelCase = noise_pred_original - torch.sqrt(__snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Optional[Any] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional[int] = 5_12 , __snake_case : Optional[int] = 5_12 , __snake_case : float = 0.6 , __snake_case : Optional[int] = 50 , __snake_case : Optional[float] = 7.5 , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[float] = 1_00 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : float = 0.8 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , ) -> Optional[Any]: if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(__snake_case )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(__snake_case , torch.Generator ) and batch_size > 1: _lowerCAmelCase = [generator] + [None] * (batch_size - 1) _lowerCAmelCase = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] _lowerCAmelCase = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase = """, """.join(__snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__snake_case ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) _lowerCAmelCase = self.get_image_description(__snake_case ) if style_prompt is None: if len(__snake_case ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) _lowerCAmelCase = self.get_image_description(__snake_case ) # get prompt text embeddings for content and style _lowerCAmelCase = self.tokenizer( __snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase = self.tokenizer( __snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase = slerp(__snake_case , __snake_case , __snake_case ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase = text_embeddings.repeat_interleave(__snake_case , dim=0 ) # set timesteps _lowerCAmelCase = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase = {} if accepts_offset: _lowerCAmelCase = 1 self.scheduler.set_timesteps(__snake_case , **__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase = self.get_timesteps(__snake_case , __snake_case , self.device ) _lowerCAmelCase = timesteps[:1].repeat(__snake_case ) # Preprocess image _lowerCAmelCase = preprocess(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) _lowerCAmelCase = preprocess(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) _lowerCAmelCase = slerp(__snake_case , __snake_case , __snake_case ) if clip_guidance_scale > 0: _lowerCAmelCase = self.get_clip_image_embeddings(__snake_case , __snake_case ) _lowerCAmelCase = self.get_clip_image_embeddings(__snake_case , __snake_case ) _lowerCAmelCase = slerp( __snake_case , __snake_case , __snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase = content_text_input.input_ids.shape[-1] _lowerCAmelCase = self.tokenizer([""""""] , padding="""max_length""" , max_length=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase = uncond_embeddings.repeat_interleave(__snake_case , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase = torch.randn(__snake_case , generator=__snake_case , device="""cpu""" , dtype=__snake_case ).to( self.device ) else: _lowerCAmelCase = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) _lowerCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase = {} if accepts_eta: _lowerCAmelCase = eta # check if the scheduler accepts generator _lowerCAmelCase = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase = generator with self.progress_bar(total=__snake_case ): for i, t in enumerate(__snake_case ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual _lowerCAmelCase = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase = noise_pred.chunk(2 ) _lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase = self.cond_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase = 1 / 0.1_82_15 * latents _lowerCAmelCase = self.vae.decode(__snake_case ).sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
353
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : List[Any] ) -> List[str]: _lowerCAmelCase = 1 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case ) return image @property def lowercase__ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowercase__ ( self : Optional[int] ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowercase__ ( self : Dict ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__snake_case ) @property def lowercase__ ( self : Union[str, Any] ) -> str: def extract(*__snake_case : List[Any] , **__snake_case : Any ): class UpperCAmelCase : def __init__( self : Any ) -> Any: _lowerCAmelCase = torch.ones([0] ) def lowercase__ ( self : Optional[Any] , __snake_case : Tuple ) -> Dict: self.pixel_values.to(__snake_case ) return self return Out() return extract def lowercase__ ( self : List[str] ) -> Optional[int]: _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = PNDMScheduler(skip_prk_steps=__snake_case ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowerCAmelCase = 77 _lowerCAmelCase = self.dummy_image.to(__snake_case ) _lowerCAmelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowerCAmelCase = AltDiffusionImgaImgPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__snake_case ) _lowerCAmelCase = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__snake_case , ) _lowerCAmelCase = output.images _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__snake_case , return_dict=__snake_case , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase__ ( self : Tuple ) -> str: _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = PNDMScheduler(skip_prk_steps=__snake_case ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowerCAmelCase = 77 _lowerCAmelCase = self.dummy_image.to(__snake_case ) # put models in fp16 _lowerCAmelCase = unet.half() _lowerCAmelCase = vae.half() _lowerCAmelCase = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase = AltDiffusionImgaImgPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__snake_case ) _lowerCAmelCase = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , num_inference_steps=2 , output_type="""np""" , image=__snake_case , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCAmelCase = init_image.resize((7_60, 5_04) ) _lowerCAmelCase = """BAAI/AltDiffusion""" _lowerCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _lowerCAmelCase = """A fantasy landscape, trending on artstation""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , generator=__snake_case , output_type="""np""" , ) _lowerCAmelCase = output.images[0] _lowerCAmelCase = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowerCAmelCase = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Tuple: _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase = init_image.resize((7_68, 5_12) ) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _lowerCAmelCase = """BAAI/AltDiffusion""" _lowerCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _lowerCAmelCase = """A fantasy landscape, trending on artstation""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , generator=__snake_case , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
220
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class a ( unittest.TestCase ): SCREAMING_SNAKE_CASE : Any = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE : List[Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Dict: lowerCamelCase_ = TextaTextGenerationPipeline(model=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) return generator, ["Something to write", "Something else"] def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: lowerCamelCase_ = generator('Something there' ) self.assertEqual(__SCREAMING_SNAKE_CASE , [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) lowerCamelCase_ = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=__SCREAMING_SNAKE_CASE ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}, {'generated_text': ANY(__SCREAMING_SNAKE_CASE )}], [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}, {'generated_text': ANY(__SCREAMING_SNAKE_CASE )}], ] , ) lowerCamelCase_ = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=__SCREAMING_SNAKE_CASE ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}, {'generated_text': ANY(__SCREAMING_SNAKE_CASE )}], [{'generated_text': ANY(__SCREAMING_SNAKE_CASE )}, {'generated_text': ANY(__SCREAMING_SNAKE_CASE )}], ] , ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): generator(4 ) @require_torch def UpperCamelCase ( self : int ) -> Dict: lowerCamelCase_ = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility lowerCamelCase_ = generator('Something there' , do_sample=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , [{'generated_text': ''}] ) lowerCamelCase_ = 3 lowerCamelCase_ = generator( 'Something there' , num_return_sequences=__SCREAMING_SNAKE_CASE , num_beams=__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = generator('This is a test' , do_sample=__SCREAMING_SNAKE_CASE , num_return_sequences=2 , return_tensors=__SCREAMING_SNAKE_CASE ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) lowerCamelCase_ = generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = generator( ['This is a test', 'This is a second test'] , do_sample=__SCREAMING_SNAKE_CASE , num_return_sequences=2 , batch_size=2 , return_tensors=__SCREAMING_SNAKE_CASE , ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowerCamelCase_ = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility lowerCamelCase_ = generator('Something there' , do_sample=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , [{'generated_text': ''}] )
183
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowercase_ = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase (__A , __A , __A , __A , __A , __A): """simple docstring""" for attribute in key.split('''.'''): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _a = '''lm_head''' _a = getattr(__A , __A) if weight_type is not None: _a = getattr(__A , __A).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = [] _a = fairseq_model.state_dict() _a = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) _a = True else: for key, mapped_key in MAPPING.items(): _a = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]: _a = True if "*" in mapped_key: _a = name.split(__A)[0].split('''.''')[-2] _a = mapped_key.replace('''*''' , __A) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _a = '''weight''' else: _a = None set_recursively(__A , __A , __A , __A , __A , __A) continue if not is_used: unused_weights.append(__A) logger.warning(F'''Unused weights: {unused_weights}''') def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = full_name.split('''conv_layers.''')[-1] _a = name.split('''.''') _a = int(items[0]) _a = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(__A) @torch.no_grad() def lowerCAmelCase (__A , __A , __A=None , __A=None , __A=True): """simple docstring""" if config_path is not None: _a = UniSpeechConfig.from_pretrained(__A) else: _a = UniSpeechConfig() if is_finetuned: if dict_path: _a = Dictionary.load_from_json(__A) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a = target_dict.pad_index _a = target_dict.bos_index _a = target_dict.eos_index _a = len(target_dict.symbols) _a = os.path.join(__A , '''vocab.json''') if not os.path.isdir(__A): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__A)) return os.makedirs(__A , exist_ok=__A) _a = target_dict.indices # fairseq has the <pad> and <s> switched _a = 42 _a = 43 with open(__A , '''w''' , encoding='''utf-8''') as vocab_handle: json.dump(__A , __A) _a = WavaVecaPhonemeCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__A , ) _a = True if config.feat_extract_norm == '''layer''' else False _a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) _a = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A) processor.save_pretrained(__A) _a = UniSpeechForCTC(__A) else: _a = UniSpeechForPreTraining(__A) if is_finetuned: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1]), '''w2v_path''': checkpoint_path}) else: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) _a = model[0].eval() recursively_load_weights(__A , __A , __A) hf_unispeech.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
211
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ): """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(snake_case__ ,snake_case__ ) ) ) def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ): """simple docstring""" if dataset.ndim != value_array.ndim: A_ = ( 'Wrong input data\'s dimensions... ' F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: A_ = ( 'Wrong input data\'s shape... ' F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: A_ = ( 'Input data have different datatype... ' F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(snake_case__ ) A_ = [] for value in value_array: A_ = euclidean(snake_case__ ,dataset[0] ) A_ = dataset[0].tolist() for dataset_value in dataset[1:]: A_ = euclidean(snake_case__ ,snake_case__ ) if dist > temp_dist: A_ = temp_dist A_ = dataset_value.tolist() answer.append([vector, dist] ) return answer def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ): """simple docstring""" return np.dot(snake_case__ ,snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
365
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowercase_ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowercase_ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) lowercase_ = BeautifulSoup(res.text, 'html.parser') lowercase_ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"https://google.com{link.get('href')}")
205
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Optional[Any] =( '''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
0
"""simple docstring""" from math import sqrt def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = 0 for i in range(1 , int(sqrt(lowercase__ ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase__ ): total += i + n // i elif i == sqrt(lowercase__ ): total += i return total - n def __SCREAMING_SNAKE_CASE ( lowercase__ = 10_000 ): """simple docstring""" A = sum( i for i in range(1 , lowercase__ ) if sum_of_divisors(sum_of_divisors(lowercase__ ) ) == i and sum_of_divisors(lowercase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
57
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__(self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str): A , A = text, pattern A , A = len(__SCREAMING_SNAKE_CASE), len(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : int): for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ (self : List[Any]): # searches pattern in text and returns index positions A = [] for i in range(self.textLen - self.patLen + 1): A = self.mismatch_in_text(__SCREAMING_SNAKE_CASE) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE) else: A = self.match_in_pattern(self.text[mismatch_index]) A = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __A : int = 'ABAABA' __A : Optional[Any] = 'AB' __A : Any = BoyerMooreSearch(text, pattern) __A : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
57
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 100 , ): """simple docstring""" A__ = x_start A__ = fnc(UpperCamelCase__ ) A__ = 0.0 for _ in range(UpperCamelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area A__ = (x_end - x_start) / steps + xa A__ = fnc(UpperCamelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step A__ = xa A__ = fxa return area if __name__ == "__main__": def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") __lowerCamelCase = 10 while i <= 10_00_00: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
221
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase__( __A ): lowerCAmelCase__ : List[Any] = ['pixel_values'] def __init__( self ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,__UpperCAmelCase = 1 / 2_55 ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: super().__init__(**__UpperCAmelCase ) A__ = size if size is not None else {'shortest_edge': 2_56} A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = offset A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: A__ = get_resize_output_image_size(__UpperCAmelCase ,size['shortest_edge'] ,default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: A__ = (size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase ,size=(size['height'], size['width']) ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> Optional[Any]: A__ = image.astype(np.floataa ) if offset: A__ = image - (scale / 2) return rescale(__UpperCAmelCase ,scale=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: return normalize(__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A__ = to_numpy_array(__UpperCAmelCase ) if do_resize: A__ = self.resize(image=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ) if do_center_crop: A__ = self.center_crop(__UpperCAmelCase ,size=__UpperCAmelCase ) if do_rescale: A__ = self.rescale(image=__UpperCAmelCase ,scale=__UpperCAmelCase ,offset=__UpperCAmelCase ) if do_normalize: A__ = self.normalize(image=__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ) A__ = to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) return image def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = offset if offset is not None else self.offset A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A__ = make_batched(__UpperCAmelCase ) A__ = [ [ self._preprocess_image( image=__UpperCAmelCase ,do_resize=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,do_center_crop=__UpperCAmelCase ,crop_size=__UpperCAmelCase ,do_rescale=__UpperCAmelCase ,rescale_factor=__UpperCAmelCase ,offset=__UpperCAmelCase ,do_normalize=__UpperCAmelCase ,image_mean=__UpperCAmelCase ,image_std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,) for img in video ] for video in videos ] A__ = {'pixel_values': videos} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase )
221
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , lowercase_ : Tuple , lowercase_ : str=7 , lowercase_ : Optional[int]=3 , lowercase_ : str=18 , lowercase_ : Optional[Any]=30 , lowercase_ : Any=400 , lowercase_ : Dict=True , lowercase_ : Optional[int]=None , lowercase_ : Optional[int]=True , lowercase_ : int=None , ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = size if size is not None else {"shortest_edge": 20} _UpperCamelCase = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size def __UpperCAmelCase ( self : Any) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = MobileNetVaImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : int) -> List[str]: """simple docstring""" _UpperCamelCase = MobileNetVaImageProcessingTester(self) @property def __UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : Dict) -> Any: """simple docstring""" _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase_ , "do_resize")) self.assertTrue(hasattr(lowercase_ , "size")) self.assertTrue(hasattr(lowercase_ , "do_center_crop")) self.assertTrue(hasattr(lowercase_ , "crop_size")) def __UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18}) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def __UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" pass def __UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCamelCase = image_processing(lowercase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCamelCase = image_processing(lowercase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCAmelCase ( self : List[Any]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCamelCase = image_processing(lowercase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
63
import math class _UpperCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self : Dict , lowercase_ : list[list[float]] , lowercase_ : list[int]) -> int: """simple docstring""" _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(lowercase_)): da += math.pow((sample[i] - weights[0][i]) , 2) da += math.pow((sample[i] - weights[1][i]) , 2) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self : Any , lowercase_ : list[list[int | float]] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : float) -> list[list[int | float]]: """simple docstring""" for i in range(len(lowercase_)): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase__ ( ) ->None: '''simple docstring''' _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(a__ ): for j in range(len(a__ ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(a__ , a__ , a__ , a__ ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
1
'''simple docstring''' def a_ ( __snake_case : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =0 for ch in input_str: lowerCamelCase_ =ord(__snake_case ) lowerCamelCase_ =pow(2 , __snake_case ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
75
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _UpperCamelCase : Tuple = int(input('Enter number: ').strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
220
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE :Dict = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE :Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE :Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE :Dict = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") SCREAMING_SNAKE_CASE :int = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> List[str]: """simple docstring""" UpperCamelCase_ = None # source code of `config_class` UpperCamelCase_ = inspect.getsource(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = _re_checkpoint.findall(SCREAMING_SNAKE_CASE_ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): UpperCamelCase_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase_ = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: UpperCamelCase_ = ckpt_name break return checkpoint def lowerCAmelCase( )-> int: """simple docstring""" UpperCamelCase_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase_ = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCamelCase_ = "\n".join(sorted(SCREAMING_SNAKE_CASE_ ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
60
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( snake_case , snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :int = AltDiffusionPipeline UpperCamelCase_ :int = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ :List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ :List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self )-> int: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) UpperCamelCase_ = CLIPTextModel(_lowercase ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase_ = 77 UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Optional[Any]: if str(_lowercase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self )-> Optional[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self )-> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_lowercase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = self.get_dummy_inputs(_lowercase ) UpperCamelCase_ = "A photo of an astronaut" UpperCamelCase_ = alt_pipe(**_lowercase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=_lowercase ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_lowercase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = self.get_dummy_inputs(_lowercase ) UpperCamelCase_ = alt_pipe(**_lowercase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> str: # make sure here that pndm scheduler skips prk UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=_lowercase , safety_checker=_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
60
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__a ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__a ): http_head('''https://huggingface.co''' )
14
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
0
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list: """simple docstring""" snake_case__ : Union[str, Any] = len(__lowerCAmelCase ) snake_case__ : Tuple = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case__ : List[Any] = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
44
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt'''} A__ = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } A__ = { '''openbmb/cpm-ant-10b''': 1024, } def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : str = collections.OrderedDict() with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: snake_case__ : List[Any] = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case__ : str = token.rstrip('''\n''' ) snake_case__ : int = index return vocab class a ( __lowerCamelCase ): def __init__( self :str ,__lowercase :str ,__lowercase :int="<unk>" ,__lowercase :Tuple=2_0_0 ): snake_case__ : Union[str, Any] = vocab snake_case__ : str = unk_token snake_case__ : Dict = max_input_chars_per_word def __lowerCamelCase ( self :Tuple ,__lowercase :Dict ): snake_case__ : Optional[Any] = list(__lowercase ) if len(__lowercase ) > self.max_input_chars_per_word: return [self.unk_token] snake_case__ : List[Any] = 0 snake_case__ : List[str] = [] while start < len(__lowercase ): snake_case__ : Any = len(__lowercase ) snake_case__ : Any = None while start < end: snake_case__ : Tuple = ''''''.join(chars[start:end] ) if substr in self.vocab: snake_case__ : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowercase ) snake_case__ : Union[str, Any] = end return sub_tokens class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Tuple = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : Optional[Any] = False def __init__( self :str ,__lowercase :Optional[Any] ,__lowercase :Dict="<d>" ,__lowercase :List[Any]="</d>" ,__lowercase :Union[str, Any]="<s>" ,__lowercase :List[str]="</s>" ,__lowercase :str="<pad>" ,__lowercase :Tuple="<unk>" ,__lowercase :Tuple="</n>" ,__lowercase :List[Any]="</_>" ,__lowercase :str="left" ,**__lowercase :Optional[Any] ,): requires_backends(self ,['''jieba'''] ) super().__init__( bod_token=__lowercase ,eod_token=__lowercase ,bos_token=__lowercase ,eos_token=__lowercase ,pad_token=__lowercase ,unk_token=__lowercase ,line_token=__lowercase ,space_token=__lowercase ,padding_side=__lowercase ,**__lowercase ,) snake_case__ : List[str] = bod_token snake_case__ : List[Any] = eod_token snake_case__ : List[Any] = load_vocab(__lowercase ) snake_case__ : Any = self.encoder[space_token] snake_case__ : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case__ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __lowercase : x[1] ) ) snake_case__ : Any = {v: k for k, v in self.encoder.items()} snake_case__ : Any = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def __lowerCamelCase ( self :Optional[int] ): return self.encoder[self.bod_token] @property def __lowerCamelCase ( self :Union[str, Any] ): return self.encoder[self.eod_token] @property def __lowerCamelCase ( self :List[str] ): return self.encoder["\n"] @property def __lowerCamelCase ( self :Tuple ): return len(self.encoder ) def __lowerCamelCase ( self :Any ): return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self :str ,__lowercase :Dict ): snake_case__ : Tuple = [] for x in jieba.cut(__lowercase ,cut_all=__lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowercase ) ) return output_tokens def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Optional[Any] ,**__lowercase :Union[str, Any] ): snake_case__ : Dict = [i for i in token_ids if i >= 0] snake_case__ : Optional[int] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowercase ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :List[str] ): return token in self.encoder def __lowerCamelCase ( self :int ,__lowercase :List[str] ): return "".join(__lowercase ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :Optional[int] ): return self.encoder.get(__lowercase ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self :Tuple ,__lowercase :int ): return self.decoder.get(__lowercase ,self.unk_token ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): if os.path.isdir(__lowercase ): snake_case__ : int = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: snake_case__ : str = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory snake_case__ : List[str] = 0 if " " in self.encoder: snake_case__ : Dict = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: snake_case__ : Union[str, Any] = self.encoder['''\n'''] del self.encoder["\n"] snake_case__ : Dict = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __lowercase : x[1] ) ) with open(__lowercase ,'''w''' ,encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) snake_case__ : str = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __lowerCamelCase ( self :Tuple ,__lowercase :List[int] ,__lowercase :List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowerCamelCase ( self :int ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ,__lowercase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase ,token_ids_a=__lowercase ,already_has_special_tokens=__lowercase ) if token_ids_a is not None: return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) return [1] + ([0] * len(__lowercase ))
44
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) A : Optional[Any] = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["ViTFeatureExtractor"] A : int = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Optional[int] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase ) -> List[str]: UpperCAmelCase_ : List[Any] = str(id_ ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[str] = {} # {vertex:distance} def __lt__( self , _UpperCamelCase ) -> Dict: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: self.neighbors.append(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = weight def lowercase__ ( __snake_case : int , __snake_case : List[str] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def lowercase__ ( __snake_case : list , __snake_case : Vertex ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [] for u in graph: UpperCAmelCase_ : List[Any] = math.inf UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : List[str] = graph[:] while q: UpperCAmelCase_ : Optional[int] = min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ : Dict = u UpperCAmelCase_ : Dict = u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( __snake_case : list , __snake_case : Vertex ): '''simple docstring''' for u in graph: UpperCAmelCase_ : Any = math.inf UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : str = list(__snake_case ) hq.heapify(__snake_case ) while h: UpperCAmelCase_ : Dict = hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ : Tuple = u UpperCAmelCase_ : Dict = u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
145
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def _lowerCamelCase ( lowercase : list[list[float]] ) -> list[list[float]]: _a = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _a = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements _a = [[0.0, 0.0], [0.0, 0.0]] _a , _a = matrix[1][1], matrix[0][0] _a , _a = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _a = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix _a = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _a = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _a = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _a = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _a = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _a = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _a = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _a = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _a = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _a = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _a = array(lowercase ) for i in range(3 ): for j in range(3 ): _a = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _a = array(lowercase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase ) # Calculate the inverse of the matrix return [[float(d(lowercase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
63
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='OwlViTImageProcessor' __a =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] , __a : str=None , __a : List[str]=None , **__a : List[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Union[str, Any] , __a : Any=None , __a : List[str]=None , __a : int=None , __a : Optional[int]="max_length" , __a : List[str]="np" , **__a : Any ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__a , __a ) or (isinstance(__a , __a ) and not isinstance(text[0] , __a )): _a = [self.tokenizer(__a , padding=__a , return_tensors=__a , **__a )] elif isinstance(__a , __a ) and isinstance(text[0] , __a ): _a = [] # Maximum number of queries across batch _a = max([len(__a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__a ) != max_num_queries: _a = t + [" "] * (max_num_queries - len(__a )) _a = self.tokenizer(__a , padding=__a , return_tensors=__a , **__a ) encodings.append(__a ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _a = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _a = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _a = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _a = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _a = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _a = BatchEncoding() _a = input_ids _a = attention_mask if query_images is not None: _a = BatchEncoding() _a = self.image_processor( __a , return_tensors=__a , **__a ).pixel_values _a = query_pixel_values if images is not None: _a = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: _a = image_features.pixel_values return encoding elif query_images is not None and images is not None: _a = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def UpperCamelCase__ ( self : List[str] , *__a : Union[str, Any] , **__a : int ): return self.image_processor.post_process(*__a , **__a ) def UpperCamelCase__ ( self : Optional[int] , *__a : Optional[Any] , **__a : List[str] ): return self.image_processor.post_process_object_detection(*__a , **__a ) def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ): return self.image_processor.post_process_image_guided_detection(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : Tuple , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : List[str] , *__a : List[Any] , **__a : Optional[int] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
63
1
from __future__ import annotations import math class A__ : def __init__( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = size # approximate the overall size of segment tree with given value UpperCamelCase : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCamelCase : Any = [0 for i in range(0 , 4 * size )] UpperCamelCase : List[Any] = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase( self , A_ ): '''simple docstring''' return idx * 2 def __UpperCamelCase( self , A_ ): '''simple docstring''' return idx * 2 + 1 def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if left_element == right_element: UpperCamelCase : Dict = a[left_element - 1] else: UpperCamelCase : Any = (left_element + right_element) // 2 self.build(self.left(A_ ) , A_ , A_ , A_ ) self.build(self.right(A_ ) , mid + 1 , A_ , A_ ) UpperCamelCase : Union[str, Any] = max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.flag[idx] is True: UpperCamelCase : Optional[Any] = self.lazy[idx] UpperCamelCase : Union[str, Any] = False if left_element != right_element: UpperCamelCase : Optional[int] = self.lazy[idx] UpperCamelCase : Any = self.lazy[idx] UpperCamelCase : Any = True UpperCamelCase : str = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase : Dict = val if left_element != right_element: UpperCamelCase : int = val UpperCamelCase : List[Any] = val UpperCamelCase : Any = True UpperCamelCase : Tuple = True return True UpperCamelCase : Optional[int] = (left_element + right_element) // 2 self.update(self.left(A_ ) , A_ , A_ , A_ , A_ , A_ ) self.update(self.right(A_ ) , mid + 1 , A_ , A_ , A_ , A_ ) UpperCamelCase : List[str] = max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) return True def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.flag[idx] is True: UpperCamelCase : List[str] = self.lazy[idx] UpperCamelCase : Any = False if left_element != right_element: UpperCamelCase : str = self.lazy[idx] UpperCamelCase : List[str] = self.lazy[idx] UpperCamelCase : Dict = True UpperCamelCase : List[str] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase : Union[str, Any] = (left_element + right_element) // 2 UpperCamelCase : List[str] = self.query(self.left(A_ ) , A_ , A_ , A_ , A_ ) UpperCamelCase : Optional[int] = self.query(self.right(A_ ) , mid + 1 , A_ , A_ , A_ ) return max(A_ , A_ ) def __str__( self ): '''simple docstring''' return str([self.query(1 , 1 , self.size , A_ , A_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __lowerCamelCase : Union[str, Any] = 15 __lowerCamelCase : str = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
140
def A_ ( _lowerCAmelCase ) -> int: if n == 1 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return 0 elif n == 2: return 1 else: UpperCamelCase : Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def A_ ( _lowerCAmelCase ) -> int: UpperCamelCase : Any = 0 UpperCamelCase : List[Any] = 2 while digits < n: index += 1 UpperCamelCase : Union[str, Any] = len(str(fibonacci(_lowerCAmelCase ) ) ) return index def A_ ( _lowerCAmelCase = 1000 ) -> int: return fibonacci_digits_index(_lowerCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
140
1
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : Any ): lowerCAmelCase : List[str] = [] for part_id in partition_order: lowerCAmelCase : Optional[int] = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_snake_case ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : Dict = spark.range(100 ).repartition(1 ) lowerCAmelCase : List[Any] = Spark(_snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : List[str] = spark.range(10 ).repartition(2 ) lowerCAmelCase : List[Any] = [1, 0] lowerCAmelCase : Union[str, Any] = _generate_iterable_examples(_snake_case , _snake_case ) # Reverse the partitions. lowerCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_snake_case , _snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowerCAmelCase, lowerCAmelCase : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : Any = spark.range(10 ).repartition(1 ) lowerCAmelCase : Optional[int] = SparkExamplesIterable(_snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_snake_case ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : Union[str, Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: lowerCAmelCase : List[Any] = lambda _snake_case : x.reverse() lowerCAmelCase : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_snake_case , [2, 1, 0] ) lowerCAmelCase : Optional[Any] = SparkExamplesIterable(_snake_case ).shuffle_data_sources(_snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_snake_case ): lowerCAmelCase, lowerCAmelCase : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : Dict = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : int = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowerCAmelCase : List[str] = SparkExamplesIterable(_snake_case ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCAmelCase : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(_snake_case , [0, 2] ) for i, (row_id, row_dict) in enumerate(_snake_case ): lowerCAmelCase, lowerCAmelCase : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowerCAmelCase : Tuple = SparkExamplesIterable(_snake_case ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCAmelCase : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(_snake_case , [1, 3] ) for i, (row_id, row_dict) in enumerate(_snake_case ): lowerCAmelCase, lowerCAmelCase : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : List[Any] = spark.range(100 ).repartition(1 ) lowerCAmelCase : List[str] = Spark(_snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
60
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case__ : List[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Tuple ): if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class snake_case_( a__ ): __UpperCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : Tuple , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Tuple = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : Dict = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowerCAmelCase : Any = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : List[str] = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : Dict = resample lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Any = rescale_factor lowerCAmelCase : List[Any] = offset lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" in size: lowerCAmelCase : List[str] = get_resize_output_image_size(UpperCamelCase_ , size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) elif "height" in size and "width" in size: lowerCAmelCase : Any = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : List[str] = image.astype(np.floataa ) if offset: lowerCAmelCase : Union[str, Any] = image - (scale / 2) return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = to_numpy_array(UpperCamelCase_ ) if do_resize: lowerCAmelCase : Optional[int] = self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) if do_center_crop: lowerCAmelCase : List[str] = self.center_crop(UpperCamelCase_ , size=UpperCamelCase_ ) if do_rescale: lowerCAmelCase : str = self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , offset=UpperCamelCase_ ) if do_normalize: lowerCAmelCase : Optional[int] = self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) lowerCAmelCase : str = to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) return image def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Any = resample if resample is not None else self.resample lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : str = offset if offset is not None else self.offset lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Any = image_std if image_std is not None else self.image_std lowerCAmelCase : List[str] = size if size is not None else self.size lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : Any = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase : List[str] = make_batched(UpperCamelCase_ ) lowerCAmelCase : Dict = [ [ self._preprocess_image( image=UpperCamelCase_ , do_resize=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , do_center_crop=UpperCamelCase_ , crop_size=UpperCamelCase_ , do_rescale=UpperCamelCase_ , rescale_factor=UpperCamelCase_ , offset=UpperCamelCase_ , do_normalize=UpperCamelCase_ , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ , data_format=UpperCamelCase_ , ) for img in video ] for video in videos ] lowerCAmelCase : Optional[Any] = {'''pixel_values''': videos} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
60
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _UpperCamelCase (a__ :Union[str, Any] , a__ :tuple , a__ :Path , a__ :Optional[Any] , a__ :Any , a__ :Optional[int] , a__ :Optional[int] , a__ :Optional[int]=False , ): """simple docstring""" output_path.parent.mkdir(parents=a__ , exist_ok=a__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , use_external_data_format=a__ , enable_onnx_checker=a__ , opset_version=a__ , ) else: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , opset_version=a__ , ) @torch.no_grad() def _UpperCamelCase (a__ :str , a__ :str , a__ :int , a__ :bool = False ): """simple docstring""" UpperCamelCase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCamelCase__ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: UpperCamelCase__ = """cpu""" UpperCamelCase__ = Path(a__ ) # VAE DECODER UpperCamelCase__ = AutoencoderKL.from_pretrained(model_path + """/vae""" ) UpperCamelCase__ = vae_decoder.config.latent_channels # forward only through the decoder part UpperCamelCase__ = vae_decoder.decode onnx_export( a__ , model_args=( torch.randn(1 , a__ , 25 , 25 ).to(device=a__ , dtype=a__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=a__ , ) del vae_decoder if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
87
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json UpperCamelCase__ = "sshleifer/mar_enro_6_3_student" class __SCREAMING_SNAKE_CASE ( _a ): def _lowerCamelCase ( self ): super().setUp() UpperCamelCase__ = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=__lowerCAmelCase , ) UpperCamelCase__ = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def _lowerCamelCase ( self ): MarianMTModel.from_pretrained(__lowerCAmelCase ) @slow @require_torch_gpu def _lowerCamelCase ( self ): UpperCamelCase__ = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script UpperCamelCase__ = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() UpperCamelCase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): UpperCamelCase__ = bash_script.replace(__lowerCAmelCase , str(__lowerCAmelCase ) ) UpperCamelCase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCamelCase__ = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCamelCase__ = ["""finetune.py"""] + bash_script.split() + args with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): UpperCamelCase__ = argparse.ArgumentParser() UpperCamelCase__ = pl.Trainer.add_argparse_args(__lowerCAmelCase ) UpperCamelCase__ = SummarizationModule.add_model_specific_args(__lowerCAmelCase , os.getcwd() ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = main(__lowerCAmelCase ) # Check metrics UpperCamelCase__ = load_json(model.metrics_save_path ) UpperCamelCase__ = metrics["""val"""][0] UpperCamelCase__ = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , __lowerCAmelCase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCamelCase__ = os.listdir(__lowerCAmelCase ) UpperCamelCase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] UpperCamelCase__ = os.path.join(args.output_dir , __lowerCAmelCase ) UpperCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) UpperCamelCase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCamelCase__ = {os.path.basename(__lowerCAmelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class __SCREAMING_SNAKE_CASE ( _a ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCamelCase ( self ): UpperCamelCase__ = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" UpperCamelCase__ = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script UpperCamelCase__ = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) UpperCamelCase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) UpperCamelCase__ = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): UpperCamelCase__ = bash_script.replace(__lowerCAmelCase , str(__lowerCAmelCase ) ) UpperCamelCase__ = self.get_auto_remove_tmp_dir() UpperCamelCase__ = bash_script.replace("""--fp16""" , """""" ) UpperCamelCase__ = 6 UpperCamelCase__ = ( ["""distillation.py"""] + bash_script.split() + [ f"""--output_dir={output_dir}""", """--gpus=1""", """--learning_rate=1e-3""", f"""--num_train_epochs={epochs}""", """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(__lowerCAmelCase , """argv""" , __lowerCAmelCase ): UpperCamelCase__ = argparse.ArgumentParser() UpperCamelCase__ = pl.Trainer.add_argparse_args(__lowerCAmelCase ) UpperCamelCase__ = SummarizationDistiller.add_model_specific_args(__lowerCAmelCase , os.getcwd() ) UpperCamelCase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCamelCase__ = distill_main(__lowerCAmelCase ) # Check metrics UpperCamelCase__ = load_json(model.metrics_save_path ) UpperCamelCase__ = metrics["""val"""][0] UpperCamelCase__ = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , __lowerCAmelCase ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCamelCase__ = os.listdir(__lowerCAmelCase ) UpperCamelCase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] UpperCamelCase__ = os.path.join(args.output_dir , __lowerCAmelCase ) UpperCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) UpperCamelCase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCamelCase__ = {os.path.basename(__lowerCAmelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
87
1
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=3 , a__=0.6 , a__=None , ): _lowerCAmelCase : str = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Tuple = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Union[str, Any] = mask_ratio _lowerCAmelCase : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase : List[str] = (image_size // patch_size) ** 2 _lowerCAmelCase : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ): _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : int = self.get_config() return config, pixel_values, labels def __A ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : int = ViTMAEModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[Any] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : int = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model(a__ ) _lowerCAmelCase : Dict = (self.image_size // self.patch_size) ** 2 _lowerCAmelCase : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase : str = 1 _lowerCAmelCase : Dict = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : List[Any] = model(a__ ) _lowerCAmelCase : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = config_and_inputs _lowerCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _UpperCamelCase : str = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} _UpperCamelCase : Dict = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : str = False def __A ( self ): _lowerCAmelCase : List[Any] = ViTMAEModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] _lowerCAmelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def __A ( self , a__ , a__ , a__ ): # make masks reproducible np.random.seed(2 ) _lowerCAmelCase : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCAmelCase : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase : str = torch.from_numpy(a__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase : Any = pt_noise super().check_pt_tf_models(a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(a__ ) model.to(a__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase : List[str] = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : Any = outputs[0].cpu().numpy() _lowerCAmelCase : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) _lowerCAmelCase : Union[str, Any] = model_class.from_pretrained(a__ ) model.to(a__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase : List[Any] = model(**self._prepare_for_class(a__ , a__ ) ) # Make sure we don't have nans _lowerCAmelCase : Dict = after_outputs[0].cpu().numpy() _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __A ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __A ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __A ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def __A ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ): pass @slow def __A ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = ViTMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: _lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def __A ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def __A ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _lowerCAmelCase : str = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(a__ ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Tuple = image_processor(images=a__ , return_tensors="""pt""" ).to(a__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase : str = ViTMAEConfig() _lowerCAmelCase : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase : Union[str, Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**a__ , noise=torch.from_numpy(a__ ).to(device=a__ ) ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : Optional[Any] = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(a__ ) , atol=1e-4 ) )
44
"""simple docstring""" import numpy as np import qiskit def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 8 ,_lowerCamelCase : int | None = None ) -> str: _lowerCAmelCase : int = np.random.default_rng(seed=_lowerCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCAmelCase : Tuple = 6 * key_len # Measurement basis for Alice's qubits. _lowerCAmelCase : Dict = rng.integers(2 ,size=_lowerCamelCase ) # The set of states Alice will prepare. _lowerCAmelCase : Tuple = rng.integers(2 ,size=_lowerCamelCase ) # Measurement basis for Bob's qubits. _lowerCAmelCase : Union[str, Any] = rng.integers(2 ,size=_lowerCamelCase ) # Quantum Circuit to simulate BB84 _lowerCAmelCase : Dict = qiskit.QuantumCircuit(_lowerCamelCase ,name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if alice_state[index] == 1: bbaa_circ.x(_lowerCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCAmelCase : int = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCAmelCase : List[str] = qiskit.execute(_lowerCamelCase ,_lowerCamelCase ,shots=1 ,seed_simulator=_lowerCamelCase ) # Returns the result of measurement. _lowerCAmelCase : List[Any] = job.result().get_counts(_lowerCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCAmelCase : str = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCAmelCase : List[Any] = gen_key[:key_len] if len(_lowerCamelCase ) >= key_len else gen_key.ljust(_lowerCamelCase ,"""0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
44
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'sentencepiece.bpe.model'} __a = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __a = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __a = '▁' class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : str="<pad>" , lowerCAmelCase__ : Tuple="<mask>" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : str , ) -> None: """simple docstring""" _UpperCAmelCase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token _UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) _UpperCAmelCase : str = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase : str = len(self.sp_model ) - 1 _UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] _UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return len(self.sp_model ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) return spm_id if spm_id else self.unk_token_id def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[int] = "" _UpperCAmelCase : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _UpperCAmelCase : Dict = True _UpperCAmelCase : str = [] else: current_sub_tokens.append(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def __getstate__( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.__dict__.copy() _UpperCAmelCase : Optional[Any] = None return state def __setstate__( self : Dict , lowerCAmelCase__ : List[str] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : str = {} _UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: _UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
145
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __a = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : int = 1_4 ) -> None: """simple docstring""" if group not in primes: raise ValueError("Unsupported Group" ) _UpperCAmelCase : Union[str, Any] = primes[group]["prime"] _UpperCAmelCase : List[Any] = primes[group]["generator"] _UpperCAmelCase : str = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCAmelCase__ )[2:] def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowerCAmelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = int(lowerCAmelCase__ , base=1_6 ) if not self.is_valid_public_key(lowerCAmelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Optional[Any] = pow(lowerCAmelCase__ , self.__private_key , self.prime ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCAmelCase__ , (prime - 1) // 2 , lowerCAmelCase__ ) == 1 ) @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 1_4 ) -> str: """simple docstring""" _UpperCAmelCase : Any = int(lowerCAmelCase__ , base=1_6 ) _UpperCAmelCase : List[Any] = int(lowerCAmelCase__ , base=1_6 ) _UpperCAmelCase : str = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Tuple = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
145
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = "speech_to_text" UpperCAmelCase__ : Union[str, Any] = ["past_key_values"] UpperCAmelCase__ : Tuple = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, SCREAMING_SNAKE_CASE_=1_0000, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="relu", SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=6000, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=(5, 5), SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=80, SCREAMING_SNAKE_CASE_=1, **SCREAMING_SNAKE_CASE_, ) -> List[Any]: UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Dict = encoder_ffn_dim UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Dict = decoder_layers UpperCamelCase : int = decoder_attention_heads UpperCamelCase : int = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : Optional[Any] = activation_dropout UpperCamelCase : Any = activation_function UpperCamelCase : Tuple = init_std UpperCamelCase : Any = encoder_layerdrop UpperCamelCase : Dict = decoder_layerdrop UpperCamelCase : str = use_cache UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : Optional[int] = max_source_positions UpperCamelCase : List[str] = max_target_positions UpperCamelCase : Union[str, Any] = num_conv_layers UpperCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = conv_channels UpperCamelCase : List[str] = input_feat_per_channel UpperCamelCase : List[Any] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, is_encoder_decoder=SCREAMING_SNAKE_CASE_, decoder_start_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
103
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : List[str] = jnp.ones((batch_size, length) ) / length return scores def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = None UpperCamelCase : Optional[int] = 20 UpperCamelCase : Optional[Any] = self._get_uniform_logits(batch_size=2, length=SCREAMING_SNAKE_CASE_ ) # tweak scores to not be uniform anymore UpperCamelCase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCamelCase : Any = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCamelCase : List[str] = jax.nn.softmax(SCREAMING_SNAKE_CASE_, axis=-1 ) UpperCamelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : int = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCamelCase : Tuple = jax.nn.softmax(temp_dist_warper_sharper(SCREAMING_SNAKE_CASE_, scores.copy(), cur_len=SCREAMING_SNAKE_CASE_ ), axis=-1 ) UpperCamelCase : Any = jax.nn.softmax(temp_dist_warper_smoother(SCREAMING_SNAKE_CASE_, scores.copy(), cur_len=SCREAMING_SNAKE_CASE_ ), axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = None UpperCamelCase : Any = 10 UpperCamelCase : Any = 2 # create ramp distribution UpperCamelCase : List[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, vocab_size) ).copy() UpperCamelCase : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCamelCase : Dict = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Tuple = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCamelCase : Optional[int] = 5 UpperCamelCase : Optional[int] = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 ) UpperCamelCase : Union[str, Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, length) ).copy() UpperCamelCase : List[str] = top_k_warp_safety_check(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : int = None UpperCamelCase : List[str] = 10 UpperCamelCase : Optional[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCamelCase : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCamelCase : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) UpperCamelCase : int = np.exp(top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCamelCase : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCamelCase : Optional[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCamelCase : Tuple = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept UpperCamelCase : int = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 ) UpperCamelCase : List[str] = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = 20 UpperCamelCase : Union[str, Any] = 4 UpperCamelCase : Optional[int] = 0 UpperCamelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) # check that min length is applied at length 5 UpperCamelCase : List[str] = ids_tensor((batch_size, 20), vocab_size=20 ) UpperCamelCase : Any = 5 UpperCamelCase : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = min_dist_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 UpperCamelCase : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = 15 UpperCamelCase : str = min_dist_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = 20 UpperCamelCase : List[Any] = 4 UpperCamelCase : List[str] = 0 UpperCamelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) # check that all scores are -inf except the bos_token_id score UpperCamelCase : Any = ids_tensor((batch_size, 1), vocab_size=20 ) UpperCamelCase : List[Any] = 1 UpperCamelCase : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCamelCase : Dict = 3 UpperCamelCase : str = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Union[str, Any] = 20 UpperCamelCase : Optional[Any] = 4 UpperCamelCase : List[Any] = 0 UpperCamelCase : int = 5 UpperCamelCase : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCamelCase : str = ids_tensor((batch_size, 4), vocab_size=20 ) UpperCamelCase : Tuple = 4 UpperCamelCase : Union[str, Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCamelCase : str = 3 UpperCamelCase : List[Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> int: UpperCamelCase : int = 4 UpperCamelCase : Tuple = 10 UpperCamelCase : str = 15 UpperCamelCase : List[str] = 2 UpperCamelCase : Any = 1 UpperCamelCase : List[str] = 15 # dummy input_ids and scores UpperCamelCase : Dict = ids_tensor((batch_size, sequence_length), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = input_ids.copy() UpperCamelCase : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = scores.copy() # instantiate all dist processors UpperCamelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 10 # no processor list UpperCamelCase : Any = temp_dist_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = min_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = bos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = eos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # with processor list UpperCamelCase : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase : Optional[Any] = processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = 4 UpperCamelCase : Tuple = 10 UpperCamelCase : Union[str, Any] = 15 UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : Optional[Any] = 1 UpperCamelCase : int = 15 # dummy input_ids and scores UpperCamelCase : Dict = ids_tensor((batch_size, sequence_length), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = input_ids.copy() UpperCamelCase : Optional[int] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = scores.copy() # instantiate all dist processors UpperCamelCase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase : str = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 10 # no processor list def run_no_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = temp_dist_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = min_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = bos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = eos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) return scores # with processor list def run_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) return scores UpperCamelCase : Dict = jax.jit(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = jax.jit(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = jitted_run_no_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = jitted_run_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
103
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
140
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _UpperCAmelCase = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) _UpperCAmelCase = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _UpperCAmelCase = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) _UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) _UpperCAmelCase = np.expand_dims(test_image, axis=0) _UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _UpperCAmelCase = """Normal""" if result[0][0] == 1: _UpperCAmelCase = """Abnormality detected"""
140
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @property def A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def A ( self : int ): '''simple docstring''' _snake_case = self.dummy_uncond_unet _snake_case = KarrasVeScheduler() _snake_case = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type='numpy' ).images _snake_case = torch.manual_seed(0 ) _snake_case = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type='numpy' , return_dict=_UpperCAmelCase )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Any ): '''simple docstring''' _snake_case = 'google/ncsnpp-celebahq-256' _snake_case = UNetaDModel.from_pretrained(_UpperCAmelCase ) _snake_case = KarrasVeScheduler() _snake_case = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe(num_inference_steps=20 , generator=_UpperCAmelCase , output_type='numpy' ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _snake_case = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
369
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
0
import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) UpperCamelCase = None def lowercase_ ( ): lowercase__ : List[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=_lowerCamelCase , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=_lowerCamelCase , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : Optional[int] = bool(qa["answers"]["text"]) return qid_to_has_ans def lowercase_ ( _lowerCamelCase : Union[str, Any]): def remove_articles(_lowerCamelCase : List[str]): return ARTICLES_REGEX.sub(" " , _lowerCamelCase) def white_space_fix(_lowerCamelCase : int): return " ".join(text.split()) def remove_punc(_lowerCamelCase : Tuple): lowercase__ : Any = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(_lowerCamelCase : Any): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase)))) def lowercase_ ( _lowerCamelCase : str): if not s: return [] return normalize_answer(_lowerCamelCase).split() def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Any): return int(normalize_answer(_lowerCamelCase) == normalize_answer(_lowerCamelCase)) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any]): lowercase__ : str = get_tokens(_lowerCamelCase) lowercase__ : int = get_tokens(_lowerCamelCase) lowercase__ : List[Any] = collections.Counter(_lowerCamelCase) & collections.Counter(_lowerCamelCase) lowercase__ : List[Any] = sum(common.values()) if len(_lowerCamelCase) == 0 or len(_lowerCamelCase) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowercase__ : Union[str, Any] = 1.0 * num_same / len(_lowerCamelCase) lowercase__ : Optional[Any] = 1.0 * num_same / len(_lowerCamelCase) lowercase__ : Dict = (2 * precision * recall) / (precision + recall) return fa def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Any): lowercase__ : Union[str, Any] = {} lowercase__ : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : List[Any] = qa["id"] lowercase__ : List[Any] = [t for t in qa["answers"]["text"] if normalize_answer(_lowerCamelCase)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase__ : List[str] = [""] if qid not in preds: print(f'''Missing prediction for {qid}''') continue lowercase__ : Any = preds[qid] # Take max over all gold answers lowercase__ : Tuple = max(compute_exact(_lowerCamelCase , _lowerCamelCase) for a in gold_answers) lowercase__ : Any = max(compute_fa(_lowerCamelCase , _lowerCamelCase) for a in gold_answers) return exact_scores, fa_scores def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Any): lowercase__ : Union[str, Any] = {} for qid, s in scores.items(): lowercase__ : Optional[int] = na_probs[qid] > na_prob_thresh if pred_na: lowercase__ : Dict = float(not qid_to_has_ans[qid]) else: lowercase__ : List[Any] = s return new_scores def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any]=None): if not qid_list: lowercase__ : List[str] = len(_lowerCamelCase) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowercase__ : Union[str, Any] = len(_lowerCamelCase) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Any): for k in new_eval: lowercase__ : Union[str, Any] = new_eval[k] def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]): plt.step(_lowerCamelCase , _lowerCamelCase , color="b" , alpha=0.2 , where="post") plt.fill_between(_lowerCamelCase , _lowerCamelCase , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(_lowerCamelCase) plt.savefig(_lowerCamelCase) plt.clf() def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Optional[int]=None): lowercase__ : Optional[Any] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase: na_probs[k]) lowercase__ : Optional[int] = 0.0 lowercase__ : str = 1.0 lowercase__ : List[str] = 0.0 lowercase__ : List[str] = [1.0] lowercase__ : Union[str, Any] = [0.0] lowercase__ : Dict = 0.0 for i, qid in enumerate(_lowerCamelCase): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase__ : str = true_pos / float(i + 1) lowercase__ : List[str] = true_pos / float(_lowerCamelCase) if i == len(_lowerCamelCase) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowerCamelCase) recalls.append(_lowerCamelCase) if out_image: plot_pr_curve(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) return {"ap": 100.0 * avg_prec} def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any]): if out_image_dir and not os.path.exists(_lowerCamelCase): os.makedirs(_lowerCamelCase) lowercase__ : Union[str, Any] = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowercase__ : Tuple = make_precision_recall_eval( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , out_image=os.path.join(_lowerCamelCase , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowercase__ : Union[str, Any] = make_precision_recall_eval( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , out_image=os.path.join(_lowerCamelCase , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowercase__ : Union[str, Any] = {k: float(_lowerCamelCase) for k, v in qid_to_has_ans.items()} lowercase__ : Optional[int] = make_precision_recall_eval( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , out_image=os.path.join(_lowerCamelCase , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(_lowerCamelCase , _lowerCamelCase , "pr_exact") merge_eval(_lowerCamelCase , _lowerCamelCase , "pr_f1") merge_eval(_lowerCamelCase , _lowerCamelCase , "pr_oracle") def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]): if not qid_list: return lowercase__ : List[str] = [na_probs[k] for k in qid_list] lowercase__ : Tuple = np.ones_like(_lowerCamelCase) / float(len(_lowerCamelCase)) plt.hist(_lowerCamelCase , weights=_lowerCamelCase , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(f'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(_lowerCamelCase , f'''na_prob_hist_{name}.png''')) plt.clf() def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Optional[int]): lowercase__ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowercase__ : Union[str, Any] = num_no_ans lowercase__ : Optional[int] = cur_score lowercase__ : List[str] = 0.0 lowercase__ : List[Any] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase: na_probs[k]) for i, qid in enumerate(_lowerCamelCase): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase__ : List[Any] = scores[qid] else: if preds[qid]: lowercase__ : str = -1 else: lowercase__ : List[Any] = 0 cur_score += diff if cur_score > best_score: lowercase__ : Any = cur_score lowercase__ : Dict = na_probs[qid] return 100.0 * best_score / len(_lowerCamelCase), best_thresh def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]): lowercase__ , lowercase__ : int = find_best_thresh(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowercase__ , lowercase__ : List[str] = find_best_thresh(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowercase__ : Optional[Any] = best_exact lowercase__ : int = exact_thresh lowercase__ : Tuple = best_fa lowercase__ : Optional[Any] = fa_thresh def lowercase_ ( ): with open(OPTS.data_file) as f: lowercase__ : List[Any] = json.load(_lowerCamelCase) lowercase__ : Union[str, Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowercase__ : Optional[int] = json.load(_lowerCamelCase) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowercase__ : Union[str, Any] = json.load(_lowerCamelCase) else: lowercase__ : List[str] = {k: 0.0 for k in preds} lowercase__ : Tuple = make_qid_to_has_ans(_lowerCamelCase) # maps qid to True/False lowercase__ : int = [k for k, v in qid_to_has_ans.items() if v] lowercase__ : str = [k for k, v in qid_to_has_ans.items() if not v] lowercase__ , lowercase__ : Any = get_raw_scores(_lowerCamelCase , _lowerCamelCase) lowercase__ : int = apply_no_ans_threshold(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , OPTS.na_prob_thresh) lowercase__ : int = apply_no_ans_threshold(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , OPTS.na_prob_thresh) lowercase__ : Dict = make_eval_dict(_lowerCamelCase , _lowerCamelCase) if has_ans_qids: lowercase__ : Dict = make_eval_dict(_lowerCamelCase , _lowerCamelCase , qid_list=_lowerCamelCase) merge_eval(_lowerCamelCase , _lowerCamelCase , "HasAns") if no_ans_qids: lowercase__ : str = make_eval_dict(_lowerCamelCase , _lowerCamelCase , qid_list=_lowerCamelCase) merge_eval(_lowerCamelCase , _lowerCamelCase , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , OPTS.out_image_dir) histogram_na_prob(_lowerCamelCase , _lowerCamelCase , OPTS.out_image_dir , "hasAns") histogram_na_prob(_lowerCamelCase , _lowerCamelCase , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) else: print(json.dumps(_lowerCamelCase , indent=2)) if __name__ == "__main__": UpperCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
87
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCamelCase = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' UpperCamelCase = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' UpperCamelCase = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , ) -> Any: lowercase__ : Optional[int] = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowercase__ : Union[str, Any] = [[refs[i] for refs in references] for i in range(lowercase_ )] lowercase__ : str = TER( normalized=lowercase_ , no_punct=lowercase_ , asian_support=lowercase_ , case_sensitive=lowercase_ , ) lowercase__ : List[str] = sb_ter.corpus_score(lowercase_ , lowercase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
87
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __a = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' return max(metric_fn(_lowercase , _lowercase ) for gt in ground_truths ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = [line.strip() for line in open(_lowercase , '''r''' ).readlines()] UpperCAmelCase_ : Union[str, Any] = [] if args.gold_data_mode == "qa": UpperCAmelCase_ : Optional[Any] = pd.read_csv(_lowercase , sep='''\t''' , header=_lowercase ) for answer_list in data[1]: UpperCAmelCase_ : int = ast.literal_eval(_lowercase ) answers.append(_lowercase ) else: UpperCAmelCase_ : List[str] = [line.strip() for line in open(_lowercase , '''r''' ).readlines()] UpperCAmelCase_ : Any = [[reference] for reference in references] UpperCAmelCase_ : Dict = 0 for prediction, ground_truths in zip(_lowercase , _lowercase ): total += 1 em += metric_max_over_ground_truths(_lowercase , _lowercase , _lowercase ) fa += metric_max_over_ground_truths(_lowercase , _lowercase , _lowercase ) UpperCAmelCase_ : str = 100.0 * em / total UpperCAmelCase_ : Optional[Any] = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = args.k UpperCAmelCase_ : Any = [line.strip() for line in open(_lowercase , '''r''' ).readlines()] UpperCAmelCase_ : Dict = [line.strip() for line in open(_lowercase , '''r''' ).readlines()] UpperCAmelCase_ : List[str] = 0 for hypo, reference in zip(_lowercase , _lowercase ): UpperCAmelCase_ : Tuple = set(hypo.split('''\t''' )[:k] ) UpperCAmelCase_ : Tuple = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase_ : List[Any] = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' def strip_title(_lowercase ): if title.startswith('''"''' ): UpperCAmelCase_ : Any = title[1:] if title.endswith('''"''' ): UpperCAmelCase_ : Tuple = title[:-1] return title UpperCAmelCase_ : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowercase , return_tensors='''pt''' , padding=_lowercase , truncation=_lowercase , )['''input_ids'''].to(args.device ) UpperCAmelCase_ : Optional[Any] = rag_model.rag.question_encoder(_lowercase ) UpperCAmelCase_ : Any = question_enc_outputs[0] UpperCAmelCase_ : Tuple = rag_model.retriever( _lowercase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) UpperCAmelCase_ : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase_ : Union[str, Any] = [] for docs in all_docs: UpperCAmelCase_ : List[Any] = [strip_title(_lowercase ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_lowercase ) ) return provenance_strings def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase_ : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowercase , return_tensors='''pt''' , padding=_lowercase , truncation=_lowercase ) UpperCAmelCase_ : Union[str, Any] = inputs_dict.input_ids.to(args.device ) UpperCAmelCase_ : Dict = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase_ : str = rag_model.generate( # rag_model overwrites generate _lowercase , attention_mask=_lowercase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowercase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCAmelCase_ : Dict = rag_model.retriever.generator_tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) if args.print_predictions: for q, a in zip(_lowercase , _lowercase ): logger.info('''Q: {} - A: {}'''.format(_lowercase , _lowercase ) ) return answers def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_lowercase , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_lowercase , choices=['''exact''', '''compressed''', '''legacy'''] , type=_lowercase , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_lowercase , type=_lowercase , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_lowercase , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_lowercase , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_lowercase , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_lowercase , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_lowercase , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_lowercase , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_lowercase , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_lowercase , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_lowercase , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) UpperCAmelCase_ : int = parser.parse_args() UpperCAmelCase_ : int = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = {} if args.model_type is None: UpperCAmelCase_ : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): UpperCAmelCase_ : Any = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration UpperCAmelCase_ : List[Any] = args.n_docs if args.index_name is not None: UpperCAmelCase_ : List[str] = args.index_name if args.index_path is not None: UpperCAmelCase_ : Tuple = args.index_path else: UpperCAmelCase_ : str = BartForConditionalGeneration UpperCAmelCase_ : Any = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _lowercase ) UpperCAmelCase_ : Optional[int] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k UpperCAmelCase_ : Optional[Any] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_lowercase , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_lowercase ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): UpperCAmelCase_ : str = RagRetriever.from_pretrained(_lowercase , **_lowercase ) UpperCAmelCase_ : Optional[Any] = model_class.from_pretrained(_lowercase , retriever=_lowercase , **_lowercase ) model.retriever.init_retrieval() else: UpperCAmelCase_ : Any = model_class.from_pretrained(_lowercase , **_lowercase ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: UpperCAmelCase_ : Any = [] for line in tqdm(_lowercase ): questions.append(line.strip() ) if len(_lowercase ) == args.eval_batch_size: UpperCAmelCase_ : List[str] = evaluate_batch_fn(_lowercase , _lowercase , _lowercase ) preds_file.write('''\n'''.join(_lowercase ) + '''\n''' ) preds_file.flush() UpperCAmelCase_ : Optional[int] = [] if len(_lowercase ) > 0: UpperCAmelCase_ : str = evaluate_batch_fn(_lowercase , _lowercase , _lowercase ) preds_file.write('''\n'''.join(_lowercase ) ) preds_file.flush() score_fn(_lowercase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __a = get_args() main(args)
235
from collections import defaultdict def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = first_str.lower().strip() UpperCAmelCase_ : Any = second_str.lower().strip() # Remove whitespace UpperCAmelCase_ : Any = first_str.replace(''' ''' , '''''' ) UpperCAmelCase_ : int = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase_ : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __a = input('Enter the first string ').strip() __a = input('Enter the second string ').strip() __a = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
235
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ ) -> float: """simple docstring""" UpperCamelCase = 0.00 UpperCamelCase = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(A__ ) first_sum += 1 / float(A__ ) index += 1 return 1 / first_sum def __lowerCamelCase ( A__ ) -> float: """simple docstring""" UpperCamelCase = 0.00 UpperCamelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase = F"""Resistor at index {index} has a negative value!""" raise ValueError(A__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase : List[str] = 5_0000 _lowerCamelCase : Optional[int] = 5000 _lowerCamelCase ,_lowerCamelCase : int = os.path.split(__file__) _lowerCamelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" for i in range(0 , len(A__ ) , A__ ): UpperCamelCase = dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> int: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): UpperCamelCase = dataset[i : i + batch_size] def __lowerCamelCase ( ) -> List[str]: """simple docstring""" UpperCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES} UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) UpperCamelCase = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) UpperCamelCase = generate_example_dataset( os.path.join(A__ , 'dataset.arrow' ) , A__ , num_examples=A__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) UpperCamelCase = func(A__ , **A__ ) print('shuffling dataset' ) UpperCamelCase = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(A__ ) ) UpperCamelCase = func( A__ , **A__ ) with open(A__ , 'wb' ) as f: f.write(json.dumps(A__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
28
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ): _a = 1 @register_to_config def __init__( self : Any , A_ : int = 1_0_0_0 , A_ : Optional[Union[np.ndarray, List[float]]] = None): # set `betas`, `alphas`, `timesteps` self.set_timesteps(A_) # standard deviation of the initial noise distribution lowerCAmelCase_ : str = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowerCAmelCase_ : Optional[Any] = 4 # running values lowerCAmelCase_ : List[str] = [] def UpperCAmelCase__ ( self : Optional[Any] , A_ : int , A_ : Union[str, torch.device] = None): lowerCAmelCase_ : Any = num_inference_steps lowerCAmelCase_ : List[Any] = torch.linspace(1 , 0 , num_inference_steps + 1)[:-1] lowerCAmelCase_ : str = torch.cat([steps, torch.tensor([0.0])]) if self.config.trained_betas is not None: lowerCAmelCase_ : Optional[int] = torch.tensor(self.config.trained_betas , dtype=torch.floataa) else: lowerCAmelCase_ : str = torch.sin(steps * math.pi / 2) ** 2 lowerCAmelCase_ : Union[str, Any] = (1.0 - self.betas**2) ** 0.5 lowerCAmelCase_ : Dict = (torch.atana(self.betas , self.alphas) / math.pi * 2)[:-1] lowerCAmelCase_ : Dict = timesteps.to(A_) lowerCAmelCase_ : Dict = [] def UpperCAmelCase__ ( self : str , A_ : torch.FloatTensor , A_ : int , A_ : torch.FloatTensor , A_ : bool = True , ): if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''') lowerCAmelCase_ : Dict = (self.timesteps == timestep).nonzero().item() lowerCAmelCase_ : Optional[int] = timestep_index + 1 lowerCAmelCase_ : Optional[Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(A_) if len(self.ets) == 1: lowerCAmelCase_ : Optional[Any] = self.ets[-1] elif len(self.ets) == 2: lowerCAmelCase_ : Any = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: lowerCAmelCase_ : List[str] = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: lowerCAmelCase_ : List[str] = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) lowerCAmelCase_ : Dict = self._get_prev_sample(A_ , A_ , A_ , A_) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_) def UpperCAmelCase__ ( self : Dict , A_ : torch.FloatTensor , *A_ : Optional[int] , **A_ : Tuple): return sample def UpperCAmelCase__ ( self : List[str] , A_ : List[Any] , A_ : int , A_ : Any , A_ : Optional[int]): lowerCAmelCase_ : int = self.alphas[timestep_index] lowerCAmelCase_ : List[str] = self.betas[timestep_index] lowerCAmelCase_ : Dict = self.alphas[prev_timestep_index] lowerCAmelCase_ : Optional[int] = self.betas[prev_timestep_index] lowerCAmelCase_ : Dict = (sample - sigma * ets) / max(A_ , 1e-8) lowerCAmelCase_ : Tuple = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : int): return self.config.num_train_timesteps
103
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A__ : str = logging.get_logger(__name__) A__ : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } A__ : Union[str, Any] = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } A__ : Dict = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class __snake_case ( UpperCamelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = RealmTokenizer def __init__( self : int , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Optional[Any]=True , A_ : Optional[int]="[UNK]" , A_ : List[Any]="[SEP]" , A_ : List[Any]="[PAD]" , A_ : Optional[Any]="[CLS]" , A_ : Dict="[MASK]" , A_ : List[Any]=True , A_ : List[str]=None , **A_ : List[str] , ): super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , A_) != do_lower_case or normalizer_state.get('''strip_accents''' , A_) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_) != tokenize_chinese_chars ): lowerCAmelCase_ : int = getattr(A_ , normalizer_state.pop('''type''')) lowerCAmelCase_ : str = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : Optional[Any] = tokenize_chinese_chars lowerCAmelCase_ : Union[str, Any] = normalizer_class(**A_) lowerCAmelCase_ : Any = do_lower_case def UpperCAmelCase__ ( self : Optional[Any] , A_ : Optional[Any] , **A_ : Tuple): lowerCAmelCase_ : List[str] = PaddingStrategy.MAX_LENGTH lowerCAmelCase_ : str = text lowerCAmelCase_ : int = kwargs.pop('''text_pair''' , A_) lowerCAmelCase_ : str = kwargs.pop('''return_tensors''' , A_) lowerCAmelCase_ : int = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(A_): if batch_text_pair is not None: lowerCAmelCase_ : List[Any] = batch_text_pair[idx] else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : int = super().__call__(A_ , A_ , return_tensors=A_ , **A_) lowerCAmelCase_ : Optional[Any] = encoded_candidates.get('''input_ids''') lowerCAmelCase_ : List[str] = encoded_candidates.get('''attention_mask''') lowerCAmelCase_ : Optional[Any] = encoded_candidates.get('''token_type_ids''') if encoded_input_ids is not None: output_data["input_ids"].append(A_) if encoded_attention_mask is not None: output_data["attention_mask"].append(A_) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A_) lowerCAmelCase_ : List[str] = {key: item for key, item in output_data.items() if len(A_) != 0} return BatchEncoding(A_ , tensor_type=A_) def UpperCAmelCase__ ( self : List[str] , A_ : Tuple , A_ : List[Any]=None): lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None): lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase__ ( self : List[str] , A_ : str , A_ : Optional[str] = None): lowerCAmelCase_ : List[str] = self._tokenizer.model.save(A_ , name=A_) return tuple(A_)
103
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : str = "data2vec-vision" def __init__(self : Optional[Any] , snake_case_ : List[Any]=7_6_8 , snake_case_ : Tuple=1_2 , snake_case_ : Any=1_2 , snake_case_ : Optional[int]=3_0_7_2 , snake_case_ : Tuple="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Dict=0.02 , snake_case_ : Optional[int]=1E-12 , snake_case_ : int=2_2_4 , snake_case_ : Optional[Any]=1_6 , snake_case_ : List[str]=3 , snake_case_ : Tuple=False , snake_case_ : Any=False , snake_case_ : Optional[int]=False , snake_case_ : str=False , snake_case_ : Any=0.1 , snake_case_ : int=0.1 , snake_case_ : Optional[Any]=True , snake_case_ : Union[str, Any]=[3, 5, 7, 1_1] , snake_case_ : Any=[1, 2, 3, 6] , snake_case_ : int=True , snake_case_ : Optional[Any]=0.4 , snake_case_ : Tuple=2_5_6 , snake_case_ : Optional[Any]=1 , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=2_5_5 , **snake_case_ : int , ): super().__init__(**snake_case_ ) __a : List[str] = hidden_size __a : List[str] = num_hidden_layers __a : Any = num_attention_heads __a : List[str] = intermediate_size __a : Optional[int] = hidden_act __a : int = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Any = initializer_range __a : str = layer_norm_eps __a : List[str] = image_size __a : Optional[Any] = patch_size __a : int = num_channels __a : Tuple = use_mask_token __a : List[Any] = use_absolute_position_embeddings __a : Tuple = use_relative_position_bias __a : Any = use_shared_relative_position_bias __a : Dict = layer_scale_init_value __a : int = drop_path_rate __a : Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) __a : Union[str, Any] = out_indices __a : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) __a : List[Any] = use_auxiliary_head __a : List[Any] = auxiliary_loss_weight __a : str = auxiliary_channels __a : int = auxiliary_num_convs __a : Union[str, Any] = auxiliary_concat_input __a : Dict = semantic_loss_ignore_index class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = version.parse("1.11" ) @property def lowerCAmelCase (self : Optional[Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase (self : Optional[int] ): return 1E-4
90
def __UpperCamelCase ( lowerCAmelCase__ : int = 1_0_0_0 ): __a : int = -1 __a : Any = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __a : List[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) __a : Union[str, Any] = n - a - b if c * c == (a * a + b * b): __a : Union[str, Any] = a * b * c if candidate >= product: __a : List[Any] = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
90
1
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCAmelCase__ = '''.''' if __name__ == "__main__": lowerCAmelCase__ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') lowerCAmelCase__ = [] lowerCAmelCase__ = [] with open(doctest_file_path) as fp: for line in fp: lowerCAmelCase__ = line.strip() lowerCAmelCase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCAmelCase__ = '''\n'''.join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
104
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case__(_UpperCamelCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : str = tempfile.mkdtemp() lowercase__ : Optional[Any] = 8 # DPR tok lowercase__ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase__ : List[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowercase__ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[Any] = {"unk_token": "<unk>"} lowercase__ : Any = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Any ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def snake_case ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[int] ): lowercase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def snake_case ( self : List[str] ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Union[str, Any] = dataset lowercase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : bool ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowercase__ : Any = os.path.join(self.tmpdirname , "dataset" ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowercase__ : Tuple = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowercase__ : Dict = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def snake_case ( self : Tuple ): lowercase__ : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowercase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowercase__ : List[str] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) lowercase__ : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowercase__ : Any = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def snake_case ( self : int ): lowercase__ : Any = 1 lowercase__ : str = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : str ): lowercase__ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Tuple = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : str ): lowercase__ : Union[str, Any] = 1 lowercase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Union[str, Any] ): lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : List[str] ): lowercase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : int = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : List[Any] = 1 lowercase__ : List[str] = self.get_dummy_legacy_index_retriever() lowercase__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Dict ): lowercase__ : Optional[int] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : Any ): import torch lowercase__ : List[Any] = 1 lowercase__ : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = [[5, 7], [10, 11]] lowercase__ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) lowercase__ : List[str] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : int ): lowercase__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() lowercase__ : Optional[int] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = [[5, 7], [10, 11]] lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[Any] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
130
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case : int = '''▁''' snake_case : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = BigBirdTokenizer SCREAMING_SNAKE_CASE__ = BigBirdTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() a :List[Any] = self.tokenizer_class(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = '''<s>''' a :Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_lowerCamelCase ) , 1004 ) def SCREAMING_SNAKE_CASE__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def SCREAMING_SNAKE_CASE__ ( self ): if not self.test_rust_tokenizer: return a :Optional[int] = self.get_tokenizer() a :List[Any] = self.get_rust_tokenizer() a :Optional[Any] = '''I was born in 92000, and this is falsé.''' a :List[Any] = tokenizer.tokenize(_lowerCamelCase ) a :int = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Dict = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) a :Union[str, Any] = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :str = self.get_rust_tokenizer() a :Optional[int] = tokenizer.encode(_lowerCamelCase ) a :Any = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = BigBirdTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) a :Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] , ) a :Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a :Tuple = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a :List[Any] = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = '''Hello World!''' a :List[Any] = [65, 1_8536, 2260, 101, 66] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off a :List[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence a :Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] a :List[str] = ''' '''.join(_lowerCamelCase ) a :Optional[int] = self.big_tokenizer.encode_plus(_lowerCamelCase , return_tensors='''pt''' , return_token_type_ids=_lowerCamelCase ) a :Optional[int] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowerCamelCase ) a :str = BigBirdConfig(attention_type='''original_full''' ) a :Tuple = BigBirdModel(_lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCamelCase ) model(**_lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) a :Optional[int] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # fmt: off a :List[Any] = {'''input_ids''': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
281
def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" if n_term == "": return [] a :list = [] for temp in range(int(UpperCAmelCase_ ) ): series.append(F'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": snake_case : Tuple = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
281
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : "DiagonalGaussianDistribution" class UpperCAmelCase_ ( __lowercase , __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = True @register_to_config def __init__( self , _a = 3 , _a = 3 , _a = ("DownEncoderBlock2D",) , _a = ("UpDecoderBlock2D",) , _a = (6_4,) , _a = 1 , _a = "silu" , _a = 4 , _a = 3_2 , _a = 3_2 , _a = 0.1_8215 , ) -> int: super().__init__() # pass init params to Encoder _a : Optional[Any] = Encoder( in_channels=_a , out_channels=_a , down_block_types=_a , block_out_channels=_a , layers_per_block=_a , act_fn=_a , norm_num_groups=_a , double_z=_a , ) # pass init params to Decoder _a : List[Any] = Decoder( in_channels=_a , out_channels=_a , up_block_types=_a , block_out_channels=_a , layers_per_block=_a , norm_num_groups=_a , act_fn=_a , ) _a : Optional[Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _a : List[Any] = nn.Convad(_a , _a , 1 ) _a : Tuple = False _a : Optional[int] = False # only relevant if vae tiling is enabled _a : Optional[Any] = self.config.sample_size _a : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _a : Tuple = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _a : Tuple = 0.25 def __lowercase ( self , _a , _a=False ) -> Dict: if isinstance(_a , (Encoder, Decoder) ): _a : Union[str, Any] = value def __lowercase ( self , _a = True ) -> str: _a : List[Any] = use_tiling def __lowercase ( self ) -> Any: self.enable_tiling(_a ) def __lowercase ( self ) -> str: _a : Union[str, Any] = True def __lowercase ( self ) -> int: _a : Any = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowercase ( self ) -> Dict[str, AttentionProcessor]: _a : Any = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , '''set_processor''' ): _a : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def __lowercase ( self , _a ) -> List[Any]: _a : Tuple = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_a )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , '''set_processor''' ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def __lowercase ( self ) -> Dict: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __lowercase ( self , _a , _a = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_a , return_dict=_a ) if self.use_slicing and x.shape[0] > 1: _a : Union[str, Any] = [self.encoder(_a ) for x_slice in x.split(1 )] _a : List[Any] = torch.cat(_a ) else: _a : Optional[int] = self.encoder(_a ) _a : Any = self.quant_conv(_a ) _a : Union[str, Any] = DiagonalGaussianDistribution(_a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_a ) def __lowercase ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_a , return_dict=_a ) _a : Dict = self.post_quant_conv(_a ) _a : Optional[Any] = self.decoder(_a ) if not return_dict: return (dec,) return DecoderOutput(sample=_a ) @apply_forward_hook def __lowercase ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: _a : List[str] = [self._decode(_a ).sample for z_slice in z.split(1 )] _a : Optional[int] = torch.cat(_a ) else: _a : int = self._decode(_a ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_a ) def __lowercase ( self , _a , _a , _a ) -> Any: _a : int = min(a.shape[2] , b.shape[2] , _a ) for y in range(_a ): _a : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __lowercase ( self , _a , _a , _a ) -> Any: _a : Dict = min(a.shape[3] , b.shape[3] , _a ) for x in range(_a ): _a : List[str] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __lowercase ( self , _a , _a = True ) -> AutoencoderKLOutput: _a : str = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _a : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) _a : str = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _a : List[Any] = [] for i in range(0 , x.shape[2] , _a ): _a : Tuple = [] for j in range(0 , x.shape[3] , _a ): _a : Tuple = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _a : Any = self.encoder(_a ) _a : Any = self.quant_conv(_a ) row.append(_a ) rows.append(_a ) _a : Dict = [] for i, row in enumerate(_a ): _a : Dict = [] for j, tile in enumerate(_a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _a : Tuple = self.blend_v(rows[i - 1][j] , _a , _a ) if j > 0: _a : Union[str, Any] = self.blend_h(row[j - 1] , _a , _a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_a , dim=3 ) ) _a : List[str] = torch.cat(_a , dim=2 ) _a : Optional[int] = DiagonalGaussianDistribution(_a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_a ) def __lowercase ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: _a : List[str] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _a : Union[str, Any] = int(self.tile_sample_min_size * self.tile_overlap_factor ) _a : int = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _a : str = [] for i in range(0 , z.shape[2] , _a ): _a : str = [] for j in range(0 , z.shape[3] , _a ): _a : str = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _a : Union[str, Any] = self.post_quant_conv(_a ) _a : Optional[int] = self.decoder(_a ) row.append(_a ) rows.append(_a ) _a : Union[str, Any] = [] for i, row in enumerate(_a ): _a : List[Any] = [] for j, tile in enumerate(_a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _a : Optional[Any] = self.blend_v(rows[i - 1][j] , _a , _a ) if j > 0: _a : Any = self.blend_h(row[j - 1] , _a , _a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_a , dim=3 ) ) _a : int = torch.cat(_a , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_a ) def __lowercase ( self , _a , _a = False , _a = True , _a = None , ) -> Union[DecoderOutput, torch.FloatTensor]: _a : List[str] = sample _a : List[Any] = self.encode(_a ).latent_dist if sample_posterior: _a : Optional[Any] = posterior.sample(generator=_a ) else: _a : Optional[int] = posterior.mode() _a : Optional[Any] = self.decode(_a ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_a )
235
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : List[Any] = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : Optional[Any] = 2 * i + 1 _a : Optional[int] = 2 * i _a : str = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
235
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''''' _UpperCamelCase : Union[str, Any] = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self: str , _SCREAMING_SNAKE_CASE: Optional[DatasetInfo] = None , _SCREAMING_SNAKE_CASE: Optional[str] = None , **_SCREAMING_SNAKE_CASE: str , ) -> Optional[Any]: """simple docstring""" super().__init__(self , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = repo_info UpperCamelCase_ = token UpperCamelCase_ = None def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" if self.dir_cache is None: UpperCamelCase_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCamelCase_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(_SCREAMING_SNAKE_CASE ): {"name": str(_SCREAMING_SNAKE_CASE ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: str = "rb" , **_SCREAMING_SNAKE_CASE: Any , ) -> List[str]: """simple docstring""" if not isinstance(self.repo_info , _SCREAMING_SNAKE_CASE ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) UpperCamelCase_ = hf_hub_url(self.repo_info.id , _SCREAMING_SNAKE_CASE , revision=self.repo_info.sha ) return fsspec.open( _SCREAMING_SNAKE_CASE , mode=_SCREAMING_SNAKE_CASE , headers=get_authentication_headers_for_url(_SCREAMING_SNAKE_CASE , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: str ) -> Dict: """simple docstring""" self._get_dirs() UpperCamelCase_ = self._strip_protocol(_SCREAMING_SNAKE_CASE ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str=False , **_SCREAMING_SNAKE_CASE: Optional[int] ) -> int: """simple docstring""" self._get_dirs() UpperCamelCase_ = PurePosixPath(path.strip("/" ) ) UpperCamelCase_ = {} for p, f in self.dir_cache.items(): UpperCamelCase_ = PurePosixPath(p.strip("/" ) ) UpperCamelCase_ = p.parent if root == path: UpperCamelCase_ = f UpperCamelCase_ = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=4 , ) -> Optional[int]: __magic_name__ : Union[str, Any] = parent __magic_name__ : List[str] = batch_size __magic_name__ : List[str] = seq_length __magic_name__ : Optional[int] = is_training __magic_name__ : List[Any] = use_attention_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : List[Any] = use_labels __magic_name__ : List[Any] = vocab_size __magic_name__ : Any = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Optional[Any] = initializer_range __magic_name__ : int = num_choices def __magic_name__ ( self ) -> Dict: __magic_name__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_attention_mask: __magic_name__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCAmelCase__ , ) return config, input_ids, attention_mask def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Tuple = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[Any] = FlaxDistilBertModelTester(self ) @slow def __magic_name__ ( self ) -> str: for model_class_name in self.all_model_classes: __magic_name__ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) __magic_name__ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Dict: __magic_name__ : List[str] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __magic_name__ : List[str] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __magic_name__ : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __magic_name__ : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __magic_name__ : Any = (1, 11, 7_68) self.assertEqual(output.shape , lowerCAmelCase__ ) __magic_name__ : Any = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
342
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : Optional[int] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase, __lowerCAmelCase ) def _lowerCAmelCase ( UpperCAmelCase__ : Dict ) ->Optional[Any]: A__ : Any = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A__ : Optional[int] = s_dict.pop(__lowerCAmelCase ) elif "subsample" in key: A__ : Dict = s_dict.pop(__lowerCAmelCase ) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[Any]: A__ : int = emb.weight.shape A__ : List[str] = nn.Linear(__lowerCAmelCase, __lowerCAmelCase, bias=__lowerCAmelCase ) A__ : int = emb.weight.data return lin_layer def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : List[Any] ) ->Optional[int]: A__ : int = torch.load(__lowerCAmelCase, map_location="""cpu""" ) A__ : List[Any] = mam_aaa["""args"""] A__ : Optional[int] = mam_aaa["""model"""] A__ : Dict = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(__lowerCAmelCase ) rename_keys(__lowerCAmelCase ) A__ : Dict = state_dict["""decoder.embed_tokens.weight"""].shape[0] A__ : List[str] = args.share_decoder_input_output_embed A__ : Optional[int] = [int(__lowerCAmelCase ) for i in args.conv_kernel_sizes.split(""",""" )] A__ : str = SpeechaTextConfig( vocab_size=__lowerCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="""relu""", num_conv_layers=len(__lowerCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=__lowerCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=__lowerCAmelCase, num_beams=5, max_length=2_0_0, use_cache=__lowerCAmelCase, decoder_start_token_id=2, early_stopping=__lowerCAmelCase, ) A__ : Optional[Any] = SpeechaTextForConditionalGeneration(__lowerCAmelCase ) A__ : Optional[Any] = model.model.load_state_dict(__lowerCAmelCase, strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f' but all the following weights are missing {missing}' ) if tie_embeds: A__ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A__ : int = lm_head_weights model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
362
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
0
import os import pytest from attr import dataclass __A = "us-east-1" # defaults region @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 snake_case_ = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' snake_case_ = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 5_00, '''save_steps''': 55_00, } snake_case_ = {**hyperparameters, '''max_steps''': 10_00} @property def lowercase_ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowercase_ ( self ) -> str: '''simple docstring''' return f"""{self.framework}-transfromers-test""" @property def lowercase_ ( self ) -> str: '''simple docstring''' return f"""./tests/sagemaker/scripts/{self.framework}""" @property def lowercase_ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" __lowerCamelCase = SageMakerTestEnvironment(framework=request.cls.framework )
90
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''input_features''', '''is_longer'''] def __init__( self , lowerCamelCase__=64 , lowerCamelCase__=48_000 , lowerCamelCase__=480 , lowerCamelCase__=10 , lowerCamelCase__=1_024 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__ = 0 , lowerCamelCase__ = 14_000 , lowerCamelCase__ = None , lowerCamelCase__ = "fusion" , lowerCamelCase__ = "repeatpad" , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__( feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = top_db __lowerCamelCase = truncation __lowerCamelCase = padding __lowerCamelCase = fft_window_size __lowerCamelCase = (fft_window_size >> 1) + 1 __lowerCamelCase = hop_length __lowerCamelCase = max_length_s __lowerCamelCase = max_length_s * sampling_rate __lowerCamelCase = sampling_rate __lowerCamelCase = frequency_min __lowerCamelCase = frequency_max __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm=lowerCamelCase__ , mel_scale='htk' , ) __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm='slaney' , mel_scale='slaney' , ) def lowercase_ ( self ) -> Dict[str, Any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = spectrogram( lowerCamelCase__ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase__ , log_mel='dB' , ) return log_mel_spectrogram.T def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] # randomly choose index for each part __lowerCamelCase = np.random.choice(ranges[0] ) __lowerCamelCase = np.random.choice(ranges[1] ) __lowerCamelCase = np.random.choice(ranges[2] ) __lowerCamelCase = mel[idx_front : idx_front + chunk_frames, :] __lowerCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __lowerCamelCase = mel[idx_back : idx_back + chunk_frames, :] __lowerCamelCase = torch.tensor(mel[None, None, :] ) __lowerCamelCase = torch.nn.functional.interpolate( lowerCamelCase__ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = mel_shrink[0][0].numpy() __lowerCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowerCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowerCamelCase = len(lowerCamelCase__ ) - max_length __lowerCamelCase = np.random.randint(0 , overflow + 1 ) __lowerCamelCase = waveform[idx : idx + max_length] __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowerCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowerCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowerCamelCase = False else: __lowerCamelCase = self._random_mel_fusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: __lowerCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = np.pad(lowerCamelCase__ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchFeature: '''simple docstring''' __lowerCamelCase = truncation if truncation is not None else self.truncation __lowerCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowerCamelCase = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowerCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): __lowerCamelCase = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. __lowerCamelCase = [ self._get_input_mel(lowerCamelCase__ , max_length if max_length else self.nb_max_samples , lowerCamelCase__ , lowerCamelCase__ ) for waveform in raw_speech ] __lowerCamelCase = [] __lowerCamelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowerCamelCase = np.random.randint(0 , len(lowerCamelCase__ ) ) __lowerCamelCase = True if isinstance(input_mel[0] , lowerCamelCase__ ): __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowerCamelCase = [[longer] for longer in is_longer] __lowerCamelCase = {'input_features': input_mel, 'is_longer': is_longer} __lowerCamelCase = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: __lowerCamelCase = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
90
1
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A_ : int = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['pixel_values'] def __init__(self, lowerCamelCase_ = True, lowerCamelCase_ = 1 / 2_5_5, lowerCamelCase_ = True, lowerCamelCase_ = 8, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Any = do_rescale lowerCamelCase__ : Tuple = rescale_factor lowerCamelCase__ : List[str] = do_pad lowerCamelCase__ : List[Any] = pad_size def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_ ): '''simple docstring''' return rescale(lowerCamelCase_, scale=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = get_image_size(lowerCamelCase_ ) lowerCamelCase__ : Tuple = (old_height // size + 1) * size - old_height lowerCamelCase__ : int = (old_width // size + 1) * size - old_width return pad(lowerCamelCase_, ((0, pad_height), (0, pad_width)), mode='symmetric', data_format=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = ChannelDimension.FIRST, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Tuple = do_pad if do_pad is not None else self.do_pad lowerCamelCase__ : List[str] = pad_size if pad_size is not None else self.pad_size lowerCamelCase__ : List[Any] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : Optional[int] = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : str = [self.rescale(image=lowerCamelCase_, scale=lowerCamelCase_ ) for image in images] if do_pad: lowerCamelCase__ : Dict = [self.pad(lowerCamelCase_, size=lowerCamelCase_ ) for image in images] lowerCamelCase__ : Tuple = [to_channel_dimension_format(lowerCamelCase_, lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[Any] = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_ )
316
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( _snake_case : str = "laptop" ) -> DataFrame: '''simple docstring''' __magic_name__ : Tuple = F'''https://www.amazon.in/laptop/s?k={product}''' __magic_name__ : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __magic_name__ : Tuple = BeautifulSoup(requests.get(_snake_case , headers=_snake_case ).text ) # Initialize a Pandas dataframe with the column titles __magic_name__ : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: __magic_name__ : Dict = item.ha.text __magic_name__ : Optional[int] = "https://www.amazon.in/" + item.ha.a["href"] __magic_name__ : Optional[Any] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: __magic_name__ : Union[str, Any] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: __magic_name__ : Dict = "Not available" try: __magic_name__ : Optional[int] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: __magic_name__ : List[str] = "" try: __magic_name__ : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: __magic_name__ : str = float("nan" ) except AttributeError: pass __magic_name__ : Optional[int] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __magic_name__ : Optional[Any] = " " __magic_name__ : str = " " data_frame.index += 1 return data_frame if __name__ == "__main__": snake_case : Any = "headphones" get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
281
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets snake_case : List[Any] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" snake_case : Any = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" snake_case : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=None , _a=True , _a=False ): if rouge_types is None: __magic_name__ : str = ["rouge1", "rouge2", "rougeL", "rougeLsum"] __magic_name__ : List[str] = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a ) if use_aggregator: __magic_name__ : Dict = scoring.BootstrapAggregator() else: __magic_name__ : str = [] for ref, pred in zip(_a , _a ): __magic_name__ : Union[str, Any] = scorer.score(_a , _a ) if use_aggregator: aggregator.add_scores(_a ) else: scores.append(_a ) if use_aggregator: __magic_name__ : Any = aggregator.aggregate() else: __magic_name__ : List[Any] = {} for key in scores[0]: __magic_name__ : str = [score[key] for score in scores] return result
281
1
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants __UpperCAmelCase = 3_00 # TEMPERATURE (unit = K) def _snake_case ( lowercase__ : float , lowercase__ : float , lowercase__ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = "detr" UpperCAmelCase_ :str = ["past_key_values"] UpperCAmelCase_ :Tuple = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __A=True , __A=None , __A=3 , __A=100 , __A=6 , __A=2048 , __A=8 , __A=6 , __A=2048 , __A=8 , __A=0.0 , __A=0.0 , __A=True , __A="relu" , __A=256 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.0_2 , __A=1.0 , __A=False , __A="sine" , __A="resnet50" , __A=True , __A=False , __A=1 , __A=5 , __A=2 , __A=1 , __A=1 , __A=5 , __A=2 , __A=0.1 , **__A , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase_ :int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__A , __A ): lowerCAmelCase_ :str = backbone_config.get("""model_type""" ) lowerCAmelCase_ :List[Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ :Optional[Any] = config_class.from_dict(__A ) # set timm attributes to None lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = None, None, None lowerCAmelCase_ :Tuple = use_timm_backbone lowerCAmelCase_ :Optional[int] = backbone_config lowerCAmelCase_ :Optional[int] = num_channels lowerCAmelCase_ :int = num_queries lowerCAmelCase_ :List[Any] = d_model lowerCAmelCase_ :Optional[int] = encoder_ffn_dim lowerCAmelCase_ :Tuple = encoder_layers lowerCAmelCase_ :int = encoder_attention_heads lowerCAmelCase_ :Optional[Any] = decoder_ffn_dim lowerCAmelCase_ :List[str] = decoder_layers lowerCAmelCase_ :Dict = decoder_attention_heads lowerCAmelCase_ :Dict = dropout lowerCAmelCase_ :Tuple = attention_dropout lowerCAmelCase_ :Union[str, Any] = activation_dropout lowerCAmelCase_ :Any = activation_function lowerCAmelCase_ :List[str] = init_std lowerCAmelCase_ :Optional[int] = init_xavier_std lowerCAmelCase_ :int = encoder_layerdrop lowerCAmelCase_ :Union[str, Any] = decoder_layerdrop lowerCAmelCase_ :List[str] = encoder_layers lowerCAmelCase_ :Union[str, Any] = auxiliary_loss lowerCAmelCase_ :str = position_embedding_type lowerCAmelCase_ :List[Any] = backbone lowerCAmelCase_ :str = use_pretrained_backbone lowerCAmelCase_ :str = dilation # Hungarian matcher lowerCAmelCase_ :List[Any] = class_cost lowerCAmelCase_ :Union[str, Any] = bbox_cost lowerCAmelCase_ :Tuple = giou_cost # Loss coefficients lowerCAmelCase_ :Optional[int] = mask_loss_coefficient lowerCAmelCase_ :Union[str, Any] = dice_loss_coefficient lowerCAmelCase_ :Tuple = bbox_loss_coefficient lowerCAmelCase_ :Tuple = giou_loss_coefficient lowerCAmelCase_ :Dict = eos_coefficient super().__init__(is_encoder_decoder=__A , **__A ) @property def __lowerCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) -> int: return self.d_model @classmethod def __lowerCAmelCase ( cls , __A , **__A ) -> Any: return cls(backbone_config=__A , **__A ) def __lowerCAmelCase ( self ) -> Dict[str, any]: lowerCAmelCase_ :List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase_ :Dict = self.backbone_config.to_dict() lowerCAmelCase_ :str = self.__class__.model_type return output class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[Any] = version.parse("1.11" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-5 @property def __lowerCAmelCase ( self ) -> int: return 12
1
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = '' _snake_case = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' super().__init__(self , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = repo_info __UpperCamelCase = token __UpperCamelCase = None def A__ ( self )-> Any: '''simple docstring''' if self.dir_cache is None: __UpperCamelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __UpperCamelCase = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(SCREAMING_SNAKE_CASE_ ): {'''name''': str(SCREAMING_SNAKE_CASE_ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "rb" , **SCREAMING_SNAKE_CASE_ , )-> List[Any]: '''simple docstring''' if not isinstance(self.repo_info , SCREAMING_SNAKE_CASE_ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) __UpperCamelCase = hf_hub_url(self.repo_info.id , SCREAMING_SNAKE_CASE_ , revision=self.repo_info.sha ) return fsspec.open( SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ , headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE_ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' self._get_dirs() __UpperCamelCase = self._strip_protocol(SCREAMING_SNAKE_CASE_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' self._get_dirs() __UpperCamelCase = PurePosixPath(path.strip('''/''' ) ) __UpperCamelCase = {} for p, f in self.dir_cache.items(): __UpperCamelCase = PurePosixPath(p.strip('''/''' ) ) __UpperCamelCase = p.parent if root == path: __UpperCamelCase = f __UpperCamelCase = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = len(SCREAMING_SNAKE_CASE__ ) for i in range(length - 1 ): __lowerCamelCase : Optional[int] = i for k in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if collection[k] < collection[least]: __lowerCamelCase : Dict = k if least != i: __lowerCamelCase , __lowerCamelCase : Optional[int] = (collection[i], collection[least]) return collection if __name__ == "__main__": lowercase_ = input('Enter numbers separated by a comma:\n').strip() lowercase_ = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
194
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __lowerCamelCase : Dict = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __lowerCamelCase : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __lowerCamelCase : Tuple = subset[i - 1][j] if arr[i - 1] <= j: __lowerCamelCase : List[Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
194
1
def __snake_case ( _UpperCAmelCase = 1000 ): __a = 2**power __a = str(_UpperCAmelCase ) __a = list(_UpperCAmelCase ) __a = 0 for i in list_num: sum_of_num += int(_UpperCAmelCase ) return sum_of_num if __name__ == "__main__": __snake_case :str = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) __snake_case :List[str] = solution(power) print('''Sum of the digits is: ''', result)
49
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = random.Random() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE = global_rng SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int]=7 ,lowerCamelCase__ : Optional[Any]=400 ,lowerCamelCase__ : List[str]=2000 ,lowerCamelCase__ : List[str]=2048 ,lowerCamelCase__ : Any=128 ,lowerCamelCase__ : List[str]=1 ,lowerCamelCase__ : str=512 ,lowerCamelCase__ : Optional[Any]=30 ,lowerCamelCase__ : Tuple=44100 ,) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = min_seq_length SCREAMING_SNAKE_CASE = max_seq_length SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE = spectrogram_length SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = num_audio_channels SCREAMING_SNAKE_CASE = hop_length SCREAMING_SNAKE_CASE = chunk_length SCREAMING_SNAKE_CASE = sampling_rate def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Union[str, Any]=False ) -> str: '''simple docstring''' def _flatten(lowerCamelCase__ : List[Any] ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[Any] = TvltFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,"""spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""sampling_rate""" ) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE = feature_extractor( lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ,mask_audio=lowerCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE = np.asarray(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE = ds.sort("""id""" ).select(range(lowerCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE = TvltFeatureExtractor() SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape ,(1, 1, 192, 128) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,lowerCamelCase__ ,atol=1e-4 ) )
296
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[Any]=18 , lowerCamelCase__ : str=30 , lowerCamelCase__ : Optional[Any]=400 , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : int=True , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : int = size if size is not None else {'''shortest_edge''': 20} UpperCamelCase__ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase__ : Optional[int] = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : List[str] = image_size UpperCamelCase__ : Optional[int] = min_resolution UpperCamelCase__ : Optional[Any] = max_resolution UpperCamelCase__ : str = do_resize UpperCamelCase__ : Union[str, Any] = size UpperCamelCase__ : Dict = do_center_crop UpperCamelCase__ : int = crop_size UpperCamelCase__ : Union[str, Any] = do_flip_channel_order def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Union[str, Any] = MobileViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : str ) -> Dict: '''simple docstring''' UpperCamelCase__ : Optional[int] = MobileViTImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_flip_channel_order''' ) ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCamelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase__ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ : int = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase__ ( self : Dict ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ : Any = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
366
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: int = CTRLTokenizer A: List[Any] = False A: Dict = False def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] UpperCamelCase__ : List[str] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] UpperCamelCase__ : int = {'''unk_token''': '''<unk>'''} UpperCamelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Tuple , **lowerCamelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = '''adapt react readapt apt''' UpperCamelCase__ : Optional[Any] = '''adapt react readapt apt''' return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ : Optional[Any] = '''adapt react readapt apt''' UpperCamelCase__ : List[Any] = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() UpperCamelCase__ : Tuple = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = tokens + [tokenizer.unk_token] UpperCamelCase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
51
0
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
def lowerCAmelCase_ ( _lowercase : list) -> list: """simple docstring""" if any(not isinstance(_lowercase , _lowercase) or x < 0 for x in sequence): raise TypeError("""Sequence must be list of non-negative integers""") for _ in range(len(_lowercase)): for i, (rod_upper, rod_lower) in enumerate(zip(_lowercase , sequence[1:])): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
266
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : List[Any] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowercase : Tuple =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
266
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a = logging.get_logger(__name__) __a = {'tokenizer_file': 'tokenizer.json'} __a = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A__ ( UpperCamelCase__ ): """simple docstring""" UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Any = None def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : Any="</s>" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : str=False , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : int , ) -> Tuple: """simple docstring""" super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , add_prefix_space=__a , clean_up_tokenization_spaces=__a , **__a , ) _UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __a ) != add_prefix_space: _UpperCAmelCase : List[str] = getattr(__a , pre_tok_state.pop("type" ) ) _UpperCAmelCase : Optional[Any] = add_prefix_space _UpperCAmelCase : int = pre_tok_class(**__a ) _UpperCAmelCase : Union[str, Any] = add_prefix_space def _lowerCAmelCase ( self : Tuple , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = kwargs.get("is_split_into_words" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._batch_encode_plus(*__a , **__a ) def _lowerCAmelCase ( self : Tuple , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : int ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = kwargs.get("is_split_into_words" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._encode_plus(*__a , **__a ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Any: """simple docstring""" _UpperCAmelCase : Any = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : "Conversation" ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: _UpperCAmelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
145
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={} class __A ( UpperCamelCase__ ): a__ : int = """llama""" a__ : Any = ["""past_key_values"""] def __init__(self : List[str] , __a : List[str]=32000 , __a : Tuple=4096 , __a : List[Any]=11008 , __a : Dict=32 , __a : Tuple=32 , __a : Any=None , __a : Any="silu" , __a : List[Any]=2048 , __a : List[Any]=0.02 , __a : str=1E-6 , __a : Optional[Any]=True , __a : Union[str, Any]=0 , __a : Any=1 , __a : Dict=2 , __a : Dict=1 , __a : str=False , __a : str=None , **__a : Optional[Any] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def _lowercase (self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , __a ) UpperCAmelCase_ = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
1
0
"""simple docstring""" def __UpperCAmelCase ( ) -> int: """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
362
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> Dict: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _a = parser.parse_args() main(args)
194
"""simple docstring""" from collections import defaultdict class _UpperCAmelCase: def __init__( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _UpperCamelCase = [ [-1 for i in range(total + 1)] for j in range(2 ** len(__a)) ] _UpperCamelCase = defaultdict(__a) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _UpperCamelCase = (1 << len(__a)) - 1 def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _UpperCamelCase = self.count_ways_until(__a , task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1) # save the value. _UpperCamelCase = total_ways_util return self.dp[mask][task_no] def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' # Store the list of persons for each task for i in range(len(__a)): for j in task_performed[i]: self.task[j].append(__a) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1) if __name__ == "__main__": _a = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _a = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
194
1
'''simple docstring''' import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" return math.sqrt(a_ ) * math.sqrt(a_ ) == num def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" A_ : Tuple = 0 A_ : Tuple = n while left <= right: A_ : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A_ : Dict = mid - 1 else: A_ : str = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
164
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" A_ : int = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): A_ : Tuple = n - k # Calculate C(n,k) for i in range(a_ ): result *= n - i result //= i + 1 return result def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , a_ ) // (node_count + 1) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if n < 0: raise ValueError("""factorial() not defined for negative values""" ) A_ : Union[str, Any] = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return catalan_number(a_ ) * factorial(a_ ) if __name__ == "__main__": UpperCamelCase__ : Any = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' f'binary trees and {catalan_number(node_count)} binary search trees.' )
164
1
def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> float: """simple docstring""" def get_matched_characters(_lowercase : str , _lowercase : str) -> str: a__ : List[str] = [] a__ : int = min(len(_stra) , len(_stra)) // 2 for i, l in enumerate(_stra): a__ : Dict = int(max(0 , i - limit)) a__ : List[str] = int(min(i + limit + 1 , len(_stra))) if l in _stra[left:right]: matched.append(__A) a__ : List[str] = F'''{_stra[0:_stra.index(__A)]} {_stra[_stra.index(__A) + 1:]}''' return "".join(__A) # matching characters a__ : List[str] = get_matched_characters(__A , __A) a__ : Dict = get_matched_characters(__A , __A) a__ : Tuple = len(__A) # transposition a__ : Union[str, Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A) if ca != ca]) // 2 ) if not match_count: a__ : Tuple = 0.0 else: a__ : Any = ( 1 / 3 * ( match_count / len(__A) + match_count / len(__A) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a__ : Tuple = 0 for ca, ca in zip(stra[:4] , stra[:4]): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
170
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : Optional[int] , **_snake_case : int): """simple docstring""" pass def A (__A : Image ) -> str: """simple docstring""" UpperCAmelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = DepthEstimationPipeline(model=_snake_case , image_processor=_snake_case) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase ( self : str , _snake_case : Optional[int] , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''') self.assertEqual({'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)} , _snake_case) import datasets UpperCAmelCase_ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''') UpperCAmelCase_ = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ]) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, ] , _snake_case , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass @slow @require_torch def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''Intel/dpt-large''' UpperCAmelCase_ = pipeline('''depth-estimation''' , model=_snake_case) UpperCAmelCase_ = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''') UpperCAmelCase_ = hashimage(outputs['''depth''']) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item()) , 2_9.3_0_4) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item()) , 2.6_6_2) @require_torch def lowerCamelCase ( self : Optional[Any]): """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''')
51
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : Any = '▁' __A : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = BertGenerationTokenizer _UpperCamelCase:List[str] = False _UpperCamelCase:List[Any] = True def _snake_case ( self )-> Optional[int]: super().setUp() lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self )-> Any: lowerCamelCase_ ="""<s>""" lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1002 ) def _snake_case ( self )-> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self )-> Any: lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) lowerCamelCase_ =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self )-> str: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def _snake_case ( self )-> Optional[int]: lowerCamelCase_ ="""Hello World!""" lowerCamelCase_ =[1_8536, 2260, 101] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def _snake_case ( self )-> List[str]: lowerCamelCase_ =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase_ =[ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @require_torch @slow def _snake_case ( self )-> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase_ =list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase_ =""" """.join(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =BertGenerationConfig() lowerCamelCase_ =BertGenerationEncoder(_SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE ) model(**_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> int: # fmt: off lowerCamelCase_ ={"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
49
__A : List[Any] = [ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] __A : int = [ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] __A : Any = [ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Dict = [ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] __A : List[str] = [ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] __A : List[str] = [ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] __A : Dict = [ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] __A : str = [ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
49
1
"""simple docstring""" def lowercase ( a__ : Tuple ) -> bool: return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def lowercase ( a__ : str ) -> bool: _UpperCamelCase = credit_card_number _UpperCamelCase = 0 _UpperCamelCase = len(_lowercase ) - 2 for i in range(_lowercase , -1 , -2 ): # double the value of every second digit _UpperCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _UpperCamelCase = cc_number[:i] + str(_lowercase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowercase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowercase ( a__ : Optional[int] ) -> bool: _UpperCamelCase = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(_lowercase ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(_lowercase ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(_lowercase ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
256
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : def __init__( self , A , A=12 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=512 , A=0.0_2 , A=0 , A=None , ) -> Any: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : str = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : List[Any] = projection_dim UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Any = dropout UpperCAmelCase : List[Any] = attention_dropout UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = scope UpperCAmelCase : Union[str, Any] = bos_token_id def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Tuple = input_mask.numpy() UpperCAmelCase , UpperCAmelCase : int = input_mask.shape UpperCAmelCase : Optional[int] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A ): UpperCAmelCase : Tuple = 1 UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : int = self.get_config() return config, input_ids, tf.convert_to_tensor(A ) def _lowercase( self ) -> int: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : int = TFBlipTextModel(config=A ) UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , training=A ) UpperCAmelCase : int = model(A , training=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = config_and_inputs UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = (TFBlipTextModel,) if is_tf_available() else () lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = BlipTextModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Tuple: self.config_tester.run_common_tests() def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> Optional[int]: pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def _lowercase( self ) -> Union[str, Any]: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def _lowercase( self ) -> Optional[int]: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def _lowercase( self ) -> Dict: pass @slow def _lowercase( self ) -> Dict: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Any = TFBlipTextModel.from_pretrained(A ) self.assertIsNotNone(A ) def _lowercase( self , A=True ) -> str: super().test_pt_tf_model_equivalence(allow_missing_keys=A )
265
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCamelCase = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __UpperCamelCase = json.load(f) @require_torch class UpperCamelCase ( unittest.TestCase ): def a_ ( self, lowerCAmelCase__) -> List[str]: return FSMTTokenizer.from_pretrained(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = FSMTForConditionalGeneration.from_pretrained(lowerCAmelCase__).to(lowerCAmelCase__) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ]) @slow def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality snake_case_ = f'facebook/wmt19-{pair}' snake_case_ = self.get_tokenizer(lowerCAmelCase__) snake_case_ = self.get_model(lowerCAmelCase__) snake_case_ = bleu_data[pair]['src'] snake_case_ = bleu_data[pair]['tgt'] snake_case_ = tokenizer(lowerCAmelCase__, return_tensors='pt', truncation=lowerCAmelCase__, padding='longest').to(lowerCAmelCase__) snake_case_ = model.generate( input_ids=batch.input_ids, num_beams=8, ) snake_case_ = tokenizer.batch_decode( lowerCAmelCase__, skip_special_tokens=lowerCAmelCase__, clean_up_tokenization_spaces=lowerCAmelCase__) snake_case_ = calculate_bleu(lowerCAmelCase__, lowerCAmelCase__) print(lowerCAmelCase__) self.assertGreaterEqual(scores['bleu'], lowerCAmelCase__)
312
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
1
'''simple docstring''' from __future__ import annotations import requests A__ : Optional[Any] =set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase = 1 , lowerCAmelCase = "new" , lowerCAmelCase = None ): """simple docstring""" _lowerCAmelCase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase ) - valid_terms ) ): _lowerCAmelCase = f"Invalid search term: {invalid_search_terms}" raise ValueError(lowerCAmelCase ) _lowerCAmelCase = requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_29: raise requests.HTTPError _lowerCAmelCase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase )} _lowerCAmelCase = {} for id_ in range(lowerCAmelCase ): _lowerCAmelCase = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
70
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : List[Any] = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : int = 'wav2vec2' def __init__( self , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE="group" , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) , _SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , _SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=320 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="sum" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1500) , _SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , _SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = hidden_size snake_case_ : Any = feat_extract_norm snake_case_ : Any = feat_extract_activation snake_case_ : str = list(_SCREAMING_SNAKE_CASE ) snake_case_ : int = list(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = list(_SCREAMING_SNAKE_CASE ) snake_case_ : str = conv_bias snake_case_ : Optional[Any] = num_conv_pos_embeddings snake_case_ : Union[str, Any] = num_conv_pos_embedding_groups snake_case_ : Optional[int] = len(self.conv_dim ) snake_case_ : Optional[int] = num_hidden_layers snake_case_ : List[str] = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = hidden_dropout snake_case_ : List[Any] = attention_dropout snake_case_ : Any = activation_dropout snake_case_ : List[str] = feat_proj_dropout snake_case_ : Any = final_dropout snake_case_ : int = layerdrop snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Tuple = initializer_range snake_case_ : Tuple = vocab_size snake_case_ : List[str] = do_stable_layer_norm snake_case_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : Tuple = apply_spec_augment snake_case_ : Union[str, Any] = mask_time_prob snake_case_ : Tuple = mask_time_length snake_case_ : List[Any] = mask_time_min_masks snake_case_ : str = mask_feature_prob snake_case_ : Dict = mask_feature_length snake_case_ : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ : str = num_codevectors_per_group snake_case_ : Optional[int] = num_codevector_groups snake_case_ : List[Any] = contrastive_logits_temperature snake_case_ : Union[str, Any] = feat_quantizer_dropout snake_case_ : Tuple = num_negatives snake_case_ : Union[str, Any] = codevector_dim snake_case_ : int = proj_codevector_dim snake_case_ : str = diversity_loss_weight # ctc loss snake_case_ : Optional[Any] = ctc_loss_reduction snake_case_ : int = ctc_zero_infinity # adapter snake_case_ : List[Any] = add_adapter snake_case_ : Dict = adapter_kernel_size snake_case_ : int = adapter_stride snake_case_ : Union[str, Any] = num_adapter_layers snake_case_ : Union[str, Any] = output_hidden_size or hidden_size snake_case_ : Union[str, Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ : Any = list(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = list(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = list(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = xvector_output_dim @property def _lowerCAmelCase ( self ) -> List[str]: return functools.reduce(operator.mul , self.conv_stride , 1 )
358
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): snake_case_ : List[Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Dict = "sshleifer/tiny-gpt2" snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> int: snake_case_ : List[Any] = "sgugger/tiny-distilbert-classification" snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) snake_case_ : int = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[str] = "sshleifer/tiny-gpt2" snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> int: snake_case_ : Union[str, Any] = "sshleifer/tiny-gpt2" snake_case_ : List[str] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : str = "sshleifer/tiny-gpt2" snake_case_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> str: snake_case_ : List[str] = "sshleifer/tiny-gpt2" snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : str = "sshleifer/tiny-gpt2" snake_case_ : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : List[str] = "patrickvonplaten/t5-tiny-random" snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) snake_case_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : int = "sshleifer/tiny-gpt2" snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Union[str, Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "inf_mem.csv" ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "env.csv" ) , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Dict = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "env.csv" ) ).exists() ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : int = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "sequential" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "cumulative" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "current" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , "log.txt" ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : int = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "log.txt" ) ).exists() )
36
0
'''simple docstring''' from __future__ import annotations def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): lowercase__ = len(lowercase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowercase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowercase__ , lowercase__ , ) def _A ( lowercase__ ): lowercase__ = [] depth_first_search([] , [] , [] , lowercase__ , lowercase__ ) # Print all the boards for board in boards: for column in board: print(lowercase__ ) print("""""" ) print(len(lowercase__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
164
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {"vocab_file": "spm_char.model"} __A = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __A = { "microsoft/speecht5_asr": 1_024, "microsoft/speecht5_tts": 1_024, "microsoft/speecht5_vc": 1_024, } class A ( __UpperCAmelCase ): lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) @property def A__ ( self ) -> str: '''simple docstring''' return self.sp_model.get_piece_size() def A__ ( self ) -> int: '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.sp_model.piece_to_id(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' lowercase__ = self.sp_model.IdToPiece(lowerCamelCase__ ) return token def A__ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' lowercase__ = [] lowercase__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase__ ) + token lowercase__ = [] else: current_sub_tokens.append(lowerCamelCase__ ) out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) lowercase__ = [1] if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + suffix_ones return ([0] * len(lowerCamelCase__ )) + ([0] * len(lowerCamelCase__ )) + suffix_ones def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , """wb""" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
164
1
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( lowerCamelCase : int ): if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) UpperCamelCase_ : Optional[int] = precision UpperCamelCase_ : Tuple = ceil(precision / 14 ) UpperCamelCase_ : Dict = 426880 * Decimal(10005 ).sqrt() UpperCamelCase_ : List[str] = 1 UpperCamelCase_ : Tuple = 13591409 UpperCamelCase_ : Optional[Any] = Decimal(lowerCamelCase ) for k in range(1 , lowerCamelCase ): UpperCamelCase_ : Dict = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a_ = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
50
def __lowercase ( lowerCamelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) UpperCamelCase_ : Optional[int] = sorted(string.lower() ) return len(lowerCamelCase ) == len(set(lowerCamelCase ) ) if __name__ == "__main__": a_ = input('Enter a string ').strip() a_ = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
50
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case :Any = logging.get_logger(__name__) __snake_case :Optional[Any] = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __snake_case :List[Any] = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def __snake_case ( _UpperCAmelCase ): __a = EfficientNetConfig() __a = CONFIG_MAP[model_name]['''hidden_dim'''] __a = CONFIG_MAP[model_name]['''width_coef'''] __a = CONFIG_MAP[model_name]['''depth_coef'''] __a = CONFIG_MAP[model_name]['''image_size'''] __a = CONFIG_MAP[model_name]['''dropout_rate'''] __a = CONFIG_MAP[model_name]['''dw_padding'''] __a = '''huggingface/label-files''' __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def __snake_case ( ): __a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im def __snake_case ( _UpperCAmelCase ): __a = CONFIG_MAP[model_name]['''image_size'''] __a = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=_UpperCAmelCase , ) return preprocessor def __snake_case ( _UpperCAmelCase ): __a = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] __a = sorted(set(_UpperCAmelCase ) ) __a = len(_UpperCAmelCase ) __a = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase , range(_UpperCAmelCase ) )} __a = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: __a = block_name_mapping[b] rename_keys.append((f'block{b}_expand_conv/kernel:0', f'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((f'block{b}_expand_bn/gamma:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((f'block{b}_expand_bn/beta:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (f'block{b}_expand_bn/moving_mean:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (f'block{b}_expand_bn/moving_variance:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (f'block{b}_dwconv/depthwise_kernel:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((f'block{b}_bn/gamma:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((f'block{b}_bn/beta:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (f'block{b}_bn/moving_mean:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (f'block{b}_bn/moving_variance:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((f'block{b}_se_reduce/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((f'block{b}_se_reduce/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((f'block{b}_se_expand/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((f'block{b}_se_expand/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (f'block{b}_project_conv/kernel:0', f'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((f'block{b}_project_bn/gamma:0', f'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((f'block{b}_project_bn/beta:0', f'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (f'block{b}_project_bn/moving_mean:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (f'block{b}_project_bn/moving_variance:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) __a = {} for item in rename_keys: if item[0] in original_param_names: __a = '''efficientnet.''' + item[1] __a = '''classifier.weight''' __a = '''classifier.bias''' return key_mapping def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, value in tf_params.items(): if "normalization" in key: continue __a = key_mapping[key] if "_conv" in key and "kernel" in key: __a = torch.from_numpy(_UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __a = torch.from_numpy(_UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __a = torch.from_numpy(np.transpose(_UpperCAmelCase ) ) else: __a = torch.from_numpy(_UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCAmelCase ) @torch.no_grad() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = model_classes[model_name]( include_top=_UpperCAmelCase , weights='''imagenet''' , input_tensor=_UpperCAmelCase , input_shape=_UpperCAmelCase , pooling=_UpperCAmelCase , classes=1000 , classifier_activation='''softmax''' , ) __a = original_model.trainable_variables __a = original_model.non_trainable_variables __a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __a = param.numpy() __a = list(tf_params.keys() ) # Load HuggingFace model __a = get_efficientnet_config(_UpperCAmelCase ) __a = EfficientNetForImageClassification(_UpperCAmelCase ).eval() __a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) __a = rename_keys(_UpperCAmelCase ) replace_params(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Initialize preprocessor and preprocess input image __a = convert_image_processor(_UpperCAmelCase ) __a = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): __a = hf_model(**_UpperCAmelCase ) __a = outputs.logits.detach().numpy() # Original model inference __a = False __a = CONFIG_MAP[model_name]['''image_size'''] __a = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __a = image.img_to_array(_UpperCAmelCase ) __a = np.expand_dims(_UpperCAmelCase , axis=0 ) __a = original_model.predict(_UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCAmelCase ): os.mkdir(_UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCAmelCase ) preprocessor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f'Pushing converted {model_name} to the hub...' ) __a = f'efficientnet-{model_name}' preprocessor.push_to_hub(_UpperCAmelCase ) hf_model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __snake_case :Optional[int] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
49
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __snake_case :List[Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : Dict , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) requires_backends(self , '''vision''') requires_backends(self , '''torch''') if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.') self.check_model_type(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = {} __a = {} __a = {} # preprocess args if "points_per_batch" in kwargs: __a = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __a = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __a = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __a = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __a = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __a = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __a = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __a = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __a = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __a = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __a = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __a = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' return super().__call__(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , num_workers=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any=64 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : float = 512 / 1_500 , __SCREAMING_SNAKE_CASE : Optional[int] = 32 , __SCREAMING_SNAKE_CASE : Optional[int] = 1 , ): '''simple docstring''' __a = load_image(__SCREAMING_SNAKE_CASE) __a = self.image_processor.size['''longest_edge'''] __a , __a , __a , __a = self.image_processor.generate_crop_boxes( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''') with self.device_placement(): if self.framework == "pt": __a = self.get_inference_context() with inference_context(): __a = self._ensure_tensor_on_device(__SCREAMING_SNAKE_CASE , device=self.device) __a = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''')) __a = image_embeddings __a = grid_points.shape[1] __a = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''') for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = grid_points[:, i : i + points_per_batch, :, :] __a = input_labels[:, i : i + points_per_batch] __a = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int=0.88 , __SCREAMING_SNAKE_CASE : List[Any]=0.95 , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : int=1 , ): '''simple docstring''' __a = model_inputs.pop('''input_boxes''') __a = model_inputs.pop('''is_last''') __a = model_inputs.pop('''original_sizes''').tolist() __a = model_inputs.pop('''reshaped_input_sizes''').tolist() __a = self.model(**__SCREAMING_SNAKE_CASE) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __a = model_outputs['''pred_masks'''] __a = self.image_processor.post_process_masks( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , binarize=__SCREAMING_SNAKE_CASE) __a = model_outputs['''iou_scores'''] __a , __a , __a = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : int=0.7 , ): '''simple docstring''' __a = [] __a = [] __a = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''')) all_masks.extend(model_output.pop('''masks''')) all_boxes.append(model_output.pop('''boxes''')) __a = torch.cat(__SCREAMING_SNAKE_CASE) __a = torch.cat(__SCREAMING_SNAKE_CASE) __a , __a , __a , __a = self.image_processor.post_process_for_mask_generation( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = defaultdict(__SCREAMING_SNAKE_CASE) for output in model_outputs: for k, v in output.items(): extra[k].append(__SCREAMING_SNAKE_CASE) __a = {} if output_rle_mask: __a = rle_mask if output_bboxes_mask: __a = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
49
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any]=1024 ): UpperCamelCase_, UpperCamelCase_ : int = [], [] UpperCamelCase_ : Dict = list(zip(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_, UpperCamelCase_ : int = sorted_examples[0] def is_too_big(lowerCamelCase : str ): return tok(lowerCamelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCamelCase_ : Optional[Any] = new_src + ' ' + src UpperCamelCase_ : int = new_tgt + ' ' + tgt if is_too_big(lowerCamelCase ) or is_too_big(lowerCamelCase ): # cant fit, finalize example finished_src.append(lowerCamelCase ) finished_tgt.append(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_ : Dict = src, tgt else: # can fit, keep adding UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCamelCase ) finished_tgt.append(lowerCamelCase ) return finished_src, finished_tgt def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Path , lowerCamelCase : Tuple , lowerCamelCase : Dict ): UpperCamelCase_ : List[Any] = Path(lowerCamelCase ) save_path.mkdir(exist_ok=lowerCamelCase ) for split in ["train"]: UpperCamelCase_, UpperCamelCase_ : Any = data_dir / F"{split}.source", data_dir / F"{split}.target" UpperCamelCase_ : List[Any] = [x.rstrip() for x in Path(lowerCamelCase ).open().readlines()] UpperCamelCase_ : Optional[int] = [x.rstrip() for x in Path(lowerCamelCase ).open().readlines()] UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = pack_examples(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(F"packed {split} split from {len(lowerCamelCase )} examples -> {len(lowerCamelCase )}." ) Path(save_path / F"{split}.source" ).open('w' ).write('\n'.join(lowerCamelCase ) ) Path(save_path / F"{split}.target" ).open('w' ).write('\n'.join(lowerCamelCase ) ) for split in ["val", "test"]: UpperCamelCase_, UpperCamelCase_ : Any = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(lowerCamelCase , save_path / F"{split}.source" ) shutil.copyfile(lowerCamelCase , save_path / F"{split}.target" ) def __lowercase ( ): UpperCamelCase_ : int = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=lowerCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=lowerCamelCase , default=128 ) parser.add_argument('--data_dir' , type=lowerCamelCase ) parser.add_argument('--save_path' , type=lowerCamelCase ) UpperCamelCase_ : Tuple = parser.parse_args() UpperCamelCase_ : Optional[int] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
50
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : Optional[int] ): UpperCamelCase_ : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): UpperCamelCase_ : Tuple = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): UpperCamelCase_ : List[Any] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase_ : Optional[Any] = key[key.find('patch_embed' ) + len('patch_embed' )] UpperCamelCase_ : List[str] = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(lowerCamelCase )-1}" ) if "norm" in key: UpperCamelCase_ : int = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase_ : int = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] UpperCamelCase_ : int = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(lowerCamelCase )-1}" ) if "layer_norm1" in key: UpperCamelCase_ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: UpperCamelCase_ : str = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase_ : Union[str, Any] = key[key.find('block' ) + len('block' )] UpperCamelCase_ : Dict = key.replace(F"block{idx}" , F"block.{int(lowerCamelCase )-1}" ) if "attn.q" in key: UpperCamelCase_ : Optional[Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: UpperCamelCase_ : Any = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: UpperCamelCase_ : Optional[int] = key.replace('attn' , 'attention.self' ) if "fc1" in key: UpperCamelCase_ : int = key.replace('fc1' , 'dense1' ) if "fc2" in key: UpperCamelCase_ : Optional[int] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: UpperCamelCase_ : Tuple = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: UpperCamelCase_ : Union[str, Any] = key.replace('linear_fuse.conv' , 'linear_fuse' ) UpperCamelCase_ : Tuple = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase_ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] UpperCamelCase_ : List[str] = key.replace(F"linear_c{idx}" , F"linear_c.{int(lowerCamelCase )-1}" ) if "bot_conv" in key: UpperCamelCase_ : Union[str, Any] = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: UpperCamelCase_ : Optional[int] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: UpperCamelCase_ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: UpperCamelCase_ : Tuple = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: UpperCamelCase_ : Any = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: UpperCamelCase_ : int = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: UpperCamelCase_ : Optional[Any] = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): UpperCamelCase_ : str = key.replace('module.last_layer_depth' , 'head.head' ) UpperCamelCase_ : Optional[Any] = value return new_state_dict def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase_ : Union[str, Any] = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) UpperCamelCase_ : int = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict UpperCamelCase_ : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase_ : int = kv_bias[: config.hidden_sizes[i]] UpperCamelCase_ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase_ : Optional[int] = kv_bias[config.hidden_sizes[i] :] def __lowercase ( ): UpperCamelCase_ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ : Optional[Any] = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]=None ): UpperCamelCase_ : List[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCamelCase_ : Tuple = GLPNImageProcessor() # prepare image UpperCamelCase_ : List[Any] = prepare_img() UpperCamelCase_ : str = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict UpperCamelCase_ : Any = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys UpperCamelCase_ : str = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict UpperCamelCase_ : Dict = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass UpperCamelCase_ : Optional[Any] = model(lowerCamelCase ) UpperCamelCase_ : str = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase_ : Tuple = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: UpperCamelCase_ : Any = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"Unknown model name: {model_name}" ) UpperCamelCase_ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) a_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __a :List[str] = logging.get_logger(__name__) __a :List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __a :Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : int ,__UpperCamelCase : List[str] ): """simple docstring""" for attribute in key.split("." ): A_ = getattr(__UpperCamelCase ,__UpperCamelCase ) if weight_type is not None: A_ = getattr(__UpperCamelCase ,__UpperCamelCase ).shape else: A_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value elif weight_type == "running_mean": A_ = value elif weight_type == "running_var": A_ = value elif weight_type == "num_batches_tracked": A_ = value elif weight_type == "inv_freq": A_ = value else: A_ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : str ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,hf_model.config.feat_extract_norm == "group" ,) A_ = True else: for key, mapped_key in MAPPING.items(): A_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ = True if "*" in mapped_key: A_ = name.split(__UpperCamelCase )[0].split("." )[-2] A_ = mapped_key.replace("*" ,__UpperCamelCase ) if "pos_bias_u" in name: A_ = None elif "pos_bias_v" in name: A_ = None elif "weight_g" in name: A_ = "weight_g" elif "weight_v" in name: A_ = "weight_v" elif "bias" in name: A_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A_ = "weight" elif "running_mean" in name: A_ = "running_mean" elif "inv_freq" in name: A_ = "inv_freq" elif "running_var" in name: A_ = "running_var" elif "num_batches_tracked" in name: A_ = "num_batches_tracked" else: A_ = None set_recursively(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : int ,__UpperCamelCase : str ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ): """simple docstring""" A_ = full_name.split("conv_layers." )[-1] A_ = name.split("." ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Dict ,__UpperCamelCase : Any=None ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : List[Any]=True ): """simple docstring""" if config_path is not None: A_ = WavaVecaConformerConfig.from_pretrained(__UpperCamelCase ,hidden_act="swish" ) else: A_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: A_ = "rotary" if is_finetuned: if dict_path: A_ = Dictionary.load(__UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.eos_index A_ = len(target_dict.symbols ) A_ = os.path.join(__UpperCamelCase ,"vocab.json" ) if not os.path.isdir(__UpperCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__UpperCamelCase ) ) return os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = target_dict.indices # fairseq has the <pad> and <s> switched A_ = 0 A_ = 1 with open(__UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(__UpperCamelCase ,__UpperCamelCase ) A_ = WavaVecaCTCTokenizer( __UpperCamelCase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=__UpperCamelCase ,) A_ = True if config.feat_extract_norm == "layer" else False A_ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6000 ,padding_value=0 ,do_normalize=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) A_ = WavaVecaProcessor(feature_extractor=__UpperCamelCase ,tokenizer=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) A_ = WavaVecaConformerForCTC(__UpperCamelCase ) else: A_ = WavaVecaConformerForPreTraining(__UpperCamelCase ) if is_finetuned: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: A_ = argparse.Namespace(task="audio_pretraining" ) A_ = fairseq.tasks.setup_task(__UpperCamelCase ) A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__UpperCamelCase ) A_ = model[0].eval() recursively_load_weights(__UpperCamelCase ,__UpperCamelCase ,not is_finetuned ) hf_wavavec.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __a :List[str] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
312
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A_ = BitConfig( conv_layer=__UpperCamelCase ,num_labels=1000 ,idalabel=__UpperCamelCase ,labelaid=__UpperCamelCase ,) return config def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if "stem.conv" in name: A_ = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: A_ = name.replace("blocks" ,"layers" ) if "head.fc" in name: A_ = name.replace("head.fc" ,"classifier.1" ) if name.startswith("norm" ): A_ = "bit." + name if "bit" not in name and "classifier" not in name: A_ = "bit.encoder." + name return name def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = get_config(__UpperCamelCase ) # load original model from timm A_ = create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model A_ = timm_model.state_dict() for key in state_dict.copy().keys(): A_ = state_dict.pop(__UpperCamelCase ) A_ = val.squeeze() if "head" in key else val # load HuggingFace model A_ = BitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # create image processor A_ = create_transform(**resolve_data_config({} ,model=__UpperCamelCase ) ) A_ = transform.transforms A_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A_ = BitImageProcessor( do_resize=__UpperCamelCase ,size={"shortest_edge": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=__UpperCamelCase ,crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} ,do_normalize=__UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) A_ = prepare_img() A_ = transform(__UpperCamelCase ).unsqueeze(0 ) A_ = processor(__UpperCamelCase ,return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) # verify logits with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ = outputs.logits print("Logits:" ,logits[0, :3] ) print("Predicted class:" ,model.config.idalabel[logits.argmax(-1 ).item()] ) A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __a :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
312
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> int: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: __lowerCAmelCase : Any = F'''The input value of [n={number}] has to be > 0''' raise ValueError(SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : List[str] = sylvester(number - 1 ) __lowerCAmelCase : Optional[int] = num - 1 __lowerCAmelCase : Optional[int] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
232
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[int] ) -> int: if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __lowerCAmelCase : int = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products __lowerCAmelCase : List[str] = numbers[i] if number < 0: __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = min_till_now, max_till_now __lowerCAmelCase : Optional[int] = max(SCREAMING_SNAKE_CASE , max_till_now * number ) __lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now __lowerCAmelCase : List[str] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
232
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } __A = { "google/fnet-base": 5_12, "google/fnet-large": 5_12, } __A = "▁" class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''token_type_ids'''] snake_case_ = FNetTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="<unk>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<pad>" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = ( AddedToken(__a , lstrip=__a , rstrip=__a , normalized=__a ) if isinstance(__a , __a ) else mask_token ) super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) __lowerCamelCase = do_lower_case __lowerCamelCase = remove_space __lowerCamelCase = keep_accents __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[Any]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[str]: '''simple docstring''' if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
90
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , a , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = RobertaConfig lowerCamelCase__ = 'roberta' def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Optional[Any] = RobertaEmbeddings(__a) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , a , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = RobertaConfig lowerCamelCase__ = 'roberta' def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Optional[int] = config.num_labels _lowerCAmelCase : Optional[int] = config.num_hidden_layers _lowerCAmelCase : Optional[int] = DeeRobertaModel(__a) _lowerCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob) _lowerCAmelCase : List[str] = nn.Linear(config.hidden_size, self.config.num_labels) @add_start_docstrings_to_model_forward(__a) def snake_case__ ( self, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=-1, __a=False, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_layers try: _lowerCAmelCase : List[Any] = self.roberta( __a, attention_mask=__a, token_type_ids=__a, position_ids=__a, head_mask=__a, inputs_embeds=__a, ) _lowerCAmelCase : List[Any] = outputs[1] _lowerCAmelCase : Dict = self.dropout(__a) _lowerCAmelCase : Dict = self.classifier(__a) _lowerCAmelCase : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase : Tuple = e.message _lowerCAmelCase : Union[str, Any] = e.exit_layer _lowerCAmelCase : List[Any] = outputs[0] if not self.training: _lowerCAmelCase : int = entropy(__a) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase : Optional[Any] = MSELoss() _lowerCAmelCase : int = loss_fct(logits.view(-1), labels.view(-1)) else: _lowerCAmelCase : Optional[Any] = CrossEntropyLoss() _lowerCAmelCase : Optional[Any] = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # work with highway exits _lowerCAmelCase : Optional[int] = [] for highway_exit in outputs[-1]: _lowerCAmelCase : Any = highway_exit[0] if not self.training: highway_logits_all.append(__a) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression _lowerCAmelCase : List[str] = MSELoss() _lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1), labels.view(-1)) else: _lowerCAmelCase : Dict = CrossEntropyLoss() _lowerCAmelCase : Optional[Any] = loss_fct(highway_logits.view(-1, self.num_labels), labels.view(-1)) highway_losses.append(__a) if train_highway: _lowerCAmelCase : int = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: _lowerCAmelCase : Any = (loss,) + outputs if not self.training: _lowerCAmelCase : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
36
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline UpperCamelCase_ = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = 'cpu' UpperCamelCase_ = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' UpperCamelCase_ = 'path-to-your-trained-model' UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) UpperCamelCase_ = pipe.to(device) # to channels last UpperCamelCase_ = pipe.unet.to(memory_format=torch.channels_last) UpperCamelCase_ = pipe.vae.to(memory_format=torch.channels_last) UpperCamelCase_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: UpperCamelCase_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex UpperCamelCase_ = torch.randn(2, 4, 64, 64) UpperCamelCase_ = torch.rand(1) * 999 UpperCamelCase_ = torch.randn(2, 77, 768) UpperCamelCase_ = (sample, timestep, encoder_hidden_status) try: UpperCamelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: UpperCamelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) UpperCamelCase_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) UpperCamelCase_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: UpperCamelCase_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute UpperCamelCase_ = 666 UpperCamelCase_ = torch.Generator(device).manual_seed(seed) UpperCamelCase_ = {'generator': generator} if args.steps is not None: UpperCamelCase_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): UpperCamelCase_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
362
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
0
from __future__ import annotations _UpperCAmelCase : str = list[tuple[int, int]] _UpperCAmelCase : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _UpperCAmelCase : Tuple = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCAmelCase : def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float , UpperCAmelCase : Node | None , ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = pos_x lowerCamelCase__ : List[Any] = pos_y lowerCamelCase__ : Union[str, Any] = (pos_y, pos_x) lowerCamelCase__ : Optional[Any] = goal_x lowerCamelCase__ : Optional[int] = goal_y lowerCamelCase__ : str = g_cost lowerCamelCase__ : int = parent lowerCamelCase__ : Union[str, Any] = self.calculate_heuristic() def A_ ( self : Optional[Any] ) -> float: lowerCamelCase__ : Dict = abs(self.pos_x - self.goal_x ) lowerCamelCase__ : int = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : int , UpperCAmelCase : int ) -> bool: return self.f_cost < other.f_cost class lowerCAmelCase : def __init__( self : List[str] , UpperCAmelCase : tuple[int, int] , UpperCAmelCase : tuple[int, int] ) -> Union[str, Any]: lowerCamelCase__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase ) lowerCamelCase__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , UpperCAmelCase ) lowerCamelCase__ : List[str] = [self.start] lowerCamelCase__ : list[Node] = [] lowerCamelCase__ : Tuple = False def A_ ( self : Any ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCamelCase__ : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase__ : Optional[int] = True return self.retrace_path(UpperCAmelCase ) self.closed_nodes.append(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.get_successors(UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase ) else: # retrieve the best current path lowerCamelCase__ : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase ) else: self.open_nodes.append(UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def A_ ( self : int , UpperCAmelCase : Node ) -> list[Node]: lowerCamelCase__ : List[Any] = [] for action in delta: lowerCamelCase__ : Union[str, Any] = parent.pos_x + action[1] lowerCamelCase__ : Any = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase , UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase , ) ) return successors def A_ ( self : Tuple , UpperCAmelCase : Node | None ) -> Path: lowerCamelCase__ : Optional[Any] = node lowerCamelCase__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase__ : Optional[int] = current_node.parent path.reverse() return path if __name__ == "__main__": _UpperCAmelCase : Tuple = (0, 0) _UpperCAmelCase : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") _UpperCAmelCase : str = GreedyBestFirst(init, goal) _UpperCAmelCase : int = greedy_bf.search() if path: for pos_x, pos_y in path: _UpperCAmelCase : int = 2 for elem in grid: print(elem)
50
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
1
import math def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _SCREAMING_SNAKE_CASE ( _lowercase : float = 0.1 ) ->int: '''simple docstring''' a : Tuple = 3 a : Any = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a : Dict = logging.get_logger(__name__) a : List[Any] = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Tuple ="""open-llama""" def __init__( self , lowerCAmelCase__=10_0000 , lowerCAmelCase__=4096 , lowerCAmelCase__=1_1008 , lowerCAmelCase__=32 , lowerCAmelCase__=32 , lowerCAmelCase__="silu" , lowerCAmelCase__=2048 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-6 , lowerCAmelCase__=True , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: a : Any = vocab_size a : List[str] = max_position_embeddings a : int = hidden_size a : str = intermediate_size a : List[str] = num_hidden_layers a : int = num_attention_heads a : Dict = hidden_act a : Union[str, Any] = initializer_range a : Tuple = rms_norm_eps a : Union[str, Any] = use_cache a : Union[str, Any] = kwargs.pop( "use_memorry_efficient_attention" , lowerCAmelCase__ ) a : int = hidden_dropout_prob a : Tuple = attention_dropout_prob a : Optional[Any] = use_stable_embedding a : str = shared_input_output_embedding a : str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __a ( self ) -> Union[str, Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) a : Any = self.rope_scaling.get("type" , lowerCAmelCase__ ) a : List[str] = self.rope_scaling.get("factor" , lowerCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
79
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
50
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( __a , __a ): @register_to_config def __init__( self : List[Any] , _A : bool , _A : Optional[int] = None , _A : Optional[int] = None ): '''simple docstring''' super().__init__() UpperCAmelCase__ : str = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase__ : Tuple = torch.zeros(_A , _A ) else: UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[Any] = torch.nn.Parameter(_A ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self : Any , _A : VQModel , _A : CLIPTextModel , _A : CLIPTokenizer , _A : TransformeraDModel , _A : VQDiffusionScheduler , _A : LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def lowercase_ ( self : str , _A : Any , _A : int , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings UpperCAmelCase__ : int = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase__ : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase__ : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCAmelCase__ : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase__ : Tuple = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase__ : str = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase__ : List[Any] = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase__ : List[str] = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: UpperCAmelCase__ : Union[str, Any] = [''''''] * batch_size UpperCAmelCase__ : int = text_input_ids.shape[-1] UpperCAmelCase__ : str = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) UpperCAmelCase__ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase__ : List[Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ : List[Any] = negative_prompt_embeds.shape[1] UpperCAmelCase__ : Optional[int] = negative_prompt_embeds.repeat(1 , _A , 1 ) UpperCAmelCase__ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ : List[str] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[int] , _A : Union[str, List[str]] , _A : int = 100 , _A : float = 5.0 , _A : float = 1.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , _A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _A : int = 1 , ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = 1 elif isinstance(_A , _A ): UpperCAmelCase__ : Optional[int] = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) UpperCAmelCase__ : Dict = batch_size * num_images_per_prompt UpperCAmelCase__ : Optional[Any] = guidance_scale > 1.0 UpperCAmelCase__ : Optional[Any] = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase__ : int = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase__ : Dict = self.transformer.num_vector_embeds - 1 UpperCAmelCase__ : Dict = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) UpperCAmelCase__ : List[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) UpperCAmelCase__ : Optional[Any] = self.scheduler.timesteps.to(self.device ) UpperCAmelCase__ : Optional[int] = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase__ : int = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase__ : Tuple = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = model_output.chunk(2 ) UpperCAmelCase__ : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) UpperCAmelCase__ : Any = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase__ : Dict = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ : List[Any] = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) UpperCAmelCase__ : Any = self.vqvae.config.vq_embed_dim UpperCAmelCase__ : Optional[Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase__ : int = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) UpperCAmelCase__ : Optional[int] = self.vqvae.decode(_A , force_not_quantize=_A ).sample UpperCAmelCase__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def lowercase_ ( self : Tuple , _A : torch.FloatTensor , _A : float ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = torch.sort(_A , 1 , descending=_A ) UpperCAmelCase__ : Dict = torch.exp(_A ) UpperCAmelCase__ : Any = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase__ : List[Any] = torch.full_like(keep_mask[:, 0:1, :] , _A ) UpperCAmelCase__ : Optional[Any] = torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase__ : Tuple = keep_mask[:, :-1, :] UpperCAmelCase__ : Optional[int] = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase__ : List[Any] = log_p_x_0.clone() UpperCAmelCase__ : Optional[Any] = -torch.inf # -inf = log(0) return rv
299
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase : Optional[Any] = TypeVar('T') class lowerCamelCase__ ( Generic[T]): '''simple docstring''' _A = 42 # Cache store of keys _A = 42 # References of the keys in cache _A = 1_0 # Maximum capacity of cache def __init__( self :Optional[Any] , a :int ) -> None: __UpperCamelCase : Union[str, Any] = deque() __UpperCamelCase : str = set() if not n: __UpperCamelCase : Union[str, Any] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: __UpperCamelCase : Any = n def _lowerCamelCase ( self :Tuple , a :T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase : int = self.dq_store.pop() self.key_reference.remove(a ) else: self.dq_store.remove(a ) self.dq_store.appendleft(a ) self.key_reference.add(a ) def _lowerCamelCase ( self :Any ) -> None: for k in self.dq_store: print(a ) def __repr__( self :Tuple ) -> str: return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
232
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : '''simple docstring''' def __init__( self :List[Any] , a :Dict , a :Any=3 , a :Any=3_2 , a :Optional[Any]=3 , a :str=1_0 , a :Union[str, Any]=[1_0, 2_0, 3_0, 4_0] , a :Optional[Any]=[1, 1, 2, 1] , a :Optional[Any]=True , a :Dict=True , a :Tuple="relu" , a :List[str]=3 , a :Tuple=None , ) -> Tuple: __UpperCamelCase : Optional[Any] = parent __UpperCamelCase : Dict = batch_size __UpperCamelCase : int = image_size __UpperCamelCase : Dict = num_channels __UpperCamelCase : Optional[int] = embeddings_size __UpperCamelCase : List[Any] = hidden_sizes __UpperCamelCase : Optional[Any] = depths __UpperCamelCase : Optional[int] = is_training __UpperCamelCase : Union[str, Any] = use_labels __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : Tuple = num_labels __UpperCamelCase : Tuple = scope __UpperCamelCase : Dict = len(a ) def _lowerCamelCase ( self :Optional[int] ) -> Any: __UpperCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : List[str] = None if self.use_labels: __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self :Union[str, Any] ) -> int: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _lowerCamelCase ( self :List[Any] , a :Dict , a :int , a :Optional[Any] ) -> Tuple: __UpperCamelCase : str = TFResNetModel(config=a ) __UpperCamelCase : Union[str, Any] = model(a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowerCamelCase ( self :Union[str, Any] , a :Optional[int] , a :List[str] , a :Optional[Any] ) -> Any: __UpperCamelCase : str = self.num_labels __UpperCamelCase : Optional[int] = TFResNetForImageClassification(a ) __UpperCamelCase : List[str] = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :Optional[int] ) -> List[str]: __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = config_and_inputs __UpperCamelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _A = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) _A = False _A = False _A = False _A = False _A = False def _lowerCamelCase ( self :int ) -> List[str]: __UpperCamelCase : Union[str, Any] = TFResNetModelTester(self ) __UpperCamelCase : List[Any] = ConfigTester(self , config_class=a , has_text_modality=a ) def _lowerCamelCase ( self :int ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self :str ) -> Optional[Any]: return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def _lowerCamelCase ( self :Tuple ) -> Tuple: pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def _lowerCamelCase ( self :List[Any] ) -> List[str]: pass def _lowerCamelCase ( self :Optional[int] ) -> Tuple: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Dict = model_class(a ) __UpperCamelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : Dict = [*signature.parameters.keys()] __UpperCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self :List[str] ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> Tuple: def check_hidden_states_output(a :Optional[Any] , a :Optional[int] , a :List[str] ): __UpperCamelCase : int = model_class(a ) __UpperCamelCase : int = model(**self._prepare_for_class(a , a ) ) __UpperCamelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCamelCase , __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCamelCase : int = layer_type __UpperCamelCase : int = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase : int = True check_hidden_states_output(a , a , a ) def _lowerCamelCase ( self :Union[str, Any] ) -> Dict: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def _lowerCamelCase ( self :Dict ) -> Dict: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] = TFResNetModel.from_pretrained(a ) self.assertIsNotNone(a ) def _SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowerCamelCase ( self :Optional[Any] ) -> Tuple: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: __UpperCamelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __UpperCamelCase : List[Any] = self.default_image_processor __UpperCamelCase : List[str] = prepare_img() __UpperCamelCase : List[str] = image_processor(images=a , return_tensors="tf" ) # forward pass __UpperCamelCase : Dict = model(**a ) # verify the logits __UpperCamelCase : Dict = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) __UpperCamelCase : Union[str, Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4 ) )
232
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowerCamelCase = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Dict: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ) -> Any: if args.student_type == "roberta": UpperCAmelCase_ = False elif args.student_type == "gpt2": UpperCAmelCase_ = False def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict ) -> Tuple: if args.student_type == "roberta": UpperCAmelCase_ = False def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: UpperCAmelCase_ = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A__ , required=A__ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A__ , required=A__ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A__ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A__ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A__ , required=A__ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A__ , type=A__ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A__ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A__ , required=A__ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A__ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A__ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A__ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A__ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A__ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A__ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A__ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A__ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A__ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A__ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A__ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A__ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A__ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A__ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A__ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A__ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5e-4 , type=A__ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=A__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A__ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A__ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A__ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A__ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A__ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A__ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A__ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A__ , default=4000 , help='''Checkpoint interval.''' ) UpperCAmelCase_ = parser.parse_args() sanity_checks(A__ ) # ARGS # init_gpu_params(A__ ) set_seed(A__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(f'Param: {args}' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A__ ) , A__ , indent=4 ) git_log(args.dump_path ) UpperCAmelCase_ = MODEL_CLASSES[args.student_type] UpperCAmelCase_ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase_ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase_ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase_ = tokenizer.all_special_tokens.index(A__ ) UpperCAmelCase_ = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}' ) UpperCAmelCase_ = special_tok_ids UpperCAmelCase_ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}' ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase_ = pickle.load(A__ ) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase_ = pickle.load(A__ ) UpperCAmelCase_ = np.maximum(A__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase_ = 0.0 # do not predict special tokens UpperCAmelCase_ = torch.from_numpy(A__ ) else: UpperCAmelCase_ = None UpperCAmelCase_ = LmSeqsDataset(params=A__ , data=A__ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f'Loading student config from {args.student_config}' ) UpperCAmelCase_ = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase_ = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}' ) UpperCAmelCase_ = student_model_class.from_pretrained(args.student_pretrained_weights , config=A__ ) else: UpperCAmelCase_ = student_model_class(A__ ) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}' ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase_ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A__ ) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}' ) logger.info(f'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A__ , A__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A__ , A__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase_ = Distiller( params=A__ , dataset=A__ , token_probs=A__ , student=A__ , teacher=A__ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
351
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict=2_8123 ) -> str: UpperCAmelCase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i UpperCAmelCase_ = set() UpperCAmelCase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__UpperCamelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
177
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = LayoutLMTokenizer A_ = LayoutLMTokenizerFast A_ = True A_ = True def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() __a : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = 'UNwant\u00E9d,running' __a : Tuple = 'unwanted, running' return input_text, output_text def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.tokenizer_class(self.vocab_file ) __a : Any = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [7, 4, 5, 10, 8, 9] ) def __UpperCAmelCase ( self ): '''simple docstring''' pass
27
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( snake_case ): """simple docstring""" if "://" in dataset_path: __SCREAMING_SNAKE_CASE : Any = dataset_path.split('''://''' )[1] return dataset_path def a__ ( snake_case ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) ) else: fs.mv(snake_case , snake_case , recursive=snake_case ) def a__ ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
303
0
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.inf def set_batch_size(__a ) -> None: nonlocal batch_size if isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__a , __a ) and feature.dtype == "binary": SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__a , __a ) return None if batch_size is np.inf else batch_size class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory) return dataset class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = dataset SCREAMING_SNAKE_CASE_ : Dict = path_or_buf SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features) SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with open(self.path_or_buf , '''wb+''') as buffer: SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs) else: SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs) return written def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_) for offset in logging.tqdm( range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): SCREAMING_SNAKE_CASE_ : List[Any] = query_table( table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowercase_) written += batch.nbytes writer.close() return written
318
"""simple docstring""" UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8 def _A (__a , __a ) -> float: """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCAmelCase_ : str = 300 UpperCAmelCase_ : str = 28 UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
318
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class snake_case ( snake_case_ ): """simple docstring""" _lowerCamelCase = ["image_processor", "tokenizer"] _lowerCamelCase = "OwlViTImageProcessor" _lowerCamelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCamelCase_ = kwargs.pop("feature_extractor" ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="max_length" , UpperCamelCase="np" , **UpperCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): lowerCamelCase_ = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): lowerCamelCase_ = [] # Maximum number of queries across batch lowerCamelCase_ = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: lowerCamelCase_ = t + [" "] * (max_num_queries - len(__UpperCAmelCase )) lowerCamelCase_ = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": lowerCamelCase_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCamelCase_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCamelCase_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) lowerCamelCase_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCamelCase_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = input_ids lowerCamelCase_ = attention_mask if query_images is not None: lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values lowerCamelCase_ = query_pixel_values if images is not None: lowerCamelCase_ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
55
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCAmelCase : """simple docstring""" snake_case = PegasusConfig snake_case = {} snake_case = '''gelu''' def __init__( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=13 , __UpperCAmelCase : int=7 , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : str=False , __UpperCAmelCase : Union[str, Any]=99 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Tuple=37 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : List[str]=40 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Any=0 , ): '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A = tf.concat([input_ids, eos_tensor] , axis=1 ) _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int ): '''simple docstring''' _A = TFPegasusModel(config=__UpperCAmelCase ).get_decoder() _A = inputs_dict["input_ids"] _A = input_ids[:1, :] _A = inputs_dict["attention_mask"][:1, :] _A = inputs_dict["head_mask"] _A = 1 # first forward pass _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) _A , _A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _A = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _A = tf.concat([input_ids, next_tokens] , axis=-1 ) _A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _A = output_from_no_past[:, -3:, random_slice_idx] _A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: _A = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () snake_case = (TFPegasusForConditionalGeneration,) if is_tf_available() else () snake_case = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) snake_case = True snake_case = False snake_case = False def lowerCAmelCase ( self : str ): '''simple docstring''' _A = TFPegasusModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] snake_case = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers snake_case = '''google/pegasus-xsum''' @cached_property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = self.translate_src_text(**__UpperCAmelCase ) assert self.expected_text == generated_words def lowerCAmelCase ( self : Dict , **__UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = self.tokenizer(self.src_text , **__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="tf" ) _A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) _A = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase ) return generated_words @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' self._assert_generated_batch_equal_expected()
79
0
'''simple docstring''' UpperCAmelCase_ = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
61
'''simple docstring''' UpperCAmelCase_ = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase_ = [None] * 1_0_0_0_0_0_0_0 UpperCAmelCase_ = True UpperCAmelCase_ = False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase__ = chain(next_number(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = number_chain while number < 10000000: UpperCAmelCase__ = number_chain number *= 10 return number_chain def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 10000000 ): '''simple docstring''' for i in range(1 , SCREAMING_SNAKE_CASE__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
61
1
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) for i in range(length - 1 ): SCREAMING_SNAKE_CASE_ = i for k in range(i + 1, __lowerCamelCase ): if collection[k] < collection[least]: SCREAMING_SNAKE_CASE_ = k if least != i: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = (collection[i], collection[least]) return collection if __name__ == "__main__": __UpperCAmelCase = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
299
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=0 , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = projection_dim def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) UpperCAmelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = TFDPRContextEncoder(config=_snake_case ) UpperCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) UpperCAmelCase = model(_snake_case , token_type_ids=_snake_case ) UpperCAmelCase = model(_snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> int: """simple docstring""" UpperCAmelCase = TFDPRQuestionEncoder(config=_snake_case ) UpperCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) UpperCAmelCase = model(_snake_case , token_type_ids=_snake_case ) UpperCAmelCase = model(_snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Dict: """simple docstring""" UpperCAmelCase = TFDPRReader(config=_snake_case ) UpperCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = TFDPRModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_snake_case ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_snake_case ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_snake_case ) @slow def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDPRContextEncoder.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDPRContextEncoder.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDPRQuestionEncoder.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDPRReader.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) UpperCAmelCase = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] UpperCAmelCase = model(_snake_case )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCAmelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
152
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
1
"""simple docstring""" import os import pytest from attr import dataclass lowerCamelCase__ = """us-east-1""" # defaults region @dataclass class A__ : A_ : str A_ : Union[str, Any] = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A_ : Optional[int] = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } A_ : List[Any] = {**hyperparameters, 'max_steps': 1_0_0_0} @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self ): return f"{self.framework}-transfromers-test" @property def __lowerCamelCase ( self ): return f"./tests/sagemaker/scripts/{self.framework}" @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : str = SageMakerTestEnvironment(framework=request.cls.framework )
86
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 5_1_2, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = VOCAB_FILES_NAMES _UpperCAmelCase :str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :str = RetriBertTokenizer _UpperCAmelCase :List[str] = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCAmelCase ) != tokenize_chinese_chars ): lowercase__: str = getattr(_UpperCAmelCase , normalizer_state.pop('''type''' ) ) lowercase__: Optional[Any] = do_lower_case lowercase__: Tuple = strip_accents lowercase__: str = tokenize_chinese_chars lowercase__: Union[str, Any] = normalizer_class(**_UpperCAmelCase ) lowercase__: List[str] = do_lower_case def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): lowercase__: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Optional[int] = [self.sep_token_id] lowercase__: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: List[str] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
177
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A_ :Dict = TypeVar('''T''') class __A ( Generic[T] ): """simple docstring""" UpperCamelCase__ : deque[T] # Cache store of keys UpperCamelCase__ : set[T] # References of the keys in cache UpperCamelCase__ : int =1_0 # Maximum capacity of cache def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =deque() __UpperCamelCase : Optional[Any] =set() if not n: __UpperCamelCase : str =sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: __UpperCamelCase : str =n def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase : List[Any] =self.dq_store.pop() self.key_reference.remove(__lowerCAmelCase ) else: self.dq_store.remove(__lowerCAmelCase ) self.dq_store.appendleft(__lowerCAmelCase ) self.key_reference.add(__lowerCAmelCase ) def __lowercase ( self ): """simple docstring""" for k in self.dq_store: print(__lowerCAmelCase ) def __repr__( self ): """simple docstring""" return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() A_ :Tuple = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
371
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A_ :Any = logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[Any] =["""pixel_values"""] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , **lowerCamelCase__ , ): """simple docstring""" super().__init__(**lowerCamelCase__ ) __UpperCamelCase : Optional[int] =size if size is not None else {'shortest_edge': 224} __UpperCamelCase : Dict =get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase : List[str] =get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ , param_name='crop_size' ) __UpperCamelCase : Optional[Any] =do_resize __UpperCamelCase : Optional[int] =size __UpperCamelCase : List[Any] =resample __UpperCamelCase : Optional[int] =do_center_crop __UpperCamelCase : Optional[int] =crop_size __UpperCamelCase : str =do_rescale __UpperCamelCase : Any =rescale_factor __UpperCamelCase : Union[str, Any] =do_normalize __UpperCamelCase : Union[str, Any] =image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase : List[Any] =image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase : Any =do_convert_rgb def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[Any] =get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCamelCase : Tuple =get_resize_output_image_size(lowerCamelCase__ , size=size['shortest_edge'] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[str] =get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : int =do_resize if do_resize is not None else self.do_resize __UpperCamelCase : Dict =size if size is not None else self.size __UpperCamelCase : List[Any] =get_size_dict(lowerCamelCase__ , param_name='size' , default_to_square=lowerCamelCase__ ) __UpperCamelCase : Tuple =resample if resample is not None else self.resample __UpperCamelCase : Any =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase : Tuple =crop_size if crop_size is not None else self.crop_size __UpperCamelCase : Any =get_size_dict(lowerCamelCase__ , param_name='crop_size' , default_to_square=lowerCamelCase__ ) __UpperCamelCase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase : Optional[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase : Dict =do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase : Optional[Any] =image_mean if image_mean is not None else self.image_mean __UpperCamelCase : List[str] =image_std if image_std is not None else self.image_std __UpperCamelCase : Union[str, Any] =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase : int =make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase : Union[str, Any] =[convert_to_rgb(lowerCamelCase__ ) for image in images] # All transformations expect numpy arrays. __UpperCamelCase : List[str] =[to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: __UpperCamelCase : str =[self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: __UpperCamelCase : Union[str, Any] =[self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: __UpperCamelCase : Optional[Any] =[self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: __UpperCamelCase : Optional[int] =[self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] __UpperCamelCase : List[Any] =[to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] __UpperCamelCase : List[Any] ={'pixel_values': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
245
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : int = CpmAntTokenizer lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Tuple = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] lowerCamelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) lowerCamelCase_ : Union[str, Any] = '''今天天气真好!''' lowerCamelCase_ : Any = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] lowerCamelCase_ : Optional[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) lowerCamelCase_ : List[str] = '''今天天气真好!''' lowerCamelCase_ : List[Any] = [tokenizer.bos_token] + tokens lowerCamelCase_ : Tuple = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) lowerCamelCase_ : int = tokenizer.decode(A ) self.assertEqual(A , A )
318
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : int , snake_case__ : int , snake_case__ : List[str]=1_3 , snake_case__ : Any=3_2 , snake_case__ : Tuple=3 , snake_case__ : str=4 , snake_case__ : Optional[Any]=[1_0, 2_0, 3_0, 4_0] , snake_case__ : Any=[2, 2, 3, 2] , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=True , snake_case__ : List[Any]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : str=1_0 , snake_case__ : int=0.02 , snake_case__ : Optional[int]=["stage2", "stage3", "stage4"] , snake_case__ : Optional[Any]=3 , snake_case__ : str=None , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : Optional[Any] = num_stages UpperCAmelCase__ : Union[str, Any] = hidden_sizes UpperCAmelCase__ : List[Any] = depths UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Tuple = out_features UpperCAmelCase__ : int = num_labels UpperCAmelCase__ : Dict = scope UpperCAmelCase__ : Any = num_stages def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : str = self.get_config() return config, pixel_values, labels def __a ( self : Dict ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __a ( self : str ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=snake_case__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=snake_case__ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def __a ( self : Tuple , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UperNetForSemanticSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Any = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : List[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ ={'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = UperNetModelTester(self ) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self : Union[str, Any] ): '''simple docstring''' return def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) UpperCAmelCase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def __a ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def __a ( self : int ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __a ( self : str ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __a ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self : Optional[Any] ): '''simple docstring''' pass def __a ( self : str ): '''simple docstring''' def check_hidden_states_output(snake_case__ : str , snake_case__ : Tuple , snake_case__ : str ): UpperCAmelCase__ : Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : str = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Optional[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = _config_zero_init(snake_case__ ) UpperCAmelCase__ : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(config=snake_case__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def __a ( self : Any ): '''simple docstring''' pass @slow def __a ( self : Optional[Any] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> List[str]: '''simple docstring''' UpperCAmelCase__ : str = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) UpperCAmelCase__ : Dict = Image.open(snake_case ).convert("RGB" ) return image @require_torch @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) UpperCAmelCase__ : Any = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(snake_case__ ) UpperCAmelCase__ : int = prepare_img() UpperCAmelCase__ : Optional[int] = processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1e-4 ) ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) UpperCAmelCase__ : List[str] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = prepare_img() UpperCAmelCase__ : Dict = processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) with torch.no_grad(): UpperCAmelCase__ : int = model(**snake_case__ ) UpperCAmelCase__ : str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1e-4 ) )
367
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
0
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class A_ : '''simple docstring''' pass
61
"""simple docstring""" import argparse from collections import defaultdict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : List[Any] = f.readlines() UpperCAmelCase_ : int = f"""class {class_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{4 * " "}def {test_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{8 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : Tuple = f"""{16 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : int = False UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : int = [] for line in lines: if line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Tuple = True elif in_class and line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Optional[int] = True elif in_class and in_func and (line.startswith(__lowerCamelCase ) or line.startswith(__lowerCamelCase )): UpperCAmelCase_ : Any = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ : Union[str, Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) UpperCAmelCase_ : int = False else: new_lines.append(__lowerCamelCase ) with open(__lowerCamelCase, "w" ) as f: for line in new_lines: f.write(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase=None ): if fail is not None: with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Tuple = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ : str = None with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() UpperCAmelCase_ : Any = defaultdict(__lowerCamelCase ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _a = parser.parse_args() main(args.correct_filename, args.fail_filename)
61
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ = """WhisperFeatureExtractor""" lowerCamelCase__ = """WhisperTokenizer""" def __init__( self , lowercase , lowercase ): super().__init__(lowercase_ , lowercase_ ) _lowerCamelCase : Any = self.feature_extractor _lowerCamelCase : Tuple = False def A_ ( self , lowercase=None , lowercase=None , lowercase=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowercase_ , language=lowercase_ , no_timestamps=lowercase_ ) def __call__( self , *lowercase , **lowercase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) _lowerCamelCase : str = kwargs.pop('audio' , lowercase_ ) _lowerCamelCase : Tuple = kwargs.pop('sampling_rate' , lowercase_ ) _lowerCamelCase : Dict = kwargs.pop('text' , lowercase_ ) if len(lowercase_ ) > 0: _lowerCamelCase : Tuple = args[0] _lowerCamelCase : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _lowerCamelCase : List[Any] = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) if text is not None: _lowerCamelCase : Any = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: _lowerCamelCase : List[Any] = encodings["""input_ids"""] return inputs def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) def A_ ( self , lowercase , lowercase="np" ): return self.tokenizer.get_prompt_ids(lowercase_ , return_tensors=lowercase_ )
370
"""simple docstring""" import argparse import datetime def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCamelCase : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase__ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCamelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCamelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCamelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCamelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCamelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCamelCase : str = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) ) # Start math if m <= 2: _lowerCamelCase : str = y - 1 _lowerCamelCase : Tuple = m + 12 # maths var _lowerCamelCase : int = int(str(lowercase__ )[:2] ) _lowerCamelCase : int = int(str(lowercase__ )[2:] ) _lowerCamelCase : int = int(2.6 * m - 5.3_9 ) _lowerCamelCase : int = int(c / 4 ) _lowerCamelCase : int = int(k / 4 ) _lowerCamelCase : int = int(d + k ) _lowerCamelCase : int = int(t + u + v + x ) _lowerCamelCase : int = int(z - (2 * c) ) _lowerCamelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCamelCase : str = f'''Your date {date_input}, is a {days[str(lowercase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) lowercase__ = parser.parse_args() zeller(args.date_input)
12
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = KandinskyInpaintPipeline snake_case_ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] snake_case_ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] snake_case_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : int ) -> Union[str, Any]: return 32 @property def __magic_name__ ( self : Optional[Any] ) -> Any: return 32 @property def __magic_name__ ( self : Dict ) -> Union[str, Any]: return self.time_input_dim @property def __magic_name__ ( self : Tuple ) -> Dict: return self.time_input_dim * 4 @property def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: return 1_00 @property def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ : Union[str, Any] =XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __magic_name__ ( self : Tuple ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) SCREAMING_SNAKE_CASE__ : List[Any] =MultilingualCLIP(__lowercase ) SCREAMING_SNAKE_CASE__ : str =text_encoder.eval() return text_encoder @property def __magic_name__ ( self : Dict ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any ={ '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ : Union[str, Any] =UNetaDConditionModel(**__lowercase ) return model @property def __magic_name__ ( self : Any ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Any ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] =self.dummy_text_encoder SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.dummy_tokenizer SCREAMING_SNAKE_CASE__ : int =self.dummy_unet SCREAMING_SNAKE_CASE__ : List[str] =self.dummy_movq SCREAMING_SNAKE_CASE__ : int =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowercase , set_alpha_to_one=__lowercase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowercase , ) SCREAMING_SNAKE_CASE__ : List[Any] ={ '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__ ( self : List[Any] , __lowercase : Dict , __lowercase : Any=0 ) -> int: SCREAMING_SNAKE_CASE__ : List[str] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowercase ) # create init_image SCREAMING_SNAKE_CASE__ : Tuple =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] =Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask SCREAMING_SNAKE_CASE__ : List[Any] =np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Tuple =0 if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Any =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict ={ '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : int ='''cpu''' SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Any =output.images SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] SCREAMING_SNAKE_CASE__ : int =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] =image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def __magic_name__ ( self : Tuple ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ : List[Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE__ : List[str] =np.ones((7_68, 7_68) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] =0 SCREAMING_SNAKE_CASE__ : str ='''a hat''' SCREAMING_SNAKE_CASE__ : List[Any] =KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowercase ) SCREAMING_SNAKE_CASE__ : str =KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict =pipeline.to(__lowercase ) pipeline.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : str =torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipe_prior( __lowercase , generator=__lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ : Tuple =pipeline( __lowercase , image=__lowercase , mask_image=__lowercase , image_embeds=__lowercase , negative_image_embeds=__lowercase , generator=__lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : str =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
152
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if not nums: return 0 SCREAMING_SNAKE_CASE__ : Dict =nums[0] SCREAMING_SNAKE_CASE__ : Optional[int] =0 for num in nums[1:]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =( max_excluding + num, max(UpperCamelCase__, UpperCamelCase__ ), ) return max(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
152
1
'''simple docstring''' from __future__ import annotations from typing import Any def a ( __a ) -> int: '''simple docstring''' create_state_space_tree(snake_case_ , [] , 0 ) def a ( __a , __a , __a ) -> Tuple: '''simple docstring''' if index == len(snake_case_ ): print(snake_case_ ) return create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __snake_case = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
370
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 , __a = "bert-base-cased" ) -> Any: '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained(__a ) UpperCamelCase__ :List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def a ( __a , __a , __a , __a ) -> str: '''simple docstring''' model.eval() UpperCamelCase__ :List[str] = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ , UpperCamelCase__ :int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: UpperCamelCase__ :Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :Union[str, Any] = metric.compute() return eval_metric["accuracy"] def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Any = config['''lr'''] UpperCamelCase__ :Optional[int] = int(config['''num_epochs'''] ) UpperCamelCase__ :List[Any] = int(config['''seed'''] ) UpperCamelCase__ :List[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :List[Any] = args.model_name_or_path set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Any = get_dataloaders(__a , __a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer UpperCamelCase__ :Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ :Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCamelCase__ :Dict = 1 UpperCamelCase__ :Tuple = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ :Any = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: UpperCamelCase__ :Any = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ :Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) UpperCamelCase__ :List[Any] = num_epochs if args.partial_train_epoch is not None: UpperCamelCase__ :Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase__ :Dict = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCamelCase__ :Tuple = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase__ :Any = int(__a ) + 1 UpperCamelCase__ :Dict = evaluation_loop(__a , __a , __a , __a ) accelerator.print('''resumed checkpoint performance:''' , __a ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.load(__a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase__ :Optional[Any] = {} for epoch in range(__a , __a ): model.train() for step, batch in enumerate(__a ): UpperCamelCase__ :Optional[int] = model(**__a ) UpperCamelCase__ :Optional[int] = outputs.loss UpperCamelCase__ :str = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase__ :Union[str, Any] = f'''epoch_{epoch}''' UpperCamelCase__ :List[Any] = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) UpperCamelCase__ :List[Any] = evaluation_loop(__a , __a , __a , __a ) UpperCamelCase__ :int = accuracy UpperCamelCase__ :List[Any] = lr_scheduler.get_lr()[0] UpperCamelCase__ :Any = optimizer.param_groups[0]['''lr'''] UpperCamelCase__ :int = epoch UpperCamelCase__ :Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(__a , __a ) def a ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ :List[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__a , ) parser.add_argument( '''--output_dir''' , type=__a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__a , default=__a , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=__a , default=__a , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=__a , default=2 , help='''Number of train epochs.''' , ) UpperCamelCase__ :Optional[int] = parser.parse_args() UpperCamelCase__ :List[str] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
219
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
81
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] ="""table-transformer""" UpperCAmelCase__ : Union[str, Any] =["""past_key_values"""] UpperCAmelCase__ : Any ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=1_0_0 , UpperCAmelCase__ : Optional[Any]=6 , UpperCAmelCase__ : Dict=2_0_4_8 , UpperCAmelCase__ : Any=8 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : Union[str, Any]=2_0_4_8 , UpperCAmelCase__ : int=8 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : List[Any]=2_5_6 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : List[str]=1.0 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : int="sine" , UpperCAmelCase__ : Dict="resnet50" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : int=0.1 , **UpperCAmelCase__ : Union[str, Any] , ) ->Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE : str = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : Optional[Any] = config_class.from_dict(UpperCAmelCase__ ) # set timm attributes to None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = None, None, None SCREAMING_SNAKE_CASE : List[Any] = use_timm_backbone SCREAMING_SNAKE_CASE : List[Any] = backbone_config SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = num_queries SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Any = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[str] = encoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = decoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE : Tuple = activation_function SCREAMING_SNAKE_CASE : int = init_std SCREAMING_SNAKE_CASE : str = init_xavier_std SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : Any = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : List[Any] = backbone SCREAMING_SNAKE_CASE : Optional[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[Any] = dilation # Hungarian matcher SCREAMING_SNAKE_CASE : List[Any] = class_cost SCREAMING_SNAKE_CASE : Tuple = bbox_cost SCREAMING_SNAKE_CASE : Dict = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = bbox_loss_coefficient SCREAMING_SNAKE_CASE : List[Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def _lowercase ( self : List[str] ) ->int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Any ) ->int: """simple docstring""" return self.d_model class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[str] =version.parse("""1.11""" ) @property def _lowercase ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase ( self : Optional[Any] ) ->float: """simple docstring""" return 1e-5 @property def _lowercase ( self : Tuple ) ->int: """simple docstring""" return 1_2
245
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __UpperCamelCase ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'megatron-bert' def __init__(self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=2_9_0_5_6 , __SCREAMING_SNAKE_CASE : List[str]=1_0_2_4 , __SCREAMING_SNAKE_CASE : List[Any]=2_4 , __SCREAMING_SNAKE_CASE : Optional[int]=1_6 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4_0_9_6 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=5_1_2 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-12 , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : Optional[int]="absolute" , __SCREAMING_SNAKE_CASE : int=True , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache
358
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __A : Any = imread(R'digital_image_processing/image_data/lena_small.jpg') __A : Tuple = cvtColor(img, COLOR_BGR2GRAY) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = cn.convert_to_negative(lowercase__ ) # assert negative_img array for at least one True assert negative_img.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() A = canny.canny(lowercase__ ) # assert canny array for at least one True assert canny_array.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" # laplace diagonals A = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ ) assert res.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert med.median_filter(lowercase__ , 3 ).any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A , A = sob.sobel_filter(lowercase__ ) assert grad.any() and theta.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = sp.make_sepia(lowercase__ , 20 ) assert sepia.all() def __SCREAMING_SNAKE_CASE ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" A = bs.Burkes(imread(lowercase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __SCREAMING_SNAKE_CASE ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" A = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. A = imread(lowercase__ , 0 ) # Test for get_neighbors_pixel function() return not None A = 0 A = 0 A = image[x_coordinate][y_coordinate] A = lbp.get_neighbors_pixel( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ ) assert lbp_image.any()
57
0
import os from collections import deque import torch from torch.utils.data import Dataset class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , lowerCamelCase__="" , lowerCamelCase__="train" ) -> Any: '''simple docstring''' assert os.path.isdir(_UpperCAmelCase ) __lowerCamelCase = [] __lowerCamelCase = os.listdir(_UpperCAmelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue __lowerCamelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ): continue self.documents.append(_UpperCAmelCase ) def __len__( self ) -> Dict: '''simple docstring''' return len(self.documents ) def __getitem__( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.documents[idx] __lowerCamelCase = document_path.split('/' )[-1] with open(_UpperCAmelCase , encoding='utf-8' ) as source: __lowerCamelCase = source.read() __lowerCamelCase = process_story(_UpperCAmelCase ) return document_name, story_lines, summary_lines def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Tuple: """simple docstring""" __lowerCamelCase = list(filter(lambda UpperCamelCase__ : len(snake_case__ ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it __lowerCamelCase = [_add_missing_period(snake_case__ ) for line in nonempty_lines] # gather article lines __lowerCamelCase = [] __lowerCamelCase = deque(snake_case__ ) while True: try: __lowerCamelCase = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(snake_case__ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines __lowerCamelCase = list(filter(lambda UpperCamelCase__ : not t.startswith('@highlight' ) , snake_case__ ) ) return story_lines, summary_lines def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any ) -> int: """simple docstring""" if len(snake_case__ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(snake_case__ )) ) return sequence def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" __lowerCamelCase = torch.ones_like(snake_case__ ) __lowerCamelCase = sequence == pad_token_id __lowerCamelCase = 0 return mask def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __lowerCamelCase = [tokenizer.encode(snake_case__ ) for line in story_lines] __lowerCamelCase = [token for sentence in story_lines_token_ids for token in sentence] __lowerCamelCase = [tokenizer.encode(snake_case__ ) for line in summary_lines] __lowerCamelCase = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" __lowerCamelCase = [] for sequence in batch: __lowerCamelCase = -1 __lowerCamelCase = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(snake_case__ ) return torch.tensor(snake_case__ )
90
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCAmelCase = '''src/transformers''' _lowerCAmelCase = '''docs/source/en/tasks''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCamelCase : str = f.readlines() # Find the start prompt. __UpperCamelCase : Dict = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCamelCase : Dict = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) _lowerCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) __UpperCamelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __lowerCAmelCase ( snake_case__ , snake_case__=False ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __UpperCamelCase : List[str] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
298
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase_ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : int ): '''simple docstring''' _A = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE ) @classmethod def lowerCAmelCase ( cls : Dict ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _A = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id="test-config" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token ) _A = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _A = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="valid_org/test-config-org" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token ) _A = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _A = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _A = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _A = c.n_embd + 1 # int _A = c.resid_pdrop + 1.0 # float _A = not c.scale_attn_weights # bool _A = c.summary_type + "foo" # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(__SCREAMING_SNAKE_CASE , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(__SCREAMING_SNAKE_CASE , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(__SCREAMING_SNAKE_CASE , c.summary_type , "mismatch for key: summary_type" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = PretrainedConfig() _A = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __SCREAMING_SNAKE_CASE , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _A = [key for key, value in config_common_kwargs.items() if value == getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f''' {', '.join(__SCREAMING_SNAKE_CASE )}.''' ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' with self.assertRaises(__SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder _A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = mock.Mock() _A = 500 _A = {} _A = HTTPError _A = {} # Download this model to make sure it's in the cache. _A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__SCREAMING_SNAKE_CASE ) as mock_head: _A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = AutoConfig.from_pretrained("bert-base-cased" ) _A = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__SCREAMING_SNAKE_CASE ) _A = 2 json.dump(configuration.to_dict() , open(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _A = ["config.42.0.0.json"] _A = 768 configuration.save_pretrained(__SCREAMING_SNAKE_CASE ) shutil.move(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json" ) , os.path.join(__SCREAMING_SNAKE_CASE , "config.42.0.0.json" ) ) _A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 768 ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "hf-internal-testing/test-two-configs" import transformers as new_transformers _A = "v4.0.0" _A , _A = new_transformers.models.auto.AutoConfig.from_pretrained( __SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__SCREAMING_SNAKE_CASE , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _A = "v3.0.0" _A = old_transformers.models.auto.AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(old_configuration.hidden_size , 768 )
363
'''simple docstring''' from collections import defaultdict from math import gcd def __lowercase ( __lowercase = 150_0000 ) -> int: '''simple docstring''' _A = defaultdict(__lowercase ) _A = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __lowercase , 2 ): if gcd(__lowercase , __lowercase ) > 1: continue _A = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__lowercase , limit + 1 , __lowercase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
174
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Dict = StableDiffusionSAGPipeline lowercase_ : List[Any] = TEXT_TO_IMAGE_PARAMS lowercase_ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase_ : List[str] = False def UpperCamelCase ( self) -> Dict: """simple docstring""" torch.manual_seed(0) _lowercase : int = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) _lowercase : Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0) _lowercase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) _lowercase : Dict = CLIPTextModel(lowerCamelCase) _lowercase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Dict: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : List[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : List[Any] = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Dict = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') _lowercase : Optional[Any] = sag_pipe.to(lowerCamelCase) sag_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = '.' _lowercase : int = torch.manual_seed(0) _lowercase : Optional[Any] = sag_pipe( [prompt], generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np') _lowercase : Tuple = output.images _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Tuple = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[Any] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _lowercase : Dict = sag_pipe.to(lowerCamelCase) sag_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = '.' _lowercase : str = torch.manual_seed(0) _lowercase : Any = sag_pipe( [prompt], generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np') _lowercase : List[str] = output.images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') _lowercase : List[str] = sag_pipe.to(lowerCamelCase) sag_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = '.' _lowercase : Tuple = torch.manual_seed(0) _lowercase : List[Any] = sag_pipe( [prompt], width=7_68, height=5_12, generator=lowerCamelCase, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np', ) _lowercase : Tuple = output.images assert image.shape == (1, 5_12, 7_68, 3)
21
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="bloom" UpperCAmelCase_ =["past_key_values"] UpperCAmelCase_ ={ "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _A=250880 , _A=64 , _A=2 , _A=8 , _A=1E-5 , _A=0.02 , _A=True , _A=1 , _A=2 , _A=False , _A=0.0 , _A=0.0 , _A=1 , _A=False , **_A , ) -> Any: SCREAMING_SNAKE_CASE_ = vocab_size # Backward compatibility with n_embed kwarg SCREAMING_SNAKE_CASE_ = kwargs.pop('''n_embed''' , _A ) SCREAMING_SNAKE_CASE_ = hidden_size if n_embed is None else n_embed SCREAMING_SNAKE_CASE_ = n_layer SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pretraining_tp SCREAMING_SNAKE_CASE_ = apply_residual_connection_post_layernorm SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = slow_but_exact super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =version.parse("1.12" ) def __init__( self , _A , _A = "default" , _A = None , _A = False , ) -> Optional[Any]: super().__init__(_A , task=_A , patching_specs=_A , use_past=_A ) if not getattr(self._config , '''pad_token_id''' , _A ): # TODO: how to do that better? SCREAMING_SNAKE_CASE_ = 0 @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE_ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_A , direction='''inputs''' , inverted_values_shape=_A ) SCREAMING_SNAKE_CASE_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCamelCase ( self ) -> int: return self._config.n_layer @property def _UpperCamelCase ( self ) -> int: return self._config.n_head @property def _UpperCamelCase ( self ) -> float: return 1E-3 def _UpperCamelCase ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ = self._config.hidden_size // self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) SCREAMING_SNAKE_CASE_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE_ = common_inputs['''attention_mask'''] if self.use_past: SCREAMING_SNAKE_CASE_ = ordered_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def _UpperCamelCase ( self ) -> int: return 13
257
from graphs.minimum_spanning_tree_kruskal import kruskal def A__ ( ): SCREAMING_SNAKE_CASE_ = 9 SCREAMING_SNAKE_CASE_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE_ = kruskal(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
257
1
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase_ : int = logging.getLogger(__name__) if __name__ == "__main__": lowerCamelCase_ : Any = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0_5_2_2, type=int) lowerCamelCase_ : int = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, """rb""") as fp: lowerCamelCase_ : Optional[int] = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowerCamelCase_ : Optional[int] = Counter() for tk_ids in data: counter.update(tk_ids) lowerCamelCase_ : Dict = [0] * args.vocab_size for k, v in counter.items(): lowerCamelCase_ : Any = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
81
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase_ ): def __init__( self : Dict , _lowercase : CLIPSegForImageSegmentation , _lowercase : CLIPSegProcessor , _lowercase : AutoencoderKL , _lowercase : CLIPTextModel , _lowercase : CLIPTokenizer , _lowercase : UNetaDConditionModel , _lowercase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowercase : StableDiffusionSafetyChecker , _lowercase : CLIPImageProcessor , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: SCREAMING_SNAKE_CASE__ = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , _lowercase , standard_warn=_lowercase ) SCREAMING_SNAKE_CASE__ = dict(scheduler.config ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FrozenDict(_lowercase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: SCREAMING_SNAKE_CASE__ = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _lowercase , standard_warn=_lowercase ) SCREAMING_SNAKE_CASE__ = dict(scheduler.config ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FrozenDict(_lowercase ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_lowercase , segmentation_processor=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , ) def __a ( self : List[Any] , _lowercase : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def __a ( self : Any ): """simple docstring""" self.enable_attention_slicing(_lowercase ) def __a ( self : Optional[int] ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) SCREAMING_SNAKE_CASE__ = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __a ( self : Optional[int] ): """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , _lowercase : Union[str, List[str]] , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] , _lowercase : str , _lowercase : int = 5_12 , _lowercase : int = 5_12 , _lowercase : int = 50 , _lowercase : float = 7.5 , _lowercase : Optional[Union[str, List[str]]] = None , _lowercase : Optional[int] = 1 , _lowercase : float = 0.0 , _lowercase : Optional[torch.Generator] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , _lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowercase : int = 1 , **_lowercase : str , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) SCREAMING_SNAKE_CASE__ = self.segmentation_model(**_lowercase ) SCREAMING_SNAKE_CASE__ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(_lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , height=_lowercase , width=_lowercase , num_inference_steps=_lowercase , guidance_scale=_lowercase , negative_prompt=_lowercase , num_images_per_prompt=_lowercase , eta=_lowercase , generator=_lowercase , latents=_lowercase , output_type=_lowercase , return_dict=_lowercase , callback=_lowercase , callback_steps=_lowercase , )
219
0
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class a__ : lowerCamelCase : str =PegasusConfig lowerCamelCase : List[str] ={} lowerCamelCase : Any ="gelu" def __init__( self : Dict , a : Tuple , a : Union[str, Any]=13 , a : int=7 , a : Tuple=True , a : str=False , a : Tuple=99 , a : List[str]=32 , a : int=5 , a : Tuple=4 , a : Union[str, Any]=37 , a : Tuple=0.1 , a : Union[str, Any]=0.1 , a : Dict=20 , a : Dict=2 , a : Optional[int]=1 , a : Optional[int]=0 , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __lowerCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCamelCase = prepare_pegasus_inputs_dict(a , a , a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Dict , a : Tuple , a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = 20 __lowerCamelCase = model_class_name(a ) __lowerCamelCase = model.encode(inputs_dict['''input_ids'''] ) __lowerCamelCase , __lowerCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , a , a ) __lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase = model.decode( decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , ) __lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowerCamelCase = model.decode( decoder_input_ids[:, -1:] , a , decoder_attention_mask=a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a , ) __lowerCamelCase = model.decode(a , a ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Dict , a : List[str] , a : int ): """simple docstring""" __lowerCamelCase = 20 __lowerCamelCase = model_class_name(a ) __lowerCamelCase = model.encode(inputs_dict['''input_ids'''] ) __lowerCamelCase , __lowerCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __lowerCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , a , a ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase = model.decode( decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , ) __lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowerCamelCase = model.decode( decoder_input_ids[:, -1:] , a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a , decoder_position_ids=a , ) __lowerCamelCase = model.decode(a , a , decoder_attention_mask=a ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , ) -> Dict: if attention_mask is None: __lowerCamelCase = np.not_equal(UpperCamelCase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __lowerCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : str =( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCamelCase : str =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCamelCase : List[str] =True lowerCamelCase : Any =False lowerCamelCase : Optional[Any] =False lowerCamelCase : Union[str, Any] =False def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = FlaxPegasusModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a , a , a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a , a , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(a , a ) __lowerCamelCase = model_class(a ) @jax.jit def encode_jitted(a : Any , a : List[str]=None , **a : Union[str, Any] ): return model.encode(input_ids=a , attention_mask=a ) with self.subTest('''JIT Enabled''' ): __lowerCamelCase = encode_jitted(**a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCamelCase = encode_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = model_class(a ) __lowerCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __lowerCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(a : List[Any] , a : List[str] , a : Tuple ): return model.decode( decoder_input_ids=a , decoder_attention_mask=a , encoder_outputs=a , ) with self.subTest('''JIT Enabled''' ): __lowerCamelCase = decode_jitted(**a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCamelCase = decode_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=a ) __lowerCamelCase = np.ones((1, 1) ) __lowerCamelCase = model(a ) self.assertIsNotNone(a ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) __lowerCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) __lowerCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __lowerCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] __lowerCamelCase = tokenizer(a , return_tensors='''np''' , truncation=a , max_length=5_12 , padding=a ) __lowerCamelCase = model.generate(**a , num_beams=2 ).sequences __lowerCamelCase = tokenizer.batch_decode(a , skip_special_tokens=a ) assert tgt_text == decoded
353
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict =(DPMSolverSDEScheduler,) lowerCamelCase : List[str] =1_0 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , **a : Optional[int] ): """simple docstring""" __lowerCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**a ) return config def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=a , beta_end=a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(a , a ) __lowerCamelCase = model(a , a ) __lowerCamelCase = scheduler.step(a , a , a ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(a ) ) __lowerCamelCase = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1e-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowerCamelCase = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(a , a ) __lowerCamelCase = model(a , a ) __lowerCamelCase = scheduler.step(a , a , a ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(a ) ) __lowerCamelCase = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1e-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1e-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1e-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1e-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowerCamelCase = scheduler.scale_model_input(a , a ) __lowerCamelCase = model(a , a ) __lowerCamelCase = scheduler.step(a , a , a ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(a ) ) __lowerCamelCase = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1e-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma __lowerCamelCase = sample.to(a ) for t in scheduler.timesteps: __lowerCamelCase = scheduler.scale_model_input(a , a ) __lowerCamelCase = model(a , a ) __lowerCamelCase = scheduler.step(a , a , a ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(a ) ) __lowerCamelCase = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2
237
0
'''simple docstring''' def __lowerCamelCase ( ) -> Dict: """simple docstring""" UpperCamelCase = 0 for i in range(1 , 1_001 ): total += i**i return str(A__ )[-10:] if __name__ == "__main__": print(solution())
28
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __lowerCAmelCase = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
57
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __UpperCamelCase : str = logging.get_logger(__name__) # General docstring __UpperCamelCase : Tuple = '''ResNetConfig''' # Base docstring __UpperCamelCase : str = '''microsoft/resnet-50''' __UpperCamelCase : int = [1, 2_0_4_8, 7, 7] # Image classification docstring __UpperCamelCase : Tuple = '''microsoft/resnet-50''' __UpperCamelCase : List[Any] = '''tiger cat''' __UpperCamelCase : List[Any] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 3 ,lowercase_ : int = 1 ,lowercase_ : str = "relu" ): super().__init__() lowerCAmelCase__ : Union[str, Any] = nn.Convad( lowercase_ ,lowercase_ ,kernel_size=lowercase_ ,stride=lowercase_ ,padding=kernel_size // 2 ,bias=lowercase_ ) lowerCAmelCase__ : str = nn.BatchNormad(lowercase_ ) lowerCAmelCase__ : Optional[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Tensor ): lowerCAmelCase__ : Tuple = self.convolution(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.normalization(lowercase_ ) lowerCAmelCase__ : Optional[Any] = self.activation(lowercase_ ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : ResNetConfig ): super().__init__() lowerCAmelCase__ : Tuple = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) lowerCAmelCase__ : Optional[int] = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) lowerCAmelCase__ : Dict = config.num_channels def __lowerCAmelCase ( self : int ,lowercase_ : Tensor ): lowerCAmelCase__ : Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowerCAmelCase__ : int = self.embedder(lowercase_ ) lowerCAmelCase__ : Optional[int] = self.pooler(lowercase_ ) return embedding class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 2 ): super().__init__() lowerCAmelCase__ : int = nn.Convad(lowercase_ ,lowercase_ ,kernel_size=1 ,stride=lowercase_ ,bias=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = nn.BatchNormad(lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Tensor ): lowerCAmelCase__ : str = self.convolution(lowercase_ ) lowerCAmelCase__ : Dict = self.normalization(lowercase_ ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Dict ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 1 ,lowercase_ : str = "relu" ): super().__init__() lowerCAmelCase__ : Tuple = in_channels != out_channels or stride != 1 lowerCAmelCase__ : Any = ( ResNetShortCut(lowercase_ ,lowercase_ ,stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : List[str] = nn.Sequential( ResNetConvLayer(lowercase_ ,lowercase_ ,stride=lowercase_ ) ,ResNetConvLayer(lowercase_ ,lowercase_ ,activation=lowercase_ ) ,) lowerCAmelCase__ : int = ACTaFN[activation] def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Dict ): lowerCAmelCase__ : Dict = hidden_state lowerCAmelCase__ : Dict = self.layer(lowercase_ ) lowerCAmelCase__ : int = self.shortcut(lowercase_ ) hidden_state += residual lowerCAmelCase__ : Optional[int] = self.activation(lowercase_ ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 1 ,lowercase_ : str = "relu" ,lowercase_ : int = 4 ): super().__init__() lowerCAmelCase__ : int = in_channels != out_channels or stride != 1 lowerCAmelCase__ : str = out_channels // reduction lowerCAmelCase__ : Union[str, Any] = ( ResNetShortCut(lowercase_ ,lowercase_ ,stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : Optional[int] = nn.Sequential( ResNetConvLayer(lowercase_ ,lowercase_ ,kernel_size=1 ) ,ResNetConvLayer(lowercase_ ,lowercase_ ,stride=lowercase_ ) ,ResNetConvLayer(lowercase_ ,lowercase_ ,kernel_size=1 ,activation=lowercase_ ) ,) lowerCAmelCase__ : Optional[Any] = ACTaFN[activation] def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[int] ): lowerCAmelCase__ : str = hidden_state lowerCAmelCase__ : List[str] = self.layer(lowercase_ ) lowerCAmelCase__ : Any = self.shortcut(lowercase_ ) hidden_state += residual lowerCAmelCase__ : Dict = self.activation(lowercase_ ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : ResNetConfig ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 2 ,lowercase_ : int = 2 ,): super().__init__() lowerCAmelCase__ : Optional[int] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer lowerCAmelCase__ : Union[str, Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase_ ,lowercase_ ,stride=lowercase_ ,activation=config.hidden_act ) ,*[layer(lowercase_ ,lowercase_ ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def __lowerCAmelCase ( self : int ,lowercase_ : Tensor ): lowerCAmelCase__ : Dict = input for layer in self.layers: lowerCAmelCase__ : Dict = layer(lowercase_ ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase_ : ResNetConfig ): super().__init__() lowerCAmelCase__ : int = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase_ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowerCAmelCase__ : Tuple = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase_ ,config.depths[1:] ): self.stages.append(ResNetStage(lowercase_ ,lowercase_ ,lowercase_ ,depth=lowercase_ ) ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Tensor ,lowercase_ : bool = False ,lowercase_ : bool = True ): lowerCAmelCase__ : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ : Dict = hidden_states + (hidden_state,) lowerCAmelCase__ : Any = stage_module(lowercase_ ) if output_hidden_states: lowerCAmelCase__ : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase_ ,hidden_states=lowercase_ ,) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = ResNetConfig lowercase__ = "resnet" lowercase__ = "pixel_values" lowercase__ = True def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : int ): if isinstance(lowercase_ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(lowercase_ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Any ,lowercase_ : Optional[Any]=False ): if isinstance(lowercase_ ,lowercase_ ): lowerCAmelCase__ : Union[str, Any] = value __UpperCamelCase : Dict = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __UpperCamelCase : int = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , a_ , ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : int ,lowercase_ : Dict ): super().__init__(lowercase_ ) lowerCAmelCase__ : int = config lowerCAmelCase__ : Dict = ResNetEmbeddings(lowercase_ ) lowerCAmelCase__ : Tuple = ResNetEncoder(lowercase_ ) lowerCAmelCase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=lowercase_ ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Tensor ,lowercase_ : Optional[bool] = None ,lowercase_ : Optional[bool] = None ): lowerCAmelCase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Optional[Any] = self.embedder(lowercase_ ) lowerCAmelCase__ : Optional[Any] = self.encoder( lowercase_ ,output_hidden_states=lowercase_ ,return_dict=lowercase_ ) lowerCAmelCase__ : int = encoder_outputs[0] lowerCAmelCase__ : List[Any] = self.pooler(lowercase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ ,pooler_output=lowercase_ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a_ , ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : Any ): super().__init__(lowercase_ ) lowerCAmelCase__ : int = config.num_labels lowerCAmelCase__ : int = ResNetModel(lowercase_ ) # classification head lowerCAmelCase__ : Optional[int] = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=lowercase_ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def __lowerCAmelCase ( self : Dict ,lowercase_ : Optional[torch.FloatTensor] = None ,lowercase_ : Optional[torch.LongTensor] = None ,lowercase_ : Optional[bool] = None ,lowercase_ : Optional[bool] = None ,): lowerCAmelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : List[str] = self.resnet(lowercase_ ,output_hidden_states=lowercase_ ,return_dict=lowercase_ ) lowerCAmelCase__ : int = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : Optional[int] = self.classifier(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : int = '''single_label_classification''' else: lowerCAmelCase__ : int = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase__ : List[Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase__ : Tuple = loss_fct(lowercase_ ,lowercase_ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : List[Any] = CrossEntropyLoss() lowerCAmelCase__ : int = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : List[Any] = BCEWithLogitsLoss() lowerCAmelCase__ : Dict = loss_fct(lowercase_ ,lowercase_ ) if not return_dict: lowerCAmelCase__ : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ ,logits=lowercase_ ,hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , a_ , ) class SCREAMING_SNAKE_CASE ( a_ , a_ ): """simple docstring""" def __init__( self : Any ,lowercase_ : Any ): super().__init__(lowercase_ ) super()._init_backbone(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = [config.embedding_size] + config.hidden_sizes lowerCAmelCase__ : int = ResNetEmbeddings(lowercase_ ) lowerCAmelCase__ : Tuple = ResNetEncoder(lowercase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @replace_return_docstrings(output_type=lowercase_ ,config_class=_CONFIG_FOR_DOC ) def __lowerCAmelCase ( self : int ,lowercase_ : Tensor ,lowercase_ : Optional[bool] = None ,lowercase_ : Optional[bool] = None ): lowerCAmelCase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Dict = self.embedder(lowercase_ ) lowerCAmelCase__ : Optional[int] = self.encoder(lowercase_ ,output_hidden_states=lowercase_ ,return_dict=lowercase_ ) lowerCAmelCase__ : Optional[Any] = outputs.hidden_states lowerCAmelCase__ : Optional[int] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCAmelCase__ : int = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase_ ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=lowercase_ ,)
371
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = '''▁''' __UpperCamelCase : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase : Tuple = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } __UpperCamelCase : Optional[Any] = { '''google/reformer-crime-and-punishment''': 5_2_4_2_8_8, } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self : List[Any] ,lowercase_ : List[str] ,lowercase_ : Optional[int]="</s>" ,lowercase_ : List[Any]="<unk>" ,lowercase_ : Optional[Any]=[] ,lowercase_ : Optional[Dict[str, Any]] = None ,**lowercase_ : int ,): lowerCAmelCase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ ,unk_token=lowercase_ ,additional_special_tokens=lowercase_ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase_ ,) lowerCAmelCase__ : List[str] = vocab_file lowerCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def __lowerCAmelCase ( self : List[str] ): return self.sp_model.get_piece_size() def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): lowerCAmelCase__ : str = self.__dict__.copy() lowerCAmelCase__ : Any = None return state def __setstate__( self : List[str] ,lowercase_ : Any ): lowerCAmelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Dict ,lowercase_ : str ): return self.sp_model.encode(lowercase_ ,out_type=lowercase_ ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : int ): return self.sp_model.piece_to_id(lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Dict ): if index < self.sp_model.get_piece_size(): lowerCAmelCase__ : List[Any] = self.sp_model.IdToPiece(lowercase_ ) return token def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token lowerCAmelCase__ : Dict = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ,lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : List[Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ ,'''wb''' ) as fi: lowerCAmelCase__ : Any = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
74
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCAmelCase__ (lowerCAmelCase_ = 8 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ascii_letters + digits + punctuation return "".join(secrets.choice(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' i -= len(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = i // 3 __SCREAMING_SNAKE_CASE = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __SCREAMING_SNAKE_CASE = ( chars_incl + random(lowerCAmelCase_ , quotient + remainder ) + random(lowerCAmelCase_ , lowerCAmelCase_ ) + random(lowerCAmelCase_ , lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = list(lowerCAmelCase_ ) shuffle(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) # random is a generalised function for letters, characters and numbers def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return "".join(secrets.choice(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = 8 ): '''simple docstring''' if len(lowerCAmelCase_ ) < min_length: # Your Password must be at least 8 characters long return False __SCREAMING_SNAKE_CASE = any(char in ascii_uppercase for char in password ) __SCREAMING_SNAKE_CASE = any(char in ascii_lowercase for char in password ) __SCREAMING_SNAKE_CASE = any(char in digits for char in password ) __SCREAMING_SNAKE_CASE = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = int(input("Please indicate the max length of your password: " ).strip() ) __SCREAMING_SNAKE_CASE = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(lowerCAmelCase_ ) ) print( "Alternative Password generated:" , alternative_password_generator(lowerCAmelCase_ , lowerCAmelCase_ ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
54
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a__ ( __A ): """simple docstring""" __UpperCamelCase : torch.FloatTensor class a__ ( __A , __A ): """simple docstring""" @register_to_config def __init__(self , __lowercase = 3 , __lowercase = 3 , __lowercase = ("DownEncoderBlock2D",) , __lowercase = ("UpDecoderBlock2D",) , __lowercase = (64,) , __lowercase = 1 , __lowercase = "silu" , __lowercase = 3 , __lowercase = 32 , __lowercase = 2_56 , __lowercase = 32 , __lowercase = None , __lowercase = 0.1_8_2_1_5 , __lowercase = "group" , ): super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=__lowercase , out_channels=__lowercase , down_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , double_z=__lowercase , ) __lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = VectorQuantizer(__lowercase , __lowercase , beta=0.2_5 , remap=__lowercase , sane_index_shape=__lowercase ) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=__lowercase , out_channels=__lowercase , up_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , norm_type=__lowercase , ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = self.encoder(__lowercase ) __lowerCAmelCase = self.quant_conv(__lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowercase ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = False , __lowercase = True ): # also go through quantization layer if not force_not_quantize: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.quantize(__lowercase ) else: __lowerCAmelCase = h __lowerCAmelCase = self.post_quant_conv(__lowercase ) __lowerCAmelCase = self.decoder(__lowercase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = sample __lowerCAmelCase = self.encode(__lowercase ).latents __lowerCAmelCase = self.decode(__lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase )
174
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } _lowerCAmelCase = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Dict = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE :Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE :List[str] = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE :int = DistilBertTokenizer def __init__( self : List[Any] , a__ : List[str]=None , a__ : List[Any]=None , a__ : Any=True , a__ : Optional[Any]="[UNK]" , a__ : int="[SEP]" , a__ : List[Any]="[PAD]" , a__ : Optional[Any]="[CLS]" , a__ : int="[MASK]" , a__ : List[Any]=True , a__ : Optional[int]=None , **a__ : List[Any] , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) __magic_name__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , a__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , a__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , a__ ) != tokenize_chinese_chars ): __magic_name__ = getattr(a__ , normalizer_state.pop('''type''' ) ) __magic_name__ = do_lower_case __magic_name__ = strip_accents __magic_name__ = tokenize_chinese_chars __magic_name__ = normalizer_class(**a__ ) __magic_name__ = do_lower_case def snake_case__ ( self : Dict , a__ : Tuple , a__ : List[Any]=None ): __magic_name__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : int , a__ : List[int] , a__ : Optional[List[int]] = None ): __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : List[str] , a__ : str , a__ : Optional[str] = None ): __magic_name__ = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
98
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _lowerCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _lowerCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :str = """whisper""" __SCREAMING_SNAKE_CASE :str = ["""past_key_values"""] __SCREAMING_SNAKE_CASE :Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Dict , a__ : Optional[int]=5_1865 , a__ : str=80 , a__ : List[str]=6 , a__ : List[str]=4 , a__ : List[Any]=6 , a__ : Union[str, Any]=4 , a__ : Tuple=1536 , a__ : Optional[int]=1536 , a__ : List[str]=0.0 , a__ : Union[str, Any]=0.0 , a__ : Union[str, Any]=5_0257 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : Union[str, Any]="gelu" , a__ : Tuple=256 , a__ : Dict=0.0 , a__ : str=0.0 , a__ : Optional[Any]=0.0 , a__ : int=0.02 , a__ : Any=False , a__ : List[Any]=1500 , a__ : Optional[int]=448 , a__ : Dict=5_0256 , a__ : str=5_0256 , a__ : Tuple=5_0256 , a__ : List[str]=None , a__ : List[Any]=[220, 5_0256] , a__ : Any=False , a__ : Dict=256 , a__ : Optional[Any]=False , a__ : str=0.05 , a__ : List[Any]=10 , a__ : List[Any]=2 , a__ : Optional[int]=0.0 , a__ : List[Any]=10 , a__ : Union[str, Any]=0 , a__ : int=7 , **a__ : Any , ): __magic_name__ = vocab_size __magic_name__ = num_mel_bins __magic_name__ = d_model __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = encoder_ffn_dim __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True __magic_name__ = max_source_positions __magic_name__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __magic_name__ = classifier_proj_size __magic_name__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ = apply_spec_augment __magic_name__ = mask_time_prob __magic_name__ = mask_time_length __magic_name__ = mask_time_min_masks __magic_name__ = mask_feature_prob __magic_name__ = mask_feature_length __magic_name__ = mask_feature_min_masks __magic_name__ = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class _SCREAMING_SNAKE_CASE ( __a ): @property def snake_case__ ( self : List[str] ): __magic_name__ = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __magic_name__ = {0: '''batch'''} else: __magic_name__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def snake_case__ ( self : Optional[int] , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 2_2050 , a__ : float = 5.0 , a__ : int = 220 , ): __magic_name__ = OrderedDict() __magic_name__ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) __magic_name__ = encoder_inputs['''input_features'''].shape[2] __magic_name__ = encoder_sequence_length // 2 if self.use_past else seq_length __magic_name__ = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) __magic_name__ = encoder_inputs.pop('''input_features''' ) __magic_name__ = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __magic_name__ = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def snake_case__ ( self : Dict ): return 1E-3
98
1
import math def __lowercase ( a__ ) -> bool: return math.sqrt(a__ ) * math.sqrt(a__ ) == num def __lowercase ( a__ ) -> bool: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = n while left <= right: __SCREAMING_SNAKE_CASE = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __SCREAMING_SNAKE_CASE = mid - 1 else: __SCREAMING_SNAKE_CASE = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
257
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) def __lowercase ( a__ ) -> List[str]: __SCREAMING_SNAKE_CASE = 'huggingface/label-files' __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __SCREAMING_SNAKE_CASE = BitConfig( conv_layer=a__ , num_labels=10_00 , idalabel=a__ , labelaid=a__ , ) return config def __lowercase ( a__ ) -> str: if "stem.conv" in name: __SCREAMING_SNAKE_CASE = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace('blocks' , 'layers' ) if "head.fc" in name: __SCREAMING_SNAKE_CASE = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): __SCREAMING_SNAKE_CASE = 'bit.' + name if "bit" not in name and "classifier" not in name: __SCREAMING_SNAKE_CASE = 'bit.encoder.' + name return name def __lowercase ( ) -> int: __SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def __lowercase ( a__ , a__ , a__=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = get_config(a__ ) # load original model from timm __SCREAMING_SNAKE_CASE = create_model(a__ , pretrained=a__ ) timm_model.eval() # load state_dict of original model __SCREAMING_SNAKE_CASE = timm_model.state_dict() for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) __SCREAMING_SNAKE_CASE = val.squeeze() if 'head' in key else val # load HuggingFace model __SCREAMING_SNAKE_CASE = BitForImageClassification(a__ ) model.eval() model.load_state_dict(a__ ) # create image processor __SCREAMING_SNAKE_CASE = create_transform(**resolve_data_config({} , model=a__ ) ) __SCREAMING_SNAKE_CASE = transform.transforms __SCREAMING_SNAKE_CASE = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } __SCREAMING_SNAKE_CASE = BitImageProcessor( do_resize=a__ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a__ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=a__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = transform(a__ ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE = processor(a__ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(a__ , a__ ) # verify logits with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(a__ ) __SCREAMING_SNAKE_CASE = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) __SCREAMING_SNAKE_CASE = timm_model(a__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a__ , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(f"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: print(f"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(f"""ybelkada/{model_name}""" ) processor.push_to_hub(f"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) lowerCAmelCase__ : int =parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
257
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: str = IFImgaImgSuperResolutionPipeline __magic_name__: List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} __magic_name__: Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) __magic_name__: Tuple = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self : List[str] , _A : Dict , _A : Optional[int]=0 ) -> Any: """simple docstring""" if str(_A ).startswith('mps' ): snake_case_ : List[Any] = torch.manual_seed(_A ) else: snake_case_ : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) snake_case_ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) snake_case_ : Any = floats_tensor((1, 3, 16, 16) , rng=random.Random(_A ) ).to(_A ) snake_case_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
88
_SCREAMING_SNAKE_CASE = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
88
1