code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=18 , _A=30 , _A=400 , _A=True , _A=32 , _A=True , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size_divisor SCREAMING_SNAKE_CASE_ = do_rescale def _UpperCamelCase ( self ) -> Dict: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCamelCase__ ( a__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =GLPNImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = GLPNImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size_divisor''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''resample''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_rescale''' ) ) def _UpperCamelCase ( self ) -> List[Any]: pass def _UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _UpperCamelCase ( self ) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _UpperCamelCase ( self ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
299
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
0
"""simple docstring""" def snake_case_ ( A_ : int = 1, A_ : int = 10_00 ): '''simple docstring''' _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 0 for divide_by_number in range(A_, digit + 1 ): _lowerCamelCase : list[int] = [] _lowerCamelCase : List[Any] = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(A_ ): _lowerCamelCase : str = len(A_ ) _lowerCamelCase : List[str] = divide_by_number else: has_been_divided.append(A_ ) _lowerCamelCase : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
175
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Optional[int] = BlenderbotSmallTokenizer snake_case__ : List[str] = False def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" super().setUp() _lowerCamelCase : str = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowerCamelCase : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Any = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowerCamelCase : List[str] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Tuple = '''adapt act apte''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Optional[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowerCamelCase : List[str] = '''I am a small frog.''' _lowerCamelCase : str = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Any = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowerCamelCase : Optional[Any] = '''I am a small frog .''' _lowerCamelCase : str = '''.''' _lowerCamelCase : str = tok(__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Dict = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
175
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[str]): a : Dict = tempfile.mkdtemp() # fmt: off a : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a : List[Any] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase)))) a : Optional[int] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] a : Optional[int] = {"unk_token": "<unk>"} a : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__UpperCAmelCase) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(__UpperCAmelCase)) a : Optional[Any] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } a : int = os.path.join(self.tmpdirname , __UpperCAmelCase) with open(self.image_processor_file , "w" , encoding="utf-8") as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : int , **__UpperCAmelCase : int): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase) def __snake_case ( self : Optional[int] , **__UpperCAmelCase : Optional[Any]): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase) def __snake_case ( self : str , **__UpperCAmelCase : List[Any]): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def __snake_case ( self : Tuple): shutil.rmtree(self.tmpdirname) def __snake_case ( self : Union[str, Any]): a : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a : Optional[int] = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def __snake_case ( self : Optional[Any]): a : Any = self.get_tokenizer() a : Any = self.get_rust_tokenizer() a : str = self.get_image_processor() a : Dict = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) processor_slow.save_pretrained(self.tmpdirname) a : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase) a : str = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) processor_fast.save_pretrained(self.tmpdirname) a : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase) def __snake_case ( self : Optional[Any]): a : int = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") a : Optional[int] = self.get_image_processor(do_normalize=__UpperCAmelCase) a : Optional[Any] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __UpperCAmelCase) def __snake_case ( self : Union[str, Any]): a : Any = self.get_image_processor() a : Dict = self.get_tokenizer() a : Optional[int] = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) a : Optional[Any] = self.prepare_image_inputs() a : Dict = image_processor(__UpperCAmelCase , return_tensors="np") a : str = processor(images=__UpperCAmelCase , return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __snake_case ( self : int): a : int = self.get_image_processor() a : Dict = self.get_tokenizer() a : Optional[int] = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) a : Tuple = "lower newer" a : Tuple = processor(text=__UpperCAmelCase , return_tensors="np") a : Tuple = tokenizer(__UpperCAmelCase , return_tensors="np") for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def __snake_case ( self : str): a : Any = self.get_image_processor() a : str = self.get_tokenizer() a : Any = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) a : int = "lower newer" a : int = self.prepare_image_inputs() a : Optional[int] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase): processor() def __snake_case ( self : Optional[Any]): a : Tuple = "google/owlvit-base-patch32" a : Optional[Any] = OwlViTProcessor.from_pretrained(__UpperCAmelCase) a : Dict = ["cat", "nasa badge"] a : Union[str, Any] = processor(text=__UpperCAmelCase) a : Optional[Any] = 16 self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase): processor() def __snake_case ( self : Optional[int]): a : Dict = "google/owlvit-base-patch32" a : Tuple = OwlViTProcessor.from_pretrained(__UpperCAmelCase) a : Optional[Any] = [["cat", "nasa badge"], ["person"]] a : Tuple = processor(text=__UpperCAmelCase) a : Any = 16 a : Any = len(__UpperCAmelCase) a : Optional[Any] = max([len(__UpperCAmelCase) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase): processor() def __snake_case ( self : Optional[Any]): a : Optional[int] = "google/owlvit-base-patch32" a : Tuple = OwlViTProcessor.from_pretrained(__UpperCAmelCase) a : str = ["cat", "nasa badge"] a : Union[str, Any] = processor(text=__UpperCAmelCase) a : Optional[Any] = 16 a : Dict = inputs["input_ids"] a : List[str] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def __snake_case ( self : Any): a : Tuple = self.get_image_processor() a : Union[str, Any] = self.get_tokenizer() a : str = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) a : str = self.prepare_image_inputs() a : Optional[int] = self.prepare_image_inputs() a : Any = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ["query_pixel_values", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase): processor() def __snake_case ( self : Union[str, Any]): a : int = self.get_image_processor() a : Optional[Any] = self.get_tokenizer() a : List[str] = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) a : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a : Any = processor.batch_decode(__UpperCAmelCase) a : List[str] = tokenizer.batch_decode(__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase)
40
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = LayoutLMTokenizer UpperCAmelCase : int = LayoutLMTokenizerFast UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Optional[Any] = True def __snake_case ( self : Optional[int]): super().setUp() a : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def __snake_case ( self : Optional[int] , **__UpperCAmelCase : Tuple): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str): a : Tuple = "UNwant\u00E9d,running" a : Dict = "unwanted, running" return input_text, output_text def __snake_case ( self : Any): a : List[Any] = self.tokenizer_class(self.vocab_file) a : str = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [7, 4, 5, 10, 8, 9]) def __snake_case ( self : Dict): pass
40
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( snake_case__ ): _a : str = ["""image_processor""", """tokenizer"""] _a : List[str] = """Pix2StructImageProcessor""" _a : List[str] = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , _A , _A ): """simple docstring""" __lowerCAmelCase = False super().__init__(_A , _A ) def __call__( self , _A=None , _A = None , _A = True , _A = False , _A = None , _A = None , _A = 2_0_4_8 , _A = 0 , _A = None , _A = None , _A = False , _A = False , _A = False , _A = False , _A = False , _A = True , _A = None , **_A , ): """simple docstring""" if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: __lowerCAmelCase = self.tokenizer __lowerCAmelCase = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __lowerCAmelCase = self.image_processor( _A , return_tensors=_A , max_patches=_A , **_A ) else: # add pixel_values and bbox __lowerCAmelCase = self.image_processor( _A , return_tensors=_A , max_patches=_A , header_text=_A , **_A ) if text is not None and not self.image_processor.is_vqa: __lowerCAmelCase = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) if "attention_mask" in text_encoding: __lowerCAmelCase = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: __lowerCAmelCase = text_encoding.pop("input_ids" ) else: __lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(_A ) return encoding_image_processor def __SCREAMING_SNAKE_CASE( self , *_A , **_A ): """simple docstring""" return self.tokenizer.batch_decode(*_A , **_A ) def __SCREAMING_SNAKE_CASE( self , *_A , **_A ): """simple docstring""" return self.tokenizer.decode(*_A , **_A ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.tokenizer.model_input_names __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
356
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 16 UpperCamelCase__ = 32 def _a ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ): __lowerCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) __lowerCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : str ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="longest" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ = mocked_dataloaders # noqa: F811 def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE_ ) == "1": __lowerCAmelCase = 2 # New Code # __lowerCAmelCase = int(args.gradient_accumulation_steps ) # Initialize accelerator __lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = evaluate.load("glue" , "mrpc" ) set_seed(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = output.loss accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
102
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCamelCase_ : '''simple docstring''' lowerCAmelCase = 42 lowerCAmelCase = None lowerCAmelCase = None def __UpperCAmelCase ( ): snake_case_ = Node(1) snake_case_ = Node(2) snake_case_ = Node(3) snake_case_ = Node(4) snake_case_ = Node(5) return tree def __UpperCAmelCase ( a_): return [root.data, *preorder(root.left), *preorder(root.right)] if root else [] def __UpperCAmelCase ( a_): return postorder(root.left) + postorder(root.right) + [root.data] if root else [] def __UpperCAmelCase ( a_): return [*inorder(root.left), root.data, *inorder(root.right)] if root else [] def __UpperCAmelCase ( a_): return (max(height(root.left) , height(root.right)) + 1) if root else 0 def __UpperCAmelCase ( a_): snake_case_ = [] if root is None: return output snake_case_ = deque([root]) while process_queue: snake_case_ = process_queue.popleft() output.append(node.data) if node.left: process_queue.append(node.left) if node.right: process_queue.append(node.right) return output def __UpperCAmelCase ( a_ , a_): snake_case_ = [] def populate_output(a_ , a_) -> None: if not root: return if level == 1: output.append(root.data) elif level > 1: populate_output(root.left , level - 1) populate_output(root.right , level - 1) populate_output(a_ , a_) return output def __UpperCAmelCase ( a_ , a_): snake_case_ = [] def populate_output(a_ , a_) -> None: if root is None: return if level == 1: output.append(root.data) elif level > 1: populate_output(root.right , level - 1) populate_output(root.left , level - 1) populate_output(a_ , a_) return output def __UpperCAmelCase ( a_): if root is None: return [] snake_case_ = [] snake_case_ = 0 snake_case_ = height(a_) for h in range(1 , height_tree + 1): if not flag: output.append(get_nodes_from_left_to_right(a_ , a_)) snake_case_ = 1 else: output.append(get_nodes_from_right_to_left(a_ , a_)) snake_case_ = 0 return output def __UpperCAmelCase ( ): # Main function for testing. snake_case_ = make_tree() print(f'''In-order Traversal: {inorder(a_)}''') print(f'''Pre-order Traversal: {preorder(a_)}''') print(f'''Post-order Traversal: {postorder(a_)}''' , '\n') print(f'''Height of Tree: {height(a_)}''' , '\n') print('Complete Level Order Traversal: ') print(level_order(a_) , '\n') print('Level-wise order Traversal: ') for level in range(1 , height(a_) + 1): print(f'''Level {level}:''' , get_nodes_from_left_to_right(a_ , level=a_)) print('\nZigZag order Traversal: ') print(zigzag(a_)) if __name__ == "__main__": import doctest doctest.testmod() main()
178
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def __UpperCAmelCase ( a_ , a_=False): snake_case_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head'): snake_case_ = 'segformer.encoder.' + key if key.startswith('backbone'): snake_case_ = key.replace('backbone' , 'segformer.encoder') if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case_ = key[key.find('patch_embed') + len('patch_embed')] snake_case_ = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(a_)-1}''') if "norm" in key: snake_case_ = key.replace('norm' , 'layer_norm') if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case_ = key[key.find('segformer.encoder.layer_norm') + len('segformer.encoder.layer_norm')] snake_case_ = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(a_)-1}''') if "layer_norm1" in key: snake_case_ = key.replace('layer_norm1' , 'layer_norm_1') if "layer_norm2" in key: snake_case_ = key.replace('layer_norm2' , 'layer_norm_2') if "block" in key: # replace for example block1 by block.0 snake_case_ = key[key.find('block') + len('block')] snake_case_ = key.replace(f'''block{idx}''' , f'''block.{int(a_)-1}''') if "attn.q" in key: snake_case_ = key.replace('attn.q' , 'attention.self.query') if "attn.proj" in key: snake_case_ = key.replace('attn.proj' , 'attention.output.dense') if "attn" in key: snake_case_ = key.replace('attn' , 'attention.self') if "fc1" in key: snake_case_ = key.replace('fc1' , 'dense1') if "fc2" in key: snake_case_ = key.replace('fc2' , 'dense2') if "linear_pred" in key: snake_case_ = key.replace('linear_pred' , 'classifier') if "linear_fuse" in key: snake_case_ = key.replace('linear_fuse.conv' , 'linear_fuse') snake_case_ = key.replace('linear_fuse.bn' , 'batch_norm') if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case_ = key[key.find('linear_c') + len('linear_c')] snake_case_ = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(a_)-1}''') if key.startswith('head'): snake_case_ = key.replace('head' , 'classifier') snake_case_ = value return new_state_dict def __UpperCAmelCase ( a_ , a_): # for each of the encoder blocks: for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case_ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''') snake_case_ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''') # next, add keys and values (in that order) to the state dict snake_case_ = kv_weight[ : config.hidden_sizes[i], : ] snake_case_ = kv_bias[: config.hidden_sizes[i]] snake_case_ = kv_weight[ config.hidden_sizes[i] :, : ] snake_case_ = kv_bias[ config.hidden_sizes[i] : ] def __UpperCAmelCase ( ): snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(a_ , stream=a_).raw) return image @torch.no_grad() def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = SegformerConfig() snake_case_ = False # set attributes based on model_name snake_case_ = 'huggingface/label-files' if "segformer" in model_name: snake_case_ = model_name[len('segformer.') : len('segformer.') + 2] if "ade" in model_name: snake_case_ = 1_50 snake_case_ = 'ade20k-id2label.json' snake_case_ = (1, 1_50, 1_28, 1_28) elif "city" in model_name: snake_case_ = 19 snake_case_ = 'cityscapes-id2label.json' snake_case_ = (1, 19, 1_28, 1_28) else: raise ValueError(f'''Model {model_name} not supported''') elif "mit" in model_name: snake_case_ = True snake_case_ = model_name[4:6] snake_case_ = 10_00 snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = (1, 10_00) else: raise ValueError(f'''Model {model_name} not supported''') # set config attributes snake_case_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset') , 'r')) snake_case_ = {int(a_): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 2_56 elif size == "b2": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 7_68 snake_case_ = [3, 4, 6, 3] elif size == "b3": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 7_68 snake_case_ = [3, 4, 18, 3] elif size == "b4": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 7_68 snake_case_ = [3, 8, 27, 3] elif size == "b5": snake_case_ = [64, 1_28, 3_20, 5_12] snake_case_ = 7_68 snake_case_ = [3, 6, 40, 3] else: raise ValueError(f'''Size {size} not supported''') # load image processor (only resize + normalize) snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=a_ , align=a_ , do_random_crop=a_) # prepare image snake_case_ = prepare_img() snake_case_ = image_processor(images=a_ , return_tensors='pt').pixel_values logger.info(f'''Converting model {model_name}...''') # load original state dict if encoder_only: snake_case_ = torch.load(a_ , map_location=torch.device('cpu')) else: snake_case_ = torch.load(a_ , map_location=torch.device('cpu'))['state_dict'] # rename keys snake_case_ = rename_keys(a_ , encoder_only=a_) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_) # create HuggingFace model and load state dict if encoder_only: snake_case_ = False snake_case_ = SegformerForImageClassification(a_) else: snake_case_ = SegformerForSemanticSegmentation(a_) model.load_state_dict(a_) model.eval() # forward pass snake_case_ = model(a_) snake_case_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]) elif model_name == "segformer.b1.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ]) elif model_name == "segformer.b2.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ]) elif model_name == "segformer.b3.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ]) elif model_name == "segformer.b4.512x512.ade.160k": snake_case_ = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ]) elif model_name == "segformer.b5.640x640.ade.160k": snake_case_ = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ]) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ]) elif model_name == "segformer.b0.512x1024.city.160k": snake_case_ = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ]) elif model_name == "segformer.b0.640x1280.city.160k": snake_case_ = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ]) elif model_name == "segformer.b0.768x768.city.160k": snake_case_ = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ]) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ]) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ]) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ]) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ]) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case_ = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ]) else: snake_case_ = logits.argmax(-1).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx]) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1E-2) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(a_).mkdir(exist_ok=a_) model.save_pretrained(a_) image_processor.save_pretrained(a_) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowercase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
178
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : List[Any] , *lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Union[str, Any]=None , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = eval_examples UpperCamelCase = post_process_function UpperCamelCase = quant_trainer_args UpperCamelCase = 128 # default number of calibration samples def lowerCamelCase_ ( self : int , lowerCamelCase_ : Union[str, Any]=None ): """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) UpperCamelCase = calib_dataset if calib_dataset is not None else self.calib_dataset UpperCamelCase = self._remove_unused_columns(lowerCamelCase_ , description="""Calibration""" ) return DataLoader( lowerCamelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCamelCase_ , ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : int=None ): """simple docstring""" UpperCamelCase = self.train_dataset if calib_dataset is None else calib_dataset UpperCamelCase = self.get_calib_dataloader(lowerCamelCase_ ) UpperCamelCase = self.model quant_trainer.configure_model(lowerCamelCase_ , self.quant_trainer_args , calib=lowerCamelCase_ ) model.eval() quant_trainer.enable_calibration(lowerCamelCase_ ) logger.info("""***** Running calibration *****""" ) logger.info(f""" Num examples = {self.calib_num}""" ) logger.info(f""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(lowerCamelCase_ ): # Prediction step UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prediction_step(lowerCamelCase_ , lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCamelCase_ , self.quant_trainer_args ) UpperCamelCase = model def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : str = "eval" ): """simple docstring""" UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase = self.get_eval_dataloader(lowerCamelCase_ ) UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase = self.compute_metrics UpperCamelCase = None UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCamelCase = eval_loop( lowerCamelCase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase_ , ) finally: UpperCamelCase = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: UpperCamelCase = self.post_process_function(lowerCamelCase_ , lowerCamelCase_ , output.predictions ) UpperCamelCase = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCamelCase = metrics.pop(lowerCamelCase_ ) self.log(lowerCamelCase_ ) else: UpperCamelCase = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase_ ) return metrics def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict=None , lowerCamelCase_ : str = "test" ): """simple docstring""" UpperCamelCase = self.get_test_dataloader(lowerCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase = self.compute_metrics UpperCamelCase = None UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCamelCase = eval_loop( lowerCamelCase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase_ , ) finally: UpperCamelCase = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase = self.post_process_function(lowerCamelCase_ , lowerCamelCase_ , output.predictions , """predict""" ) UpperCamelCase = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCamelCase = metrics.pop(lowerCamelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase_ ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : str="./" ): """simple docstring""" UpperCamelCase = self.eval_dataset UpperCamelCase = self.get_eval_dataloader(lowerCamelCase_ ) UpperCamelCase = next(iter(lowerCamelCase_ ) ) # saving device - to make it consistent UpperCamelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple UpperCamelCase = tuple(v.to(lowerCamelCase_ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer UpperCamelCase = True UpperCamelCase = self.model.to(lowerCamelCase_ ) model.eval() model.float() UpperCamelCase = model.module if hasattr(lowerCamelCase_ , """module""" ) else model quant_trainer.configure_model(lowerCamelCase_ , self.quant_trainer_args ) UpperCamelCase = os.path.join(lowerCamelCase_ , """model.onnx""" ) logger.info(f"""exporting model to {output_model_file}""" ) UpperCamelCase = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , export_params=lowerCamelCase_ , opset_version=13 , do_constant_folding=lowerCamelCase_ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=lowerCamelCase_ , ) logger.info("""onnx export finished""" )
165
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""YolosFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _a : Union[str, Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _a : List[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _a : List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> tuple[str, float]: _lowerCAmelCase : List[Any] = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> tuple[str, str]: _lowerCAmelCase : Dict = random.randint(0 ,len(_lowerCamelCase ) - 1 ) _lowerCAmelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] _lowerCAmelCase : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : list[str] ) -> str: _lowerCAmelCase : Optional[Any] = list(_lowerCamelCase ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _lowerCAmelCase : Optional[int] = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : tuple[str, float] ,_lowerCamelCase : list[tuple[str, float]] ,_lowerCamelCase : list[str] ,) -> list[str]: _lowerCAmelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _lowerCAmelCase : Optional[Any] = int(parent_a[1] * 100 ) + 1 _lowerCAmelCase : Dict = 10 if child_n >= 10 else child_n for _ in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = population_score[random.randint(0 ,_lowerCamelCase )][0] _lowerCAmelCase , _lowerCAmelCase : int = crossover(parent_a[0] ,_lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase ,_lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase ,_lowerCamelCase ) ) return pop def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : list[str] ,_lowerCamelCase : bool = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _lowerCAmelCase : Any = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. _lowerCAmelCase : Dict = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _lowerCAmelCase : Optional[int] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(_lowerCamelCase ) # Generate random starting population. _lowerCAmelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): population.append("""""".join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. _lowerCAmelCase , _lowerCAmelCase : Tuple = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _lowerCAmelCase : Dict = [evaluate(_lowerCamelCase ,_lowerCamelCase ) for item in population] # Check if there is a matching evolution. _lowerCAmelCase : List[str] = sorted(_lowerCamelCase ,key=lambda _lowerCamelCase : x[1] ,reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _lowerCAmelCase : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. _lowerCAmelCase : Optional[int] = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )] ,_lowerCamelCase ,_lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": _a : Dict = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) _a : Tuple = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) _a , _a , _a : str = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
44
import os def a ( ): '''simple docstring''' lowercase_ = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' ) with open(snake_case__ ) as file_hand: return str(sum(int(snake_case__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
30
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): @staticmethod @abstractmethod def lowerCamelCase_ ( lowerCamelCase_ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self : Tuple ): """simple docstring""" raise NotImplementedError()
165
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> tuple[float, list[float]]: '''simple docstring''' UpperCamelCase = list(range(len(UpperCamelCase_ ) ) ) UpperCamelCase = [v / w for v, w in zip(UpperCamelCase_ , UpperCamelCase_ )] index.sort(key=lambda UpperCamelCase_ : ratio[i] , reverse=UpperCamelCase_ ) UpperCamelCase = 0 UpperCamelCase = [0] * len(UpperCamelCase_ ) for i in index: if weight[i] <= capacity: UpperCamelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
165
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : def __init__( self : int , snake_case : int , snake_case : str=1_3 , snake_case : Optional[Any]=7 , snake_case : Tuple=True , snake_case : Optional[int]=True , snake_case : List[str]=False , snake_case : int=True , snake_case : int=9_9 , snake_case : Optional[int]=3_2 , snake_case : Optional[Any]=5 , snake_case : Optional[Any]=4 , snake_case : int=3_7 , snake_case : Union[str, Any]="gelu" , snake_case : List[Any]=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : Tuple=5_1_2 , snake_case : List[str]=1_6 , snake_case : Union[str, Any]=2 , snake_case : Tuple=0.02 , snake_case : Tuple=3 , snake_case : Optional[int]=4 , snake_case : List[Any]=None , ) -> Tuple: """simple docstring""" UpperCamelCase_ : Tuple = parent UpperCamelCase_ : Any = batch_size UpperCamelCase_ : int = seq_length UpperCamelCase_ : Optional[Any] = is_training UpperCamelCase_ : Optional[int] = use_input_mask UpperCamelCase_ : int = use_token_type_ids UpperCamelCase_ : Optional[Any] = use_labels UpperCamelCase_ : Optional[Any] = vocab_size UpperCamelCase_ : Any = hidden_size UpperCamelCase_ : int = num_hidden_layers UpperCamelCase_ : List[str] = num_attention_heads UpperCamelCase_ : Tuple = intermediate_size UpperCamelCase_ : Tuple = hidden_act UpperCamelCase_ : List[str] = hidden_dropout_prob UpperCamelCase_ : str = attention_probs_dropout_prob UpperCamelCase_ : List[str] = max_position_embeddings UpperCamelCase_ : Optional[Any] = type_vocab_size UpperCamelCase_ : Tuple = type_sequence_label_size UpperCamelCase_ : List[Any] = initializer_range UpperCamelCase_ : Dict = num_labels UpperCamelCase_ : Optional[Any] = num_choices UpperCamelCase_ : Dict = scope def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Optional[int] = None if self.use_input_mask: UpperCamelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : Any = None if self.use_token_type_ids: UpperCamelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : List[str] = None UpperCamelCase_ : Dict = None UpperCamelCase_ : Optional[int] = None if self.use_labels: UpperCamelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : str , snake_case : List[Any] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : int ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : str = model(snake_case , attention_mask=snake_case ) UpperCamelCase_ : str = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : int , snake_case : List[Any] , ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[Any] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : int = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : int , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : List[Any] , *snake_case : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask UpperCamelCase_ : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) UpperCamelCase_ : List[Any] = self.seq_length // 2 UpperCamelCase_ : Tuple = 0 # first forward pass UpperCamelCase_, UpperCamelCase_ : Optional[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCamelCase_ : Tuple = ids_tensor((1,) , snake_case ).item() + 1 UpperCamelCase_ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCamelCase_ : Optional[int] = random_other_next_tokens # append to next input_ids and attn_mask UpperCamelCase_ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : Any = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs UpperCamelCase_ : Optional[int] = model(snake_case , attention_mask=snake_case )['last_hidden_state'] UpperCamelCase_ : Dict = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )['last_hidden_state'] # select random slice UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : str = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase_ : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : str , snake_case : int , snake_case : Union[str, Any] , snake_case : Any , snake_case : Optional[int] , *snake_case : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Any = BioGptModel(config=snake_case ).to(snake_case ).eval() UpperCamelCase_ : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass UpperCamelCase_ : List[str] = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) UpperCamelCase_, UpperCamelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase_ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase_ : Optional[Any] = model(snake_case , attention_mask=snake_case )['last_hidden_state'] UpperCamelCase_ : Optional[Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ 'last_hidden_state' ] # select random slice UpperCamelCase_ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Tuple , *snake_case : Optional[int] , snake_case : Optional[int]=False ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCamelCase_ : Union[str, Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Union[str, Any] , *snake_case : int ) -> int: """simple docstring""" UpperCamelCase_ : Any = BioGptModel(snake_case ) UpperCamelCase_ : Tuple = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Dict , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Optional[int] , *snake_case : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.num_labels UpperCamelCase_ : Dict = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ) : Optional[int] = config_and_inputs UpperCamelCase_ : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowercase = (BioGptForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) lowercase = False def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = BioGptModelTester(self ) UpperCamelCase_ : str = ConfigTester(self , config_class=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_ : List[Any] = type self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(snake_case ) UpperCamelCase_ : Any = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCamelCase_ : str = 'left' # Define PAD Token = EOS Token = 50256 UpperCamelCase_ : List[str] = tokenizer.eos_token UpperCamelCase_ : Optional[Any] = model.config.eos_token_id # use different length sentences to test batching UpperCamelCase_ : List[Any] = [ 'Hello, my dog is a little', 'Today, I', ] UpperCamelCase_ : int = tokenizer(snake_case , return_tensors='pt' , padding=snake_case ) UpperCamelCase_ : List[Any] = inputs['input_ids'].to(snake_case ) UpperCamelCase_ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs['attention_mask'].to(snake_case ) , ) UpperCamelCase_ : Optional[Any] = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(snake_case ) UpperCamelCase_ : List[str] = model.generate(input_ids=snake_case ) UpperCamelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() UpperCamelCase_ : Optional[int] = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(snake_case ) UpperCamelCase_ : int = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) UpperCamelCase_ : str = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) UpperCamelCase_ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) UpperCamelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) UpperCamelCase_ : Dict = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : List[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : List[Any] = 3 UpperCamelCase_ : Union[str, Any] = input_dict['input_ids'] UpperCamelCase_ : Any = input_ids.ne(1 ).to(snake_case ) UpperCamelCase_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ : str = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : str = 3 UpperCamelCase_ : Any = 'multi_label_classification' UpperCamelCase_ : str = input_dict['input_ids'] UpperCamelCase_ : Any = input_ids.ne(1 ).to(snake_case ) UpperCamelCase_ : Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase_ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _lowercase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" UpperCamelCase_ : Union[str, Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) UpperCamelCase_ : Union[str, Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) UpperCamelCase_ : Optional[int] = model(snake_case )[0] UpperCamelCase_ : Union[str, Any] = 4_2_3_8_4 UpperCamelCase_ : Dict = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) UpperCamelCase_ : Optional[Any] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCamelCase_ : int = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(snake_case ) torch.manual_seed(0 ) UpperCamelCase_ : Optional[int] = tokenizer('COVID-19 is' , return_tensors='pt' ).to(snake_case ) UpperCamelCase_ : Optional[int] = model.generate( **snake_case , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=snake_case , ) UpperCamelCase_ : str = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) UpperCamelCase_ : Dict = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(snake_case , snake_case )
175
def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Dict = 0 for ch in input_str: UpperCamelCase_ : Tuple = ord(lowerCamelCase ) UpperCamelCase_ : str = pow(2 , lowerCamelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
175
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Dict = {'vocab_file': 'spm_char.model'} __A : int = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } __A : List[str] = { 'microsoft/speecht5_asr': 1024, 'microsoft/speecht5_tts': 1024, 'microsoft/speecht5_vc': 1024, } class __snake_case ( _UpperCamelCase): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase : str , lowerCamelCase : str="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : List[Any]="<unk>" , lowerCamelCase : Optional[int]="<pad>" , lowerCamelCase : List[Any] = None , **lowerCamelCase : str , ) -> None: lowerCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase_ : Tuple = vocab_file lowerCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def __lowercase ( self : Optional[Any] ) -> List[str]: return self.sp_model.get_piece_size() def __lowercase ( self : Optional[int] ) -> Tuple: lowerCAmelCase_ : Optional[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> int: lowerCAmelCase_ : str = self.__dict__.copy() lowerCAmelCase_ : List[str] = None return state def __setstate__( self : Dict , lowerCamelCase : Union[str, Any] ) -> str: lowerCAmelCase_ : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self : Any , lowerCamelCase : Union[str, Any] ) -> List[str]: return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , lowerCamelCase : Optional[int] ) -> List[Any]: return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def __lowercase ( self : str , lowerCamelCase : List[Any] ) -> List[Any]: lowerCAmelCase_ : Any = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def __lowercase ( self : Tuple , lowerCamelCase : Optional[int] ) -> List[Any]: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : Tuple = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token lowerCAmelCase_ : int = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def __lowercase ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowercase ( self : int , lowerCamelCase : List[str] , lowerCamelCase : str = None , lowerCamelCase : Optional[Any] = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Dict = [1] if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def __lowercase ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Any = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase_ : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: lowerCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
368
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple=13 , lowerCamelCase : Dict=30 , lowerCamelCase : Dict=2 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : List[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : str=32 , lowerCamelCase : Any=5 , lowerCamelCase : int=4 , lowerCamelCase : List[str]=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : str=10 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : List[str]=3 , lowerCamelCase : Union[str, Any]=0.6 , lowerCamelCase : List[Any]=None , ) -> Optional[int]: lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Any = is_training lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = type_sequence_label_size lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : List[str] = mask_ratio lowerCAmelCase_ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase_ : Union[str, Any] = (image_size // patch_size) ** 2 lowerCAmelCase_ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ) -> Optional[int]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowercase ( self : Any , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict ) -> Tuple: lowerCAmelCase_ : Tuple = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Dict: lowerCAmelCase_ : Tuple = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : List[str] = model(lowerCamelCase ) lowerCAmelCase_ : int = (self.image_size // self.patch_size) ** 2 lowerCAmelCase_ : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : List[str] = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : Tuple = model(lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[Any] = config_and_inputs lowerCAmelCase_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def __lowercase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase_ : Optional[int] = ViTMAEModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __lowercase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def __lowercase ( self : Optional[int] ) -> Optional[int]: pass def __lowercase ( self : List[str] ) -> Tuple: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __lowercase ( self : Optional[Any] ) -> Any: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Any = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowercase ( self : Tuple ) -> str: lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def __lowercase ( self : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ) -> str: # make masks reproducible np.random.seed(2 ) lowerCAmelCase_ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase_ : int = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __lowercase ( self : int ) -> Dict: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase_ : Any = outputs[0].cpu().numpy() lowerCAmelCase_ : List[str] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : int = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans lowerCAmelCase_ : Optional[Any] = after_outputs[0].cpu().numpy() lowerCAmelCase_ : str = 0 lowerCAmelCase_ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def __lowercase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowercase ( self : List[Any] ) -> str: pass @slow def __lowercase ( self : List[str] ) -> List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def __lowercase ( self : int ) -> List[Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase_ : Dict = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : Dict = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase_ : Optional[int] = ViTMAEConfig() lowerCAmelCase_ : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase_ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCAmelCase_ : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits lowerCAmelCase_ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) lowerCAmelCase_ : str = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
89
0
'''simple docstring''' import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> List[str]: _snake_case = args.log_outputs _snake_case = '''_'''.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric _snake_case = load_metric('wer' ) _snake_case = load_metric('cer' ) # compute metrics _snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) _snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results _snake_case = F'WER: {wer_result}\nCER: {cer_result}' print(_snake_case ) with open(F'{dataset_id}_eval_results.txt' , 'w' ) as f: f.write(_snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _snake_case = F'log_{dataset_id}_predictions.txt' _snake_case = F'log_{dataset_id}_targets.txt' with open(_snake_case , 'w' ) as p, open(_snake_case , 'w' ) as t: # mapping function to write output def write_to_file(__A , __A ): p.write(F'{i}' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'{i}' + '\n' ) t.write(batch['target'] + '\n' ) result.map(_snake_case , with_indices=_snake_case ) def SCREAMING_SNAKE_CASE__ ( __A ) -> str: _snake_case = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _snake_case = re.sub(_snake_case , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _snake_case = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: _snake_case = ''' '''.join(text.split(_snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( __A ) -> Any: _snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) _snake_case = feature_extractor.sampling_rate # resample audio _snake_case = dataset.cast_column('audio' , Audio(sampling_rate=_snake_case ) ) # load eval pipeline if args.device is None: _snake_case = 0 if torch.cuda.is_available() else -1 _snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__A ): _snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _snake_case = prediction['''text'''] _snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples _snake_case = dataset.map(_snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_snake_case , _snake_case ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) lowercase : Union[str, Any] = parser.parse_args() main(args)
42
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase ( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : int ) ->List[Any]: """simple docstring""" if openai_config_file == "": __snake_case : Dict = OpenAIGPTConfig() else: __snake_case : int = OpenAIGPTConfig.from_json_file(_snake_case ) __snake_case : Tuple = OpenAIGPTModel(_snake_case ) # Load weights from numpy load_tf_weights_in_openai_gpt(_snake_case , _snake_case , _snake_case ) # Save pytorch-model __snake_case : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __snake_case : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _snake_case ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
102
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A = logging.getLogger(__name__) @dataclass class lowercase_ : UpperCamelCase_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether tp freeze the encoder."} ) UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class lowercase_ : UpperCamelCase_ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCamelCase_ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) UpperCamelCase_ : Optional[int] = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_2_8 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Source language id for translation."} ) UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Target language id for translation."} ) UpperCamelCase_ : Optional[int] = field(default=__lowercase , metadata={"help": "# num_beams to use for evaluation."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , F"""{split}_results.json""" ) ) def snake_case_() -> List[Any]: """simple docstring""" _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case, _snake_case, _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case, _snake_case, _snake_case = parser.parse_args_into_dataclasses() check_output_dir(_UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): assert hasattr(_UpperCamelCase , _UpperCamelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) _snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCamelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCamelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _snake_case = SeqaSeqDataset # Get datasets _snake_case = ( dataset_class( _UpperCamelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) _snake_case = ( dataset_class( _UpperCamelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _snake_case = ( dataset_class( _UpperCamelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer _snake_case = ( build_compute_metrics_fn(data_args.task , _UpperCamelCase ) if training_args.predict_with_generate else None ) _snake_case = SeqaSeqTrainer( model=_UpperCamelCase , args=_UpperCamelCase , data_args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , data_collator=SeqaSeqDataCollator( _UpperCamelCase , _UpperCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) _snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _snake_case = train_result.metrics _snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _snake_case = trainer.evaluate(metric_key_prefix='''val''' ) _snake_case = data_args.n_val _snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _snake_case = trainer.predict(test_dataset=_UpperCamelCase , metric_key_prefix='''test''' ) _snake_case = test_output.metrics _snake_case = data_args.n_test if trainer.is_world_process_zero(): _snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.predict_with_generate: _snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) _snake_case = lmap(str.strip , _UpperCamelCase ) write_txt_file(_UpperCamelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_UpperCamelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
278
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : def __init__( self : Optional[Any] , A__ : str , A__ : Any=13 , A__ : str=[30, 30] , A__ : int=2 , A__ : Dict=3 , A__ : str=True , A__ : Union[str, Any]=True , A__ : Any=32 , A__ : int=5 , A__ : str=4 , A__ : List[Any]=37 , A__ : Union[str, Any]="gelu" , A__ : Dict=0.1 , A__ : Dict=0.1 , A__ : Tuple=10 , A__ : Dict=0.02 , A__ : Any=3 , A__ : Union[str, Any]=None , A__ : Optional[Any]=8 , A__ : Dict=10 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = scope _snake_case = n_targets _snake_case = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _snake_case = (image_size[1] // patch_size) * (image_size[0] // patch_size) _snake_case = num_patches + 1 + self.num_detection_tokens def UpperCamelCase_ ( self : List[str] ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) _snake_case = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _snake_case = [] for i in range(self.batch_size ): _snake_case = {} _snake_case = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=A__ ) _snake_case = torch.rand(self.n_targets , 4 , device=A__ ) labels.append(A__ ) _snake_case = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Dict ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Any , A__ : Any , A__ : str , A__ : Tuple ) -> Dict: _snake_case = YolosModel(config=A__ ) model.to(A__ ) model.eval() _snake_case = model(A__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase_ ( self : Dict , A__ : List[str] , A__ : Optional[Any] , A__ : str ) -> int: _snake_case = YolosForObjectDetection(A__ ) model.to(A__ ) model.eval() _snake_case = model(pixel_values=A__ ) _snake_case = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) _snake_case = model(pixel_values=A__ , labels=A__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase_ ( self : Optional[Any] ) -> Tuple: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case, _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCamelCase_ : int = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def UpperCamelCase_ ( self : Dict , A__ : List[Any] , A__ : List[str] , A__ : Optional[int]=False ) -> Optional[int]: _snake_case = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _snake_case = [] for i in range(self.model_tester.batch_size ): _snake_case = {} _snake_case = torch.ones( size=(self.model_tester.n_targets,) , device=A__ , dtype=torch.long ) _snake_case = torch.ones( self.model_tester.n_targets , 4 , device=A__ , dtype=torch.float ) labels.append(A__ ) _snake_case = labels return inputs_dict def UpperCamelCase_ ( self : List[Any] ) -> List[str]: _snake_case = YolosModelTester(self ) _snake_case = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCamelCase_ ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[Any] ) -> str: # YOLOS does not use inputs_embeds pass def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(A__ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A__ ) def UpperCamelCase_ ( self : List[str] ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> int: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True # in YOLOS, the seq_len is different _snake_case = self.model_tester.expected_seq_len for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _snake_case = len(A__ ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = 1 self.assertEqual(out_len + added_hidden_states , len(A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase_ ( self : int ) -> Dict: def check_hidden_states_output(A__ : Optional[int] , A__ : Union[str, Any] , A__ : int ): _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.hidden_states _snake_case = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A__ ) , A__ ) # YOLOS has a different seq_length _snake_case = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(A__ , A__ , A__ ) def UpperCamelCase_ ( self : Optional[Any] ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*A__ ) @slow def UpperCamelCase_ ( self : List[str] ) -> Dict: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = YolosModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def snake_case_() -> str: """simple docstring""" _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Any ) -> str: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Tuple ) -> str: _snake_case = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(A__ ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): _snake_case = model(inputs.pixel_values ) # verify outputs _snake_case = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , A__ ) _snake_case = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=A__ , ) _snake_case = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1e-4 ) ) # verify postprocessing _snake_case = image_processor.post_process_object_detection( A__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] _snake_case = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(A__ ) _snake_case = [75, 75, 17, 63, 17] _snake_case = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(A__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , A__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , A__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , A__ ) )
278
1
"""simple docstring""" A_ : Dict = {str(digit): digit**5 for digit in range(10)} def A ( snake_case__ ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(snake_case__ ) ) def A ( ): '''simple docstring''' return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(snake_case__ ) ) if __name__ == "__main__": print(solution())
165
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' assert isinstance(snake_case__ , snake_case__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(snake_case__ ) else: SCREAMING_SNAKE_CASE__ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE__ = num - 1 SCREAMING_SNAKE_CASE__ = num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
165
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = "Hello, World!" _lowerCamelCase : Dict = "en_XX" def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : bool ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Path("""data_bin""" ) _lowerCAmelCase : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(UpperCamelCase_ ).parent ) , checkpoint_file=Path(UpperCamelCase_ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(UpperCamelCase_ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(UpperCamelCase_ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = xmod.model.encoder.sentence_encoder _lowerCAmelCase : str = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: _lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , UpperCamelCase_ ) _lowerCAmelCase : List[str] = XmodForSequenceClassification(UpperCamelCase_ ) if classification_head else XmodForMaskedLM(UpperCamelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight _lowerCAmelCase : int = xmod_sent_encoder.embed_positions.weight _lowerCAmelCase : Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _lowerCAmelCase : Dict = xmod_sent_encoder.layernorm_embedding.weight _lowerCAmelCase : Optional[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase : List[Any] = model.roberta.encoder.layer[i] _lowerCAmelCase : Union[str, Any] = xmod_sent_encoder.layers[i] # self attention _lowerCAmelCase : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) _lowerCAmelCase : Tuple = xmod_layer.self_attn.q_proj.weight _lowerCAmelCase : Dict = xmod_layer.self_attn.q_proj.bias _lowerCAmelCase : int = xmod_layer.self_attn.k_proj.weight _lowerCAmelCase : int = xmod_layer.self_attn.k_proj.bias _lowerCAmelCase : str = xmod_layer.self_attn.v_proj.weight _lowerCAmelCase : List[str] = xmod_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase : Union[str, Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) _lowerCAmelCase : List[Any] = xmod_layer.self_attn.out_proj.weight _lowerCAmelCase : str = xmod_layer.self_attn.out_proj.bias _lowerCAmelCase : Dict = xmod_layer.self_attn_layer_norm.weight _lowerCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate _lowerCAmelCase : Any = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) _lowerCAmelCase : Optional[int] = xmod_layer.fca.weight _lowerCAmelCase : List[str] = xmod_layer.fca.bias # output _lowerCAmelCase : Optional[int] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) _lowerCAmelCase : Dict = xmod_layer.fca.weight _lowerCAmelCase : Optional[int] = xmod_layer.fca.bias _lowerCAmelCase : str = xmod_layer.final_layer_norm.weight _lowerCAmelCase : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _lowerCAmelCase : List[str] = xmod_layer.adapter_layer_norm.weight _lowerCAmelCase : Union[str, Any] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _lowerCAmelCase : str = bert_output.adapter_modules[lang_code] _lowerCAmelCase : Optional[int] = xmod_layer.adapter_modules[lang_code] _lowerCAmelCase : Optional[Any] = from_adapter.fca.weight _lowerCAmelCase : Dict = from_adapter.fca.bias _lowerCAmelCase : Tuple = from_adapter.fca.weight _lowerCAmelCase : Any = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _lowerCAmelCase : int = xmod_sent_encoder.layer_norm.weight _lowerCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: _lowerCAmelCase : int = xmod.model.classification_heads["""mnli"""].dense.weight _lowerCAmelCase : Dict = xmod.model.classification_heads["""mnli"""].dense.bias _lowerCAmelCase : int = xmod.model.classification_heads["""mnli"""].out_proj.weight _lowerCAmelCase : Union[str, Any] = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head _lowerCAmelCase : List[str] = xmod.model.encoder.lm_head.dense.weight _lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.dense.bias _lowerCAmelCase : str = xmod.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase : str = xmod.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase : Optional[int] = xmod.model.encoder.lm_head.weight _lowerCAmelCase : List[str] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase : int = xmod.encode(UpperCamelCase_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = model(UpperCamelCase_ )[0] if classification_head: _lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""](xmod.extract_features(UpperCamelCase_ ) ) else: _lowerCAmelCase : Optional[int] = xmod.model(UpperCamelCase_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 _lowerCAmelCase : List[Any] = torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(UpperCamelCase_ ).mkdir(parents=UpperCamelCase_ , exist_ok=UpperCamelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) _lowerCamelCase : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
357
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _UpperCAmelCase (UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ): '''simple docstring''' _lowerCAmelCase : Optional[int] = k_size // 2 _lowerCAmelCase , _lowerCAmelCase : List[str] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _lowerCAmelCase : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(UpperCamelCase_ ) + square(UpperCamelCase_ )) / (2 * square(UpperCamelCase_ )) ) return g def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = image.shape[0], image.shape[1] # dst image height and width _lowerCAmelCase : Optional[Any] = height - k_size + 1 _lowerCAmelCase : Tuple = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _lowerCAmelCase : Tuple = zeros((dst_height * dst_width, k_size * k_size) ) _lowerCAmelCase : int = 0 for i, j in product(range(UpperCamelCase_ ) , range(UpperCamelCase_ ) ): _lowerCAmelCase : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) _lowerCAmelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) _lowerCAmelCase : Optional[Any] = gen_gaussian_kernel(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Dict = ravel(UpperCamelCase_ ) # reshape and get the dst image _lowerCAmelCase : List[str] = dot(UpperCamelCase_ , UpperCamelCase_ ).reshape(UpperCamelCase_ , UpperCamelCase_ ).astype(UpperCamelCase_ ) return dst if __name__ == "__main__": # read original image _lowerCamelCase : int = imread(R"../image_data/lena.jpg") # turn image in gray scale value _lowerCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _lowerCamelCase : int = gaussian_filter(gray, 3, sigma=1) _lowerCamelCase : List[str] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
159
0
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel A_ : Dict = HfApi() A_ : List[str] = {} # fmt: off A_ : Dict = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) A_ : List[Any] = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) A_ : str = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) A_ : List[Any] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) A_ : Tuple = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) A_ : List[str] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) A_ : List[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) A_ : Dict = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) A_ : Tuple = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) A_ : str = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) A_ : str = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) A_ : int = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) A_ : int = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) A_ : str = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) A_ : Optional[int] = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on A_ : List[str] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": A_ : Dict = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): A_ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: A_ : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) A_ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) A_ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): A_ : Optional[int] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F'{mod.modelId} has passed successfully!!!')
165
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( snake_case__ ): '''simple docstring''' return (data["data"], data["target"]) def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = XGBClassifier() classifier.fit(snake_case__ , snake_case__ ) return classifier def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = load_iris() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = data_handling(snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = train_test_split( snake_case__ , snake_case__ , test_size=0.25 ) SCREAMING_SNAKE_CASE__ = iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE__ = xgboost(snake_case__ , snake_case__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case__ , snake_case__ , snake_case__ , display_labels=snake_case__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
165
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _UpperCAmelCase : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowercase ( datasets.BuilderConfig ): __lowercase : Optional[datasets.Features] = None def A ( lowercase , lowercase , ) -> Dict: '''simple docstring''' import pyspark def generate_fn(): UpperCamelCase = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: UpperCamelCase = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) UpperCamelCase = partition_df.collect() UpperCamelCase = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class lowercase ( _BaseExamplesIterable ): def __init__( self , A_ , A_=None , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = df UpperCamelCase = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCamelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Any: """simple docstring""" yield from self.generate_examples_fn() def __UpperCamelCase ( self , A_ ) -> "SparkExamplesIterable": """simple docstring""" UpperCamelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(A_ ) return SparkExamplesIterable(self.df , partition_order=A_ ) def __UpperCamelCase ( self , A_ , A_ ) -> "SparkExamplesIterable": """simple docstring""" UpperCamelCase = self.split_shard_indices_by_worker(A_ , A_ ) return SparkExamplesIterable(self.df , partition_order=A_ ) @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return len(self.partition_order ) class lowercase ( datasets.DatasetBuilder ): __lowercase : int = SparkConfig def __init__( self , A_ , A_ = None , A_ = None , **A_ , ) -> Any: """simple docstring""" import pyspark UpperCamelCase = pyspark.sql.SparkSession.builder.getOrCreate() UpperCamelCase = df UpperCamelCase = working_dir super().__init__( cache_dir=A_ , config_name=str(self.df.semanticHash() ) , **A_ , ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" # Returns the path of the created file. def create_cache_and_write_probe(A_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=A_ ) UpperCamelCase = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(A_ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCamelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(A_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" import pyspark def get_arrow_batch_size(A_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) UpperCamelCase = self.df.count() UpperCamelCase = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCamelCase = ( self.df.limit(A_ ) .repartition(1 ) .mapInArrow(A_ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCamelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCamelCase = min(A_ , int(approx_total_size / max_shard_size ) ) UpperCamelCase = self.df.repartition(A_ ) def __UpperCamelCase ( self , A_ , A_ , A_ , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark UpperCamelCase = ParquetWriter if file_format == 'parquet' else ArrowWriter UpperCamelCase = os.path.join(self._working_dir , os.path.basename(A_ ) ) if self._working_dir else fpath UpperCamelCase = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCamelCase = self.config.features UpperCamelCase = self._writer_batch_size UpperCamelCase = self._fs.storage_options def write_arrow(A_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCamelCase = pyspark.TaskContext().taskAttemptId() UpperCamelCase = next(A_ , A_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) UpperCamelCase = 0 UpperCamelCase = writer_class( features=A_ , path=working_fpath.replace('SSSSS' , F'''{shard_id:05d}''' ).replace('TTTTT' , F'''{task_id:05d}''' ) , writer_batch_size=A_ , storage_options=A_ , embed_local_files=A_ , ) UpperCamelCase = pa.Table.from_batches([first_batch] ) writer.write_table(A_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCamelCase , UpperCamelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 UpperCamelCase = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F'''{shard_id:05d}''' ).replace('TTTTT' , F'''{task_id:05d}''' ) , writer_batch_size=A_ , storage_options=A_ , embed_local_files=A_ , ) UpperCamelCase = pa.Table.from_batches([batch] ) writer.write_table(A_ ) if writer._num_bytes > 0: UpperCamelCase , UpperCamelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(A_ ) ): UpperCamelCase = os.path.join(os.path.dirname(A_ ) , os.path.basename(A_ ) ) shutil.move(A_ , A_ ) UpperCamelCase = ( self.df.mapInArrow(A_ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __UpperCamelCase ( self , A_ , A_ = "arrow" , A_ = None , A_ = None , **A_ , ) -> List[Any]: """simple docstring""" self._validate_cache_dir() UpperCamelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(A_ ) UpperCamelCase = not is_remote_filesystem(self._fs ) UpperCamelCase = os.path.join if is_local else posixpath.join UpperCamelCase = '-TTTTT-SSSSS-of-NNNNN' UpperCamelCase = F'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' UpperCamelCase = path_join(self._output_dir , A_ ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = [] UpperCamelCase = [] for task_id, content in self._prepare_split_single(A_ , A_ , A_ ): ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(A_ ) UpperCamelCase = total_num_examples UpperCamelCase = total_num_bytes # should rename everything at the end logger.debug(F'''Renaming {total_shards} shards.''' ) if total_shards > 1: UpperCamelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCamelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( A_ , A_ , A_ , ): rename( A_ , fpath.replace('SSSSS' , F'''{shard_id:05d}''' ).replace('TTTTT' , F'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , F'''{global_shard_id:05d}''' ).replace('NNNNN' , F'''{total_shards:05d}''' ) , ) UpperCamelCase = [] UpperCamelCase = 0 for i in range(len(A_ ) ): UpperCamelCase , UpperCamelCase = task_id_and_num_shards[i] for shard_id in range(A_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(A_ , len(A_ ) ).map(lambda A_ : _rename_shard(*A_ ) ).collect() else: # don't use any pattern UpperCamelCase = 0 UpperCamelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F'''{shard_id:05d}''' ).replace('TTTTT' , F'''{task_id:05d}''' ) , fpath.replace(A_ , '' ) , ) def __UpperCamelCase ( self , A_ , ) -> SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
110
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Any = CTRLTokenizer __lowercase : Any = False __lowercase : Union[str, Any] = False def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
110
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = " " ) -> list: lowercase__ : Optional[int] = [] lowercase__ : Union[str, Any] = 0 for index, char in enumerate(__lowerCamelCase ): if char == separator: split_words.append(string[last_index:index] ) lowercase__ : Union[str, Any] = index + 1 elif index + 1 == len(__lowerCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
16
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCAmelCase = None __lowerCAmelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCAmelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class __magic_name__ : lowerCAmelCase : bool = True lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "PIL.Image.Image" lowerCAmelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCAmelCase : str = field(default='Image' , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Union[str, Any] ): return self.pa_type def __lowercase ( self : Any ,_UpperCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Optional[Any] = np.array(_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_UpperCAmelCase ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_UpperCAmelCase ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : dict ,_UpperCAmelCase : Optional[int]=None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: _a : Dict = {} _a , _a : str = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(_UpperCAmelCase ): _a : Any = PIL.Image.open(_UpperCAmelCase ) else: _a : List[Any] = path.split('::' )[-1] try: _a : str = string_to_dict(_UpperCAmelCase ,config.HUB_DATASETS_URL )['repo_id'] _a : Optional[Any] = token_per_repo_id.get(_UpperCAmelCase ) except ValueError: _a : int = None with xopen(_UpperCAmelCase ,'rb' ,use_auth_token=_UpperCAmelCase ) as f: _a : Tuple = BytesIO(f.read() ) _a : Union[str, Any] = PIL.Image.open(bytes_ ) else: _a : Optional[int] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowercase ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __lowercase ( self : str ,_UpperCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): _a : Union[str, Any] = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.binary() ) _a : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _a : List[str] = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Any = pa.StructArray.from_arrays([storage, path_array] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: _a : Union[str, Any] = storage.field('bytes' ) else: _a : Tuple = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: _a : Union[str, Any] = storage.field('path' ) else: _a : Dict = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['bytes', 'path'] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _a : List[str] = pa.array( [encode_np_array(np.array(_UpperCAmelCase ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) _a : int = pa.array([None] * len(_UpperCAmelCase ) ,type=pa.string() ) _a : Optional[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] ,['bytes', 'path'] ,mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase ,self.pa_type ) def __lowercase ( self : Dict ,_UpperCAmelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_UpperCAmelCase : Tuple ): with xopen(_UpperCAmelCase ,'rb' ) as f: _a : int = f.read() return bytes_ _a : Any = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) _a : Optional[Any] = pa.array( [os.path.basename(_UpperCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] ,type=pa.string() ,) _a : Dict = pa.StructArray.from_arrays([bytes_array, path_array] ,['bytes', 'path'] ,mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase ,self.pa_type ) def __lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _a : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( lowerCAmelCase_ ) -> bytes: _a : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): _a : Optional[Any] = image.format else: _a : str = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowerCAmelCase_ , format=lowerCAmelCase_ ) return buffer.getvalue() def __lowerCamelCase ( lowerCAmelCase_ ) -> dict: if hasattr(lowerCAmelCase_ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def __lowerCamelCase ( lowerCAmelCase_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) _a : List[Any] = array.dtype _a : Optional[int] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER _a : Union[str, Any] = dtype.kind _a : Union[str, Any] = dtype.itemsize _a : List[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _a : Optional[int] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _a : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _a : str = dtype_byteorder + dtype_kind + str(lowerCAmelCase_ ) _a : List[Any] = np.dtype(lowerCAmelCase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _a : Union[str, Any] = PIL.Image.fromarray(array.astype(lowerCAmelCase_ ) ) return {"path": None, "bytes": image_to_bytes(lowerCAmelCase_ )} def __lowerCamelCase ( lowerCAmelCase_ ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: _a , _a : Optional[Any] = first_non_null_value(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCAmelCase_ , np.ndarray ): _a : List[str] = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): _a : List[str] = no_op_if_value_is_null(lowerCAmelCase_ ) return [obj_to_image_dict_func(lowerCAmelCase_ ) for obj in objs] else: return objs else: return objs
89
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class A__ ( A__ ): A__ = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) A__ = Features({'audio': Audio()} ) A__ = Features({'transcription': Value('string' )} ) A__ = "audio" A__ = "transcription" def A ( self : Optional[Any] , _a : Dict ) -> List[str]: '''simple docstring''' if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , _a ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) _SCREAMING_SNAKE_CASE =copy.deepcopy(self ) _SCREAMING_SNAKE_CASE =self.input_schema.copy() _SCREAMING_SNAKE_CASE =features[self.audio_column] _SCREAMING_SNAKE_CASE =input_schema return task_template @property def A ( self : Tuple ) -> Dict[str, str]: '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
114
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase : int = logging.getLogger(__name__) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0_5_2_2, type=int) lowerCamelCase : Optional[Any] = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: lowerCamelCase : Optional[int] = pickle.load(fp) logger.info("Counting occurrences for MLM.") lowerCamelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) lowerCamelCase : Tuple = [0] * args.vocab_size for k, v in counter.items(): lowerCamelCase : Any = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
114
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCamelCase ( _A , _A , _A ): # Construct model if openai_config_file == "": lowerCAmelCase_ = OpenAIGPTConfig() else: lowerCAmelCase_ = OpenAIGPTConfig.from_json_file(_A ) lowerCAmelCase_ = OpenAIGPTModel(_A ) # Load weights from numpy load_tf_weights_in_openai_gpt(_A , _A , _A ) # Save pytorch-model lowerCAmelCase_ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCAmelCase_ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , _A ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) _A = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
278
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = torch.device('''cpu''') def __UpperCamelCase ( ): lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) return im def __UpperCamelCase ( _A ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = dct.pop(_A ) lowerCAmelCase_ = val def __UpperCamelCase ( _A ): lowerCAmelCase_ = [] for k in state_dict.keys(): lowerCAmelCase_ = k if ".pwconv" in k: lowerCAmelCase_ = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: lowerCAmelCase_ = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: lowerCAmelCase_ = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: lowerCAmelCase_ = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: lowerCAmelCase_ = k_new.split('''.''' ) if ls[2].isdigit(): lowerCAmelCase_ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: lowerCAmelCase_ = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase_ = 1000 lowerCAmelCase_ = '''huggingface/label-files''' lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCAmelCase_ = [3, 3, 6, 4] lowerCAmelCase_ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": lowerCAmelCase_ = [3, 3, 9, 6] lowerCAmelCase_ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": lowerCAmelCase_ = [4, 3, 10, 5] lowerCAmelCase_ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": lowerCAmelCase_ = [4, 4, 12, 6] lowerCAmelCase_ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' , check_hash=_A ) else: lowerCAmelCase_ = torch.load(_A , map_location='''cpu''' ) lowerCAmelCase_ = checkpoint lowerCAmelCase_ = create_rename_keys(_A ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_A , _A , _A ) # load HuggingFace model lowerCAmelCase_ = SwiftFormerForImageClassification(_A ).eval() hf_model.load_state_dict(_A ) # prepare test inputs lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' ) # compare outputs from both models lowerCAmelCase_ = get_expected_output(_A ) lowerCAmelCase_ = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _A , atol=1E-3 ) Path(_A ).mkdir(exist_ok=_A ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(_A ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _A = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
278
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : int=99 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Dict=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=5_12 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.02 , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple="None" , __lowerCamelCase : List[str]=3 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Any=None , ) -> Optional[int]: A : Tuple = parent A : Any = batch_size A : Optional[Any] = seq_length A : List[Any] = is_training A : int = use_input_mask A : List[str] = use_token_type_ids A : int = use_labels A : List[Any] = vocab_size A : Dict = hidden_size A : Dict = num_hidden_layers A : Dict = num_attention_heads A : Dict = intermediate_size A : Any = hidden_act A : Optional[int] = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : Dict = type_vocab_size A : int = type_sequence_label_size A : Tuple = initializer_range A : Tuple = num_labels A : Dict = num_choices A : int = relative_attention A : List[Any] = position_biased_input A : int = pos_att_type A : Union[str, Any] = scope def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : str = None if self.use_input_mask: A : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A : str = None if self.use_token_type_ids: A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : Dict = None A : int = None A : Optional[Any] = None if self.use_labels: A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: A : Any = self.get_config() A : Tuple = 3_00 return config def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : Optional[Any] ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ) -> int: A : Dict = DebertaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )[0] A : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )[0] A : List[Any] = model(__lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ) -> List[Any]: A : str = DebertaForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) -> int: A : List[str] = self.num_labels A : Tuple = DebertaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : int ) -> Dict: A : Dict = self.num_labels A : Tuple = DebertaForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ) -> str: A : Any = DebertaForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: A : Tuple = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : List[Any] = config_and_inputs A : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _A ,_A ,unittest.TestCase ): '''simple docstring''' a__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) a__ = True a__ = False a__ = False a__ = False a__ = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: A : Optional[int] = DebertaModelTester(self ) A : Any = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[str] = DebertaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: pass @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]: A : Any = DebertaModel.from_pretrained("microsoft/deberta-base" ) A : Union[str, Any] = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A : Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] # compare the actual values for a slice. A : List[Any] = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) , F"""{output[:, 1:4, 1:4]}""" )
256
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE = {"""facebook/bart-base""": BartForConditionalGeneration} __SCREAMING_SNAKE_CASE = {"""facebook/bart-base""": BartTokenizer} def UpperCAmelCase ( ): A : List[Any] = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=_lowerCamelCase , default=_lowerCamelCase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=_lowerCamelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=_lowerCamelCase , default=_lowerCamelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_lowerCamelCase , ) parser.add_argument( "--config_name" , type=_lowerCamelCase , default=_lowerCamelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=_lowerCamelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=_lowerCamelCase , default=_lowerCamelCase , help="Where to store the final ONNX file." ) A : Any = parser.parse_args() return args def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase="cpu" ): A : int = model_dict[model_name].from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) A : List[Any] = tokenizer_dict[model_name].from_pretrained(_lowerCamelCase ) if model_name in ["facebook/bart-base"]: A : Optional[int] = 0 A : Union[str, Any] = None A : Optional[Any] = 0 return huggingface_model, tokenizer def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): model.eval() A : Optional[Any] = None A : List[Any] = torch.jit.script(BARTBeamSearchGenerator(_lowerCamelCase ) ) with torch.no_grad(): A : int = "My friends are cool but they eat too many carbs." A : List[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device ) A : int = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=_lowerCamelCase , max_length=_lowerCamelCase , early_stopping=_lowerCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _lowerCamelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , _lowerCamelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=_lowerCamelCase , ) logger.info("Model exported to {}".format(_lowerCamelCase ) ) A : Optional[Any] = remove_dup_initializers(os.path.abspath(_lowerCamelCase ) ) logger.info("Deduplicated and optimized model written to {}".format(_lowerCamelCase ) ) A : List[Any] = onnxruntime.InferenceSession(_lowerCamelCase ) A : Dict = ort_sess.run( _lowerCamelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(_lowerCamelCase ), "max_length": np.array(_lowerCamelCase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCAmelCase ( ): A : Union[str, Any] = parse_args() A : List[Any] = 5 A : str = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() A : Union[str, Any] = torch.device(args.device ) A , A : Optional[int] = load_model_tokenizer(args.model_name_or_path , _lowerCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(_lowerCamelCase ) if args.max_length: A : Optional[int] = args.max_length if args.num_beams: A : List[Any] = args.num_beams if args.output_file_path: A : int = args.output_file_path else: A : int = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
256
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
from __future__ import annotations def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float )->float: '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float , )->float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float , )->float: '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( lowerCAmelCase_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
159
0
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __snake_case : Optional[Any] = logging.getLogger(__name__) def _UpperCAmelCase ( ) -> Union[str, Any]: A_ = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''', type=_UpperCamelCase, default='''data/dump.txt''', help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''', type=_UpperCamelCase, default='''bert''', choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''', type=_UpperCamelCase, default='''bert-base-uncased''', help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''', type=_UpperCamelCase, default='''data/dump''', help='''The dump file prefix.''' ) A_ = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": A_ = BertTokenizer.from_pretrained(args.tokenizer_name ) A_ = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` A_ = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": A_ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) A_ = tokenizer.special_tokens_map['''cls_token'''] # `<s>` A_ = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": A_ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) A_ = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` A_ = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path, '''r''', encoding='''utf8''' ) as fp: A_ = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(_UpperCamelCase )} examples to process.''' ) A_ = [] A_ = 0 A_ = 1_00_00 A_ = time.time() for text in data: A_ = F'''{bos} {text.strip()} {sep}''' A_ = tokenizer.encode(_UpperCamelCase, add_special_tokens=_UpperCamelCase ) rslt.append(_UpperCamelCase ) iter += 1 if iter % interval == 0: A_ = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) A_ = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(_UpperCamelCase )} examples processed.''' ) A_ = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' A_ = tokenizer.vocab_size if vocab_size < (1 << 16): A_ = [np.uintaa(_UpperCamelCase ) for d in rslt] else: A_ = [np.intaa(_UpperCamelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(_UpperCamelCase, '''wb''' ) as handle: pickle.dump(rslt_, _UpperCamelCase, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
18
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _a ( unittest.TestCase ): def __init__( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Dict=3 , UpperCamelCase_: Dict=30 , UpperCamelCase_: Union[str, Any]=400 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[int]=[0.5, 0.5, 0.5] , UpperCamelCase_: Optional[Any]=[0.5, 0.5, 0.5] , UpperCamelCase_: Any=True , UpperCamelCase_: List[str]=1 / 255 , UpperCamelCase_: Union[str, Any]=True , ) -> Any: """simple docstring""" lowercase__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_pad def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple=False ) -> Union[str, Any]: """simple docstring""" if not batched: lowercase__ = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] if w < h: lowercase__ = int(self.size['''shortest_edge'''] * h / w ) lowercase__ = self.size['''shortest_edge'''] elif w > h: lowercase__ = self.size['''shortest_edge'''] lowercase__ = int(self.size['''shortest_edge'''] * w / h ) else: lowercase__ = self.size['''shortest_edge'''] lowercase__ = self.size['''shortest_edge'''] else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = DeformableDetrImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = DeformableDetrImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) lowercase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = {'''image_id''': 39_769, '''annotations''': target} # encode them lowercase__ = DeformableDetrImageProcessor() lowercase__ = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values lowercase__ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) lowercase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area lowercase__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes lowercase__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) lowercase__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id lowercase__ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd lowercase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels lowercase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size lowercase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size lowercase__ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} lowercase__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase__ = DeformableDetrImageProcessor(format='''coco_panoptic''' ) lowercase__ = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values lowercase__ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) lowercase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area lowercase__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes lowercase__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) lowercase__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id lowercase__ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd lowercase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels lowercase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks lowercase__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size lowercase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size lowercase__ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
110
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = credit_card_number lowercase__ = 0 lowercase__ = len(SCREAMING_SNAKE_CASE ) - 2 for i in range(SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit lowercase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ = cc_number[:i] + str(SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(SCREAMING_SNAKE_CASE ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(SCREAMING_SNAKE_CASE ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(SCREAMING_SNAKE_CASE ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
110
1
"""simple docstring""" from collections import deque def lowerCamelCase ( _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = deque() __UpperCAmelCase : int = [False for _ in range(UpperCAmelCase_ )] __UpperCAmelCase : List[Any] = [-1 for _ in range(UpperCAmelCase_ )] __UpperCAmelCase : Tuple = index_of[:] def strong_connect(_UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any ): __UpperCAmelCase : Any = index # the number when this node is seen __UpperCAmelCase : Tuple = index # lowest rank node reachable from here index += 1 stack.append(UpperCAmelCase_ ) __UpperCAmelCase : int = True for w in g[v]: if index_of[w] == -1: __UpperCAmelCase : List[Any] = strong_connect(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __UpperCAmelCase : str = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __UpperCAmelCase : str = [] __UpperCAmelCase : str = stack.pop() __UpperCAmelCase : int = False component.append(UpperCAmelCase_ ) while w != v: __UpperCAmelCase : List[str] = stack.pop() __UpperCAmelCase : Union[str, Any] = False component.append(UpperCAmelCase_ ) components.append(UpperCAmelCase_ ) return index __UpperCAmelCase : Tuple = [] for v in range(UpperCAmelCase_ ): if index_of[v] == -1: strong_connect(UpperCAmelCase_ , 0 , UpperCAmelCase_ ) return components def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [[] for _ in range(UpperCAmelCase_ )] for u, v in edges: g[u].append(UpperCAmelCase_ ) return g if __name__ == "__main__": # Test UpperCAmelCase : Any = 7 UpperCAmelCase : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase : str = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase : Optional[int] = [(u, v) for u, v in zip(source, target)] UpperCAmelCase : str = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
357
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase : Optional[Any] = 'scheduler_config.json' class lowerCamelCase__ ( A ): """simple docstring""" __a = 1 __a = 2 __a = 3 __a = 4 __a = 5 __a = 6 __a = 7 __a = 8 __a = 9 __a = 10 __a = 11 __a = 12 __a = 13 __a = 14 @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ : """simple docstring""" __a = SCHEDULER_CONFIG_NAME __a = [] __a = True @classmethod def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCAmelCase : List[str] = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
320
0
import cva import numpy as np class a : """simple docstring""" def __init__( self : Optional[Any] , __lowercase : float , __lowercase : int ) -> List[Any]: if k in (0.04, 0.06): __UpperCAmelCase : int = k __UpperCAmelCase : List[str] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: return str(self.k ) def UpperCAmelCase ( self : Optional[int] , __lowercase : str ) -> tuple[cva.Mat, list[list[int]]]: __UpperCAmelCase : Optional[Any] = cva.imread(__lowercase , 0 ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = img.shape __UpperCAmelCase : list[list[int]] = [] __UpperCAmelCase : Any = img.copy() __UpperCAmelCase : Tuple = cva.cvtColor(__lowercase , cva.COLOR_GRAY2RGB ) __UpperCAmelCase , __UpperCAmelCase : List[str] = np.gradient(__lowercase ) __UpperCAmelCase : int = dx**2 __UpperCAmelCase : Any = dy**2 __UpperCAmelCase : Any = dx * dy __UpperCAmelCase : Optional[int] = 0.04 __UpperCAmelCase : List[str] = self.window_size // 2 for y in range(__lowercase , h - offset ): for x in range(__lowercase , w - offset ): __UpperCAmelCase : Tuple = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase : int = (wxx * wyy) - (wxy**2) __UpperCAmelCase : Any = wxx + wyy __UpperCAmelCase : Optional[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": a : int = HarrisCorner(0.04, 3) a ,a : Any = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
114
from __future__ import annotations from math import pi def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
114
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase__ :Union[str, Any] = logging.get_logger(__name__) @dataclass class __a : def __init__( self , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=6.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="fp4" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = load_in_abit _UpperCAmelCase = load_in_abit _UpperCAmelCase = llm_inta_threshold _UpperCAmelCase = llm_inta_skip_modules _UpperCAmelCase = llm_inta_enable_fpaa_cpu_offload _UpperCAmelCase = llm_inta_has_fpaa_weight _UpperCAmelCase = bnb_abit_quant_type _UpperCAmelCase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _UpperCAmelCase = torch.floataa elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.dtype ): _UpperCAmelCase = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if not isinstance(self.llm_inta_threshold , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , _SCREAMING_SNAKE_CASE ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , _SCREAMING_SNAKE_CASE ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return self.load_in_abit or self.load_in_abit def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase__ ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = cls(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [] for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) to_remove.append(_SCREAMING_SNAKE_CASE ) for key in to_remove: kwargs.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: _UpperCAmelCase = self.to_dict() _UpperCAmelCase = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '\n' writer.write(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict[str, Any]: """simple docstring""" _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> List[Any]: """simple docstring""" return f'''{self.__class__.__name__} {self.to_json_string()}''' def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE = True ) -> str: """simple docstring""" if use_diff is True: _UpperCAmelCase = self.to_diff_dict() else: _UpperCAmelCase = self.to_dict() return json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" def UpperCAmelCase__ ( self ) -> Dict[str, Any]: """simple docstring""" _UpperCAmelCase = self.to_dict() # get the default config dict _UpperCAmelCase = BitsAndBytesConfig().to_dict() _UpperCAmelCase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _UpperCAmelCase = value return serializable_config_dict
357
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ :Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase__ :str = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowerCAmelCase__ :List[Any] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowerCAmelCase__ :Optional[int] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def lowerCAmelCase__ ( a__: int , a__: int , a__: Dict=False , a__: str=False , a__: Optional[int]=True , a__: Any=False , a__: str="dummy_doc" ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {doc: key_lines} _UpperCAmelCase = {doc: sys_lines} _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(a__ , key_doc_lines[doc] , a__ ) key_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(a__ , key_doc_lines[doc] , a__ , a__ ) _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(a__ , sys_doc_lines[doc] , a__ ) sys_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(a__ , key_doc_lines[doc] , a__ , a__ ) if remove_nested: _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(a__ , a__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(a__ , a__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _UpperCAmelCase = reader.get_mention_assignments(a__ , a__ ) _UpperCAmelCase = reader.get_mention_assignments(a__ , a__ ) _UpperCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( 'Number of resulting singleton clusters in the key ' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' 'files, respectively' ) return doc_coref_infos def lowerCAmelCase__ ( a__: Any , a__: List[str] , a__: List[str] , a__: Optional[int] , a__: Optional[Any] , a__: Any , a__: Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = get_coref_infos(a__ , a__ , a__ , a__ , a__ , a__ ) _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 for name, metric in metrics: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = evaluator.evaluate_documents(a__ , a__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(1_0 ) , F'''Recall: {recall * 1_0_0:.2f}''' , F''' Precision: {precision * 1_0_0:.2f}''' , F''' F1: {fa * 1_0_0:.2f}''' , ) if conll_subparts_num == 3: _UpperCAmelCase = (conll / 3) * 1_0_0 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'conll_score': conll} ) return output_scores def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: _UpperCAmelCase = line.split()[5] if not parse_col == "-": _UpperCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: """simple docstring""" _UpperCAmelCase = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: _UpperCAmelCase = util.check_gold_parse_annotation(_SCREAMING_SNAKE_CASE ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _UpperCAmelCase = evaluate( key_lines=_SCREAMING_SNAKE_CASE , sys_lines=_SCREAMING_SNAKE_CASE , metrics=_SCREAMING_SNAKE_CASE , NP_only=_SCREAMING_SNAKE_CASE , remove_nested=_SCREAMING_SNAKE_CASE , keep_singletons=_SCREAMING_SNAKE_CASE , min_span=_SCREAMING_SNAKE_CASE , ) return score
185
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=13 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : Tuple=[10, 20, 30, 40] , __UpperCamelCase : Optional[int]=[2, 2, 3, 2] , __UpperCamelCase : List[Any]=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[int]=37 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : List[str]=10 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : List[str]=["stage2", "stage3", "stage4"] , __UpperCamelCase : Dict=[2, 3, 4] , __UpperCamelCase : Union[str, Any]=None , ) -> Any: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_labels _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = out_indices _UpperCamelCase = scope def _UpperCamelCase ( self : Dict ) -> Tuple: _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self : Optional[int] ) -> int: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : int ) -> List[Any]: _UpperCamelCase = ConvNextVaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ) -> int: _UpperCamelCase = ConvNextVaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Optional[Any]: _UpperCamelCase = ConvNextVaBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase = None _UpperCamelCase = ConvNextVaBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _UpperCamelCase ( self : List[Any] ) -> List[str]: _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict def _UpperCamelCase ( self : Union[str, Any] ) -> Any: _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase): snake_case__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) snake_case__ = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def _UpperCamelCase ( self : Dict ) -> int: _UpperCamelCase = ConvNextVaModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def _UpperCamelCase ( self : Any ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self : str ) -> Tuple: return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def _UpperCamelCase ( self : int ) -> Tuple: pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def _UpperCamelCase ( self : Optional[Any] ) -> Any: pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def _UpperCamelCase ( self : Dict ) -> Dict: pass def _UpperCamelCase ( self : Optional[int] ) -> List[str]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase = True if model_class.__name__ in [ *get_values(__UpperCamelCase ), *get_values(__UpperCamelCase ), ]: continue _UpperCamelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _UpperCamelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCamelCase = model(**__UpperCamelCase ).loss loss.backward() def _UpperCamelCase ( self : int ) -> Union[str, Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase = False _UpperCamelCase = True if ( model_class.__name__ in [*get_values(__UpperCamelCase ), *get_values(__UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _UpperCamelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _UpperCamelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCamelCase = model(**__UpperCamelCase ).loss loss.backward() def _UpperCamelCase ( self : Any ) -> Optional[Any]: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__UpperCamelCase ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> str: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCamelCase ( self : str ) -> str: def check_hidden_states_output(__UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ): _UpperCamelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> Tuple: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def _UpperCamelCase ( self : List[str] ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ConvNextVaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase ( ) -> List[str]: _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCamelCase ( self : Dict ) -> int: return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self : str ) -> Optional[int]: _UpperCamelCase = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(__UpperCamelCase ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = preprocessor(images=__UpperCamelCase , return_tensors='''pt''' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__UpperCamelCase ) # verify the logits _UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCamelCase = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
256
"""simple docstring""" def lowercase ( a__ : int , a__ : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def lowercase ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
256
1
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = array[indexa], array[indexa] def UpperCamelCase_ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if length > 1: __SCREAMING_SNAKE_CASE = int(length / 2 ) for i in range(lowerCAmelCase_ , low + middle ): comp_and_swap(lowerCAmelCase_ , lowerCAmelCase_ , i + middle , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase_ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if length > 1: __SCREAMING_SNAKE_CASE = int(length / 2 ) bitonic_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 1 ) bitonic_sort(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , 0 ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[str] = input('''Enter numbers separated by a comma:\n''').strip() a__ : Dict = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
358
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Optional[int] = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys a__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
0
import random from typing import Any def _snake_case ( lowerCAmelCase : list ): """simple docstring""" for _ in range(len(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_ : Any = random.randint(0 , len(lowerCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ : List[Any] = random.randint(0 , len(lowerCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = data[b], data[a] return data if __name__ == "__main__": __lowerCamelCase : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] __lowerCamelCase : Union[str, Any] = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
18
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' from statistics import mean import numpy as np def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = 0 # Number of processes finished UpperCAmelCase__ : List[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. UpperCAmelCase__ : Any = [0] * no_of_process # List to include calculation results UpperCAmelCase__ : Dict = [0] * no_of_process # Sort by arrival time. UpperCAmelCase__ : List[Any] = [burst_time[i] for i in np.argsort(UpperCamelCase__ )] UpperCAmelCase__ : Optional[Any] = [process_name[i] for i in np.argsort(UpperCamelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: UpperCAmelCase__ : Union[str, Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: UpperCAmelCase__ : Optional[Any] = arrival_time[i] UpperCAmelCase__ : Dict = 0 # Index showing the location of the process being performed UpperCAmelCase__ : str = 0 # Saves the current response ratio. UpperCAmelCase__ : Union[str, Any] = 0 for i in range(0 , UpperCamelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: UpperCAmelCase__ : Union[str, Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: UpperCAmelCase__ : Union[str, Any] = temp UpperCAmelCase__ : Optional[int] = i # Calculate the turn around time UpperCAmelCase__ : List[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. UpperCAmelCase__ : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = [0] * no_of_process for i in range(0 , UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __A =5 __A =['A', 'B', 'C', 'D', 'E'] __A =[1, 2, 3, 4, 5] __A =[1, 2, 3, 4, 5] __A =calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __A =calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( f"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" f"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(f"""average waiting time : {mean(waiting_time):.5f}""") print(f"""average turn around time : {mean(turn_around_time):.5f}""")
283
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = x UpperCAmelCase__ : Optional[int] = y for step in range(UpperCamelCase__ ): # noqa: B007 UpperCAmelCase__ : List[str] = a * a - b * b + x UpperCAmelCase__ : Optional[int] = 2 * a * b + y UpperCAmelCase__ : int = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( UpperCamelCase__ ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def _UpperCamelCase ( UpperCamelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(UpperCamelCase__ , 1 , 1 ) ) def _UpperCamelCase ( UpperCamelCase__ = 8_0_0 , UpperCamelCase__ = 6_0_0 , UpperCamelCase__ = -0.6 , UpperCamelCase__ = 0 , UpperCamelCase__ = 3.2 , UpperCamelCase__ = 5_0 , UpperCamelCase__ = True , ): UpperCAmelCase__ : str = Image.new("""RGB""" , (image_width, image_height) ) UpperCAmelCase__ : Optional[int] = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase__ ): for image_y in range(UpperCamelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase__ : Union[str, Any] = figure_width / image_width * image_height UpperCAmelCase__ : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase__ : Tuple = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase__ : List[str] = get_distance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase__ : Any = get_color_coded_rgb(UpperCamelCase__ ) else: UpperCAmelCase__ : Tuple = get_black_and_white_rgb(UpperCamelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __A =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
283
1
def lowercase_ ( _lowerCamelCase : dict): lowercase__ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase__ : set[int] = set() return any( node not in visited and depth_first_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for node in graph) def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : int , _lowerCamelCase : set , _lowerCamelCase : set): visited.add(_lowerCamelCase) rec_stk.add(_lowerCamelCase) for node in graph[vertex]: if node not in visited: if depth_first_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_lowerCamelCase) return False if __name__ == "__main__": from doctest import testmod testmod()
87
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __lowerCamelCase : Any = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __lowerCamelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> str: """simple docstring""" if "://" in dataset_path: SCREAMING_SNAKE_CASE__ = dataset_path.split("""://""" )[1] return dataset_path def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : fsspec.AbstractFileSystem ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : fsspec.AbstractFileSystem , __UpperCamelCase : str , __UpperCamelCase : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = not is_remote_filesystem(__UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__UpperCamelCase ) , fs._strip_protocol(__UpperCamelCase ) ) else: fs.mv(__UpperCamelCase , __UpperCamelCase , recursive=__UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = threading.Lock()
204
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [0] * len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: SCREAMING_SNAKE_CASE__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCamelCase : int = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
204
1
from __future__ import annotations def lowercase_ ( _A : list[int] ): # This function is recursive """simple docstring""" lowerCamelCase__ : Dict = len(UpperCAmelCase_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase__ : Any = array[0] lowerCamelCase__ : Tuple = False lowerCamelCase__ : str = 1 lowerCamelCase__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase__ : str = True lowerCamelCase__ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase__ : Optional[int] = longest_subsequence(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > len(UpperCAmelCase_ ): lowerCamelCase__ : Optional[int] = temp_array else: i += 1 lowerCamelCase__ : List[str] = [element for element in array[1:] if element >= pivot] lowerCamelCase__ : List[str] = [pivot, *longest_subsequence(UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > len(UpperCAmelCase_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
184
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Dict = ['image_processor'] lowerCamelCase : str = 'SamImageProcessor' def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.image_processor __lowerCamelCase : str = -10 __lowerCamelCase : List[str] = self.image_processor.size['longest_edge'] def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding: __lowerCamelCase : Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # pop arguments that are not used in the foward but used nevertheless __lowerCamelCase : List[Any] = encoding_image_processor['original_sizes'] if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): # Checks if Torch or TF tensor __lowerCamelCase : Dict = original_sizes.numpy() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Tuple = self._normalize_and_convert( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , ) return encoding_image_processor def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="pt" , ) -> Optional[int]: if input_points is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] ) for point in input_points ] else: __lowerCamelCase : List[Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for point, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCamelCase , __lowerCamelCase : Tuple = self._pad_points_and_labels(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_labels is not None: __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box in input_boxes ] else: __lowerCamelCase : Optional[int] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if return_tensors == "pt": __lowerCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __lowerCamelCase : Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCamelCase : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __lowerCamelCase : str = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCamelCase : Dict = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Tuple = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCamelCase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCamelCase : str = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : List[str] = max([point.shape[0] for point in input_points] ) __lowerCamelCase : Union[str, Any] = [] for i, point in enumerate(SCREAMING_SNAKE_CASE_ ): if point.shape[0] != expected_nb_points: __lowerCamelCase : Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __lowerCamelCase : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = processed_input_points return input_points, input_labels def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> np.ndarray: __lowerCamelCase , __lowerCamelCase : Tuple = original_size __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE_ , longest_edge=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = deepcopy(SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) if is_bounding_box: __lowerCamelCase : Optional[int] = coords.reshape(-1 , 2 , 2 ) __lowerCamelCase : List[Any] = coords[..., 0] * (new_w / old_w) __lowerCamelCase : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCamelCase : Tuple = coords.reshape(-1 , 4 ) return coords def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Optional[Any]: if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): # Checks for TF or Torch tensor __lowerCamelCase : List[str] = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('Input points must be a list of list of floating points.' ) __lowerCamelCase : str = [np.array(SCREAMING_SNAKE_CASE_ ) for input_point in input_points] else: __lowerCamelCase : Optional[Any] = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): __lowerCamelCase : Union[str, Any] = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('Input labels must be a list of list integers.' ) __lowerCamelCase : Any = [np.array(SCREAMING_SNAKE_CASE_ ) for label in input_labels] else: __lowerCamelCase : Dict = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): __lowerCamelCase : int = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE_ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) __lowerCamelCase : List[Any] = [np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) for box in input_boxes] else: __lowerCamelCase : Tuple = None return input_points, input_labels, input_boxes @property def lowercase_ ( self ) -> Dict: __lowerCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
185
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : str ): if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) A__ = sorted(string.lower() ) return len(UpperCAmelCase_ ) == len(set(UpperCAmelCase_ ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Tuple = input('Enter a string ').strip() SCREAMING_SNAKE_CASE_ : Optional[Any] = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
69
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 SCREAMING_SNAKE_CASE_ : Any = data_utils.TransfoXLTokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = data_utils.TransfoXLCorpus SCREAMING_SNAKE_CASE_ : str = data_utils SCREAMING_SNAKE_CASE_ : List[Any] = data_utils def _snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase_ , """rb""" ) as fp: A__ = pickle.load(UpperCAmelCase_ , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A__ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) A__ = corpus.vocab.__dict__ torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , UpperCAmelCase_ ) A__ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A__ = os.path.abspath(UpperCAmelCase_ ) A__ = os.path.abspath(UpperCAmelCase_ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": A__ = TransfoXLConfig() else: A__ = TransfoXLConfig.from_json_file(UpperCAmelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) A__ = TransfoXLLMHeadModel(UpperCAmelCase_ ) A__ = load_tf_weights_in_transfo_xl(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model A__ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {os.path.abspath(UpperCAmelCase_ )}""" ) torch.save(model.state_dict() , UpperCAmelCase_ ) print(F"""Save configuration file to {os.path.abspath(UpperCAmelCase_ )}""" ) with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
69
1
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=UpperCamelCase__ ): _a = ["note_seq"] def __init__( self , *_a , **_a ) -> Dict: requires_backends(self , ["""note_seq"""] ) @classmethod def a__ ( cls , *_a , **_a ) -> Optional[int]: requires_backends(cls , ["""note_seq"""] ) @classmethod def a__ ( cls , *_a , **_a ) -> Tuple: requires_backends(cls , ["""note_seq"""] )
26
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase = '''Create a default config file for Accelerate with only a few flags set.''' def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE="no" , __SCREAMING_SNAKE_CASE = default_json_config_file , __SCREAMING_SNAKE_CASE = False ): lowercase = Path(__SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False lowercase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) lowercase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): lowercase = torch.cuda.device_count() lowercase = num_gpus lowercase = False if num_gpus > 1: lowercase = 'MULTI_GPU' else: lowercase = 'NO' elif is_xpu_available() and use_xpu: lowercase = torch.xpu.device_count() lowercase = num_xpus lowercase = False if num_xpus > 1: lowercase = 'MULTI_XPU' else: lowercase = 'NO' elif is_npu_available(): lowercase = torch.npu.device_count() lowercase = num_npus lowercase = False if num_npus > 1: lowercase = 'MULTI_NPU' else: lowercase = 'NO' else: lowercase = 0 lowercase = True lowercase = 1 lowercase = 'NO' lowercase = ClusterConfig(**__SCREAMING_SNAKE_CASE ) config.to_json_file(__SCREAMING_SNAKE_CASE ) return path def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = parser.add_parser('default' , parents=__SCREAMING_SNAKE_CASE , help=__SCREAMING_SNAKE_CASE , formatter_class=__SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=__SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=__SCREAMING_SNAKE_CASE , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
195
0
"""simple docstring""" A : Dict = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on A : Any = {value: key for key, value in MORSE_CODE_DICT.items()} def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "Morse code here!" print(__UpperCAmelCase ) __lowerCAmelCase = encrypt(__UpperCAmelCase ) print(__UpperCAmelCase ) __lowerCAmelCase = decrypt(__UpperCAmelCase ) print(__UpperCAmelCase ) if __name__ == "__main__": main()
356
"""simple docstring""" from __future__ import annotations import time A : Union[str, Any] = list[tuple[int, int]] A : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a ): __lowerCAmelCase = pos_x __lowerCAmelCase = pos_y __lowerCAmelCase = (pos_y, pos_x) __lowerCAmelCase = goal_x __lowerCAmelCase = goal_y __lowerCAmelCase = parent class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , __a ) __lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , __a ) __lowerCAmelCase = [self.start] __lowerCAmelCase = False def snake_case ( self ): while self.node_queue: __lowerCAmelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __lowerCAmelCase = True return self.retrace_path(__a ) __lowerCAmelCase = self.get_successors(__a ) for node in successors: self.node_queue.append(__a ) if not self.reached: return [self.start.pos] return None def snake_case ( self , __a ): __lowerCAmelCase = [] for action in delta: __lowerCAmelCase = parent.pos_x + action[1] __lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__a , __a , self.target.pos_y , self.target.pos_x , __a ) ) return successors def snake_case ( self , __a ): __lowerCAmelCase = node __lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase = current_node.parent path.reverse() return path class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = BreadthFirstSearch(__a , __a ) __lowerCAmelCase = BreadthFirstSearch(__a , __a ) __lowerCAmelCase = False def snake_case ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCAmelCase = self.fwd_bfs.node_queue.pop(0 ) __lowerCAmelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __lowerCAmelCase = True return self.retrace_bidirectional_path( __a , __a ) __lowerCAmelCase = current_bwd_node __lowerCAmelCase = current_fwd_node __lowerCAmelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(__a ), self.bwd_bfs: self.bwd_bfs.get_successors(__a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case ( self , __a , __a ): __lowerCAmelCase = self.fwd_bfs.retrace_path(__a ) __lowerCAmelCase = self.bwd_bfs.retrace_path(__a ) bwd_path.pop() bwd_path.reverse() __lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A : List[Any] = (0, 0) A : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Any = time.time() A : Dict = BreadthFirstSearch(init, goal) A : Any = bfs.search() A : List[str] = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) A : Optional[Any] = time.time() A : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) A : Any = bd_bfs.search() A : str = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
259
0
def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] = [[0] * n for i in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Union[str, Any] = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
283
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if "model" in orig_key: lowerCamelCase : Dict = orig_key.replace("model." , "" ) if "norm1" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: lowerCamelCase : Optional[Any] = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: lowerCamelCase : int = orig_key.split("." )[0].split("_" )[-1] lowerCamelCase : Dict = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowerCamelCase : List[str] = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: lowerCamelCase : Dict = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: lowerCamelCase : int = "yoso." + orig_key return orig_key def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase : Dict = val lowerCamelCase : Dict = orig_state_dict["cls.predictions.decoder.bias"] lowerCamelCase : Dict = torch.arange(SCREAMING_SNAKE_CASE_ ).expand((1, -1) ) + 2 return orig_state_dict def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model_state_dict"] lowerCamelCase : List[str] = YosoConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = YosoForMaskedLM(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE_ ) print(model.load_state_dict(SCREAMING_SNAKE_CASE_ ) ) model.eval() model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
283
1
def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : int ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
359
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Any = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Tuple = "switch_transformers" UpperCamelCase : Tuple = ["past_key_values"] UpperCamelCase : Any = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , A=3_21_28 , A=7_68 , A=64 , A=20_48 , A=64 , A=12 , A=3 , A=12 , A=3 , A=12 , A=8 , A=False , A=0.01 , A="float32" , A=False , A=32 , A=1_28 , A=0.1 , A=1e-6 , A=0.001 , A=0.001 , A=1.0 , A="relu" , A=True , A=False , A=True , A=0 , A=1 , **A , ) -> str: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = d_model lowerCamelCase = d_kv lowerCamelCase = d_ff lowerCamelCase = num_sparse_encoder_layers lowerCamelCase = num_layers lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCamelCase = self.num_layers // self.num_sparse_encoder_layers else: lowerCamelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCamelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCamelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCamelCase = num_heads lowerCamelCase = num_experts lowerCamelCase = expert_capacity lowerCamelCase = router_bias lowerCamelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) lowerCamelCase = router_dtype lowerCamelCase = router_ignore_padding_tokens lowerCamelCase = relative_attention_num_buckets lowerCamelCase = relative_attention_max_distance lowerCamelCase = dropout_rate lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_factor lowerCamelCase = feed_forward_proj lowerCamelCase = use_cache lowerCamelCase = add_router_probs lowerCamelCase = router_z_loss_coef lowerCamelCase = router_aux_loss_coef lowerCamelCase = self.feed_forward_proj.split("""-""" ) lowerCamelCase = act_info[-1] lowerCamelCase = act_info[0] == """gated""" if len(A ) > 1 and act_info[0] != "gated" or len(A ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase = """gelu_new""" super().__init__( pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , **A , )
66
0
from __future__ import annotations lowerCamelCase : Tuple = list[list[int]] # assigning initial values to the grid lowerCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _SCREAMING_SNAKE_CASE ( lowercase : Matrix , lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _SCREAMING_SNAKE_CASE ( lowercase : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _SCREAMING_SNAKE_CASE ( lowercase : Matrix ): '''simple docstring''' if location := find_empty_location(lowercase ): lowerCamelCase_ , lowerCamelCase_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowercase , lowercase , lowercase , lowercase ): lowerCamelCase_ = digit if sudoku(lowercase ) is not None: return grid lowerCamelCase_ = 0 return None def _SCREAMING_SNAKE_CASE ( lowercase : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(lowercase , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") lowerCamelCase : List[Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
204
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , *A_ : str , **A_ : Optional[int] ) -> None: """simple docstring""" warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
204
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Any = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] __UpperCamelCase : Union[str, Any] = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] __UpperCamelCase : int = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): __UpperCamelCase : List[Any] = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(A_ , 2 ) + pow(A_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list: snake_case_ = word.split() def justify(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = max_width - width snake_case_ = len(UpperCAmelCase ) if len(UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case_ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case_ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case_ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCAmelCase ): num_spaces_between_words_list[i] += 1 snake_case_ = [] for i in range(UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCAmelCase ) snake_case_ = [] snake_case_ = [] snake_case_ = 0 for word in words: if width + len(UpperCAmelCase ) + len(UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCAmelCase ) width += len(UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) # reset new line and new width snake_case_ , snake_case_ = [word], len(UpperCAmelCase ) snake_case_ = max_width - width - len(UpperCAmelCase ) answer.append(' '.join(UpperCAmelCase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
69
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase :Union[str, Any] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Dict = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Dict = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCAmelCase :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
240
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self : Any , snake_case : Any , snake_case : Optional[int]=13 , snake_case : List[str]=7 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : int=True , snake_case : Tuple=True , snake_case : int=99 , snake_case : Any=16 , snake_case : Dict=36 , snake_case : Any=6 , snake_case : Dict=6 , snake_case : Dict=6 , snake_case : int=37 , snake_case : int="gelu" , snake_case : str=0.1 , snake_case : Any=0.1 , snake_case : Dict=512 , snake_case : List[Any]=16 , snake_case : Any=2 , snake_case : Any=0.02 , snake_case : Optional[int]=3 , snake_case : List[Any]=4 , snake_case : List[str]=None , ) -> Union[str, Any]: __UpperCAmelCase : str = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Optional[int] = embedding_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_hidden_groups __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : Union[str, Any] = scope def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Dict = None if self.use_token_type_ids: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : int = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase__ ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : int ) -> Optional[int]: __UpperCAmelCase : List[Any] = AlbertModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Tuple = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) __UpperCAmelCase : List[str] = model(snake_case , token_type_ids=snake_case ) __UpperCAmelCase : str = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : List[str] , snake_case : str , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : Optional[int] ) -> Optional[int]: __UpperCAmelCase : str = AlbertForPreTraining(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , sentence_order_label=snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase__ ( self : Dict , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Any , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Dict = AlbertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Tuple , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple ) -> int: __UpperCAmelCase : Optional[Any] = AlbertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Optional[int] , snake_case : Dict , snake_case : int , snake_case : Optional[int] , snake_case : Optional[Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Any = AlbertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : str , snake_case : Dict , snake_case : Union[str, Any] , snake_case : List[str] ) -> int: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Optional[int] = AlbertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Dict , snake_case : int , snake_case : List[Any] , snake_case : List[Any] , snake_case : Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[int] = self.num_choices __UpperCAmelCase : List[Any] = AlbertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Any = True def lowerCamelCase__ ( self : Optional[int] , snake_case : Any , snake_case : Dict , snake_case : Tuple=False ) -> Optional[Any]: __UpperCAmelCase : Any = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): __UpperCAmelCase : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case ) __UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def lowerCamelCase__ ( self : Dict ) -> int: __UpperCAmelCase : List[Any] = AlbertModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Any ) -> Any: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> str: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : List[str] ) -> Tuple: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : str ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Tuple = type self.model_tester.create_and_check_model(*snake_case ) @slow def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AlbertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = AlbertModel.from_pretrained('''albert-base-v2''' ) __UpperCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCAmelCase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(snake_case , attention_mask=snake_case )[0] __UpperCAmelCase : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case ) __UpperCAmelCase : int = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1E-4 ) )
240
1
import functools from typing import Any def lowerCAmelCase_ ( __A, __A ) -> bool: '''simple docstring''' if not isinstance(__A, __A ) or len(__A ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__A, __A ) or not all( isinstance(__A, __A ) and len(__A ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie UpperCAmelCase__ = {} UpperCAmelCase__ = "WORD_KEEPER" for word in words: UpperCAmelCase__ = trie for c in word: if c not in trie_node: UpperCAmelCase__ = {} UpperCAmelCase__ = trie_node[c] UpperCAmelCase__ = True UpperCAmelCase__ = len(__A ) # Dynamic programming method @functools.cache def is_breakable(__A ) -> bool: if index == len_string: return True UpperCAmelCase__ = trie for i in range(__A, __A ): UpperCAmelCase__ = trie_node.get(string[i], __A ) if trie_node is None: return False if trie_node.get(__A, __A ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
65
from __future__ import annotations from typing import Any def _A ( SCREAMING_SNAKE_CASE__ : list[Any] ): create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 ) def _A ( SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : int ): if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __snake_case = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
259
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = [[0] * n for i in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = y_points[i] for i in range(2, __lowerCamelCase ): for j in range(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ ={ 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = FileLock(str(tmpdir / '''foo.lock''' ) ) _UpperCAmelCase = FileLock(str(tmpdir / '''foo.lock''' ) ) _UpperCAmelCase = 0.01 with locka.acquire(): with pytest.raises(_lowercase ): _UpperCAmelCase = time.time() locka.acquire(_lowercase ) assert time.time() - _start > timeout def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = """a""" * 1000 + """.lock""" _UpperCAmelCase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(_lowercase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 _UpperCAmelCase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowercase ): locka.acquire(0 )
260
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __a = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A_ ( _lowercase ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A_ ( _lowercase, _lowercase ): '''simple docstring''' if args.student_type == "roberta": snake_case_ :Tuple = False elif args.student_type == "gpt2": snake_case_ :Union[str, Any] = False def A_ ( _lowercase, _lowercase ): '''simple docstring''' if args.student_type == "roberta": snake_case_ :List[str] = False def A_ ( ): '''simple docstring''' snake_case_ :Union[str, Any] = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""", action="""store_true""", help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""", type=_lowercase, required=_lowercase, help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""", type=_lowercase, required=_lowercase, help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""", ) parser.add_argument( """--student_type""", type=_lowercase, choices=["""distilbert""", """roberta""", """gpt2"""], required=_lowercase, help="""The student type (DistilBERT, RoBERTa).""", ) parser.add_argument("""--student_config""", type=_lowercase, required=_lowercase, help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""", default=_lowercase, type=_lowercase, help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""", choices=["""bert""", """roberta""", """gpt2"""], required=_lowercase, help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""", type=_lowercase, required=_lowercase, help="""The teacher model.""" ) parser.add_argument("""--temperature""", default=2.0, type=_lowercase, help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""", default=0.5, type=_lowercase, help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""", default=0.0, type=_lowercase, help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""", ) parser.add_argument("""--alpha_clm""", default=0.5, type=_lowercase, help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""", default=0.0, type=_lowercase, help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""", default=0.0, type=_lowercase, help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""", action="""store_true""", help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""", default=0.15, type=_lowercase, help="""Proportion of tokens for which we need to make a prediction.""", ) parser.add_argument("""--word_mask""", default=0.8, type=_lowercase, help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""", default=0.1, type=_lowercase, help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""", default=0.1, type=_lowercase, help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""", default=0.7, type=_lowercase, help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""", ) parser.add_argument("""--token_counts""", type=_lowercase, help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""", action="""store_true""", help="""If true, compute the distillation loss only the [MLM] prediction distribution.""", ) parser.add_argument( """--freeze_pos_embs""", action="""store_true""", help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""", ) parser.add_argument( """--freeze_token_type_embds""", action="""store_true""", help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""", ) parser.add_argument("""--n_epoch""", type=_lowercase, default=3, help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""", type=_lowercase, default=5, help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""", action="""store_false""", help="""If true, group sequences that have similar length into the same batch. Default is true.""", ) parser.add_argument( """--gradient_accumulation_steps""", type=_lowercase, default=50, help="""Gradient accumulation for larger training batches.""", ) parser.add_argument("""--warmup_prop""", default=0.05, type=_lowercase, help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""", default=0.0, type=_lowercase, help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""", default=5e-4, type=_lowercase, help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""", default=1e-6, type=_lowercase, help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""", default=5.0, type=_lowercase, help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""", default=0.02, type=_lowercase, help="""Random initialization range.""" ) parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""", ) parser.add_argument( """--fp16_opt_level""", type=_lowercase, default="""O1""", help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ), ) parser.add_argument("""--n_gpu""", type=_lowercase, default=1, help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""", type=_lowercase, default=-1, help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""", type=_lowercase, default=56, help="""Random seed""" ) parser.add_argument("""--log_interval""", type=_lowercase, default=500, help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""", type=_lowercase, default=4000, help="""Checkpoint interval.""" ) snake_case_ :Tuple = parser.parse_args() sanity_checks(_lowercase ) # ARGS # init_gpu_params(_lowercase ) set_seed(_lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path, """parameters.json""" ), """w""" ) as f: json.dump(vars(_lowercase ), _lowercase, indent=4 ) git_log(args.dump_path ) snake_case_, snake_case_, snake_case_ :Any = MODEL_CLASSES[args.student_type] snake_case_, snake_case_, snake_case_ :int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # snake_case_ :Any = teacher_tokenizer_class.from_pretrained(args.teacher_name ) snake_case_ :Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): snake_case_ :Union[str, Any] = tokenizer.all_special_tokens.index(_lowercase ) snake_case_ :Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) snake_case_ :str = special_tok_ids snake_case_ :Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file, """rb""" ) as fp: snake_case_ :str = pickle.load(_lowercase ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts, """rb""" ) as fp: snake_case_ :Optional[Any] = pickle.load(_lowercase ) snake_case_ :Tuple = np.maximum(_lowercase, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): snake_case_ :Optional[int] = 0.0 # do not predict special tokens snake_case_ :int = torch.from_numpy(_lowercase ) else: snake_case_ :List[str] = None snake_case_ :Optional[int] = LmSeqsDataset(params=_lowercase, data=_lowercase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) snake_case_ :List[Any] = student_config_class.from_pretrained(args.student_config ) snake_case_ :Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) snake_case_ :List[str] = student_model_class.from_pretrained(args.student_pretrained_weights, config=_lowercase ) else: snake_case_ :Optional[int] = student_model_class(_lowercase ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # snake_case_ :Dict = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=_lowercase ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_lowercase, _lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_lowercase, _lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() snake_case_ :Optional[int] = Distiller( params=_lowercase, dataset=_lowercase, token_probs=_lowercase, student=_lowercase, teacher=_lowercase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
66
0
from __future__ import annotations from typing import Any def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" if not postfix_notation: return 0 UpperCamelCase_ = {"+", "-", "*", "/"} UpperCamelCase_ = [] for token in postfix_notation: if token in operations: UpperCamelCase_ , UpperCamelCase_ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(SCREAMING_SNAKE_CASE_ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
60
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """dandelin/vilt-b32-finetuned-vqa""" UpperCamelCase_ :Dict = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) UpperCamelCase_ :Optional[int] = """image_qa""" UpperCamelCase_ :int = AutoProcessor UpperCamelCase_ :Tuple = AutoModelForVisualQuestionAnswering UpperCamelCase_ :Optional[int] = ["""image""", """text"""] UpperCamelCase_ :Tuple = ["""text"""] def __init__( self , *_lowercase , **_lowercase )-> Union[str, Any]: requires_backends(self , ["vision"] ) super().__init__(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> str: return self.pre_processor(_lowercase , _lowercase , return_tensors="pt" ) def UpperCAmelCase_ ( self , _lowercase )-> str: with torch.no_grad(): return self.model(**_lowercase ).logits def UpperCAmelCase_ ( self , _lowercase )-> List[Any]: UpperCamelCase_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
60
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = tempfile.mkdtemp() __magic_name__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __magic_name__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __magic_name__ = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] , **UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : str , **UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : Optional[Any] , **UpperCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __magic_name__ = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : int ) -> int: """simple docstring""" __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_rust_tokenizer() __magic_name__ = self.get_image_processor() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) __magic_name__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = image_processor(UpperCamelCase__ , return_tensors="""np""" ) __magic_name__ = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) __magic_name__ = """lower newer""" __magic_name__ = processor(text=UpperCamelCase__ ) __magic_name__ = tokenizer(UpperCamelCase__ , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : List[str] ) -> int: """simple docstring""" __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) __magic_name__ = """lower newer""" __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(UpperCamelCase__ ) __magic_name__ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> List[str]: """simple docstring""" __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) __magic_name__ = """lower newer""" __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
88
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowercase = NewType('''DataClass''', Any) _lowercase = NewType('''DataClassType''', Any) def _snake_case ( snake_case__ : Tuple ): if isinstance(snake_case__ , snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def _snake_case ( snake_case__ : list ): A = {str(snake_case__ ): choice for choice in choices} return lambda snake_case__ : str_to_choice.get(snake_case__ , snake_case__ ) def _snake_case ( *, snake_case__ : Union[str, List[str]] = None , snake_case__ : str = None , snake_case__ : Any = dataclasses.MISSING , snake_case__ : Callable[[], Any] = dataclasses.MISSING , snake_case__ : dict = None , **snake_case__ : Any , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A = {} if aliases is not None: A = aliases if help is not None: A = help return dataclasses.field(metadata=snake_case__ , default=snake_case__ , default_factory=snake_case__ , **snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Iterable[DataClassType] def __init__( self : List[str] ,A_ : Union[DataClassType, Iterable[DataClassType]] ,**A_ : Any ) -> Optional[int]: # To make the default appear when using --help if "formatter_class" not in kwargs: A = ArgumentDefaultsHelpFormatter super().__init__(**A_ ) if dataclasses.is_dataclass(A_ ): A = [dataclass_types] A = list(A_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A_ ) @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ,A_ : dataclasses.Field ) -> Optional[Any]: A = F'--{field.name}' A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A = kwargs.pop('aliases' ,[] ) if isinstance(A_ ,A_ ): A = [aliases] A = getattr(field.type ,'__origin__' ,field.type ) if origin_type is Union or (hasattr(A_ ,'UnionType' ) and isinstance(A_ ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(A_ ) not in field.type.__args__: # filter `str` in Union A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A = getattr(field.type ,'__origin__' ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A = ( field.type.__args__[0] if isinstance(A_ ,field.type.__args__[1] ) else field.type.__args__[1] ) A = getattr(field.type ,'__origin__' ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A = {} if origin_type is Literal or (isinstance(field.type ,A_ ) and issubclass(field.type ,A_ )): if origin_type is Literal: A = field.type.__args__ else: A = [x.value for x in field.type] A = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A = field.default else: A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A = copy(A_ ) # Hack because type=bool in argparse does not behave as we want. A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A = default # This tells argparse we accept 0 or 1 value after --field_name A = '?' # This is the value that will get picked if we do --field_name (without value) A = True elif isclass(A_ ) and issubclass(A_ ,A_ ): A = field.type.__args__[0] A = '+' if field.default_factory is not dataclasses.MISSING: A = field.default_factory() elif field.default is dataclasses.MISSING: A = True else: A = field.type if field.default is not dataclasses.MISSING: A = field.default elif field.default_factory is not dataclasses.MISSING: A = field.default_factory() else: A = True parser.add_argument(A_ ,*A_ ,**A_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A = False parser.add_argument(F'--no_{field.name}' ,action='store_false' ,dest=field.name ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : DataClassType ) -> List[Any]: if hasattr(A_ ,'_argument_group_name' ): A = self.add_argument_group(dtype._argument_group_name ) else: A = self try: A = get_type_hints(A_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A_ ): A = '.'.join(map(A_ ,sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(A_ ): if not field.init: continue A = type_hints[field.name] self._parse_dataclass_field(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Any=None ,A_ : int=False ,A_ : Any=True ,A_ : List[str]=None ,A_ : Union[str, Any]=None ,) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A = [] if args_filename: args_files.append(Path(A_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A = ArgumentParser() args_file_parser.add_argument(A_ ,type=A_ ,action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A , A = args_file_parser.parse_known_args(args=A_ ) A = vars(A_ ).get(args_file_flag.lstrip('-' ) ,A_ ) if cmd_args_file_paths: args_files.extend([Path(A_ ) for p in cmd_args_file_paths] ) A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A = file_args + args if args is not None else file_args + sys.argv[1:] A , A = self.parse_known_args(args=A_ ) A = [] for dtype in self.dataclass_types: A = {f.name for f in dataclasses.fields(A_ ) if f.init} A = {k: v for k, v in vars(A_ ).items() if k in keys} for k in keys: delattr(A_ ,A_ ) A = dtype(**A_ ) outputs.append(A_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Dict[str, Any] ,A_ : bool = False ) -> Tuple[DataClass, ...]: A = set(args.keys() ) A = [] for dtype in self.dataclass_types: A = {f.name for f in dataclasses.fields(A_ ) if f.init} A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A = dtype(**A_ ) outputs.append(A_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(A_ )}' ) return tuple(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : bool = False ) -> Tuple[DataClass, ...]: with open(Path(A_ ) ,encoding='utf-8' ) as open_json_file: A = json.loads(open_json_file.read() ) A = self.parse_dict(A_ ,allow_extra_keys=A_ ) return tuple(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : bool = False ) -> Tuple[DataClass, ...]: A = self.parse_dict(yaml.safe_load(Path(A_ ).read_text() ) ,allow_extra_keys=A_ ) return tuple(A_ )
74
0
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[Any] = "examples/" _lowercase : str = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } _lowercase : Union[str, Any] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } _lowercase : int = "README.md" def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase_ : Optional[Any] = f.read() lowercase_ : Tuple = REPLACE_PATTERNS[pattern] lowercase_ : List[Any] = replace.replace('''VERSION''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = re_pattern.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" for folder, directories, fnames in os.walk(__SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , pattern='''examples''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(__SCREAMING_SNAKE_CASE ) def snake_case_ ( ): """simple docstring""" lowercase_ : int = '''🤗 Transformers currently provides the following architectures''' lowercase_ : List[str] = '''1. Want to contribute a new model?''' with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase_ : Tuple = f.readlines() # Find the start of the list. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase_ : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowercase_ : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) def snake_case_ ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowercase_ : List[str] = f.read() lowercase_ : Tuple = REPLACE_PATTERNS['''init'''][0].search(__SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any]=False ): """simple docstring""" lowercase_ : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowercase_ : List[Any] = default_version.base_version elif patch: lowercase_ : Optional[Any] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowercase_ : int = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowercase_ : Union[str, Any] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: lowercase_ : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(__SCREAMING_SNAKE_CASE , patch=__SCREAMING_SNAKE_CASE ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def snake_case_ ( ): """simple docstring""" lowercase_ : List[str] = get_version() lowercase_ : Dict = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowercase_ : Optional[Any] = current_version.base_version # Check with the user we got that right. lowercase_ : Dict = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: lowercase_ : Any = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__SCREAMING_SNAKE_CASE ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") _lowercase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCamelCase_ ): def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
264
0
from abc import ABC, abstractmethod from typing import List, Optional class snake_case_ (lowerCamelCase_ ): def __init__( self :List[str] ) -> int: # test for the above condition self.test() def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = 0 a__ = False while not completed: if counter == 1: self.reset() a__ = self.advance() if not self.does_advance(__snake_case ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) a__ , a__ , a__ = self.update(__snake_case ) counter += 1 if counter > 1_00_00: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def lowerCamelCase__( self :Optional[Any] ) -> Any: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Tuple ,__snake_case :int ) -> Tuple: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Tuple ,__snake_case :int ) -> Optional[int]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :str ) -> Optional[int]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Dict ) -> str: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :str ,__snake_case :Tuple=False ) -> str: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case_ (lowerCamelCase_ ): def __init__( self :Dict ,__snake_case :List[int] ) -> List[str]: super(__snake_case ,self ).__init__() if not isinstance(__snake_case ,__snake_case ) or len(__snake_case ) == 0: raise ValueError(F'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(__snake_case ,__snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) a__ = token_ids a__ = len(self.token_ids ) a__ = -1 # the index of the currently fulfilled step a__ = False def lowerCamelCase__( self :List[Any] ) -> str: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__( self :List[str] ,__snake_case :int ) -> Tuple: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(__snake_case )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__( self :Tuple ,__snake_case :int ) -> Union[str, Any]: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = False a__ = False a__ = False if self.does_advance(__snake_case ): self.fulfilled_idx += 1 a__ = True if self.fulfilled_idx == (self.seqlen - 1): a__ = True a__ = completed else: # failed to make progress. a__ = True self.reset() return stepped, completed, reset def lowerCamelCase__( self :List[str] ) -> Optional[int]: a__ = False a__ = 0 def lowerCamelCase__( self :Dict ) -> Any: return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__( self :str ,__snake_case :Optional[int]=False ) -> Optional[Any]: a__ = PhrasalConstraint(self.token_ids ) if stateful: a__ = self.seqlen a__ = self.fulfilled_idx a__ = self.completed return new_constraint class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :List[List[int]] ,__snake_case :Tuple=True ) -> List[str]: a__ = max([len(__snake_case ) for one in nested_token_ids] ) a__ = {} for token_ids in nested_token_ids: a__ = root for tidx, token_id in enumerate(__snake_case ): if token_id not in level: a__ = {} a__ = level[token_id] if no_subsets and self.has_subsets(__snake_case ,__snake_case ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F' {nested_token_ids}.' ) a__ = root def lowerCamelCase__( self :int ,__snake_case :Optional[int] ) -> List[Any]: a__ = self.trie for current_token in current_seq: a__ = start[current_token] a__ = list(start.keys() ) return next_tokens def lowerCamelCase__( self :int ,__snake_case :str ) -> int: a__ = self.next_tokens(__snake_case ) return len(__snake_case ) == 0 def lowerCamelCase__( self :Any ,__snake_case :Dict ) -> List[str]: a__ = list(root.values() ) if len(__snake_case ) == 0: return 1 else: return sum([self.count_leaves(__snake_case ) for nn in next_nodes] ) def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ,__snake_case :List[str] ) -> Optional[Any]: a__ = self.count_leaves(__snake_case ) return len(__snake_case ) != leaf_count class snake_case_ (lowerCamelCase_ ): def __init__( self :List[str] ,__snake_case :List[List[int]] ) -> str: super(__snake_case ,self ).__init__() if not isinstance(__snake_case ,__snake_case ) or len(__snake_case ) == 0: raise ValueError(F'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(__snake_case ,__snake_case ) for token_ids in nested_token_ids ): raise ValueError(F'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(__snake_case ,__snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) a__ = DisjunctiveTrie(__snake_case ) a__ = nested_token_ids a__ = self.trie.max_height a__ = [] a__ = False def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = self.trie.next_tokens(self.current_seq ) if len(__snake_case ) == 0: return None else: return token_list def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ) -> Any: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__( self :str ,__snake_case :int ) -> List[str]: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = False a__ = False a__ = False if self.does_advance(__snake_case ): self.current_seq.append(__snake_case ) a__ = True else: a__ = True self.reset() a__ = self.trie.reached_leaf(self.current_seq ) a__ = completed return stepped, completed, reset def lowerCamelCase__( self :List[Any] ) -> int: a__ = False a__ = [] def lowerCamelCase__( self :Tuple ) -> Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Any=False ) -> Optional[int]: a__ = DisjunctiveConstraint(self.token_ids ) if stateful: a__ = self.seqlen a__ = self.current_seq a__ = self.completed return new_constraint class snake_case_ : def __init__( self :List[str] ,__snake_case :List[Constraint] ) -> Tuple: a__ = constraints # max # of steps required to fulfill a given constraint a__ = max([c.seqlen for c in constraints] ) a__ = len(__snake_case ) a__ = False self.init_state() def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = [] a__ = None a__ = [constraint.copy(stateful=__snake_case ) for constraint in self.constraints] def lowerCamelCase__( self :List[Any] ) -> str: a__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__( self :Optional[int] ) -> str: a__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" a__ = constraint.advance() if isinstance(__snake_case ,__snake_case ): token_list.append(__snake_case ) elif isinstance(__snake_case ,__snake_case ): token_list.extend(__snake_case ) else: a__ = self.inprogress_constraint.advance() if isinstance(__snake_case ,__snake_case ): token_list.append(__snake_case ) elif isinstance(__snake_case ,__snake_case ): token_list.extend(__snake_case ) if len(__snake_case ) == 0: return None else: return token_list def lowerCamelCase__( self :Any ,__snake_case :Optional[List[int]] ) -> Dict: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint a__ , a__ = self.add(__snake_case ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__( self :Optional[int] ,__snake_case :int ) -> List[str]: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` should be an `int`, but is `{token_id}`.' ) a__ , a__ = False, False if self.completed: a__ = True a__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state a__ , a__ , a__ = self.inprogress_constraint.update(__snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__snake_case ) ) a__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) a__ = None if len(self.pending_constraints ) == 0: # we're done! a__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__snake_case ): a__ , a__ , a__ = pending_constraint.update(__snake_case ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(__snake_case ) a__ = None if not complete and stepped: a__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". a__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. a__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__( self :Dict ,__snake_case :List[Any]=True ) -> int: a__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: a__ = [ constraint.copy(stateful=__snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: a__ = self.inprogress_constraint.copy(stateful=__snake_case ) a__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
240
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets snake_case : List[Any] = datasets.logging.get_logger(__name__) snake_case : List[str] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' snake_case : Tuple = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' snake_case : str = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Any="dummy_doc" ): a__ = {doc: key_lines} a__ = {doc: sys_lines} a__ = {} a__ = 0 a__ = 0 a__ = 0 a__ = 0 a__ = 0 a__ = 0 a__ , a__ = reader.get_doc_mentions(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: a__ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) a__ , a__ = reader.get_doc_mentions(__lowerCAmelCase , sys_doc_lines[doc] , __lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: a__ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) if remove_nested: a__ , a__ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters a__ , a__ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters a__ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) a__ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) a__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( 'Number of resulting singleton clusters in the key ' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' 'files, respectively' ) return doc_coref_infos def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ): a__ = get_coref_infos(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = {} a__ = 0 a__ = 0 for name, metric in metrics: a__ , a__ , a__ = evaluator.evaluate_documents(__lowerCAmelCase , __lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: a__ = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'conll_score': conll} ) return output_scores def __lowercase ( __lowerCAmelCase : str ): a__ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: a__ = line.split()[5] if not parse_col == "-": a__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Optional[int] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) ,codebase_urls=['https://github.com/ns-moosavi/coval'] ,reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] ,) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Dict=True ,__snake_case :Union[str, Any]=False ,__snake_case :Dict=False ,__snake_case :Union[str, Any]=False ) -> Tuple: a__ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: a__ = util.check_gold_parse_annotation(__snake_case ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" a__ = evaluate( key_lines=__snake_case ,sys_lines=__snake_case ,metrics=__snake_case ,NP_only=__snake_case ,remove_nested=__snake_case ,keep_singletons=__snake_case ,min_span=__snake_case ,) return score
240
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowerCAmelCase__ : Tuple =TypeVar('''T''') class UpperCAmelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = len(_A ) __SCREAMING_SNAKE_CASE = [any_type for _ in range(self.N )] + arr __SCREAMING_SNAKE_CASE = fnc self.build() def _A ( self ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _A ( self , _A , _A ): '''simple docstring''' p += self.N __SCREAMING_SNAKE_CASE = v while p > 1: __SCREAMING_SNAKE_CASE = p // 2 __SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _A ( self , _A , _A ): # noqa: E741 '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = l + self.N, r + self.N __SCREAMING_SNAKE_CASE = None while l <= r: if l % 2 == 1: __SCREAMING_SNAKE_CASE = self.st[l] if res is None else self.fn(_A , self.st[l] ) if r % 2 == 0: __SCREAMING_SNAKE_CASE = self.st[r] if res is None else self.fn(_A , self.st[r] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowerCAmelCase__ : Optional[int] =[1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowerCAmelCase__ : List[str] ={ 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowerCAmelCase__ : List[Any] =SegmentTree(test_array, min) lowerCAmelCase__ : Any =SegmentTree(test_array, max) lowerCAmelCase__ : int =SegmentTree(test_array, lambda a, b: a + b) def __lowercase ( ) -> None: for i in range(len(a__ ) ): for j in range(a__ , len(a__ ) ): __SCREAMING_SNAKE_CASE = reduce(a__ , test_array[i : j + 1] ) __SCREAMING_SNAKE_CASE = reduce(a__ , test_array[i : j + 1] ) __SCREAMING_SNAKE_CASE = reduce(lambda a__ , a__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(a__ , a__ ) assert max_range == max_segment_tree.query(a__ , a__ ) assert sum_range == sum_segment_tree.query(a__ , a__ ) test_all_segments() for index, value in test_updates.items(): lowerCAmelCase__ : Dict =value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
118
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCAmelCase__ : Optional[int] =True from torch.cuda.amp import autocast lowerCAmelCase__ : List[Any] =logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase__ : Optional[bool] = field( default=UpperCamelCase_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase__ : Optional[bool] = field( default=UpperCamelCase_ , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) UpperCamelCase__ : Optional[float] = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def __lowercase ( a__ , a__ ) -> Dict: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = logging.WARNING if model_args.verbose_logging: __SCREAMING_SNAKE_CASE = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __SCREAMING_SNAKE_CASE = logging.INFO logger.setLevel(a__ ) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( default=UpperCamelCase_ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase__ : Optional[str] = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCamelCase__ : Optional[str] = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) UpperCamelCase__ : bool = field( default=UpperCamelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase__ : Optional[int] = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase__ : Optional[int] = field( default=UpperCamelCase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase__ : Optional[float] = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : WavaVecaForPreTraining UpperCamelCase__ : WavaVecaFeatureExtractor UpperCamelCase__ : Union[bool, str] = "longest" UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[int] = None def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extractor.pad( _A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) __SCREAMING_SNAKE_CASE = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) __SCREAMING_SNAKE_CASE = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __SCREAMING_SNAKE_CASE = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_A , min_masks=2 , ) return batch class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , *_A , _A=1 , _A=0 , _A=1.0 , **_A ): '''simple docstring''' super().__init__(*_A , **_A ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = max_gumbel_temp __SCREAMING_SNAKE_CASE = min_gumbel_temp __SCREAMING_SNAKE_CASE = gumbel_temp_decay def _A ( self , _A , _A ): '''simple docstring''' model.train() __SCREAMING_SNAKE_CASE = self._prepare_inputs(_A ) if self.use_amp: with autocast(): __SCREAMING_SNAKE_CASE = self.compute_loss(_A , _A ) else: __SCREAMING_SNAKE_CASE = self.compute_loss(_A , _A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __SCREAMING_SNAKE_CASE = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __lowercase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() configure_logger(a__ , a__ ) # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=a__ ) def prepare_dataset(a__ ): # check that all files have the correct sampling rate __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __SCREAMING_SNAKE_CASE = datasets.map( a__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long __SCREAMING_SNAKE_CASE = vectorized_datasets.filter( lambda a__ : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(a__ ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __SCREAMING_SNAKE_CASE = vectorized_datasets.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(a__ ) __SCREAMING_SNAKE_CASE = DataCollatorForWavaVecaPretraining(model=a__ , feature_extractor=a__ ) __SCREAMING_SNAKE_CASE = WavaVecaPreTrainer( model=a__ , data_collator=a__ , args=a__ , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=a__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
118
1
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(a__ ): for j in range(a__ ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [[float('''inf''' ) for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): for j in range(a__ ): SCREAMING_SNAKE_CASE : Dict = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a__ ): # looping through rows of graph array for i in range(a__ ): # looping through columns of graph array for j in range(a__ ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): SCREAMING_SNAKE_CASE : Optional[int] = dist[i][k] + dist[k][j] _print_dist(a__ , a__ ) return dist, v if __name__ == "__main__": a__ : List[Any] = int(input('''Enter number of vertices: ''')) a__ : Dict = int(input('''Enter number of edges: ''')) a__ : Dict = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): a__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) a__ : Dict = int(input('''Enter source:''')) a__ : Optional[Any] = int(input('''Enter destination:''')) a__ : Union[str, Any] = float(input('''Enter weight:''')) a__ : List[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
313
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 10 @require_sentencepiece @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[Any] = True def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase ) __lowercase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = '<pad>' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCAmelCase ) , 10_01 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , ) __lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A__ ( unittest.TestCase ): lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase__ : Dict = "C'est trop cool" lowerCAmelCase__ : List[Any] = "Esto es genial" @classmethod def a__ ( cls : Any ) -> Optional[int]: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a__ ( self : Tuple ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def a__ ( self : str ) -> int: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) __lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2] __lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = 'fr' __lowercase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowercase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
325
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : int , snake_case_ : Optional[Any] , snake_case_ : Optional[int]=7 , snake_case_ : Optional[Any]=3 , snake_case_ : int=18 , snake_case_ : Union[str, Any]=30 , snake_case_ : Optional[Any]=400 , snake_case_ : str=True , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=True , snake_case_ : Any=False , snake_case_ : str=True , snake_case_ : Optional[int]=True , snake_case_ : Union[str, Any]=[0.5, 0.5, 0.5] , snake_case_ : Union[str, Any]=[0.5, 0.5, 0.5] , ) -> Dict: '''simple docstring''' A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size if size is not None else {"height": 18, "width": 20} A__ = do_thumbnail A__ = do_align_axis A__ = do_pad A__ = do_normalize A__ = image_mean A__ = image_std def __magic_name__ ( self : Optional[int] ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase_ ( A_, unittest.TestCase ): lowercase__ = DonutImageProcessor if is_vision_available() else None def __magic_name__ ( self : Dict ) -> Any: '''simple docstring''' A__ = DonutImageProcessingTester(self ) @property def __magic_name__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , "do_resize" ) ) self.assertTrue(hasattr(snake_case_ , "size" ) ) self.assertTrue(hasattr(snake_case_ , "do_thumbnail" ) ) self.assertTrue(hasattr(snake_case_ , "do_align_long_axis" ) ) self.assertTrue(hasattr(snake_case_ , "do_pad" ) ) self.assertTrue(hasattr(snake_case_ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case_ , "image_mean" ) ) self.assertTrue(hasattr(snake_case_ , "image_std" ) ) def __magic_name__ ( self : str ) -> int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def __magic_name__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @is_flaky() def __magic_name__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def __magic_name__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def __magic_name__ ( self : Dict ) -> int: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
353
"""simple docstring""" SCREAMING_SNAKE_CASE = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
230
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : List[str] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : List[str] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Any = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[int] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Optional[int] = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : List[str] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
60
"""simple docstring""" import math def _snake_case ( ): lowerCAmelCase : Union[str, Any] = input('''Enter message: ''' ) lowerCAmelCase : Optional[int] = int(input(f'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) ) lowerCAmelCase : str = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowerCAmelCase : Any = encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('''d''' ): lowerCAmelCase : Union[str, Any] = decrypt_message(_snake_case , _snake_case ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'''Output:\n{text + "|"}''' ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Optional[Any] = [''''''] * key for col in range(_snake_case ): lowerCAmelCase : Optional[Any] = col while pointer < len(_snake_case ): cipher_text[col] += message[pointer] pointer += key return "".join(_snake_case ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Union[str, Any] = math.ceil(len(_snake_case ) / key ) lowerCAmelCase : str = key lowerCAmelCase : Any = (num_cols * num_rows) - len(_snake_case ) lowerCAmelCase : Dict = [''''''] * num_cols lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCAmelCase : int = 0 row += 1 return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor snake_case__ : str = logging.get_logger(__name__) class snake_case_( A__ ): def __init__( self : Dict , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Union[str, Any] ): warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case : """simple docstring""" def __init__( self : Union[str, Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : int=13 ,lowerCamelCase__ : Optional[int]=7 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : Optional[Any]=99 ,lowerCamelCase__ : Union[str, Any]=32 ,lowerCamelCase__ : str=5 ,lowerCamelCase__ : Union[str, Any]=4 ,lowerCamelCase__ : Any=37 ,lowerCamelCase__ : Tuple="gelu" ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : Optional[int]=512 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : Optional[Any]=2 ,lowerCamelCase__ : Optional[Any]=0.0_2 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Union[str, Any]=4 ,lowerCamelCase__ : List[Any]=None ,): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope UpperCAmelCase__ = self.vocab_size - 1 def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase__ = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) UpperCAmelCase__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Any ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict ,*lowerCamelCase__ : Dict ): UpperCAmelCase__ = OpenAIGPTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase__ = model(lowercase_ ,token_type_ids=lowercase_ ,head_mask=lowercase_ ) UpperCAmelCase__ = model(lowercase_ ,token_type_ids=lowercase_ ) UpperCAmelCase__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any] ,*lowerCamelCase__ : Optional[Any] ): UpperCAmelCase__ = OpenAIGPTLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase__ = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Dict ,*lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = OpenAIGPTDoubleHeadsModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase__ = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,*lowerCamelCase__ : Any ): UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = OpenAIGPTForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) = config_and_inputs UpperCAmelCase__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class snake_case ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[str]=False ): UpperCAmelCase__ = super()._prepare_for_class(lowercase_ ,lowercase_ ,return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase_ ,) UpperCAmelCase__ = inputs_dict['''labels'''] UpperCAmelCase__ = inputs_dict['''labels'''] UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=lowercase_ ,) UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase_ ) return inputs_dict def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = OpenAIGPTModelTester(self ) UpperCAmelCase__ = ConfigTester(self ,config_class=lowercase_ ,n_embd=37 ) def __lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase_ ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase_ ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ ) @slow def __lowerCAmelCase ( self : Dict ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = OpenAIGPTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowercase_ ) UpperCAmelCase__ = torch.tensor([[481, 4_735, 544]] ,dtype=torch.long ,device=lowercase_ ) # the president is UpperCAmelCase__ = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase__ = model.generate(lowercase_ ,do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() ,lowercase_ )
98
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) def __lowercase ( _a , _a=False ): snake_case_ : List[str] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def __lowercase ( _a , _a , _a=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case_ : List[str] = '''''' else: snake_case_ : Dict = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : List[str] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case_ : Optional[int] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case_ : Dict = in_proj_bias[: config.hidden_size] snake_case_ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : Dict = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : str = in_proj_bias[-config.hidden_size :] def __lowercase ( _a ): snake_case_ : Dict = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def __lowercase ( _a , _a , _a ): snake_case_ : Union[str, Any] = dct.pop(_a ) snake_case_ : Union[str, Any] = val def __lowercase ( ): snake_case_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ : Tuple = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def __lowercase ( _a , _a , _a=False ): snake_case_ : str = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_a , ) snake_case_ : Tuple = ViTHybridConfig(backbone_config=_a , image_size=384 , num_labels=1_000 ) snake_case_ : int = False # load original model from timm snake_case_ : str = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a ) snake_case_ : int = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) snake_case_ : Optional[Any] = '''huggingface/label-files''' snake_case_ : Any = '''imagenet-1k-id2label.json''' snake_case_ : Dict = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : Dict = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Optional[int] = idalabel snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case_ : Optional[Any] = ViTHybridModel(_a ).eval() else: snake_case_ : Any = ViTHybridForImageClassification(_a ).eval() model.load_state_dict(_a ) # create image processor snake_case_ : Optional[Any] = create_transform(**resolve_data_config({} , model=_a ) ) snake_case_ : List[Any] = transform.transforms snake_case_ : Optional[Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } snake_case_ : List[Any] = ViTHybridImageProcessor( do_resize=_a , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_a , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case_ : Optional[int] = prepare_img() snake_case_ : Optional[int] = transform(_a ).unsqueeze(0 ) snake_case_ : int = processor(_a , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_a , _a ) # verify logits with torch.no_grad(): snake_case_ : List[str] = model(_a ) snake_case_ : Any = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: snake_case_ : Optional[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1E-3 ) else: snake_case_ : int = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_a ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowercase__ : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
264
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' ) lowercase_ : List[Any] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository lowercase_ : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: lowercase_ : List[str] = v else: lowercase_ : int = v lowercase_ : str = chkpt["""params"""] lowercase_ : Optional[Any] = {n: v for n, v in config.items() if not isinstance(__SCREAMING_SNAKE_CASE , (torch.FloatTensor, numpy.ndarray) )} lowercase_ : Any = chkpt["""dico_word2id"""] lowercase_ : Union[str, Any] = {s + """</w>""" if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model lowercase_ : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase_ : List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowercase_ : Dict = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__SCREAMING_SNAKE_CASE , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__SCREAMING_SNAKE_CASE , indent=2 ) + '''\n''' ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : Optional[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
360
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path lowercase_ : int = quote(__SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' , revision=__SCREAMING_SNAKE_CASE )
264
0
class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : list ) -> None: SCREAMING_SNAKE_CASE_ = set_counts SCREAMING_SNAKE_CASE_ = max(__magic_name__ ) SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [1] * num_sets SCREAMING_SNAKE_CASE_ = list(range(__magic_name__ ) ) def __A ( self : str , __magic_name__ : int , __magic_name__ : int ) -> bool: SCREAMING_SNAKE_CASE_ = self.get_parent(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_parent(__magic_name__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = src_parent SCREAMING_SNAKE_CASE_ = self.set_counts[src_parent] SCREAMING_SNAKE_CASE_ = max(self.max_set , __magic_name__ ) return True def __A ( self : Optional[int] , __magic_name__ : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
118
def a__ ( __UpperCamelCase ): if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE_ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE_ = len(str(fibonacci(__UpperCamelCase ) ) ) return index def a__ ( __UpperCamelCase = 1_0_0_0 ): return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
118
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( __a , unittest.TestCase ): """simple docstring""" lowerCamelCase = BlenderbotSmallTokenizer lowerCamelCase = False def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().setUp() snake_case : Optional[int] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] snake_case : Union[str, Any] = dict(zip(a__ , range(len(a__ ) ) ) ) snake_case : List[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] snake_case : Optional[int] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def lowerCAmelCase ( self : Optional[int] , **UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" snake_case : Tuple = '''adapt act apte''' snake_case : List[str] = '''adapt act apte''' return input_text, output_text def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" snake_case : Optional[Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case : Optional[Any] = '''adapt act apte''' snake_case : Union[str, Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] snake_case : Any = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) snake_case : Optional[int] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] snake_case : Tuple = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" snake_case : Any = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] snake_case : Optional[Any] = '''I am a small frog.''' snake_case : int = tok([src_text] , padding=a__ , truncation=a__ )['''input_ids'''] snake_case : int = tok.batch_decode(a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" snake_case : str = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) snake_case : List[str] = '''I am a small frog .''' snake_case : str = '''.''' snake_case : Dict = tok(a__ )['''input_ids'''] snake_case : Tuple = tok(a__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
359
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__SCREAMING_SNAKE_CASE ) , """Tatoeba directory does not exist.""" ) class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" snake_case : Tuple = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" snake_case ,snake_case : Dict = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=UpperCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
83
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) lowerCAmelCase : str = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products lowerCAmelCase : int = numbers[i] if number < 0: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = min_till_now, max_till_now lowerCAmelCase : List[Any] = max(SCREAMING_SNAKE_CASE , max_till_now * number ) lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now lowerCAmelCase : str = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
108
import random from .binary_exp_mod import bin_exp_mod def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=1000 ) -> str: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case__ : Tuple = n - 1 snake_case__ : Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case__ : List[str] = 0 while count < prec: snake_case__ : List[str] = random.randint(2 , n - 1 ) snake_case__ : Optional[Any] = bin_exp_mod(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if b != 1: snake_case__ : List[Any] = True for _ in range(__lowerCAmelCase ): if b == n - 1: snake_case__ : List[str] = False break snake_case__ : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
230
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _A = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" _A = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" _A = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def _a ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def _a ( self , A_ , A_ , A_ = 1 , A_ = 4 , ) -> Tuple: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A__ , hypotheses=A__ , min_len=A__ , max_len=A__ ) }
359
import pprint import requests _A = 'https://zenquotes.io/api' def _UpperCAmelCase ( ): return requests.get(API_ENDPOINT_URL + '/today' ).json() def _UpperCAmelCase ( ): return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": _A = random_quotes() pprint.pprint(response)
117
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') _SCREAMING_SNAKE_CASE : Dict = get_tests_dir('''fixtures/vocab.json''') _SCREAMING_SNAKE_CASE : List[str] = get_tests_dir('''fixtures''') class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowercase_ ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = 0 def lowercase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase ) # save in new folder processor.save_pretrained(__lowerCamelCase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write(json.dumps(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase ) # save in new folder processor.save_pretrained(__lowerCamelCase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write(json.dumps(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(__lowerCamelCase ) # copy relevant files copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write('''{}''' ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) SCREAMING_SNAKE_CASE__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) SCREAMING_SNAKE_CASE__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ) -> Optional[int]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(__lowerCamelCase , '''vocab.txt''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = CustomTokenizer(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomProcessor(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : str ) -> Optional[int]: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "AutoFeatureExtractor" a = "AutoTokenizer" a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def lowercase_ ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowercase_ ( cls : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def lowercase_ ( cls : str ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def lowercase_ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCamelCase , '''test-processor''' ) , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCamelCase , '''test-processor-org''' ) , push_to_hub=__lowerCamelCase , use_auth_token=self._token , organization='''valid_org''' , ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase_ ( self : int ) -> Any: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(__lowerCamelCase , '''vocab.txt''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = CustomTokenizer(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomProcessor(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) SCREAMING_SNAKE_CASE__ = Repository(__lowerCamelCase , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__lowerCamelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowerCamelCase , '''tokenizer_config.json''' ) ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_processing.py''' ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
314
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _snake_case ( lowercase__ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase_ :List[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase_ :Union[str, Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase_ :Any = 4 lowerCAmelCase_ :List[Any] = 4_8 lowerCAmelCase_ :Optional[Any] = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase_ :Optional[Any] = [6, 6, 6, 6] lowerCAmelCase_ :List[str] = 6_0 lowerCAmelCase_ :Tuple = [6, 6, 6, 6] lowerCAmelCase_ :List[Any] = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase_ :int = 4 lowerCAmelCase_ :Union[str, Any] = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase_ :List[str] = 1 lowerCAmelCase_ :Tuple = 1 lowerCAmelCase_ :Any = 1_2_6 lowerCAmelCase_ :List[str] = 7 lowerCAmelCase_ :int = 255.0 lowerCAmelCase_ :Any = """""" return config def _snake_case ( lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase_ :str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase_ :List[str] = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowerCAmelCase_ :List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowerCAmelCase_ :str = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowerCAmelCase_ :Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase_ :Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase_ :Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase_ :Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase_ :Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase_ :Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowerCAmelCase_ :str = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowerCAmelCase_ :int = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowerCAmelCase_ :List[Any] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowerCAmelCase_ :Tuple = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowerCAmelCase_ :List[str] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowerCAmelCase_ :str = """layernorm.weight""" if name == "norm.bias": lowerCAmelCase_ :Dict = """layernorm.bias""" if "conv_first" in name: lowerCAmelCase_ :str = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase_ :str = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase_ :Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowerCAmelCase_ :Union[str, Any] = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowerCAmelCase_ :List[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowerCAmelCase_ :Dict = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase_ :int = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowerCAmelCase_ :Any = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowerCAmelCase_ :int = """swin2sr.""" + name return name def _snake_case ( lowercase__ : Any , lowercase__ : Optional[int] ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase_ :List[str] = orig_state_dict.pop(lowercase__ ) if "qkv" in key: lowerCAmelCase_ :str = key.split(""".""" ) lowerCAmelCase_ :int = int(key_split[1] ) lowerCAmelCase_ :Any = int(key_split[4] ) lowerCAmelCase_ :str = config.embed_dim if "weight" in key: lowerCAmelCase_ :Any = val[:dim, :] lowerCAmelCase_ :List[str] = val[dim : dim * 2, :] lowerCAmelCase_ :Union[str, Any] = val[-dim:, :] else: lowerCAmelCase_ :List[Any] = val[:dim] lowerCAmelCase_ :Union[str, Any] = val[dim : dim * 2] lowerCAmelCase_ :Tuple = val[-dim:] pass else: lowerCAmelCase_ :List[Any] = val return orig_state_dict def _snake_case ( lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ :Any = get_config(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = SwinaSRForImageSuperResolution(lowercase__ ) model.eval() lowerCAmelCase_ :Any = torch.hub.load_state_dict_from_url(lowercase__ , map_location="""cpu""" ) lowerCAmelCase_ :Tuple = convert_state_dict(lowercase__ , lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = model.load_state_dict(lowercase__ , strict=lowercase__ ) if len(lowercase__ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values lowerCAmelCase_ :Optional[int] = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowerCAmelCase_ :Optional[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("""RGB""" ) lowerCAmelCase_ :int = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase_ :Optional[Any] = 1_2_6 if """Jpeg""" in checkpoint_url else 2_5_6 lowerCAmelCase_ :Optional[int] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase_ :Tuple = transforms(lowercase__ ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase_ :str = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase_ :int = model(lowercase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase_ :List[str] = torch.Size([1, 3, 5_1_2, 5_1_2] ) lowerCAmelCase_ :Dict = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase_ :List[str] = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowerCAmelCase_ :Optional[Any] = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase_ :List[Any] = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowerCAmelCase_ :Optional[Any] = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase_ :Union[str, Any] = torch.Size([1, 3, 5_1_2, 5_1_2] ) lowerCAmelCase_ :Optional[int] = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase_ :Dict = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowerCAmelCase_ :Any = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase__ , atol=1E-3 ) print("""Looks ok!""" ) lowerCAmelCase_ :List[Any] = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowerCAmelCase_ :List[Any] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') __UpperCAmelCase = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __UpperCAmelCase = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) __UpperCAmelCase = dataset.iloc[:, 1:2].values __UpperCAmelCase = dataset.iloc[:, 2].values __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split(X, y, test_size=0.2, random_state=0) __UpperCAmelCase = PolynomialFeatures(degree=4) __UpperCAmelCase = poly_reg.fit_transform(X) __UpperCAmelCase = LinearRegression() pol_reg.fit(X_poly, y) def _snake_case ( ) -> str: '''simple docstring''' plt.scatter(lowercase__ , lowercase__ , color="""red""" ) plt.plot(lowercase__ , pol_reg.predict(poly_reg.fit_transform(lowercase__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
1
1
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ['''small''', '''medium''', '''large'''] __UpperCamelCase = '''lm_head.decoder.weight''' __UpperCamelCase = '''lm_head.weight''' def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = torch.load(UpperCAmelCase ) snake_case_ = d.pop(UpperCAmelCase ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) torch.save(UpperCAmelCase , os.path.join(UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") __UpperCamelCase = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
69
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCAmelCase : def __init__( self : List[Any] ): snake_case_ : List[str] = '''''' snake_case_ : Tuple = '''''' snake_case_ : int = [] snake_case_ : Optional[int] = 0 snake_case_ : Optional[Any] = 256 snake_case_ : Tuple = 0 snake_case_ : Tuple = 0 snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 def _snake_case ( self : Optional[Any] , lowercase_ : List[Any] ): snake_case_ : List[Any] = cva.imread(lowercase_ , 0 ) snake_case_ : Tuple = copy.deepcopy(self.img ) snake_case_, snake_case_, snake_case_ : List[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) snake_case_ : str = np.sum(lowercase_ ) for i in range(len(lowercase_ ) ): snake_case_ : Optional[Any] = x[i] / self.k self.sk += prk snake_case_ : Any = (self.L - 1) * self.sk if self.rem != 0: snake_case_ : Dict = int(last % last ) snake_case_ : Union[str, Any] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowercase_ ) snake_case_ : int = int(np.ma.count(self.img ) / self.img[1].size ) snake_case_ : Tuple = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case_ : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: snake_case_ : List[str] = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def _snake_case ( self : Tuple ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _snake_case ( self : int ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowercase__ : Any = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowercase__ : Any = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
264
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCAmelCase : Optional[Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCAmelCase : Tuple = concatenate_datasets UpperCAmelCase : Dict = DownloadConfig UpperCAmelCase : str = DownloadManager UpperCAmelCase : Optional[Any] = DownloadMode UpperCAmelCase : Tuple = DownloadConfig UpperCAmelCase : Tuple = DownloadMode UpperCAmelCase : Optional[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
66
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = Mock() lowerCamelCase = conn, Mock() lowerCamelCase = iter([1, None] ) lowerCamelCase = lambda lowerCamelCase__ : next(lowerCamelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCamelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
66
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """mobilenet_v1""" def __init__( self , lowercase=3 , lowercase=224 , lowercase=1.0 , lowercase=8 , lowercase="relu6" , lowercase=True , lowercase=0.9_99 , lowercase=0.02 , lowercase=0.0_01 , **lowercase , ): super().__init__(**lowercase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : Any = image_size _lowerCamelCase : str = depth_multiplier _lowerCamelCase : Dict = min_depth _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Union[str, Any] = tf_padding _lowerCamelCase : str = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : int = layer_norm_eps class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = version.parse("""1.11""" ) @property def A_ ( self ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def A_ ( self ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def A_ ( self ): return 1E-4
96
'''simple docstring''' from math import pi def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
83
0
def lowercase_ ( lowerCAmelCase__ : list[list[int | float]] ): """simple docstring""" __UpperCAmelCase : int = len(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = len(matrix[0] ) __UpperCAmelCase : int = min(lowerCamelCase__ , lowerCamelCase__ ) for row in range(lowerCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase__ ): __UpperCAmelCase : str = matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase__ , lowerCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __UpperCAmelCase : Optional[Any] = True for i in range(row + 1 , lowerCamelCase__ ): if matrix[i][row] != 0: __UpperCAmelCase , __UpperCAmelCase : List[str] = matrix[i], matrix[row] __UpperCAmelCase : Dict = False break if reduce: rank -= 1 for i in range(lowerCamelCase__ ): __UpperCAmelCase : Tuple = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0.2 , _lowerCamelCase=0.2 ): a :Tuple = bp_numa a :Tuple = bp_numa a :int = bp_numa a :Optional[Any] = conva_get[:2] a :Dict = conva_get[2] a :str = size_pa a :str = rate_w a :List[str] = rate_t a :Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] a :Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a :Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a :Tuple = -2 * np.random.rand(self.conva[1] ) + 1 a :Any = -2 * np.random.rand(self.num_bpa ) + 1 a :Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # save model dict with pickle a :Any = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowerCamelCase , '''wb''' ) as f: pickle.dump(_lowerCamelCase , _lowerCamelCase ) print(F'''Model saved: {save_path}''' ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase ): # read saved model with open(_lowerCamelCase , '''rb''' ) as f: a :str = pickle.load(_lowerCamelCase ) # noqa: S301 a :List[str] = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) a :Optional[int] = model_dic.get('''size_pooling1''' ) a :str = model_dic.get('''num_bp1''' ) a :List[Any] = model_dic.get('''num_bp2''' ) a :Dict = model_dic.get('''num_bp3''' ) a :str = model_dic.get('''rate_weight''' ) a :str = model_dic.get('''rate_thre''' ) # create model instance a :Optional[Any] = CNN(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # modify model parameter a :Optional[Any] = model_dic.get('''w_conv1''' ) a :List[str] = model_dic.get('''wkj''' ) a :List[Any] = model_dic.get('''vji''' ) a :Optional[int] = model_dic.get('''thre_conv1''' ) a :Any = model_dic.get('''thre_bp2''' ) a :Optional[int] = model_dic.get('''thre_bp3''' ) return conv_ins def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return 1 / (1 + np.exp(-1 * x )) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return round(_lowerCamelCase , 3 ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # convolution process a :Dict = convs[0] a :Optional[Any] = convs[1] a :Union[str, Any] = np.shape(_lowerCamelCase )[0] # get the data slice of original image data, data_focus a :List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowerCamelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowerCamelCase ): a :Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowerCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix a :int = [] a :List[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowerCamelCase ): a :Tuple = [] for i_focus in range(len(_lowerCamelCase ) ): a :str = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowerCamelCase ) ) a :str = np.asmatrix(_lowerCamelCase ).reshape( _lowerCamelCase , _lowerCamelCase ) data_featuremap.append(_lowerCamelCase ) # expanding the data slice to One dimenssion a :Any = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowerCamelCase ) ) a :Any = np.asarray(_lowerCamelCase ) return focus_list, data_featuremap def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="average_pool" ): # pooling process a :Any = len(featuremaps[0] ) a :List[str] = int(size_map / size_pooling ) a :List[str] = [] for i_map in range(len(_lowerCamelCase ) ): a :Optional[int] = featuremaps[i_map] a :str = [] for i_focus in range(0 , _lowerCamelCase , _lowerCamelCase ): for j_focus in range(0 , _lowerCamelCase , _lowerCamelCase ): a :Union[str, Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowerCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowerCamelCase ) ) a :Dict = np.asmatrix(_lowerCamelCase ).reshape(_lowerCamelCase , _lowerCamelCase ) featuremap_pooled.append(_lowerCamelCase ) return featuremap_pooled def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # expanding three dimension data to one dimension list a :Optional[Any] = [] for i in range(len(_lowerCamelCase ) ): a :Optional[int] = np.shape(data[i] ) a :Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) a :List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(_lowerCamelCase ) a :List[Any] = np.asarray(_lowerCamelCase ) return data_expanded def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # expanding matrix to one dimension list a :Optional[Any] = np.asarray(_lowerCamelCase ) a :Any = np.shape(_lowerCamelCase ) a :Optional[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Tuple = [] a :List[str] = 0 for i_map in range(_lowerCamelCase ): a :List[str] = np.ones((size_map, size_map) ) for i in range(0 , _lowerCamelCase , _lowerCamelCase ): for j in range(0 , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = pd_pool[ i_pool ] a :int = i_pool + 1 a :Optional[Any] = np.multiply( _lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowerCamelCase ) return pd_all def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowerCamelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowerCamelCase )) ) a :Union[str, Any] = 0 a :List[Any] = [] a :Optional[Any] = 1_0000 while rp < n_repeat and mse >= error_accuracy: a :Optional[Any] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(_lowerCamelCase ) ): # print('------------Learning Image: %d--------------'%p) a :List[Any] = np.asmatrix(datas_train[p] ) a :int = np.asarray(datas_teach[p] ) a , a :Union[str, Any] = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :Optional[int] = self.pooling(_lowerCamelCase , self.size_poolinga ) a :Optional[int] = np.shape(_lowerCamelCase ) a :List[str] = self._expand(_lowerCamelCase ) a :Tuple = data_bp_input a :str = np.dot(_lowerCamelCase , self.vji.T ) - self.thre_bpa a :Optional[Any] = self.sig(_lowerCamelCase ) a :str = np.dot(_lowerCamelCase , self.wkj.T ) - self.thre_bpa a :Union[str, Any] = self.sig(_lowerCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- a :Any = np.multiply( (data_teach - bp_outa) , np.multiply(_lowerCamelCase , (1 - bp_outa) ) ) a :str = np.multiply( np.dot(_lowerCamelCase , self.wkj ) , np.multiply(_lowerCamelCase , (1 - bp_outa) ) ) a :int = np.dot(_lowerCamelCase , self.vji ) a :Any = pd_i_all / (self.size_poolinga * self.size_poolinga) a :List[str] = pd_conva_pooled.T.getA().tolist() a :Optional[int] = self._calculate_gradient_from_pool( _lowerCamelCase , _lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): a :Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) a :List[Any] = self.rate_weight * np.dot(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) a :Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer a :str = self.wkj + pd_k_all.T * bp_outa * self.rate_weight a :List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight a :Dict = self.thre_bpa - pd_k_all * self.rate_thre a :Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image a :Union[str, Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) a :List[str] = rp + 1 a :List[str] = error_count / patterns all_mse.append(_lowerCamelCase ) def draw_error(): a :Optional[Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowerCamelCase , '''+-''' ) plt.plot(_lowerCamelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowerCamelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # model predict a :Any = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowerCamelCase )) ) for p in range(len(_lowerCamelCase ) ): a :Dict = np.asmatrix(datas_test[p] ) a , a :Union[str, Any] = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :Optional[int] = self.pooling(_lowerCamelCase , self.size_poolinga ) a :int = self._expand(_lowerCamelCase ) a :Optional[int] = data_bp_input a :Dict = bp_outa * self.vji.T - self.thre_bpa a :List[Any] = self.sig(_lowerCamelCase ) a :Optional[int] = bp_outa * self.wkj.T - self.thre_bpa a :Tuple = self.sig(_lowerCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) a :Optional[Any] = [list(map(self.do_round , _lowerCamelCase ) ) for each in produce_out] return np.asarray(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # return the data of image after convoluting process so we can check it out a :Union[str, Any] = np.asmatrix(_lowerCamelCase ) a , a :str = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :str = self.pooling(_lowerCamelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
94
import heapq import sys import numpy as np snake_case__ : Tuple = tuple[int, int] class A_ : def __init__(self :Union[str, Any] )-> Union[str, Any]: __A = [] __A = set() def _lowerCAmelCase (self :List[str] )-> str: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _lowerCAmelCase (self :Any )-> Any: return len(self.elements ) == 0 def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Optional[int] )-> Optional[int]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCamelCase ) else: # update # print("update", item) __A = [] ((__A) , (__A)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__A) , (__A)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _lowerCAmelCase (self :int , _UpperCamelCase :int )-> int: if item in self.set: self.set.remove(_UpperCamelCase ) __A = [] ((__A) , (__A)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__A) , (__A)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _lowerCAmelCase (self :Optional[Any] )-> int: return self.elements[0][1] def _lowerCAmelCase (self :List[str] )-> List[Any]: ((__A) , (__A)) = heapq.heappop(self.elements ) self.set.remove(_UpperCamelCase ) return (priority, item) def _a ( lowerCamelCase: TPos , lowerCamelCase: TPos ) -> Any: '''simple docstring''' __A = np.array(lowerCamelCase ) __A = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def _a ( lowerCamelCase: TPos , lowerCamelCase: TPos ) -> List[str]: '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def _a ( lowerCamelCase: TPos , lowerCamelCase: TPos ) -> Any: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _a ( lowerCamelCase: TPos , lowerCamelCase: int , lowerCamelCase: TPos , lowerCamelCase: dict[TPos, float] ) -> Tuple: '''simple docstring''' __A = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def _a ( lowerCamelCase: Tuple , lowerCamelCase: Optional[int] , lowerCamelCase: Optional[int] ) -> Tuple: '''simple docstring''' __A = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __A = '''*''' for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __A = '''#''' __A = '''-''' __A = back_pointer[goal] while x != start: ((__A) , (__A)) = x # print(x) __A = '''-''' __A = back_pointer[x] __A = '''-''' for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __A = back_pointer[goal] while x != start: print(lowerCamelCase , end=''' ''' ) __A = back_pointer[x] print(lowerCamelCase ) sys.exit() def _a ( lowerCamelCase: TPos ) -> Optional[Any]: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int] , lowerCamelCase: Tuple , lowerCamelCase: Tuple , lowerCamelCase: Optional[int] , lowerCamelCase: str , lowerCamelCase: List[Any] , lowerCamelCase: Dict , ) -> Dict: '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__A) , (__A)) = s __A = (x - 1, y) __A = (x + 1, y) __A = (x, y + 1) __A = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __A = -1 __A = float('''inf''' ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __A = g_function[s] + 1 __A = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def _a ( ) -> str: '''simple docstring''' __A = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list snake_case__ : Union[str, Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} snake_case__ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] snake_case__ : List[str] = make_common_ground() snake_case__ : int = blocks_blk # hyper parameters snake_case__ : Optional[int] = 1 snake_case__ : List[Any] = 1 snake_case__ : int = 20 snake_case__ : Optional[int] = 3 # one consistent and two other inconsistent # start and end destination snake_case__ : Tuple = (0, 0) snake_case__ : Any = (n - 1, n - 1) snake_case__ : List[Any] = 1 def _a ( lowerCamelCase: TPos , lowerCamelCase: TPos , lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' __A = {start: 0, goal: float('''inf''' )} __A = {start: -1, goal: -1} __A = [] __A = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __A = [] __A = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __A , __A = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __A = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
117
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case = TOKENIZER_CLASSES else: _snake_case = {tokenizer_name: getattr(_SCREAMING_SNAKE_CASE , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case = TOKENIZER_CLASSES[tokenizer_name] _snake_case = True if checkpoint_name is None: _snake_case = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case = tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case, _snake_case = checkpoint.split("""/""" ) _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif add_prefix: _snake_case = checkpoint _snake_case = dump_path else: _snake_case = None _snake_case = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case = file_path.split(_SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case = tokenizer.save_pretrained( _SCREAMING_SNAKE_CASE , legacy_format=_SCREAMING_SNAKE_CASE , filename_prefix=_SCREAMING_SNAKE_CASE ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(_SCREAMING_SNAKE_CASE ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) __lowerCAmelCase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
270
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' lowerCAmelCase_ = "nat" lowerCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(UpperCAmelCase ) _snake_case = num_heads _snake_case = kernel_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _snake_case = layer_scale_init_value _snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _snake_case, _snake_case = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
270
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCAmelCase_ = 4 UpperCAmelCase_ = 48 UpperCAmelCase_ = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_ = [6, 6, 6, 6] UpperCAmelCase_ = 60 UpperCAmelCase_ = [6, 6, 6, 6] UpperCAmelCase_ = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_ = 4 UpperCAmelCase_ = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 UpperCAmelCase_ = 1_26 UpperCAmelCase_ = 7 UpperCAmelCase_ = 255.0 UpperCAmelCase_ = "" return config def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCAmelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase_ = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: UpperCAmelCase_ = name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: UpperCAmelCase_ = name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: UpperCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: UpperCAmelCase_ = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: UpperCAmelCase_ = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: UpperCAmelCase_ = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: UpperCAmelCase_ = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: UpperCAmelCase_ = name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": UpperCAmelCase_ = "layernorm.weight" if name == "norm.bias": UpperCAmelCase_ = "layernorm.bias" if "conv_first" in name: UpperCAmelCase_ = name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCAmelCase_ = name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCAmelCase_ = name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: UpperCAmelCase_ = name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: UpperCAmelCase_ = name.replace("upsample.2" , "upsample.convolution_1" ) UpperCAmelCase_ = "upsample." + name elif config.upsampler == "pixelshuffledirect": UpperCAmelCase_ = name.replace("upsample.0.weight" , "upsample.conv.weight" ) UpperCAmelCase_ = name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: UpperCAmelCase_ = "swin2sr." + name return name def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Optional[Any] ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(snake_case_ ) if "qkv" in key: UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = int(key_split[1] ) UpperCAmelCase_ = int(key_split[4] ) UpperCAmelCase_ = config.embed_dim if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] pass else: UpperCAmelCase_ = val return orig_state_dict def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Dict , snake_case_ : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = get_config(snake_case_ ) UpperCAmelCase_ = SwinaSRForImageSuperResolution(snake_case_ ) model.eval() UpperCAmelCase_ = torch.hub.load_state_dict_from_url(snake_case_ , map_location="cpu" ) UpperCAmelCase_ = convert_state_dict(snake_case_ , snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(snake_case_ , strict=snake_case_ ) if len(snake_case_ ) > 0: raise ValueError("Missing keys when converting: {}".format(snake_case_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values UpperCAmelCase_ = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert("RGB" ) UpperCAmelCase_ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCAmelCase_ = 1_26 if "Jpeg" in checkpoint_url else 2_56 UpperCAmelCase_ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) UpperCAmelCase_ = transforms(snake_case_ ).unsqueeze(0 ) if config.num_channels == 1: UpperCAmelCase_ = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCAmelCase_ = model(snake_case_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCAmelCase_ = torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase_ = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_ = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_ = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCAmelCase_ = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_ = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_ = torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase_ = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_ = torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_ = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case_ , atol=1E-3 ) print("Looks ok!" ) UpperCAmelCase_ = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } UpperCAmelCase_ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(snake_case_ ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Any =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') SCREAMING_SNAKE_CASE_: List[Any] =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
1
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_: Optional[int] =logging.getLogger() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] , __a : str ): os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = {"source": "What is love ?", "target": "life"} UpperCAmelCase_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__a , f"""{split}.{field}""" ) , "w" ) as f: f.write(__a ) def _lowercase (self : Optional[int] , __a : int , __a : str = "pytorch" ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = os.path.join(__a , "output" ) UpperCAmelCase_ = os.path.join(__a , "data" ) self._create_dummy_data(data_dir=__a ) UpperCAmelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__a , env=self.get_env() ) UpperCAmelCase_ = os.path.join(__a , "metrics.json" ) with open(__a ) as f: UpperCAmelCase_ = json.load(__a ) return result @require_torch_gpu def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _lowercase (self : Dict ): UpperCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase (self : Any ): UpperCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
1
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
356
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _snake_case = logging.get_logger(__name__) class a__ ( lowerCamelCase_ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
199
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case_ :Tuple = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case_ :List[Any] = 0.01 with locka.acquire(): with pytest.raises(_lowercase ): snake_case_ :Optional[Any] = time.time() locka.acquire(_lowercase ) assert time.time() - _start > timeout def A_ ( _lowercase ): '''simple docstring''' snake_case_ :int = """a""" * 1000 + """.lock""" snake_case_ :Tuple = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowercase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case_ :List[str] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowercase ): locka.acquire(0 )
66
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: List[str] , snake_case: Optional[Any]=13 , snake_case: List[str]=7 , snake_case: Dict=True , snake_case: List[str]=True , snake_case: Optional[int]=True , snake_case: Any=True , snake_case: Optional[Any]=99 , snake_case: Tuple=32 , snake_case: Tuple=5 , snake_case: Dict=4 , snake_case: Optional[Any]=37 , snake_case: Union[str, Any]="gelu" , snake_case: Tuple=0.1 , snake_case: List[Any]=0.1 , snake_case: List[str]=512 , snake_case: Optional[int]=16 , snake_case: int=2 , snake_case: List[Any]=0.0_2 , snake_case: Union[str, Any]=4 , ) -> List[str]: snake_case_ :Dict = parent snake_case_ :Any = batch_size snake_case_ :Any = seq_length snake_case_ :List[str] = is_training snake_case_ :Optional[Any] = use_attention_mask snake_case_ :Dict = use_token_type_ids snake_case_ :Union[str, Any] = use_labels snake_case_ :str = vocab_size snake_case_ :int = hidden_size snake_case_ :List[str] = num_hidden_layers snake_case_ :Dict = num_attention_heads snake_case_ :Any = intermediate_size snake_case_ :Tuple = hidden_act snake_case_ :int = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Any = max_position_embeddings snake_case_ :Union[str, Any] = type_vocab_size snake_case_ :Optional[int] = type_sequence_label_size snake_case_ :Union[str, Any] = initializer_range snake_case_ :Tuple = num_choices def lowerCAmelCase_ ( self: Tuple ) -> str: snake_case_ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ :Union[str, Any] = None if self.use_attention_mask: snake_case_ :str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ :Any = None if self.use_token_type_ids: snake_case_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ :int = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self: Optional[int] ) -> int: snake_case_ :str = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :Optional[int] = config_and_inputs snake_case_ :Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self: Optional[Any] ) -> Any: snake_case_ :int = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :Dict = config_and_inputs snake_case_ :Union[str, Any] = True snake_case_ :Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : List[str] = True _A : Dict = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self: int ) -> List[str]: snake_case_ :Any = FlaxBertModelTester(self ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. snake_case_ :Dict = FlaxBertModel.from_pretrained("""bert-base-cased""" ) snake_case_ :Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case )
66
1
__snake_case : Optional[int] = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __snake_case : int = {value: key for key, value in MORSE_CODE_DICT.items()} def _UpperCamelCase ( UpperCamelCase_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _UpperCamelCase ( UpperCamelCase_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def _UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase__ = 'Morse code here!' print(UpperCamelCase_ ) lowerCAmelCase__ = encrypt(UpperCamelCase_ ) print(UpperCamelCase_ ) lowerCAmelCase__ = decrypt(UpperCamelCase_ ) print(UpperCamelCase_ ) if __name__ == "__main__": main()
122
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase=3 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=10 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[1, 1, 2, 1] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="relu" , _UpperCamelCase=3 , _UpperCamelCase=None , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embeddings_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope lowerCAmelCase__ = len(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = TFResNetModel(config=_UpperCamelCase ) lowerCAmelCase__ = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFResNetForImageClassification(_UpperCamelCase ) lowerCAmelCase__ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFResNetModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(_UpperCamelCase ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowerCAmelCase__ = model_class(_UpperCamelCase ) lowerCAmelCase__ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ = layer_type lowerCAmelCase__ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFResNetModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=_UpperCamelCase , return_tensors='tf' ) # forward pass lowerCAmelCase__ = model(**_UpperCamelCase ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) lowerCAmelCase__ = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCamelCase , atol=1E-4 ) )
122
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case_ :str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowerCAmelCase_ ( self: List[str] ) -> str: snake_case_ :Union[str, Any] = self.dummy_uncond_unet snake_case_ :Tuple = PNDMScheduler() snake_case_ :str = PNDMPipeline(unet=snake_case , scheduler=snake_case ) pndm.to(snake_case ) pndm.set_progress_bar_config(disable=snake_case ) snake_case_ :int = torch.manual_seed(0 ) snake_case_ :List[Any] = pndm(generator=snake_case , num_inference_steps=20 , output_type="""numpy""" ).images snake_case_ :Optional[Any] = torch.manual_seed(0 ) snake_case_ :Union[str, Any] = pndm(generator=snake_case , num_inference_steps=20 , output_type="""numpy""" , return_dict=snake_case )[0] snake_case_ :Optional[int] = image[0, -3:, -3:, -1] snake_case_ :str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ :List[str] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case_ :int = """google/ddpm-cifar10-32""" snake_case_ :List[str] = UNetaDModel.from_pretrained(snake_case ) snake_case_ :Any = PNDMScheduler() snake_case_ :Tuple = PNDMPipeline(unet=snake_case , scheduler=snake_case ) pndm.to(snake_case ) pndm.set_progress_bar_config(disable=snake_case ) snake_case_ :str = torch.manual_seed(0 ) snake_case_ :Any = pndm(generator=snake_case , output_type="""numpy""" ).images snake_case_ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ :Optional[int] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
66
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
0
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def snake_case (A_ :np.ndarray , A_ :np.ndarray ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(A_ , A_ ) ) ) def snake_case (A_ :np.ndarray , A_ :np.ndarray ): '''simple docstring''' if dataset.ndim != value_array.ndim: a : Optional[Any] = ( 'Wrong input data\'s dimensions... ' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(A_ ) try: if dataset.shape[1] != value_array.shape[1]: a : Optional[int] = ( 'Wrong input data\'s shape... ' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(A_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: a : Optional[Any] = ( 'Input data have different datatype... ' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(A_ ) a : Tuple = [] for value in value_array: a : List[Any] = euclidean(A_ , dataset[0] ) a : int = dataset[0].tolist() for dataset_value in dataset[1:]: a : Optional[int] = euclidean(A_ , A_ ) if dist > temp_dist: a : List[str] = temp_dist a : int = dataset_value.tolist() answer.append([vector, dist] ) return answer def snake_case (A_ :np.ndarray , A_ :np.ndarray ): '''simple docstring''' return np.dot(A_ , A_ ) / (norm(A_ ) * norm(A_ )) if __name__ == "__main__": import doctest doctest.testmod()
186
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Optional[int] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) a : int = AutoTokenizer.from_pretrained('xlm-roberta-base' ) a : int = 'The dog is cute and lives in the garden house' a : List[Any] = jnp.array([tokenizer.encode(A )] ) a : int = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim a : Dict = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) a : Any = model(A )['last_hidden_state'] self.assertEqual(output.shape , A ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , A , atol=1E-3 ) )
186
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def UpperCamelCase__ ( lowercase__ : str ): snake_case : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) snake_case : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) snake_case : int = components[:-1] + [test_fn.replace(".py" , "" )] snake_case : Tuple = ".".join(__snake_case ) return test_module_path def UpperCamelCase__ ( lowercase__ : Any ): snake_case : List[Any] = get_module_path(__snake_case ) snake_case : Optional[int] = importlib.import_module(__snake_case ) return test_module def UpperCamelCase__ ( lowercase__ : Tuple ): snake_case : Union[str, Any] = [] snake_case : str = get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda lowercase__ : x.__name__ ) def UpperCamelCase__ ( lowercase__ : Tuple ): snake_case : int = [] snake_case : List[Any] = get_test_module(__snake_case ) for attr in dir(__snake_case ): snake_case : List[Any] = getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case : Optional[int] = getattr(__snake_case , "all_model_classes" , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda lowercase__ : x.__name__ ) def UpperCamelCase__ ( lowercase__ : List[str] ): snake_case : Optional[Any] = get_test_classes(__snake_case ) snake_case : List[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda lowercase__ : x.__name__ ) def UpperCamelCase__ ( lowercase__ : List[str] ): snake_case : Any = test_class() if hasattr(__snake_case , "setUp" ): test.setUp() snake_case : int = None if hasattr(__snake_case , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case : Optional[int] = test.model_tester.__class__ return model_tester def UpperCamelCase__ ( lowercase__ : Optional[int] , lowercase__ : Optional[int] ): snake_case : int = get_test_classes(__snake_case ) snake_case : Tuple = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda lowercase__ : x.__name__ ) def UpperCamelCase__ ( lowercase__ : Dict , lowercase__ : Union[str, Any] ): snake_case : str = get_test_classes_for_model(__snake_case , __snake_case ) snake_case : Optional[Any] = [] for test_class in test_classes: snake_case : str = get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda lowercase__ : x.__name__ ) def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): snake_case : Union[str, Any] = get_test_classes(__snake_case ) snake_case : Dict = {test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def UpperCamelCase__ ( lowercase__ : str ): snake_case : int = get_model_classes(__snake_case ) snake_case : List[str] = { model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def UpperCamelCase__ ( lowercase__ : Dict ): snake_case : Dict = get_model_classes(__snake_case ) snake_case : str = { model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def UpperCamelCase__ ( lowercase__ : Tuple ): if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
148
"""simple docstring""" def _lowercase ( ) -> int: return 1 def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(__snake_case ) def _lowercase ( __snake_case ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(__snake_case ) def _lowercase ( __snake_case = 200 ) -> int: return two_pound(__snake_case ) if __name__ == "__main__": print(solution(int(input().strip())))
269
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowercase : Tuple = logging.get_logger(__name__) lowercase : Optional[Any] = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'bloom' _A = ['past_key_values'] _A = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self :Tuple , a :int=2_5_0_8_8_0 , a :Dict=6_4 , a :Any=2 , a :int=8 , a :Any=1E-5 , a :List[str]=0.02 , a :Optional[int]=True , a :Optional[Any]=1 , a :Optional[int]=2 , a :List[Any]=False , a :Any=0.0 , a :str=0.0 , a :Optional[Any]=1 , a :Optional[Any]=False , **a :Optional[int] , ) -> Any: __UpperCamelCase : Union[str, Any] = vocab_size # Backward compatibility with n_embed kwarg __UpperCamelCase : List[Any] = kwargs.pop("n_embed" , a ) __UpperCamelCase : List[Any] = hidden_size if n_embed is None else n_embed __UpperCamelCase : Any = n_layer __UpperCamelCase : Tuple = n_head __UpperCamelCase : Dict = layer_norm_epsilon __UpperCamelCase : Dict = initializer_range __UpperCamelCase : int = use_cache __UpperCamelCase : Optional[Any] = pretraining_tp __UpperCamelCase : Dict = apply_residual_connection_post_layernorm __UpperCamelCase : Optional[int] = hidden_dropout __UpperCamelCase : Optional[int] = attention_dropout __UpperCamelCase : Any = bos_token_id __UpperCamelCase : Optional[Any] = eos_token_id __UpperCamelCase : Tuple = slow_but_exact super().__init__(bos_token_id=a , eos_token_id=a , **a ) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = version.parse('1.12') def __init__( self :Optional[int] , a :PretrainedConfig , a :str = "default" , a :List[PatchingSpec] = None , a :bool = False , ) -> str: super().__init__(a , task=a , patching_specs=a , use_past=a ) if not getattr(self._config , "pad_token_id" , a ): # TODO: how to do that better? __UpperCamelCase : Union[str, Any] = 0 @property def _lowerCamelCase ( self :str ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase : Any = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(a , direction="inputs" , inverted_values_shape=a ) __UpperCamelCase : Optional[int] = {0: "batch", 1: "past_sequence + sequence"} else: __UpperCamelCase : List[str] = {0: "batch", 1: "sequence"} return common_inputs @property def _lowerCamelCase ( self :Tuple ) -> int: return self._config.n_layer @property def _lowerCamelCase ( self :Union[str, Any] ) -> int: return self._config.n_head @property def _lowerCamelCase ( self :Any ) -> float: return 1E-3 def _lowerCamelCase ( self :Tuple , a :"PreTrainedTokenizer" , a :int = -1 , a :int = -1 , a :bool = False , a :Optional["TensorType"] = None , ) -> Mapping[str, Any]: __UpperCamelCase : str = super(a , self ).generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) # We need to order the input in the way they appears in the forward() __UpperCamelCase : List[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase , __UpperCamelCase : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCamelCase : str = seqlen + 2 __UpperCamelCase : Dict = self._config.hidden_size // self.num_attention_heads __UpperCamelCase : Union[str, Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __UpperCamelCase : Tuple = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __UpperCamelCase : str = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(self.num_layers ) ] __UpperCamelCase : List[str] = common_inputs["attention_mask"] if self.use_past: __UpperCamelCase : Optional[Any] = ordered_inputs["attention_mask"].dtype __UpperCamelCase : List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a , a , dtype=a )] , dim=1 ) return ordered_inputs @property def _lowerCamelCase ( self :int ) -> int: return 1_3
151
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self :Optional[Any] , a :Optional[Any] , a :Dict=1_3 , a :Tuple=7 , a :List[Any]=True , a :List[str]=True , a :List[Any]=True , a :Optional[Any]=True , a :Union[str, Any]=9_9 , a :int=3_2 , a :Optional[Any]=2 , a :List[str]=4 , a :Optional[Any]=3_7 , a :Union[str, Any]="gelu" , a :Optional[int]=0.1 , a :Dict=0.1 , a :Tuple=5_1_2 , a :Union[str, Any]=1_6 , a :int=2 , a :Any=0.02 , a :Union[str, Any]=False , a :int=True , a :str="None" , a :Union[str, Any]=3 , a :str=4 , a :List[Any]=None , ) -> Tuple: __UpperCamelCase : Tuple = parent __UpperCamelCase : List[str] = batch_size __UpperCamelCase : Optional[Any] = seq_length __UpperCamelCase : Any = is_training __UpperCamelCase : Dict = use_input_mask __UpperCamelCase : List[str] = use_token_type_ids __UpperCamelCase : Optional[int] = use_labels __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : Optional[Any] = hidden_size __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : Any = num_attention_heads __UpperCamelCase : str = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Optional[Any] = attention_probs_dropout_prob __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : Tuple = type_vocab_size __UpperCamelCase : Any = type_sequence_label_size __UpperCamelCase : int = initializer_range __UpperCamelCase : Dict = num_labels __UpperCamelCase : Dict = num_choices __UpperCamelCase : List[str] = relative_attention __UpperCamelCase : Union[str, Any] = position_biased_input __UpperCamelCase : Any = pos_att_type __UpperCamelCase : Optional[Any] = scope def _lowerCamelCase ( self :List[Any] ) -> List[Any]: __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Tuple = None if self.use_input_mask: __UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[Any] = None if self.use_token_type_ids: __UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : List[Any] = None if self.use_labels: __UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : List[str] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self :Optional[int] , a :int , a :List[Any] , a :Optional[int] , a :Union[str, Any] , a :Union[str, Any] , a :str , a :int ) -> Optional[int]: __UpperCamelCase : List[str] = TFDebertaVaModel(config=a ) __UpperCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCamelCase : Optional[Any] = [input_ids, input_mask] __UpperCamelCase : Optional[int] = model(a ) __UpperCamelCase : Any = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self :str , a :List[Any] , a :Dict , a :Tuple , a :Union[str, Any] , a :str , a :Optional[int] , a :Optional[int] ) -> Optional[int]: __UpperCamelCase : List[Any] = TFDebertaVaForMaskedLM(config=a ) __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self :List[Any] , a :Optional[int] , a :Optional[Any] , a :int , a :Optional[int] , a :Any , a :Dict , a :List[Any] ) -> Optional[int]: __UpperCamelCase : Optional[int] = self.num_labels __UpperCamelCase : int = TFDebertaVaForSequenceClassification(config=a ) __UpperCamelCase : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Optional[int] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :Optional[Any] , a :int , a :Dict , a :Union[str, Any] , a :Tuple , a :Tuple , a :Union[str, Any] , a :str ) -> int: __UpperCamelCase : Tuple = self.num_labels __UpperCamelCase : str = TFDebertaVaForTokenClassification(config=a ) __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Union[str, Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self :List[str] , a :List[Any] , a :Union[str, Any] , a :List[str] , a :Union[str, Any] , a :Optional[Any] , a :Union[str, Any] , a :Tuple ) -> int: __UpperCamelCase : List[Any] = TFDebertaVaForQuestionAnswering(config=a ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self :List[str] ) -> List[Any]: __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : List[Any] = config_and_inputs __UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _A = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Dict = TFDebertaVaModelTester(self ) __UpperCamelCase : int = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _lowerCamelCase ( self :Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def _lowerCamelCase ( self :List[Any] ) -> List[str]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> str: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> Dict: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : Tuple = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a ) @require_tf class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def _lowerCamelCase ( self :Optional[Any] ) -> Any: pass @slow def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : List[Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __UpperCamelCase : List[Any] = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __UpperCamelCase : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCamelCase : str = model(a , attention_mask=a )[0] __UpperCamelCase : Optional[int] = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a , atol=1E-4 )
151
1
"""simple docstring""" import os import pytest from attr import dataclass _a = 'us-east-1' # defaults region @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : str __UpperCAmelCase : Dict = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' __UpperCAmelCase : int = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } __UpperCAmelCase : Optional[Any] = {**hyperparameters, 'max_steps': 1_0_0_0} @property def _lowercase ( self : List[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowercase ( self : List[Any] ): return F"""{self.framework}-transfromers-test""" @property def _lowercase ( self : Union[str, Any] ): return F"""./tests/sagemaker/scripts/{self.framework}""" @property def _lowercase ( self : Union[str, Any] ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class") def _A ( UpperCamelCase_ : Tuple) -> List[str]: '''simple docstring''' __lowercase = SageMakerTestEnvironment(framework=request.cls.framework)
17
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCamelCase = datasets.utils.logging.get_logger(__name__) lowerCamelCase = ['names', 'prefix'] lowerCamelCase = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowerCamelCase = ['encoding_errors', 'on_bad_lines'] lowerCamelCase = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): UpperCamelCase__ : str ="," UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[Union[int, List[int], str]] ="infer" UpperCamelCase__ : Optional[List[str]] =None UpperCamelCase__ : Optional[List[str]] =None UpperCamelCase__ : Optional[Union[int, str, List[int], List[str]]] =None UpperCamelCase__ : Optional[Union[List[int], List[str]]] =None UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[Literal["c", "python", "pyarrow"]] =None UpperCamelCase__ : Dict[Union[int, str], Callable[[Any], Any]] =None UpperCamelCase__ : Optional[list] =None UpperCamelCase__ : Optional[list] =None UpperCamelCase__ : bool =False UpperCamelCase__ : Optional[Union[int, List[int]]] =None UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[Union[str, List[str]]] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : str ="." UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : str ='"' UpperCamelCase__ : int =0 UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : int =0 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : int =10000 UpperCamelCase__ : Optional[datasets.Features] =None UpperCamelCase__ : Optional[str] ="strict" UpperCamelCase__ : Literal["error", "warn", "skip"] ="error" UpperCamelCase__ : Optional[str] =None def lowerCamelCase ( self : List[str] ) -> str: """simple docstring""" if self.delimiter is not None: _lowerCamelCase : Union[str, Any] =self.delimiter if self.column_names is not None: _lowerCamelCase : Dict =self.column_names @property def lowerCamelCase ( self : int ) -> int: """simple docstring""" _lowerCamelCase : Any ={ 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowercase_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): UpperCamelCase__ : List[str] =CsvConfig def lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase ( self : Tuple , lowercase_ : Any ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _lowerCamelCase : int =dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase_ , (str, list, tuple) ): _lowerCamelCase : List[Any] =data_files if isinstance(lowercase_ , lowercase_ ): _lowerCamelCase : Union[str, Any] =[files] _lowerCamelCase : Union[str, Any] =[dl_manager.iter_files(lowercase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCamelCase : Optional[int] =[] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_ ): _lowerCamelCase : Dict =[files] _lowerCamelCase : Optional[int] =[dl_manager.iter_files(lowercase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={'files': files} ) ) return splits def lowerCamelCase ( self : int , lowercase_ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _lowerCamelCase : List[str] =self.config.features.arrow_schema if all(not require_storage_cast(lowercase_ ) for feature in self.config.features.values() ): # cheaper cast _lowerCamelCase : Optional[int] =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowercase_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowerCamelCase : List[Any] =table_cast(lowercase_ , lowercase_ ) return pa_table def lowerCamelCase ( self : Optional[Any] , lowercase_ : List[Any] ) -> Any: """simple docstring""" _lowerCamelCase : str =self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowerCamelCase : Union[str, Any] =( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowercase_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ): _lowerCamelCase : Union[str, Any] =pd.read_csv(lowercase_ , iterator=lowercase_ , dtype=lowercase_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowercase_ ): _lowerCamelCase : Tuple =pa.Table.from_pandas(lowercase_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowercase_ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowercase_ )}: {e}''' ) raise
199
0
'''simple docstring''' import sys _lowercase : Union[str, Any] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Any = 1 for digit in s: product *= int(__SCREAMING_SNAKE_CASE ) return product def snake_case_ ( __SCREAMING_SNAKE_CASE : str = N ): """simple docstring""" lowercase_ : Any = -sys.maxsize - 1 lowercase_ : List[Any] = n[:13] lowercase_ : List[str] = 13 while cur_index < len(__SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): lowercase_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: lowercase_ : str = max(__SCREAMING_SNAKE_CASE , str_eval(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
371
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Optional[int] = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = flatten_dict(__SCREAMING_SNAKE_CASE ) return flax_params def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : int = {} lowercase_ : Any = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowercase_ : Tuple = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase_ : Tuple = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase_ : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase_ : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase_ : List[Any] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase_ : str = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = flax_dict[key] lowercase_ : Any = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase_ : str = torch.from_numpy(converted_dict[key].T ) else: lowercase_ : str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): """simple docstring""" lowercase_ : List[str] = get_flax_param(__SCREAMING_SNAKE_CASE ) if not use_large: lowercase_ : List[str] = PixaStructVisionConfig() lowercase_ : Optional[Any] = PixaStructTextConfig() else: lowercase_ : Optional[int] = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase_ : Dict = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowercase_ : str = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = PixaStructForConditionalGeneration(__SCREAMING_SNAKE_CASE ) lowercase_ : int = rename_and_convert_flax_params(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase_ : str = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowercase_ : List[Any] = PixaStructImageProcessor() lowercase_ : int = PixaStructProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) if use_large: lowercase_ : Tuple = 4096 lowercase_ : Optional[int] = True # mkdir if needed os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) print('''Model saved in {}'''.format(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _lowercase : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
264
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Any = ["""image_processor""", """tokenizer"""] A__ : Optional[int] = """ViltImageProcessor""" A__ : List[str] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCamelCase , ) UpperCamelCase_ = kwargs.pop("""feature_extractor""" ) UpperCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = self.image_processor def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel_values + pixel_mask UpperCamelCase_ = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) encoding.update(__UpperCamelCase ) return encoding def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.tokenizer.model_input_names UpperCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , ) return self.image_processor_class @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , ) return self.image_processor
122
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCamelCase__ ( a__ : Any , a__ : Union[str, Any] ) -> int: UpperCamelCase_ = checkpoint UpperCamelCase_ = {} UpperCamelCase_ = vae_state_dict["""encoder.conv_in.weight"""] UpperCamelCase_ = vae_state_dict["""encoder.conv_in.bias"""] UpperCamelCase_ = vae_state_dict["""encoder.conv_out.weight"""] UpperCamelCase_ = vae_state_dict["""encoder.conv_out.bias"""] UpperCamelCase_ = vae_state_dict["""encoder.norm_out.weight"""] UpperCamelCase_ = vae_state_dict["""encoder.norm_out.bias"""] UpperCamelCase_ = vae_state_dict["""decoder.conv_in.weight"""] UpperCamelCase_ = vae_state_dict["""decoder.conv_in.bias"""] UpperCamelCase_ = vae_state_dict["""decoder.conv_out.weight"""] UpperCamelCase_ = vae_state_dict["""decoder.conv_out.bias"""] UpperCamelCase_ = vae_state_dict["""decoder.norm_out.weight"""] UpperCamelCase_ = vae_state_dict["""decoder.norm_out.bias"""] UpperCamelCase_ = vae_state_dict["""quant_conv.weight"""] UpperCamelCase_ = vae_state_dict["""quant_conv.bias"""] UpperCamelCase_ = vae_state_dict["""post_quant_conv.weight"""] UpperCamelCase_ = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only UpperCamelCase_ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) UpperCamelCase_ = { layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(a__ ) } # Retrieves the keys for the decoder up blocks only UpperCamelCase_ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) UpperCamelCase_ = { layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(a__ ) } for i in range(a__ ): UpperCamelCase_ = [key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: UpperCamelCase_ = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) UpperCamelCase_ = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) UpperCamelCase_ = renew_vae_resnet_paths(a__ ) UpperCamelCase_ = {"""old""": f'''down.{i}.block''', """new""": f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) UpperCamelCase_ = [key for key in vae_state_dict if """encoder.mid.block""" in key] UpperCamelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCamelCase_ = [key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] UpperCamelCase_ = renew_vae_resnet_paths(a__ ) UpperCamelCase_ = {"""old""": f'''mid.block_{i}''', """new""": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) UpperCamelCase_ = [key for key in vae_state_dict if """encoder.mid.attn""" in key] UpperCamelCase_ = renew_vae_attention_paths(a__ ) UpperCamelCase_ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) conv_attn_to_linear(a__ ) for i in range(a__ ): UpperCamelCase_ = num_up_blocks - 1 - i UpperCamelCase_ = [ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: UpperCamelCase_ = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] UpperCamelCase_ = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] UpperCamelCase_ = renew_vae_resnet_paths(a__ ) UpperCamelCase_ = {"""old""": f'''up.{block_id}.block''', """new""": f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) UpperCamelCase_ = [key for key in vae_state_dict if """decoder.mid.block""" in key] UpperCamelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCamelCase_ = [key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] UpperCamelCase_ = renew_vae_resnet_paths(a__ ) UpperCamelCase_ = {"""old""": f'''mid.block_{i}''', """new""": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) UpperCamelCase_ = [key for key in vae_state_dict if """decoder.mid.attn""" in key] UpperCamelCase_ = renew_vae_attention_paths(a__ ) UpperCamelCase_ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) conv_attn_to_linear(a__ ) return new_checkpoint def lowerCamelCase__ ( a__ : str , a__ : str , ) -> List[Any]: # Only support V1 UpperCamelCase_ = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) UpperCamelCase_ = io.BytesIO(r.content ) UpperCamelCase_ = OmegaConf.load(a__ ) UpperCamelCase_ = 512 UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open UpperCamelCase_ = {} with safe_open(a__ , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): UpperCamelCase_ = f.get_tensor(a__ ) else: UpperCamelCase_ = torch.load(a__ , map_location=a__ )["""state_dict"""] # Convert the VAE model. UpperCamelCase_ = create_vae_diffusers_config(a__ , image_size=a__ ) UpperCamelCase_ = custom_convert_ldm_vae_checkpoint(a__ , a__ ) UpperCamelCase_ = AutoencoderKL(**a__ ) vae.load_state_dict(a__ ) vae.save_pretrained(a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') _A = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
122
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _A : List[Any] = logging.get_logger(__name__) _A : Any = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCamelCase__ : Any = TOKENIZER_CLASSES else: lowerCamelCase__ : Any = {tokenizer_name: getattr(lowerCAmelCase__ , tokenizer_name + '''Fast''' )} logger.info(f"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCamelCase__ : List[Any] = TOKENIZER_CLASSES[tokenizer_name] lowerCamelCase__ : Dict = True if checkpoint_name is None: lowerCamelCase__ : List[Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCamelCase__ : Tuple = [checkpoint_name] logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCamelCase__ : List[str] = tokenizer_class.from_pretrained(lowerCAmelCase__ , force_download=lowerCAmelCase__ ) # Save fast tokenizer logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCamelCase__ : Any = checkpoint.split('''/''' ) lowerCamelCase__ : Optional[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) elif add_prefix: lowerCamelCase__ : Tuple = checkpoint lowerCamelCase__ : Optional[Any] = dump_path else: lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Tuple = dump_path logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCamelCase__ : List[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCamelCase__ : Union[str, Any] = file_path.split(lowerCAmelCase__ )[-1][0] if next_char == "/": lowerCamelCase__ : List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase__ : Optional[int] = None logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCamelCase__ : Union[str, Any] = tokenizer.save_pretrained( lowerCAmelCase__ , legacy_format=lowerCAmelCase__ , filename_prefix=lowerCAmelCase__ ) logger.info(f"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(lowerCAmelCase__ ) logger.info(f"=> removing {file_name}" ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) _A : int = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
352
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _A : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , A : AutoencoderKL , A : CLIPTextModel , A : CLIPTokenizer , A : UNetaDConditionModel , A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , A : StableDiffusionSafetyChecker , A : CLIPImageProcessor , ) ->List[Any]: super().__init__() self.register_modules( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , ) def __lowerCamelCase ( self : Any , A : Optional[Union[str, int]] = "auto" ) ->Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def __lowerCamelCase ( self : List[Any] ) ->List[Any]: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self : Union[str, Any] , A : Union[str, List[str]] , A : int = 5_1_2 , A : int = 5_1_2 , A : int = 5_0 , A : float = 7.5 , A : Optional[Union[str, List[str]]] = None , A : Optional[int] = 1 , A : float = 0.0 , A : Optional[torch.Generator] = None , A : Optional[torch.FloatTensor] = None , A : Optional[str] = "pil" , A : bool = True , A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A : int = 1 , A : Optional[torch.FloatTensor] = None , **A : int , ) ->Tuple: if isinstance(A , A ): lowerCamelCase__ : str = 1 elif isinstance(A , A ): lowerCamelCase__ : Dict = len(A ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(A )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(A )}." ) # get prompt text embeddings lowerCamelCase__ : Optional[Any] = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) lowerCamelCase__ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase__ : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCamelCase__ : Any = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = text_embeddings.shape lowerCamelCase__ : int = text_embeddings.repeat(1 , A , 1 ) lowerCamelCase__ : str = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase__ : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ : List[str] if negative_prompt is None: lowerCamelCase__ : Optional[int] = [''''''] elif type(A ) is not type(A ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=" F" {type(A )}." ) elif isinstance(A , A ): lowerCamelCase__ : Optional[int] = [negative_prompt] elif batch_size != len(A ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: lowerCamelCase__ : List[Any] = negative_prompt lowerCamelCase__ : int = text_input_ids.shape[-1] lowerCamelCase__ : Optional[int] = self.tokenizer( A , padding='''max_length''' , max_length=A , truncation=A , return_tensors='''pt''' , ) lowerCamelCase__ : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ : Any = uncond_embeddings.shape[1] lowerCamelCase__ : Union[str, Any] = uncond_embeddings.repeat(A , A , 1 ) lowerCamelCase__ : str = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase__ : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase__ : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4) lowerCamelCase__ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase__ : Dict = torch.randn( A , generator=A , device='''cpu''' , dtype=A ).to(self.device ) lowerCamelCase__ : Dict = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: lowerCamelCase__ : Optional[Any] = torch.randn( A , generator=A , device=self.device , dtype=A ) lowerCamelCase__ : Union[str, Any] = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents_reference.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCamelCase__ : Optional[Any] = latents_reference.to(self.device ) lowerCamelCase__ : Optional[int] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase__ : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase__ : List[Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase__ : Dict = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase__ : str = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase__ : int = 0 if dx < 0 else dx lowerCamelCase__ : Optional[int] = 0 if dy < 0 else dy lowerCamelCase__ : Dict = max(-dx , 0 ) lowerCamelCase__ : int = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCamelCase__ : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase__ : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase__ : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase__ : List[Any] = {} if accepts_eta: lowerCamelCase__ : Any = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ : Any = self.scheduler.scale_model_input(A , A ) # predict the noise residual lowerCamelCase__ : Union[str, Any] = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ : List[str] = noise_pred.chunk(2 ) lowerCamelCase__ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Dict = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) lowerCamelCase__ : Optional[Any] = 1 / 0.1_82_15 * latents lowerCamelCase__ : int = self.vae.decode(A ).sample lowerCamelCase__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase__ : Tuple = self.feature_extractor(self.numpy_to_pil(A ) , return_tensors='''pt''' ).to( self.device ) lowerCamelCase__ , lowerCamelCase__ : int = self.safety_checker( images=A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase__ : List[Any] = None if output_type == "pil": lowerCamelCase__ : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
265
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
186
from math import isclose, sqrt def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[str] = point_y / 4 / point_x A_ : Union[str, Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) A_ : int = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) A_ : List[str] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 A_ : List[str] = outgoing_gradient**2 + 4 A_ : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) A_ : Any = (point_y - outgoing_gradient * point_x) ** 2 - 100 A_ : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) A_ : Any = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point A_ : int = x_minus if isclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else x_plus A_ : Any = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 1.4 , SCREAMING_SNAKE_CASE = -9.6 ): A_ : int = 0 A_ : float = first_x_coord A_ : float = first_y_coord A_ : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): A_ , A_ , A_ : List[str] = next_point(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
186
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = (PNDMScheduler,) UpperCAmelCase : List[Any] = (('''num_inference_steps''', 50),) def lowerCAmelCase_ ( self : Tuple , **_UpperCAmelCase : str ): _A = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : int=0 , **_UpperCAmelCase : str ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] _A = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : Dict ): pass def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Optional[int] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[:] _A = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : Any , **_UpperCAmelCase : str ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowerCAmelCase_ ( self : List[str] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _A = dummy_past_residuals[:] _A = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _A = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self : Optional[int] ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) _A = self.scheduler_classes[0] _A = self.get_scheduler_config(steps_offset=1 ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowerCAmelCase_ ( self : str ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _A = 27 for scheduler_class in self.scheduler_classes: _A = self.dummy_sample _A = 0.1 * sample _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _A = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def lowerCAmelCase_ ( self : Optional[Any] ): with self.assertRaises(_UpperCAmelCase ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCAmelCase_ ( self : Optional[int] ): _A = self.full_loop() _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def lowerCAmelCase_ ( self : int ): _A = self.full_loop(prediction_type='v_prediction' ) _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def lowerCAmelCase_ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _A = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def lowerCAmelCase_ ( self : int ): # We specify different beta, so that the first alpha is 0.99 _A = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
355
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _snake_case ( _snake_case : str , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple=None ) -> List[str]: '''simple docstring''' _A = XLNetConfig.from_json_file(_snake_case ) _A = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _A = finetuning_task _A = GLUE_TASKS_NUM_LABELS[finetuning_task] _A = XLNetForSequenceClassification(_snake_case ) elif "squad" in finetuning_task: _A = finetuning_task _A = XLNetForQuestionAnswering(_snake_case ) else: _A = XLNetLMHeadModel(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_snake_case , _snake_case , _snake_case ) # Save pytorch-model _A = os.path.join(_snake_case , _snake_case ) _A = os.path.join(_snake_case , _snake_case ) print(F'''Save PyTorch model to {os.path.abspath(_snake_case )}''' ) torch.save(model.state_dict() , _snake_case ) print(F'''Save configuration file to {os.path.abspath(_snake_case )}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) a = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
271
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """vivit""" def __init__( self : str , lowercase_ : Tuple=224 , lowercase_ : Union[str, Any]=32 , lowercase_ : Dict=[2, 16, 16] , lowercase_ : List[Any]=3 , lowercase_ : Optional[int]=768 , lowercase_ : int=12 , lowercase_ : str=12 , lowercase_ : Any=3_072 , lowercase_ : Union[str, Any]="gelu_fast" , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[Any]=0.02 , lowercase_ : str=1E-06 , lowercase_ : Any=True , **lowercase_ : str , ) -> str: UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[Any] = num_frames UpperCAmelCase : Dict = tubelet_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Tuple = qkv_bias super().__init__(**lowercase_ )
151
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } lowercase__ = { "google/reformer-crime-and-punishment": 524288, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowercase_ : Dict , lowercase_ : Tuple="</s>" , lowercase_ : Dict="<unk>" , lowercase_ : Tuple=[] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[str] , ) -> None: UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : List[Any] = vocab_file UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self : List[str] ) -> Dict[str, int]: UpperCAmelCase : int = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple ) -> Optional[int]: return self.sp_model.piece_to_id(lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> List[str]: if index < self.sp_model.get_piece_size(): UpperCAmelCase : Tuple = self.sp_model.IdToPiece(lowercase_ ) return token def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Dict = [] UpperCAmelCase : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Any = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : int = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
151
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase_( metaclass=A__ ): '''simple docstring''' lowercase__ : Tuple = ['''torch''', '''scipy'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def snake_case__ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def snake_case__ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ): requires_backends(cls , ['''torch''', '''scipy'''] )
367
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCAmelCase_( lowercase_ : float , lowercase_ : float , lowercase_ : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(lowercase_ ), magnitude * sin(lowercase_ )] return [magnitude * cos(radians(lowercase_ ) ), magnitude * sin(radians(lowercase_ ) )] def lowerCAmelCase_( lowercase_ : NDArray[floataa] , lowercase_ : NDArray[floataa] , lowercase_ : float = 10**-1 ) -> bool: _lowerCamelCase = cross(lowercase_ , lowercase_ ) _lowerCamelCase = sum(lowercase_ ) return abs(lowercase_ ) < eps if __name__ == "__main__": # Test to check if it works __SCREAMING_SNAKE_CASE : Union[str, Any] = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) __SCREAMING_SNAKE_CASE : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __SCREAMING_SNAKE_CASE : Optional[int] = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __SCREAMING_SNAKE_CASE : str = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) __SCREAMING_SNAKE_CASE : str = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
73
0
'''simple docstring''' import random def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : dict = {i: [] for i in range(_a )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_a ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_a ): for j in range(i + 1 , _a ): if random.random() < probability: graph[i].append(_a ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_a ) return graph def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' return { i: [j for j in range(_a ) if i != j] for i in range(_a ) } if __name__ == "__main__": import doctest doctest.testmod()
215
"""simple docstring""" def __lowercase ( _a , _a , _a=False ): if isinstance(_a , _a ) and isinstance(_a , _a ): snake_case_ : Union[str, Any] = len(set_a.intersection(_a ) ) if alternative_union: snake_case_ : Any = len(_a ) + len(_a ) else: snake_case_ : str = len(set_a.union(_a ) ) return intersection / union if isinstance(_a , (list, tuple) ) and isinstance(_a , (list, tuple) ): snake_case_ : str = [element for element in set_a if element in set_b] if alternative_union: snake_case_ : Tuple = len(_a ) + len(_a ) return len(_a ) / union else: snake_case_ : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(_a ) / len(_a ) return len(_a ) / len(_a ) return None if __name__ == "__main__": lowercase__ : Any = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowercase__ : Optional[Any] = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
264
0
import pytest import datasets # Import fixture modules as plugins __snake_case :int = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __snake_case ( _UpperCAmelCase ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__UpperCAmelCase ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = tmp_path_factory.getbasetemp() / '''cache''' __a = test_hf_cache_home / '''datasets''' __a = test_hf_cache_home / '''metrics''' __a = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(__UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(__UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(__UpperCAmelCase ) ) __a = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(__UpperCAmelCase ) ) __a = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__UpperCAmelCase ) ) @pytest.fixture(autouse=__UpperCAmelCase , scope='''session''' ) def __snake_case ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=__UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , __UpperCAmelCase ) @pytest.fixture def __snake_case ( _UpperCAmelCase ): monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , __UpperCAmelCase )
356
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : str): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Any): '''simple docstring''' __a = 1 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__SCREAMING_SNAKE_CASE) return image @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' def extract(*__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Dict): class _A : def __init__( self : int): '''simple docstring''' __a = torch.ones([0]) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' self.pixel_values.to(__SCREAMING_SNAKE_CASE) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__SCREAMING_SNAKE_CASE) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) assert isinstance(pipe.scheduler , __SCREAMING_SNAKE_CASE) assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE) __a = StableDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE) # sanity check that the pipeline still works assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # put models in fp16 __a = unet.half() __a = vae.half() __a = bert.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __a = 4_003_660_346 __a = 7 # without safety guidance (sld_guidance_scale = 0) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''padme amidala taking a bath artwork, safe for work, no nudity''' __a = 2_734_971_755 __a = 7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : str): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''') __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __a = 1_044_355_234 __a = 12 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
131
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys snake_case_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
83
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification a : str = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co a : int = """main""" # Default branch name a : Any = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) a : str = """aaaaaaa""" # This commit does not exist, so we should 404. a : int = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes a : Any = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __lowerCamelCase ( ) -> List[str]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __lowerCamelCase ( ) -> Optional[int]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class UpperCamelCase_ ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Tuple: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Dict: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Union[str, Any]: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def _lowercase( self ) -> Optional[int]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def _lowercase( self ) -> int: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def _lowercase( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , [] )
265
0
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_UpperCamelCase ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_UpperCamelCase ) == 1: return True __lowerCAmelCase : List[str] = series[1] - series[0] for index in range(len(_UpperCamelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __lowerCAmelCase (_UpperCamelCase ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_UpperCamelCase ) == 0: raise ValueError('Input list must be a non empty list' ) __lowerCAmelCase : Tuple = 0 for val in series: answer += val return answer / len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
182
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {} lowerCamelCase__ = {} lowerCamelCase__ = {} def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , ): __lowerCAmelCase : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) __lowerCAmelCase : str = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) __lowerCAmelCase : Any = format_type def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None ): __lowerCAmelCase : int = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __lowerCAmelCase : str = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: lowerCamelCase__ = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: lowerCamelCase__ = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: lowerCamelCase__ = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def __lowerCAmelCase (_UpperCamelCase ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __lowerCAmelCase (_UpperCamelCase , **_UpperCamelCase ): __lowerCAmelCase : Any = get_format_type_from_alias(_UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
182
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( lowercase__ ): def __init__( self , _a , _a = None , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , **_a , ): super().__init__( _a , split=_a , features=_a , cache_dir=_a , keep_in_memory=_a , streaming=_a , num_proc=_a , **_a , ) lowercase : List[Any] = field lowercase : List[Any] = path_or_paths if isinstance(_a , _a ) else {self.split: path_or_paths} lowercase : int = Json( cache_dir=_a , data_files=_a , features=_a , field=_a , **_a , ) def __magic_name__ ( self ): if self.streaming: lowercase : Tuple = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase : Any = None lowercase : Optional[Any] = None lowercase : Dict = None lowercase : Dict = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , num_proc=self.num_proc , ) lowercase : List[Any] = self.builder.as_dataset( split=self.split , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class a__ : def __init__( self , _a , _a , _a = None , _a = None , **_a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowercase : Union[str, Any] = dataset lowercase : Optional[Any] = path_or_buf lowercase : Optional[int] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase : Any = num_proc lowercase : Optional[Any] = 'utf-8' lowercase : Any = to_json_kwargs def __magic_name__ ( self ): lowercase : List[str] = self.to_json_kwargs.pop("path_or_buf" , _a ) lowercase : List[str] = self.to_json_kwargs.pop("orient" , "records" ) lowercase : Dict = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) lowercase : Optional[Any] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) lowercase : Union[str, Any] = self.to_json_kwargs.pop("compression" , _a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=_a ) as buffer: lowercase : str = self._write(file_obj=_a , orient=_a , lines=_a , index=_a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) lowercase : List[Any] = self._write( file_obj=self.path_or_buf , orient=_a , lines=_a , index=_a , **self.to_json_kwargs ) return written def __magic_name__ ( self , _a ): lowercase : Optional[Any] = args lowercase : Any = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase : List[Any] = batch.to_pandas().to_json( path_or_buf=_a , orient=_a , lines=_a , index=_a , **_a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def __magic_name__ ( self , _a , _a , _a , _a , **_a , ): lowercase : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): lowercase : Any = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_a ) else: lowercase : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(_a ) return written
202
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) __UpperCAmelCase : Dict = ['''accelerate''', '''launch'''] __UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' __UpperCAmelCase : Dict = '''default_config.yaml''' __UpperCAmelCase : Optional[Any] = config_folder / config_file __UpperCAmelCase : Dict = config_folder / '''_default_config.yaml''' __UpperCAmelCase : Any = Path('''tests/test_configs''' ) @classmethod def __lowercase ( cls : int ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] ,env=os.environ.copy() ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_a ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_a ), self.test_file_path] ,env=os.environ.copy() ) def __lowercase ( self : Optional[int] ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'] ,env=os.environ.copy() ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = '''test-tpu''' __UpperCAmelCase : Any = '''us-central1-a''' __UpperCAmelCase : List[Any] = '''ls''' __UpperCAmelCase : Any = ['''accelerate''', '''tpu-config'''] __UpperCAmelCase : Dict = '''cd /usr/share''' __UpperCAmelCase : Any = '''tests/test_samples/test_command_file.sh''' __UpperCAmelCase : List[Any] = '''Running gcloud compute tpus tpu-vm ssh''' def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_a ,) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_a ,) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] ,return_stdout=_a ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,) def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_a ,) def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" ,_a ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Any = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] ,return_stdout=_a ,) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_a ,)
271
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _lowerCamelCase ( _a ): lowercase_ : Dict = """lilt""" def __init__( self, lowerCamelCase=3_05_22, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=0, lowerCamelCase="absolute", lowerCamelCase=None, lowerCamelCase=4, lowerCamelCase=10_24, **lowerCamelCase, ) -> int: """simple docstring""" super().__init__(pad_token_id=snake_case_, **snake_case_) _lowercase : Tuple = vocab_size _lowercase : Optional[int] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Any = hidden_act _lowercase : str = intermediate_size _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : str = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : Optional[Any] = classifier_dropout _lowercase : List[Any] = channel_shrink_ratio _lowercase : Dict = max_ad_position_embeddings
371
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : List[str] = CTRLTokenizer lowercase_ : Union[str, Any] = False lowercase_ : Optional[int] = False def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : List[Any] = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowercase : List[Any] = dict(zip(lowerCamelCase, range(len(lowerCamelCase)))) _lowercase : Optional[int] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowercase : Union[str, Any] = {'unk_token': '<unk>'} _lowercase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCamelCase) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(lowerCamelCase)) def UpperCamelCase ( self, **lowerCamelCase) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = 'adapt react readapt apt' _lowercase : Tuple = 'adapt react readapt apt' return input_text, output_text def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowercase : List[str] = 'adapt react readapt apt' _lowercase : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowercase : Optional[Any] = tokenizer.tokenize(lowerCamelCase) self.assertListEqual(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = tokens + [tokenizer.unk_token] _lowercase : int = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase), lowerCamelCase)
84
0
from math import ceil def UpperCAmelCase ( a_ = 1_0_0_1 ) -> int: """simple docstring""" __A = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __A = 2 * i + 1 __A = 2 * i __A = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: SCREAMING_SNAKE_CASE :Tuple = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
15
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> float: __lowerCamelCase : Dict = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: __lowerCamelCase : Dict = 1 - (matter_density + radiation_density + dark_energy) __lowerCamelCase : Union[str, Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __lowerCamelCase : List[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation a =0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
73
0
"""simple docstring""" from manim import * class UpperCamelCase ( snake_case ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : Any = Rectangle(height=0.5 ,width=0.5 ) _lowercase : Union[str, Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) _lowercase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowercase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowercase : int = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : Dict = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : List[str] = VGroup(lowerCamelCase_ ,lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : List[str] = Text("""CPU""" ,font_size=24 ) _lowercase : Optional[Any] = Group(lowerCamelCase_ ,lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) _lowercase : List[str] = [mem.copy() for i in range(1 )] _lowercase : int = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : List[str] = Text("""GPU""" ,font_size=24 ) _lowercase : str = Group(lowerCamelCase_ ,lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_ ) gpu.align_to(lowerCamelCase_ ,lowerCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase_ ) _lowercase : List[str] = [mem.copy() for i in range(6 )] _lowercase : List[str] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : List[Any] = Text("""Model""" ,font_size=24 ) _lowercase : List[str] = Group(lowerCamelCase_ ,lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase_ ,run_time=1 ) ,Create(lowerCamelCase_ ,run_time=1 ) ,Create(lowerCamelCase_ ,run_time=1 ) ,) _lowercase : int = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.""" ,font_size=24 ,) _lowercase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowercase : List[str] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ,run_time=2.5 ) ,Write(lowerCamelCase_ ) ,Write(lowerCamelCase_ ) ) self.add(lowerCamelCase_ ) _lowercase : Any = [] _lowercase : int = [] _lowercase : int = [] for i, rect in enumerate(lowerCamelCase_ ): _lowercase : List[Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ ,opacity=0.7 ) cpu_target.move_to(lowerCamelCase_ ) cpu_target.generate_target() _lowercase : List[Any] = 0.46 / 4 _lowercase : Optional[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=lowerCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=lowerCamelCase_ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=lowerCamelCase_ ,buff=0.0 ) cpu_targs.append(lowerCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase_ ) ) second_animations.append(MoveToTarget(lowerCamelCase_ ,run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
355
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
0
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCamelCase = True except ImportError: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCamelCase ( lowerCAmelCase__ ): @staticmethod def a_ ( lowerCAmelCase__) -> Optional[int]: snake_case_ = parser.add_parser('add-new-model') add_new_model_parser.add_argument('--testing', action='store_true', help='If in testing mode.') add_new_model_parser.add_argument('--testing_file', type=lowerCAmelCase__, help='Configuration file on which to run.') add_new_model_parser.add_argument( '--path', type=lowerCAmelCase__, help='Path to cookiecutter. Should only be used for testing purposes.') add_new_model_parser.set_defaults(func=lowerCAmelCase__) def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None, *lowerCAmelCase__) -> int: snake_case_ = testing snake_case_ = testing_file snake_case_ = path def a_ ( self) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.') if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n') # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case_ = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(lowerCAmelCase__) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.') snake_case_ = ( Path(lowerCAmelCase__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) snake_case_ = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase__)) else: with open(self._testing_file, 'r') as configuration_file: snake_case_ = json.load(lowerCAmelCase__) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path), no_input=lowerCAmelCase__, extra_context=lowerCAmelCase__, ) snake_case_ = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json', 'r') as configuration_file: snake_case_ = json.load(lowerCAmelCase__) snake_case_ = configuration['lowercase_modelname'] snake_case_ = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f'{directory}/configuration.json') snake_case_ = 'PyTorch' in generate_tensorflow_pytorch_and_flax snake_case_ = 'TensorFlow' in generate_tensorflow_pytorch_and_flax snake_case_ = 'Flax' in generate_tensorflow_pytorch_and_flax snake_case_ = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowerCAmelCase__, exist_ok=lowerCAmelCase__) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}', exist_ok=lowerCAmelCase__) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py', 'w'): pass shutil.move( f'{directory}/__init__.py', f'{model_dir}/__init__.py', ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py', f'{model_dir}/configuration_{lowercase_model_name}.py', ) def remove_copy_lines(lowerCAmelCase__): with open(lowerCAmelCase__, 'r') as f: snake_case_ = f.readlines() with open(lowerCAmelCase__, 'w') as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase__) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py') shutil.move( f'{directory}/modeling_{lowercase_model_name}.py', f'{model_dir}/modeling_{lowercase_model_name}.py', ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py', f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py', ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py') os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py') if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py') shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py', f'{model_dir}/modeling_tf_{lowercase_model_name}.py', ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py', f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py', ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py') os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py') if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py') shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py', f'{model_dir}/modeling_flax_{lowercase_model_name}.py', ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py', f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py', ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py') os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py') shutil.move( f'{directory}/{lowercase_model_name}.md', f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md', ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py', f'{model_dir}/tokenization_{lowercase_model_name}.py', ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py', f'{model_dir}/tokenization_{lowercase_model_name}_fast.py', ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__): # Create temp file snake_case_ , snake_case_ = mkstemp() snake_case_ = False with fdopen(lowerCAmelCase__, 'w') as new_file: with open(lowerCAmelCase__) as old_file: for line in old_file: new_file.write(lowerCAmelCase__) if line_to_copy_below in line: snake_case_ = True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase__) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.') # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase__, lowerCAmelCase__) # Remove original file remove(lowerCAmelCase__) # Move new file move(lowerCAmelCase__, lowerCAmelCase__) def skip_units(lowerCAmelCase__): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCAmelCase__): with open(lowerCAmelCase__) as datafile: snake_case_ = [] snake_case_ = False snake_case_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case_ = line.split('"')[1] snake_case_ = skip_units(lowerCAmelCase__) elif "# Below: " in line and "##" not in line: snake_case_ = line.split('"')[1] snake_case_ = skip_units(lowerCAmelCase__) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = [] elif "# Replace with" in line and "##" not in line: snake_case_ = [] elif "##" not in line: lines_to_copy.append(lowerCAmelCase__) remove(lowerCAmelCase__) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py') os.rmdir(lowerCAmelCase__)
69
import unittest from transformers import DonutProcessor lowerCamelCase = '''naver-clova-ix/donut-base''' class _a ( unittest.TestCase): def UpperCAmelCase__( self : str )-> int: lowerCAmelCase__ : Any = DonutProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : Dict = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowerCAmelCase__ : Any = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowerCAmelCase__ : str = self.processor.tokenajson(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
131
0
'''simple docstring''' import os import sys _UpperCamelCase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _UpperCamelCase = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ): """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : int , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Any ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowercase_ ( *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __UpperCamelCase : int = get_tests_dir('fixtures') __UpperCamelCase : Tuple = get_tests_dir('fixtures/dummy_feature_extractor_config.json') __UpperCamelCase : List[str] = get_tests_dir('fixtures/dummy-config.json') class lowercase__ ( unittest.TestCase): def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 0 def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Optional[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ).to_dict() config_dict.pop('''feature_extractor_type''' ) SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor(**UpperCamelCase__ ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) config.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def __A ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ , revision='''aaaaaa''' ) def __A ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __A ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def __A ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __A ( self : Optional[Any] ): '''simple docstring''' class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(UpperCamelCase__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
182
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : @staticmethod def __A ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class lowercase__ ( unittest.TestCase): UpperCamelCase_ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) SCREAMING_SNAKE_CASE : List[str] = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def __A ( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = object_detector(examples[0] , threshold=0.0 ) SCREAMING_SNAKE_CASE : Tuple = len(UpperCamelCase__ ) self.assertGreater(UpperCamelCase__ , 0 ) self.assertEqual( UpperCamelCase__ , [ { '''score''': ANY(UpperCamelCase__ ), '''label''': ANY(UpperCamelCase__ ), '''box''': {'''xmin''': ANY(UpperCamelCase__ ), '''ymin''': ANY(UpperCamelCase__ ), '''xmax''': ANY(UpperCamelCase__ ), '''ymax''': ANY(UpperCamelCase__ )}, } for i in range(UpperCamelCase__ ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @require_torch def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) SCREAMING_SNAKE_CASE : str = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = pipeline('''zero-shot-object-detection''' ) SCREAMING_SNAKE_CASE : Optional[int] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __A ( self : str ): '''simple docstring''' pass @require_torch @slow def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 0.2 SCREAMING_SNAKE_CASE : Optional[int] = pipeline('''zero-shot-object-detection''' ) SCREAMING_SNAKE_CASE : Dict = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Optional[Any] = pipeline('''zero-shot-object-detection''' ) SCREAMING_SNAKE_CASE : List[str] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
182
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A : Union[str, Any] =random.Random() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=1.0 , UpperCamelCase=None , UpperCamelCase=None ) -> int: if rng is None: lowerCamelCase__ : Dict = global_rng lowerCamelCase__ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowercase ( unittest.TestCase ): def __init__( self: int , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple=7 , UpperCamelCase__: List[str]=400 , UpperCamelCase__: Union[str, Any]=2_000 , UpperCamelCase__: Optional[Any]=10 , UpperCamelCase__: Any=160 , UpperCamelCase__: Union[str, Any]=8 , UpperCamelCase__: int=0.0 , UpperCamelCase__: Optional[Any]=4_000 , UpperCamelCase__: List[str]=False , UpperCamelCase__: str=True , ): lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : str = min_seq_length lowerCamelCase__ : List[Any] = max_seq_length lowerCamelCase__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__ : List[Any] = padding_value lowerCamelCase__ : Any = sampling_rate lowerCamelCase__ : Dict = return_attention_mask lowerCamelCase__ : Union[str, Any] = do_normalize lowerCamelCase__ : Optional[int] = feature_size lowerCamelCase__ : Union[str, Any] = chunk_length lowerCamelCase__ : Dict = hop_length def lowerCamelCase_ ( self: List[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[Any]=False , UpperCamelCase__: int=False ): def _flatten(UpperCamelCase__: List[str] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: lowerCamelCase__ : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase__ : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase__ : Any = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowercase ( _lowercase , unittest.TestCase ): a = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Union[str, Any] = WhisperFeatureExtractionTester(self ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : List[Any] = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) lowerCamelCase__ : Dict = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : int = feat_extract_first.to_dict() lowerCamelCase__ : List[str] = feat_extract_second.to_dict() lowerCamelCase__ : List[str] = feat_extract_first.mel_filters lowerCamelCase__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : Tuple = os.path.join(UpperCamelCase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(UpperCamelCase__ ) lowerCamelCase__ : int = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = feat_extract_first.to_dict() lowerCamelCase__ : Dict = feat_extract_second.to_dict() lowerCamelCase__ : Union[str, Any] = feat_extract_first.mel_filters lowerCamelCase__ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCamelCase__ : str = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase__ : Dict = feature_extractor(UpperCamelCase__ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase__ : Any = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCamelCase__ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched lowerCamelCase__ : List[Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowerCamelCase__ : Optional[Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase__ : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase__ : str = np.asarray(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowerCamelCase__ : List[str] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test truncation required lowerCamelCase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowerCamelCase__ : int = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] lowerCamelCase__ : Dict = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCamelCase__ : Dict = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs_truncated] lowerCamelCase__ : str = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features lowerCamelCase__ : Union[str, Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def lowerCamelCase_ ( self: Optional[Any] ): import torch lowerCamelCase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : Dict = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCamelCase__ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__ : Tuple = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase__ : int = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: List[Any] ): lowerCamelCase__ : List[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCamelCase__ : List[Any] = ds.sort("""id""" ).select(range(UpperCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self: str ): # fmt: off lowerCamelCase__ : Any = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on lowerCamelCase__ : Optional[int] = self._load_datasamples(1 ) lowerCamelCase__ : Optional[Any] = WhisperFeatureExtractor() lowerCamelCase__ : Dict = feature_extractor(UpperCamelCase__ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase__ , atol=1e-4 ) ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ : Dict = self._load_datasamples(1 )[0] lowerCamelCase__ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue lowerCamelCase__ : Any = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase__ )[0] self.assertTrue(np.all(np.mean(UpperCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ ) - 1 ) < 1e-3 ) )
41
"""simple docstring""" def _snake_case ( lowercase__ : str , lowercase__ : str ) -> int: '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("""String lengths must match!""" ) lowerCAmelCase_ :Optional[int] = 0 for chara, chara in zip(lowercase__ , lowercase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
84
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, ) -> List[str]: super().__init__() self.register_modules(transformer=lowercase_, vae=lowercase_, scheduler=lowercase_ ) # create a imagenet -> id dictionary for easier use snake_case = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): snake_case = int(lowercase_ ) snake_case = dict(sorted(self.labels.items() ) ) def _lowerCamelCase ( self, lowercase_ ) -> List[int]: if not isinstance(lowercase_, lowercase_ ): snake_case = list(lowercase_ ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self, lowercase_, lowercase_ = 4.0, lowercase_ = None, lowercase_ = 50, lowercase_ = "pil", lowercase_ = True, ) -> Union[ImagePipelineOutput, Tuple]: snake_case = len(lowercase_ ) snake_case = self.transformer.config.sample_size snake_case = self.transformer.config.in_channels snake_case = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size), generator=lowercase_, device=self.device, dtype=self.transformer.dtype, ) snake_case = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents snake_case = torch.tensor(lowercase_, device=self.device ).reshape(-1 ) snake_case = torch.tensor([1000] * batch_size, device=self.device ) snake_case = torch.cat([class_labels, class_null], 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: snake_case = latent_model_input[: len(lowercase_ ) // 2] snake_case = torch.cat([half, half], dim=0 ) snake_case = self.scheduler.scale_model_input(lowercase_, lowercase_ ) snake_case = t if not torch.is_tensor(lowercase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) snake_case = latent_model_input.device.type == 'mps' if isinstance(lowercase_, lowercase_ ): snake_case = torch.floataa if is_mps else torch.floataa else: snake_case = torch.intaa if is_mps else torch.intaa snake_case = torch.tensor([timesteps], dtype=lowercase_, device=latent_model_input.device ) elif len(timesteps.shape ) == 0: snake_case = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output snake_case = self.transformer( lowercase_, timestep=lowercase_, class_labels=lowercase_ ).sample # perform guidance if guidance_scale > 1: snake_case , snake_case = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] snake_case , snake_case = torch.split(lowercase_, len(lowercase_ ) // 2, dim=0 ) snake_case = uncond_eps + guidance_scale * (cond_eps - uncond_eps) snake_case = torch.cat([half_eps, half_eps], dim=0 ) snake_case = torch.cat([eps, rest], dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: snake_case , snake_case = torch.split(lowercase_, lowercase_, dim=1 ) else: snake_case = noise_pred # compute previous image: x_t -> x_t-1 snake_case = self.scheduler.step(lowercase_, lowercase_, lowercase_ ).prev_sample if guidance_scale > 1: snake_case , snake_case = latent_model_input.chunk(2, dim=0 ) else: snake_case = latent_model_input snake_case = 1 / self.vae.config.scaling_factor * latents snake_case = self.vae.decode(lowercase_ ).sample snake_case = (samples / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case = samples.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": snake_case = self.numpy_to_pil(lowercase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase_ )
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 0 ): '''simple docstring''' UpperCAmelCase__ = length or len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: UpperCAmelCase__ , UpperCAmelCase__ = list_data[i + 1], list_data[i] UpperCAmelCase__ = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """vivit""" def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ): """simple docstring""" UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = num_frames UpperCAmelCase__ = tubelet_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias super().__init__(**_UpperCAmelCase )
346
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class lowercase_ ( __lowercase ): A__ : Any = '''mgp-str''' def __init__( self , __UpperCamelCase=[3_2, 1_2_8] , __UpperCamelCase=4 , __UpperCamelCase=3 , __UpperCamelCase=2_7 , __UpperCamelCase=3_8 , __UpperCamelCase=5_0_2_5_7 , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=4.0 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1e-5 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=0.02 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCAmelCase__ ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
261
0